1
|
Jyotirmaya SS, Rath S, Dandapat J. Redox imbalance driven epigenetic reprogramming and cardiovascular dysfunctions: phytocompounds for prospective epidrugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156380. [PMID: 39827814 DOI: 10.1016/j.phymed.2025.156380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs. Various bioactive phytocompounds used in alternative therapies including Traditional Chinese Medicines (TCM) regulate redox balance and epigenetic phenomena linked to CVDs. Phytocompound-based medications are in the limelight for the development of cost-effective drugs with the least side effects, which will have immense therapeutic applications. PURPOSE This review comprehends certain risk factors associated with CVDs and triggered by oxidative stress-driven epigenetic remodelling. Further, it critically evaluates the pharmacological efficacy of phytocompounds as inhibitors of HAT/HDAC and DNMTs as well as miRNAs regulator that lowers the incidence of CVDs, aiming for new candidates as prospective epidrugs. METHODS PRISMA flow approach has been adopted for systematic literature review. Different Journals, computational databases, search engines such as Google Scholar, PubMed, Science Direct, Scopus, and ResearchGate were used to collect online information for literature survey. Statistical information collected from the World Health Organization (WHO) site (https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)) and the American Heart Association of Heart Disease and Stroke reported the international and national status of CVDs. RESULTS The meta-analysis of various studies is elucidated in the literature, shedding light on major risk factors such as socioeconomic parameters, which contribute highly to redox imbalance, epigenetic modulations, and CVDs. Going forward, redox imbalance driven epigenetic regulations include changes in DNA methylation status, histone modifications and non-coding RNAs expression pattern which further regulates global as well as promoter modification of various transcription factors leading to the onset of CVDs. Further, the role of various bioactive compounds used in herbal medicine, including TCM for redox regulation and epigenetic modifications are discussed. Pharmacological safety doses and different phases of clinical trials of these phytocompounds are elaborated on, which shed light on the acceptance of these phytocompounds as prospective drugs. CONCLUSION This review suggests a strong linkage between therapeutic and preventive measures against CVDs by targeting redox imbalance-driven epigenetic reprogramming using phytocompounds as prospective epidrugs. Future in-depth research is required to evaluate the possible molecular mechanisms behind the phytocompound-mediated epigenetic reprogramming and oxidative stress management during CVD progression.
Collapse
Affiliation(s)
| | - Suvasmita Rath
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar,751004, Odisha, India
| | - Jagneshwar Dandapat
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India..
| |
Collapse
|
2
|
Wang Y, Jin S, Guo Y, Zhu L, Lu Y, Li J, Heng BC, Liu Y, Deng X. Cordycepin-Loaded Dental Pulp Stem Cell-Derived Exosomes Promote Aged Bone Repair by Rejuvenating Senescent Mesenchymal Stem Cells and Endothelial Cells. Adv Healthc Mater 2025; 14:e2402909. [PMID: 39551987 DOI: 10.1002/adhm.202402909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Aging impairs bone marrow mesenchymal stem cell (BMSC) functions as well as associated angiogenesis which is critical for bone regeneration and repair. Hence, repairing bone defects in elderly patients poses a formidable challenge in regenerative medicine. Here, the engineered dental pulp stem cell-derived exosomes loaded with the natural derivative of adenosine Cordycepin (CY@D-exos) are fabricated by means of the intermittent ultrasonic shock, which dually rejuvenates both senescent BMSCs and endothelial cells and significantly improve bone regeneration and repair in aged animals. CY@D-exos can efficiently overcome the senescence of aged BMSCs and enhance their osteogenic differentiation by activating NRF2 signaling and maintaining heterochromatin stability. Importantly, CY@D-exos also potently overcomes the senescence of vascular endothelial cells and promotes angiogenesis. In vivo injectable gelatin methacryloyl (GelMA) hydrogels with sustained release of CY@D-exos can accelerate bone injury repair and promote new blood vessel formation in aged animals. Taken together, these results thus demonstrate that cordycepin-loaded dental pulp stem cell-derived exosomes display considerable potential to be developed as a next-generation therapeutic agent for promoting aged bone regeneration and repair.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Shanshan Jin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology &National Center for Stomatology &National Clinical Research Center for Oral Diseases &National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Lisha Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yilong Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Jing Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
