1
|
Rajib MM, Bindal N, Raj RK, Kaushik BK, Atulasimha J. Skyrmion-mediated nonvolatile ternary memory. Sci Rep 2024; 14:17199. [PMID: 39060298 PMCID: PMC11282189 DOI: 10.1038/s41598-024-66853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Multistate memory systems have the ability to store and process more data in the same physical space as binary memory systems, making them a potential alternative to existing binary memory systems. In the past, it has been demonstrated that voltage-controlled magnetic anisotropy (VCMA) based writing is highly energy-efficient compared to other writing methods used in non-volatile nano-magnetic binary memory systems. In this study, we introduce a new, VCMA-based and skyrmion-mediated non-volatile ternary memory system using a perpendicular magnetic tunnel junction (p-MTJ) in the presence of room temperature thermal perturbation. We have also shown that ternary states {- 1, 0, + 1} can be implemented with three magnetoresistance values obtained from a p-MTJ corresponding to ferromagnetic up, down, and skyrmion state, with 99% switching probability in the presence of room temperature thermal noise in an energy-efficient way, requiring ~ 2 fJ energy on an average for each switching operation. Additionally, we show that our proposed ternary memory demonstrates an improvement in area and energy by at least 2X and ~ 104X respectively, compared to state-of-the-art spin-transfer torque (STT)-based non-volatile magnetic multistate memories. Furthermore, these three states can be potentially utilized for energy-efficient, high-density in-memory quantized deep neural network implementation.
Collapse
Affiliation(s)
- Md Mahadi Rajib
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Namita Bindal
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
- Department of Electronics and Communication Engineering, MVJ College of Engineering, Bangalore, 560067, India
| | - Ravish Kumar Raj
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Jayasimha Atulasimha
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA.
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
2
|
Ukleev V, Luo C, Abrudan R, Aqeel A, Back CH, Radu F. Chiral surface spin textures in Cu 2OSeO 3 unveiled by soft X-ray scattering in specular reflection geometry. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:682-690. [PMID: 36277505 PMCID: PMC9586675 DOI: 10.1080/14686996.2022.2131466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Resonant elastic soft X-ray magnetic scattering (XRMS) is a powerful tool to explore long-periodic spin textures in single crystals. However, due to the limited momentum transfer range imposed by long wavelengths of photons in the soft x-ray region, Bragg diffraction is restricted to crystals with the large lattice parameters. Alternatively, small-angle X-ray scattering has been involved in the soft energy X-ray range which, however, brings in difficulties with the sample preparation that involves focused ion beam milling to thin down the crystal to below a few hundred nm thickness. We show how to circumvent these restrictions using XRMS in specular reflection from a sub-nanometer smooth crystal surface. The method allows observing diffraction peaks from the helical and conical spin modulations at the surface of a Cu 2 OSeO 3 single crystal and probing their corresponding chirality as contributions to the dichroic scattered intensity. The results suggest a promising way to carry out XRMS studies on a plethora of noncentrosymmetric systems hitherto unexplored with soft X-rays due to the absence of the commensurate Bragg peaks in the available momentum transfer range.
Collapse
Affiliation(s)
- V. Ukleev
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - C. Luo
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
- Physik-Department, Technische Universität München, Garching, Germany
| | - R. Abrudan
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - A. Aqeel
- Physik-Department, Technische Universität München, Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| | - C. H. Back
- Physik-Department, Technische Universität München, Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| | - F. Radu
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| |
Collapse
|
3
|
Bluschke M, Basak R, Barbour A, Warner AN, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A. Imaging mesoscopic antiferromagnetic spin textures in the dilute limit from single-geometry resonant coherent x-ray diffraction. SCIENCE ADVANCES 2022; 8:eabn6882. [PMID: 35857841 PMCID: PMC9299548 DOI: 10.1126/sciadv.abn6882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The detection and manipulation of antiferromagnetic domains and topological antiferromagnetic textures are of central interest to solid-state physics. A fundamental step is identifying tools to probe the mesoscopic texture of an antiferromagnetic order parameter. In this work, we demonstrate that Bragg coherent diffractive imaging can be extended to study the mesoscopic texture of an antiferromagnetic order parameter using resonant magnetic x-ray scattering. We study the onset of the antiferromagnet transition in PrNiO3, focusing on a temperature regime in which the antiferromagnetic domains are dilute in the beam spot and the coherent diffraction pattern modulating the antiferromagnetic peak is greatly simplified. We demonstrate that it is possible to extract the arrangements and sizes of these domains from single diffraction patterns and show that the approach could be extended to a time-structured light source to study the motion of dilute domains or the motion of topological defects in an antiferromagnetic spin texture.