3
|
Sun K, Chen M, Kong X, Hou W, Xu Z, Liu L. Cardiac-specific Suv39h1 knockout ameliorates high-fat diet induced diabetic cardiomyopathy via regulating Hmox1 transcription. Life Sci 2025; 360:123258. [PMID: 39580141 DOI: 10.1016/j.lfs.2024.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
AIM Diabetic Cardiomyopathy (DCM), a common complication of Type 2 Diabetic Mellitus (T2DM), has been emerging as one of the leading causes of mortality in T2DM patients. During the past decade, although, clinical studies concerning DCM are increasing at an exponential rate, mechanisms underlying this disease still can't be clearly defined. Here, we aim to recognize the function of Suv39h1 in DCM and to explore underlying mechanisms during this disease, providing new insights into DCM and novel guide for clinical therapy development. MATERIALS AND METHODS We employed cardiac specific Suv39h1 knockout mice to reveal the role of Suv39h1 in high-fat diet induced DCM and using human cardiomyocyte line AC16 cells treated with Suv39h1 siRNA or inhibitor Chaetocin to further explore the mechanism during lipotoxicity condition. KEY FINDINGS Cardiac Suv39h1 knockout ameliorated manifestations of DCM, including cardiac function indexes, cardiomyocyte hypertrophy, interstitial fibrosis, along with improved metabolic disorder in mice. Further, interfering human AC16 cardiomyocytes with siSuv39h1 down-regulated lipotoxicity induced cardiac hypertrophy, inflammation, and fibrosis markers. Subsequent mRNA-seq using siSuv39h1 and SCR AC16 cells discovered a well-recognized cytoprotective, anti-oxidant, and anti-inflammation factor-Hmox1, prominently upregulated in Suv39h1 ablation cells versus SCR under lipotoxicity condition. ChIP assay revealed that Suv39h1 could bind to Hmox1 promoter and reversed by Chaetocin or small interfering RNA. SIGNIFICANCE These results suggested that the protective effects in DCM rendered by Suv39h1 ablation may work through activating Hmox1 transcription and protein function, providing new insights into pathogenesis of DCM and novel epigenetic target for clinical DCM therapies.
Collapse
Affiliation(s)
- Ke Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Maohui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Xiangyu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Weiyuan Hou
- Department of Cardiac Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huai'an 223001, China
| | - Zhiwei Xu
- Department of Cardiac Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huai'an 223001, China.
| | - Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China.
| |
Collapse
|
4
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
5
|
Cao X, Zhang M, Xiao X, Yin F, Yao Y, Sui M, Hu Y, Xiang Y, Wang L. Regulation of reactive oxygen molecules in pakchoi by histone acetylation modifications under Cd stress. PLoS One 2024; 19:e0314043. [PMID: 39565822 PMCID: PMC11578466 DOI: 10.1371/journal.pone.0314043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Reactive oxygen species (ROS) are essential modulators of epigenetic modifications under abiotic stress. However, the mutual regulation mechanism of the two under cadmium (Cd) stress is unclear. In this work, we investigated this issue using Cd-stressed pakchoi seedlings treated with six epi-modification inhibitors (5-AC, RG108, TSA, CUDC101, AT13148, and H89) as experimental materials. The experimental data showed that Cd stress caused ROS accumulation and chromatin decondensation. Addition of low concentrations of epi-modification inhibitors increased histone acetylation modification levels, and effectively attenuated cell cycle arrest and DNA damage caused by Cd-induced ROS accumulation, where histone acetylation modification levels were co-regulated by histone acetyltransferase and deacetyltransferase gene transcription. Moreover, the addition of the antioxidant Thi enhanced this mitigating effect. Also, TSA addition at high concentrations could also increase Cd-induced ROS accumulation. Based on this, we propose that the ROS molecular pathway may be related to epigenetic regulation, and chromatin modification may affect ROS accumulation by regulating gene expression, providing a new perspective for studying the regulatory mechanism of epigenetic modification under abiotic stress.