Collapse
Affiliation(s)
- Martin Bluschke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Rourav Basak
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Andi Barbour
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ashley N Warner
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrin Fürsich
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Stuart Wilkins
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Lee
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, Concordia College, Moorhead, MN 56562, USA
| | - Georg Christiani
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Gennady Logvenov
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Matteo Minola
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Claudio Mazzoli
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Eva Benckiser
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Alex Frano
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Ran K, Liu Y, Jin H, Shangguan Y, Guang Y, Wen J, Yu G, van der Laan G, Hesjedal T, Zhang S. Axially Bound Magnetic Skyrmions: Glueing Topological Strings Across an Interface. NANO LETTERS 2022; 22:3737-3743. [PMID: 35451843 PMCID: PMC9101076 DOI: 10.1021/acs.nanolett.2c00689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Indexed: 06/03/2023]
Abstract
A major challenge in topological magnetism lies in the three-dimensional (3D) exploration of their magnetic textures. A recent focus has been the question of how 2D skyrmion sheets vertically stack to form distinct types of 3D topological strings. Being able to manipulate the vertical coupling should therefore provide a route to the engineering of topological states. Here, we present a new type of axially bound magnetic skyrmion string state in which the strings in two distinct materials are glued together across their interface. With quasi-tomographic resonant elastic X-ray scattering, the 3D skyrmion profiles before and after their binding across the interface were unambiguously determined and compared. Their attractive binding is accompanied by repulsive twisting; i.e., the coupled skyrmions mutually affect each other via a compensating twisting. This state exists in chiral magnet-magnetic thin film heterostructures, providing a new arena for the engineering of 3D topological phases.
Collapse
Affiliation(s)
- Kejing Ran
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 200031, China
- ShanghaiTech
Laboratory for Topological Physics, ShanghaiTech
University, Shanghai 200031, China
| | - Yizhou Liu
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Haonan Jin
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 200031, China
- ShanghaiTech
Laboratory for Topological Physics, ShanghaiTech
University, Shanghai 200031, China
| | - Yanyan Shangguan
- National
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced
Microstructures, Nanjing 210093, China
| | - Yao Guang
- Beijing
National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinsheng Wen
- National
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced
Microstructures, Nanjing 210093, China
| | - Guoqiang Yu
- Beijing
National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Gerrit van der Laan
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, United Kingdom
| | - Thorsten Hesjedal
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Shilei Zhang
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 200031, China
- ShanghaiTech
Laboratory for Topological Physics, ShanghaiTech
University, Shanghai 200031, China
| |
Collapse
|
5
|
Ultrafast time-evolution of chiral Néel magnetic domain walls probed by circular dichroism in x-ray resonant magnetic scattering. Nat Commun 2022; 13:1412. [PMID: 35301298 PMCID: PMC8931105 DOI: 10.1038/s41467-022-28899-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/18/2022] [Indexed: 11/29/2022] Open
Abstract
Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows for the stabilization of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions among others. We report here on the behavior of chiral DWs at ultrashort timescale after optical pumping in perpendicularly magnetized asymmetric multilayers. The magnetization dynamics is probed using time-resolved circular dichroism in x-ray resonant magnetic scattering (CD-XRMS). We observe a picosecond transient reduction of the CD-XRMS, which is attributed to the spin current-induced coherent and incoherent torques within the continuously varying spin texture of the DWs. We argue that a specific demagnetization of the inner structure of the DW induces a flow of spins from the interior of the neighboring magnetic domains. We identify this time-varying change of the DW texture shortly after the laser pulse as a distortion of the homochiral Néel shape toward a transient mixed Bloch-Néel-Bloch texture along a direction transverse to the DW. There is interest in encoding of information in complex spin structures present in magnetic systems, such as domain walls. Here, Léveillé et al study the ultrafast dynamics of chiral domain walls, and show the emergence of a transient spin chiral texture at the domain wall.
Collapse
|
6
|
Borja C, Gutiérrez E, López A. Emergence of Floquet edge states in the coupled Su-Schrieffer-Heeger model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:205701. [PMID: 35203064 DOI: 10.1088/1361-648x/ac5865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The emergence of non equilibrium topological phases in low dimensional systems offers an interesting route for material properties engineering. We analyze the dynamical modulation of two coupled one-dimensional chains, described by the Su-Schrieffer-Heeger model. We find that the interplay of driving interactions and interchain coupling leads to the emergence of non-equilibrium edge states with nontrivial topological properties. Using an effective Hamiltonian approach, we quantify the emergent topological phases via the winding number and show that oscillations in the mean pseudospin polarization arise as a consequence of the periodic modulation. The patterns of these pseudospin oscillations are different for the static trivial and topological phases offering a dynamical means to distinguish both physical configurations. The system also exhibits non integer values of the winding number, which have been recently reported experimentally in connection to spin textures.
Collapse
Affiliation(s)
- Carla Borja
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Esther Gutiérrez
- Escuela Superior Politécnica del Litoral, ESPOL, Departamento de Física, Facultad de Ciencias Naturales y Matemáticas, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| | - Alexander López
- Escuela Superior Politécnica del Litoral, ESPOL, Departamento de Física, Facultad de Ciencias Naturales y Matemáticas, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
7
|
Ran K, Liu Y, Guang Y, Burn DM, van der Laan G, Hesjedal T, Du H, Yu G, Zhang S. Creation of a Chiral Bobber Lattice in Helimagnet-Multilayer Heterostructures. PHYSICAL REVIEW LETTERS 2021; 126:017204. [PMID: 33480795 DOI: 10.1103/physrevlett.126.017204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
A chiral bobber is a localized three-dimensional magnetization configuration, terminated by a singularity. Chiral bobbers coexist with magnetic skyrmions in chiral magnets, lending themselves to new types of skyrmion-complementary bits of information. However, the on-demand creation of bobbers, as well as their direct observation remained elusive. Here, we introduce a new mechanism for creating a stable chiral bobber lattice state via the proximity of two skyrmion species with comparable size. This effect is experimentally demonstrated in a Cu_{2}OSeO_{3}/[Ta/CoFeB/MgO]_{4} heterostructure in which an exotic bobber lattice state emerges in the phase diagram of Cu_{2}OSeO_{3}. To unambiguously reveal the existence of the chiral bobber lattice state, we have developed a novel characterization technique, magnetic truncation rod analysis, which is based on resonant elastic x-ray scattering.
Collapse
Affiliation(s)
- Kejing Ran
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China
| | - Yizhou Liu
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Yao Guang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - David M Burn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Gerrit van der Laan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Thorsten Hesjedal
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Haifeng Du
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and University of Science and Technology of China, Chinese Academy of Science (CAS), Hefei, Anhui 230031, China
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shilei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
8
|
Tang J, Kong L, Wu Y, Wang W, Chen Y, Wang Y, Li J, Soh Y, Xiong Y, Tian M, Du H. Target Bubbles in Fe 3Sn 2 Nanodisks at Zero Magnetic Field. ACS NANO 2020; 14:10986-10992. [PMID: 32806036 DOI: 10.1021/acsnano.0c04036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a vortex-like magnetic configuration in uniaxial ferromagnet Fe3Sn2 nanodisks using differential phase contrast scanning transmission electron microscopy. This magnetic configuration is transferred from a conventional magnetic vortex using a zero-magnetic-field warming process and is characterized by a series of concentric cylinder domains. We termed them as "target bubbles" that are identified as three-dimensional depth-modulated magnetic objects in combination with numerical simulations. Target bubbles have room-temperature stability even at zero magnetic field and multiple stable magnetic configurations. These advantages render the target bubble an ideal bit to be an information carrier and can advance magnetic target bubbles toward functionalities in the long term by incorporating emergent degrees of freedom and purely electrically controllable magnetism.