Collapse
Affiliation(s)
- Xiaoqun Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Ming Zhang
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, Jiangxi, P. R. China
| | - Xufeng Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Fengrui Yin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yuekeng Yao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Meilan Sui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yifan Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yan Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Liangdeng Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
6
|
You J, Xue H, Chao C, Zhang Z, Tan X, Wang X, Li H. Histone Methyltransferase SUV39H2 Supports Nasopharyngeal Carcinoma Cell Metastasis by Regulation of SIRT1. ENVIRONMENTAL TOXICOLOGY 2024; 39:4974-4983. [PMID: 38994737 DOI: 10.1002/tox.24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor with high metastatic features originating from the nasopharynx. However, the underlying mechanism of Suppressor of variegation 3-9 homolog 2 (SUV39H2) in NPC remains poorly understood. RT-qPCR was carried out to examine SUV39H2 and SIRT1 expression in NPC tissues and cells. Kaplan-Meier method was utilized to evaluate the association between SUV39H2 level and overall survival. The function of SUV39H2 and SIRT1 in NPC cell viability, metastasis, and apoptosis was tested through CCK-8, transwell, and flow cytometry experiments. Here, it was uncovered that SUV39H2 level was augmented in NPC tissues and cells. Moreover, SUV39H2 expedited NPC cell viability, metastasis, and inhibited apoptosis, while SIRT1 addition reversed these impacts. Besides, SUV39H2 induced H3K9me3 enhancement to repress SIRT1 transcription via binding to SIRT1 promoter. Collectively, our results demonstrated upregulated SUV39H2 aggravated NPC tumorigenesis through SIRT1, which may offer a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Jianqiang You
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Haixiang Xue
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Changjiang Chao
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Zhixuan Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Xiaoye Tan
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Xiaoye Wang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Haifeng Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Yu L, Chen Z, Zhou X, Teng F, Bai QR, Li L, Li Y, Liu Y, Zeng Q, Wang Y, Wang M, Xu Y, Tang X, Wang X. KARS Mutations Impair Brain Myelination by Inducing Oligodendrocyte Deficiency: One Potential Mechanism and Improvement by Melatonin. J Pineal Res 2024; 76:e12998. [PMID: 39087379 DOI: 10.1111/jpi.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
It is very crucial to investigate key molecules that are involved in myelination to gain an understanding of brain development and injury. We have reported for the first time that pathogenic variants p.R477H and p.P505S in KARS, which encodes lysyl-tRNA synthetase (LysRS), cause leukoencephalopathy with progressive cognitive impairment in humans. The role and action mechanisms of KARS in brain myelination during development are unknown. Here, we first generated Kars knock-in mouse models through the CRISPR-Cas9 system. Kars knock-in mice displayed significant cognitive deficits. These mice also showed significantly reduced myelin density and content, as well as significantly decreased myelin thickness during development. In addition, Kars mutations significantly induced oligodendrocyte differentiation arrest and reduction in the brain white matter of mice. Mechanically, oligodendrocytes' significantly imbalanced expression of differentiation regulators and increased capase-3-mediated apoptosis were observed in the brain white matter of Kars knock-in mice. Furthermore, Kars mutations significantly reduced the aminoacylation and steady-state level of mitochondrial tRNALys and decreased the protein expression of subunits of oxidative phosphorylation complexes in the brain white matter. Kars knock-in mice showed decreased activity of complex IV and significantly reduced ATP production and increased reactive oxygen species in the brain white matter. Significantly increased percentages of abnormal mitochondria and mitochondrion area were observed in the oligodendrocytes of Kars knock-in mouse brain. Finally, melatonin (a mitochondrion protectant) significantly attenuated mitochondrion and oligodendrocyte deficiency in the brain white matter of KarsR504H/P532S mice. The mice treated with melatonin also showed significantly restored myelination and cognitive function. Our study first establishes Kars knock-in mammal models of leukoencephalopathy and cognitive impairment and indicates important roles of KARS in the regulation of mitochondria, oligodendrocyte differentiation and survival, and myelination during brain development and application prospects of melatonin in KARS (or even aaRS)-related diseases.