Collapse
Affiliation(s)
- Jin Tang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Lingyao Kong
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Yaodong Wu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Weiwei Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yutao Chen
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Yihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Junbo Li
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Y Soh
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Yimin Xiong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Mingliang Tian
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
9
|
Huang H, Lee SJ, Kim B, Sohn B, Kim C, Kao CC, Lee JS. Detection of the Chiral Spin Structure in Ferromagnetic SrRuO 3 Thin Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37757-37763. [PMID: 32696641 DOI: 10.1021/acsami.0c10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
SrRuO3 (SRO) thin films and their heterostructure have attracted much attention because of the recently demonstrated fascinating properties, such as topological Hall effect and skyrmions. Critical to the understanding of those SRO properties is the study of the spin configuration. Here, we conduct resonant soft X-ray scattering (RSXS) at the oxygen K edge to investigate the spin configuration of a four-unit-cell SRO film that was grown epitaxially on a single-crystal SrTiO3. The RSXS signal under a magnetic field (∼0.4 tesla) clearly shows a magnetic dichroism pattern around the specular reflection. Model calculations on the RSXS signal demonstrate that the magnetic dichroism pattern originates from a Néel-type chiral spin structure in this SRO thin film. We believe that the observed spin structure of the SRO system is a critical piece of information for understanding its intriguing magnetic and transport properties.
Collapse
Affiliation(s)
- Hai Huang
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sang-Jun Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bongju Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, South Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Byungmin Sohn
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, South Korea
| | - Changyoung Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, South Korea
| | - Chi-Chang Kao
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jun-Sik Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
10
|
Zhang S, Burn DM, Jaouen N, Chauleau JY, Haghighirad AA, Liu Y, Wang W, van der Laan G, Hesjedal T. Robust Perpendicular Skyrmions and Their Surface Confinement. NANO LETTERS 2020; 20:1428-1432. [PMID: 31928021 PMCID: PMC7145360 DOI: 10.1021/acs.nanolett.9b05141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Magnetic skyrmions are two-dimensional magnetization swirls that stack in the form of tubes in the third dimension and which are proposed as prospective information carriers for nonvolatile memory devices due to their unique topological properties. From resonant elastic X-ray scattering measurements on Cu2OSeO3 with an in-plane magnetic field, we find that a state of perpendicularly ordered skyrmions forms, in stark contrast to the well-studied bulk state. The surface state is stable over a wide temperature range, unlike the bulk state in out-of-plane fields which is confined to a narrow region of the temperature-field phase diagram. In contrast to ordinary skyrmions found in the bulk, the surface state skyrmions result from the presence of magnetic interactions unique to the surface which stabilize them against external perturbations. The surface guiding makes the robust state particular interesting for racetracklike devices, ultimately allowing for much higher storage densities due to the smaller lateral footprint of the perpendicular skyrmions.
Collapse
Affiliation(s)
- Shilei Zhang
- School of
Physical Science and Technology and ShanghaiTech Laboratory for Topological
Physics, ShanghaiTech University, Shanghai 200031, China
- Department
of Physics, Clarendon Laboratory and Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United
Kingdom
| | - David M. Burn
- Magnetic
Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE, United Kingdom
| | - Nicolas Jaouen
- Synchrotron
SOLEIL, L’Orme
des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Jean-Yves Chauleau
- Synchrotron
SOLEIL, L’Orme
des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Amir A. Haghighirad
- Department
of Physics, Clarendon Laboratory and Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Yizhou Liu
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Wang
- Institutes
of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gerrit van der Laan
- Magnetic
Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE, United Kingdom
| | - Thorsten Hesjedal
- Department
of Physics, Clarendon Laboratory and Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United
Kingdom
| |
Collapse
|
11
|
Díaz J, Gargiani P, Quirós C, Redondo C, Morales R, Álvarez-Prado LM, Martín JI, Scholl A, Ferrer S, Vélez M, Valvidares SM. Chiral asymmetry detected in a 2D array of permalloy square nanomagnets using circularly polarized x-ray resonant magnetic scattering. NANOTECHNOLOGY 2020; 31:025702. [PMID: 31546237 DOI: 10.1088/1361-6528/ab46d7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The sensitivity of circularly polarized x-ray resonant magnetic scattering (CXRMS) to chiral asymmetry has been demonstrated. The study was performed on a 2D array of Permalloy (Py) square nanomagnets of 700 nm lateral size arranged in a chess pattern, in a square lattice of 1000 nm lattice parameter. Previous x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) images on this sample showed the formation of vortices at remanence and a preference in their chiral state. The magnetic hysteresis loops of the array along the diagonal axis of the squares indicate a non-negligible and anisotropic interaction between vortices. The intensity of the magnetic scattering using circularly polarized light along one of the diagonal axes of the square magnets becomes asymmetric in intensity in the direction transversal to the incident plane at fields where the vortex states are formed. The asymmetry sign is inverted when the direction of the applied magnetic field is inverted. The result is the expected in the presence of an unbalanced chiral distribution. The effect is observed by CXRMS due to the interference between the charge scattering and the magnetic scattering.
Collapse
Affiliation(s)
- J Díaz
- Depto. Física, Universidad de Oviedo, E-33007 Oviedo, Spain. CINN (CSIC-Univ. de Oviedo), E-33940 El Entrego, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pöllath S, Aqeel A, Bauer A, Luo C, Ryll H, Radu F, Pfleiderer C, Woltersdorf G, Back CH. Ferromagnetic Resonance with Magnetic Phase Selectivity by Means of Resonant Elastic X-Ray Scattering on a Chiral Magnet. PHYSICAL REVIEW LETTERS 2019; 123:167201. [PMID: 31702336 DOI: 10.1103/physrevlett.123.167201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Cubic chiral magnets, such as Cu_{2}OSeO_{3}, exhibit a variety of noncollinear spin textures, including a trigonal lattice of spin whirls, the so-called skyrmions. Using magnetic resonant elastic x-ray scattering (REXS) on a crystalline Bragg peak and its magnetic satellites while exciting the sample with magnetic fields at gigahertz frequencies, we probe the ferromagnetic resonance (FMR) modes of these spin textures by means of the scattered intensity. Most notably, the three eigenmodes of the skyrmion lattice are detected with large sensitivity. As this novel technique, which we label REXS FMR, is carried out at distinct positions in reciprocal space, it allows us to distinguish contributions originating from different magnetic states, providing information on the precise character, weight, and mode mixing as a prerequisite of tailored excitations for applications.
Collapse
Affiliation(s)
- S Pöllath
- Institut für Experimentelle Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - A Aqeel
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
| | - A Bauer
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
| | - C Luo
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
- Helmholtz-Zentrum Berlin für Materialien and Energie, D-12489 Berlin, Germany
| | - H Ryll
- Helmholtz-Zentrum Berlin für Materialien and Energie, D-12489 Berlin, Germany
| | - F Radu
- Helmholtz-Zentrum Berlin für Materialien and Energie, D-12489 Berlin, Germany
| | - C Pfleiderer
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 München, Germany
| | - G Woltersdorf
- Institut für Physik, Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - C H Back
- Institut für Experimentelle Physik, Universität Regensburg, D-93040 Regensburg, Germany
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 München, Germany
| |
Collapse
|
13
|
Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet. Proc Natl Acad Sci U S A 2018; 115:6386-6391. [PMID: 29866823 DOI: 10.1073/pnas.1803367115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is commonly assumed that surfaces modify the properties of stable materials within the top few atomic layers of a bulk specimen only. Exploiting the polarization dependence of resonant elastic X-ray scattering to go beyond conventional diffraction and imaging techniques, we have determined the depth dependence of the full 3D spin structure of skyrmions-that is, topologically nontrivial whirls of the magnetization-below the surface of a bulk sample of Cu2OSeO3 We found that the skyrmions change exponentially from pure Néel- to pure Bloch-twisting over a distance of several hundred nanometers between the surface and the bulk, respectively. Though qualitatively consistent with theory, the strength of the Néel-twisting at the surface and the length scale of the variation observed experimentally exceed material-specific modeling substantially. In view of the exceptionally complete quantitative theoretical account of the magnetic rigidities and associated static and dynamic properties of skyrmions in Cu2OSeO3 and related materials, we conclude that subtle changes of the materials properties must exist at distances up to several hundred atomic layers into the bulk, which originate in the presence of the surface. This has far-reaching implications for the creation of skyrmions in surface-dominated systems and identifies, more generally, surface-induced gradual variations deep within a bulk material and their impact on tailored functionalities as an unchartered scientific territory.
Collapse
|
14
|
Zhang SL, van der Laan G, Wang WW, Haghighirad AA, Hesjedal T. Direct Observation of Twisted Surface skyrmions in Bulk Crystals. PHYSICAL REVIEW LETTERS 2018; 120:227202. [PMID: 29906149 DOI: 10.1103/physrevlett.120.227202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Magnetic skyrmions in noncentrosymmetric helimagnets with D_{n} symmetry are Bloch-type magnetization swirls with a helicity angle of ±90°. At the surface of helimagnetic thin films below a critical thickness, a twisted skyrmion state with an arbitrary helicity angle has been proposed; however, its direct experimental observation has remained elusive. Here, we show that circularly polarized resonant elastic x-ray scattering is able to unambiguously measure the helicity angle of surface skyrmions, providing direct experimental evidence that a twisted skyrmion surface state also exists in bulk systems. The exact surface helicity angles of twisted skyrmions for both left- and right-handed chiral bulk Cu_{2}OSeO_{3}, in the single as well as in the multidomain skyrmion lattice state, are determined, revealing their detailed internal structure. Our findings suggest that a skyrmion surface reconstruction is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.