Collapse
Affiliation(s)
- Lijia Yu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhilin Chen
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunhong Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Liu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiyu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meihua Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaling Xu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Basel A, Bhadsavle SS, Scaturro KZ, Parkey GK, Gaytan MN, Patel JJ, Thomas KN, Golding MC. Parental Alcohol Exposures Associate with Lasting Mitochondrial Dysfunction and Accelerated Aging in a Mouse Model. Aging Dis 2024:AD.2024.0722. [PMID: 39122451 DOI: 10.14336/ad.2024.0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Although detrimental changes in mitochondrial morphology and function are widely described symptoms of fetal alcohol exposure, no studies have followed these mitochondrial deficits into adult life or determined if they predispose individuals with fetal alcohol spectrum disorders (FASDs) to accelerated biological aging. Here, we used a multiplex preclinical mouse model to compare markers of cellular senescence and age-related outcomes induced by maternal, paternal, and dual-parental alcohol exposures. We find that even in middle life (postnatal day 300), the adult offspring of alcohol-exposed parents exhibited significant increases in markers of stress-induced premature cellular senescence in the brain and liver, including an upregulation of cell cycle inhibitory proteins and increased senescence-associated β-galactosidase activity. Strikingly, in the male offspring, we observe an interaction between maternal and paternal alcohol use, with histological indicators of accelerated age-related liver disease in the dual-parental offspring exceeding those induced by either maternal or paternal alcohol use alone. Our studies indicate that chronic parental alcohol use causes enduring mitochondrial dysfunction in offspring, resulting in a reduced NAD+/NAHD ratio and altered expression of the NAD+-dependent deacetylases SIRT1 and SIRT3. These observations suggest that some aspects of FASDs may be linked to accelerated aging due to programmed changes in the regulation of mitochondrial function and cellular bioenergetics.
Collapse
|
9
|
Liu F, He J, Chen X, Liu R, Li F, Geng Y, Dai Y, Zhang Y, Wang Y, Mu X. Maternal Administration of Acetaminophen Affects Meiosis Through its Metabolite NAPQI Targeting SIRT7 in Fetal Oocytes. Antioxid Redox Signal 2024; 41:93-109. [PMID: 38062739 DOI: 10.1089/ars.2023.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Aim: Acetaminophen (APAP) is clinically recommended as analgesic and antipyretic among pregnant women. However, accumulating laboratory evidence shows that the use of APAP during pregnancy may alter fetal development. Since fetal stage is a susceptible window for early oogenesis, we aim to assess the potential effects of maternal administration of APAP on fetal oocytes. Results: Pregnant mice at 14.5 dpc (days post-coitus) were orally administered with APAP (50 and 150mg/kg.bw/day) for 3 days; meanwhile, 14.5 dpc ovaries were collected and cultured with APAP or its metabolite N-acetyl-p-benzoquinone imine (NAPQI; 5 and 15 μM) for 3 days. It showed that APAP caused meiotic aberrations in fetal oocytes through its metabolite NAPQI, including meiotic prophase I (MPI) progression delay and homologous recombination defects. Co-treatment with nicotinamide (NAM) or nicotinamide riboside chloride (NRC), nicotinamide adenine dinucleotide (NAD+) supplements, efficiently restored the MPI arrest, whereas the addition of the inhibitor of sirtuin 7 (SIRT7) invalidated the effect of the NAD+ supplement. In addition, RNA sequencing revealed distorted transcriptomes of fetal ovaries treated with NAPQI. Furthermore, the fecundity of female offspring was affected, exhibiting delayed primordial folliculogenesis and puberty onset, reduced levels of ovarian hormones, and impaired developmental competence of MII oocytes. Innovation: These findings provide the first known demonstration that NAPQI, converted from maternal administration of APAP, disturbs meiotic process of fetal oocytes and further impairs female fecundity in adulthood. The concomitant oral dosing with NAM further supports the benefits of NAD+ supplements on oogenesis. Conclusion: Short-term administration of APAP to pregnant mouse caused meiotic aberrations in fetal oocytes by its metabolite NAPQI, whereas co-treatment with NAD+ supplement efficiently relieves the adverse effects by interacting with SIRT7.