Collapse
Affiliation(s)
- S L Zhang
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - G van der Laan
- Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE, United Kingdom
| | - W W Wang
- Faculty of Science, Ningbo University, Ningbo 315211, China
| | - A A Haghighirad
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- Institute for Solid State Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - T Hesjedal
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
15
|
Zhang S, Kronast F, van der Laan G, Hesjedal T. Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure. NANO LETTERS 2018; 18:1057-1063. [PMID: 29363315 DOI: 10.1021/acs.nanolett.7b04537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The combination of topological insulators, that is, bulk insulators with gapless, topologically protected surface states, with magnetic order is a love-hate relationship that can unlock new quantum states and exotic physical phenomena, such as the quantum anomalous Hall effect and axion electrodynamics. Moreover, the unusual coupling between topological insulators and ferromagnets can also result in the formation of topological spin textures in the ferromagnetic layer. Skyrmions are topologically protected magnetization swirls that are promising candidates for spintronics memory carriers. Here, we report on the observation of skyrmionium in thin ferromagnetic films coupled to a magnetic topological insulator. The occurrence of skyrmionium, which appears as a soliton composed of two skyrmions with opposite winding numbers, is tied to the ferromagnetic state of the topological insulator. Our work presents a new combination of two important classes of topological materials and may open the door to new topologically inspired information-storage concepts in the future.
Collapse
Affiliation(s)
- Shilei Zhang
- Clarendon Laboratory, Department of Physics, University of Oxford , Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Florian Kronast
- Helmholtz-Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Gerrit van der Laan
- Magnetic Spectroscopy Group , Diamond Light Source, Didcot, OX11 0DE, United Kingdom
| | - Thorsten Hesjedal
- Clarendon Laboratory, Department of Physics, University of Oxford , Parks Road, Oxford, OX1 3PU, United Kingdom
| |
Collapse
|
16
|
Chauleau JY, Legrand W, Reyren N, Maccariello D, Collin S, Popescu H, Bouzehouane K, Cros V, Jaouen N, Fert A. Chirality in Magnetic Multilayers Probed by the Symmetry and the Amplitude of Dichroism in X-Ray Resonant Magnetic Scattering. PHYSICAL REVIEW LETTERS 2018; 120:037202. [PMID: 29400492 DOI: 10.1103/physrevlett.120.037202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 05/27/2023]
Abstract
Chirality in condensed matter has recently become a topic of the utmost importance because of its significant role in the understanding and mastering of a large variety of new fundamental physical mechanisms. Versatile experimental approaches, capable to reveal easily the exact winding of order parameters, are therefore essential. Here we report x-ray resonant magnetic scattering as a straightforward tool to reveal directly the properties of chiral magnetic systems. We show that it can straightforwardly and unambiguously determine the main characteristics of chiral magnetic distributions: i.e., its chiral nature, the quantitative winding sense (clockwise or counterclockwise), and its type, i.e., Néel [cycloidal] or Bloch [helical]. This method is model independent, does not require a priori knowledge of the magnetic parameters, and can be applied to any system with magnetic domains ranging from a few nanometers (wavelength limited) to several microns. By using prototypical multilayers with tailored magnetic chiralities driven by spin-orbit-related effects at Co|Pt interfaces, we illustrate the strength of this method.
Collapse
Affiliation(s)
- Jean-Yves Chauleau
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
| | - William Legrand
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
| | - Nicolas Reyren
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
| | - Davide Maccariello
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
| | - Sophie Collin
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
| | - Horia Popescu
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Karim Bouzehouane
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
| | - Vincent Cros
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
| | - Nicolas Jaouen
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Albert Fert
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
| |
Collapse
|
17
|
Coherent Resonant Soft X-ray Scattering Study of Magnetic Textures in FeGe. QUANTUM BEAM SCIENCE 2018. [DOI: 10.3390/qubs2010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|