Collapse
Affiliation(s)
- Fangfei Liu
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| | - Junlin He
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Ronglu Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Yanqing Geng
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| | - Yuhan Dai
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| | - Yan Zhang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Yingxiong Wang
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| | - Xinyi Mu
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
10
|
Jin X, Zhang Y, Zhou Y, Luo Y, Han X, Gao Y, Yu H, Duan Y, Shi L, Wu Y, Li Y. Sirt1 Deficiency Promotes Age-Related AF Through Enhancing Atrial Necroptosis by Activation of RIPK1 Acetylation. Circ Arrhythm Electrophysiol 2024; 17:e012452. [PMID: 39012929 DOI: 10.1161/circep.123.012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/16/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Aging is one of the most potent risk determinants for the onset of atrial fibrillation (AF). Sirts (sirtuins) have been implicated in the pathogenesis of cardiovascular disease, and their expression declines with aging. However, whether Sirts involved in age-related AF and its underlying mechanisms remain unknown. The present study aims to explore the role of Sirts in age-related AF and delineate the underlying molecular mechanisms. METHODS Sirt1 levels in the atria of both elderly individuals and aging rats were evaluated using quantitative real-time polymerase chain reaction and Western blot analysis. Mice were engineered to specifically knockout Sirt1 in the atria and right ventricle (Sirt1mef2c/mef2c). Various techniques, such as echocardiography, atrial electrophysiology, and protein acetylation modification omics were employed. Additionally, coimmunoprecipitation was utilized to substantiate the interaction between Sirt1 and RIPK1 (receptor-interacting protein kinase 1). RESULTS We discerned that among the diverse subtypes of sirtuin proteins, only Sirt1 expression was significantly diminished in the atria of elderly people and aged rats. The Sirt1mef2c/mef2c mice exhibited an enlarged atrial diameter and heightened vulnerability to AF. Acetylated proteomics and cell experiments identified that Sirt1 deficiency activated atrial necroptosis through increasing RIPK1 acetylation and subsequent pseudokinase MLKL (mixed lineage kinase domain-like protein) phosphorylation. Consistently, necroptotic inhibitor necrosulfonamide mitigated atrial necroptosis and diminished both the atrial diameter and AF susceptibility of Sirt1mef2c/mef2c mice. Resveratrol prevented age-related AF in rats by activating atrial Sirt1 and inhibiting necroptosis. CONCLUSIONS Our findings first demonstrated that Sirt1 exerts significant efficacy in countering age-related AF by impeding atrial necroptosis through regulation of RIPK1 acetylation, highlighting that the activation of Sirt1 or the inhibition of necroptosis could potentially serve as a therapeutic strategy for age-related AF.
Collapse
Affiliation(s)
- Xuexin Jin
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yun Zhang
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yun Zhou
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yingchun Luo
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Xuejie Han
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Yunlong Gao
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Hui Yu
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Yu Duan
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Ling Shi
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Yue Wu
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China (Y.W.)
| | - Yue Li
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
- State Key Laboratory of Frigid Zone Cardiovascular Disease (Y. Li), Harbin Medical University
- Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases (Y. Li)
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin (Y. Li)
| |
Collapse
|
11
|
Wu S, Ren W, Hong J, Yang Y, Lu Y. Ablation of histone methyltransferase Suv39h2 in hepatocytes attenuates NASH in mice. Life Sci 2024; 343:122524. [PMID: 38401627 DOI: 10.1016/j.lfs.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AIMS Non-alcoholic steatohepatitis (NASH) is characterized by aberrant lipid metabolism in hepatocytes. We investigated the involvement of a histone H3K9 methyltransferase Suv39h2 in the pathogenesis of NASH. METHODS AND MATERIALS NASH is induced by feeding the mice with a high-fat high-carbohydrate (HFHC) diet or a high-fat choline-deficient amino acid defined (HFD-CDAA) diet. The Suv39h2f/f mice were crossbred with the Alb-Cre mice to specifically delete Suv39h2 in hepatocytes. KEY FINDINGS Ablation of Suv39h2 in hepatocytes improved insulin sensitivity of the mice fed either the HFHC diet or the CDAA-HFD diet. Importantly, Suv39h2 deletion significantly ameliorated NAFLD as evidenced by reduced lipid accumulation, inflammation, and fibrosis in the liver. RNA-seq uncovered Vanin-1 (Vnn1) as a novel transcriptional target for Suv39h2. Mechanistically, Suv39h2 repressed Vnn1 transcription in hepatocytes exposed to free fatty acids. Consistently, Vanin-1 knockdown normalized lipid accumulation in Suv39h2-null hepatocytes. Importantly, a significant correlation between Suv39h2, Vanin-1, and hepatic triglyceride levels was identified in NASH patients. SIGNIFICANCE Our study uncovers a novel mechanism whereby Suv39h2 may contribute to NASH pathogenesis and suggests that targeting the Suv39h2-Vanin-1 axis may yield novel therapeutic solutions against NASH.
Collapse
Affiliation(s)
- Shiqiang Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjing Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiameng Hong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yunjie Lu
- Suzhou Medical College, Soochow University, Suzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the third Affiliated Hospital of Soochow University, Changzhou, China; Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, USA.
| |
Collapse
|
12
|
Kong M, Zhou J, Kang A, Kuai Y, Xu H, Li M, Miao X, Guo Y, Fan Z, Xu Y, Li Z. Histone methyltransferase Suv39h1 regulates hepatic stellate cell activation and is targetable in liver fibrosis. Gut 2024; 73:810-824. [PMID: 38176898 DOI: 10.1136/gutjnl-2023-329671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Liver fibrosis is a prelude to a host of end-stage liver diseases. Hepatic stellate cells (HSCs), switching from a quiescent state to myofibroblasts, are the major source for excessive production of extracellular matrix proteins. In the present study, we investigated the role of Suv39h1, a lysine methyltransferase, in HSC-myofibroblast transition and the implication in liver fibrosis. DESIGN HSC-specific or myofibroblast-specific Suv39h1 deletion was achieved by crossbreeding the Suv39h1 f/f mice to the Lrat-Cre mice or the Postn-CreERT2 mice. Liver fibrosis was induced by CCl4 injection or bile duct ligation. RESULTS We report that Suv39h1 expression was universally upregulated during HSC-myofibroblast transition in different cell and animal models of liver fibrosis and in human cirrhotic liver tissues. Consistently, Suv39h1 knockdown blocked HSC-myofibroblast transition in vitro. HSC-specific or myofibroblast-specific deletion of Suv39h1 ameliorated liver fibrosis in mice. More importantly, Suv39h1 inhibition by a small-molecule compound chaetocin dampened HSC-myofibroblast transition in cell culture and mitigated liver fibrosis in mice. Mechanistically, Suv39h1 bound to the promoter of heme oxygenase 1 (HMOX1) and repressed HMOX1 transcription. HMOX1 depletion blunted the effects of Suv39h1 inhibition on HSC-myofibroblast transition in vitro and liver fibrosis in vivo. Transcriptomic analysis revealed that HMOX1 might contribute to HSC-myofibroblast transition by modulating retinol homeostasis. Finally, myofibroblast-specific HMOX1 overexpression attenuated liver fibrosis in both a preventive scheme and a therapeutic scheme. CONCLUSIONS Our data demonstrate a previously unrecognised role for Suv39h1 in liver fibrosis and offer proof-of-concept of its targetability in the intervention of cirrhosis.
Collapse
Affiliation(s)
- Ming Kong
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junjing Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of JiangnanUniversity, Wuxi, People's Republic of China
| | - Aoqi Kang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yameng Kuai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Li
- Department of Pathophysiology, Jiangsu Health Vocational College, Nanjing, People's Republic of China
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, People's Republic of China
| | - Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, People's Republic of China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Dong Z, Hou L, Luo W, Pan LH, Li X, Tan HP, Wu RD, Lu H, Yao K, Mu MD, Gao CS, Weng XY, Ge JB. Myocardial infarction drives trained immunity of monocytes, accelerating atherosclerosis. Eur Heart J 2024; 45:669-684. [PMID: 38085922 DOI: 10.1093/eurheartj/ehad787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND AIMS Survivors of acute coronary syndromes face an elevated risk of recurrent atherosclerosis-related vascular events despite advanced medical treatments. The underlying causes remain unclear. This study aims to investigate whether myocardial infarction (MI)-induced trained immunity in monocytes could sustain proatherogenic traits and expedite atherosclerosis. METHODS Apolipoprotein-E deficient (ApoE-/-) mice and adoptive bone marrow transfer chimeric mice underwent MI or myocardial ischaemia-reperfusion (IR). A subsequent 12-week high-fat diet (HFD) regimen was implemented to elucidate the mechanism behind monocyte trained immunity. In addition, classical monocytes were analysed by flow cytometry in the blood of enrolled patients. RESULTS In MI and IR mice, blood monocytes and bone marrow-derived macrophages exhibited elevated spleen tyrosine kinase (SYK), lysine methyltransferase 5A (KMT5A), and CCHC-type zinc finger nucleic acid-binding protein (CNBP) expression upon exposure to a HFD or oxidized LDL (oxLDL) stimulation. MI-induced trained immunity was transmissible by transplantation of bone marrow to accelerate atherosclerosis in naive recipients. KMT5A specifically recruited monomethylation of Lys20 of histone H4 (H4K20me) to the gene body of SYK and synergistically transactivated SYK with CNBP. In vivo small interfering RNA (siRNA) inhibition of KMT5A or CNBP potentially slowed post-MI atherosclerosis. Sympathetic denervation with 6-hydroxydopamine reduced atherosclerosis and inflammation after MI. Classical monocytes from ST-elevation MI (STEMI) patients with advanced coronary lesions expressed higher SYK and KMT5A gene levels. CONCLUSIONS The findings underscore the crucial role of monocyte trained immunity in accelerated atherosclerosis after MI, implying that SYK in blood classical monocytes may serve as a predictive factor for the progression of atherosclerosis in STEMI patients.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lei Hou
- Institute of Cardiovascular Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, China
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li-Hong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hai-Peng Tan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Run-Da Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Man-Di Mu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen-Shan Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin-Yu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Meng XM, Liu SB, Deng T, Li DY, You L, Hong H, Feng QP, Zhu BM. Loss of Histone Methyltransferase KMT2D Attenuates Angiogenesis in the Ischemic Heart by Inhibiting the Transcriptional Activation of VEGF-A. J Cardiovasc Transl Res 2023; 16:1032-1049. [PMID: 36947365 PMCID: PMC10616223 DOI: 10.1007/s12265-023-10373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Angiogenesis occurred after myocardial infarction (MI) protects heart failure (HF). The aim of our study was to explore function of histone methyltransferase KMT2D (MLL4, mixed-lineage leukemia 4) in angiogenesis post-MI. Western blotting showed that KMT2D protein expression was elevated in MI mouse myocardial. Cardiomyocyte-specific Kmt2d-knockout (Kmt2d-cKO) mice were generated, and echocardiography and immunofluorescence staining detected significantly attenuated cardiac function and insufficient angiogenesis following MI in Kmt2d-cKO mice. Cross-talk assay suggested that Kmt2d-KO H9c2-derived conditioned medium attenuates EA.hy926 EC function. ELISA further identified that VEGF-A released from Kmt2d-KO H9c2 was significantly reduced. CUT&Tag and RT-qPCR revealed that KMT2D deficiency reduced Vegf-a mRNA expression and enrichment of H3K4me1 on the Vegf-a promoter. Moreover, KMT2D silencing in ECs also suppressed endothelial function. Our study indicates that KMT2D depletion in both cardiomyocytes and ECs attenuates angiogenesis and that loss of KMT2D exacerbates heart failure after MI in mice.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shu-Bao Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi-Pu Feng
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Yao L, He F, Zhao Q, Li D, Fu S, Zhang M, Zhang X, Zhou B, Wang L. Spatial Multiplexed Protein Profiling of Cardiac Ischemia-Reperfusion Injury. Circ Res 2023; 133:86-103. [PMID: 37249015 DOI: 10.1161/circresaha.123.322620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Reperfusion therapy is critical to myocardial salvage in the event of a myocardial infarction but is complicated by ischemia-reperfusion injury (IRI). Limited understanding of the spatial organization of cardiac cells, which governs cellular interaction and function, has hindered the search for targeted interventions minimizing the deleterious effects of IRI. METHODS We used imaging mass cytometry to characterize the spatial distribution and dynamics of cell phenotypes and communities in the mouse left ventricle following IRI. Heart sections were collected from 12 cardiac segments (basal, mid-cavity, apical, and apex of the anterior, lateral, and inferior wall) and 8 time points (before ischemia [I-0H], and postreperfusion [R-0H, R-2H, R-6H, R-12H, R-1D, R-3D, R-7D]), and stained with 29 metal-isotope-tagged antibodies. Cell community analysis was performed on reconstructed images, and the most disease-relevant cell type and target protein were selected for intervention of IRI. RESULTS We obtained a total of 251 multiplexed images, and identified 197 063 single cells, which were grouped into 23 distinct cell communities based on the structure of cellular neighborhoods. The cellular architecture was heterogeneous throughout the ventricular wall and exhibited swift changes following IRI. Analysis of proteins with posttranslational modifications in single cells unveiled 13 posttranslational modification intensity clusters and highlighted increased H3K9me3 (tri-methylated lysine 9 of histone H3) as a key regulatory response in endothelial cells during the middle stage of IRI. Erasing H3K9 methylation, by silencing its methyltransferase Suv39h1 or overexpressing its demethylase Kdm4d in isolated endothelial cells, attenuated cardiac dysfunction and pathological remodeling following IRI. in vitro, H3K9me3 binding significantly increased at endothelial cell function-related genes upon hypoxia, suppressing tube formation, which was rescued by inhibiting H3K9me3. CONCLUSIONS We mapped the spatiotemporal heterogeneity of cellular phenotypes in the adult heart upon IRI, and uncovered H3K9me3 in endothelial cells as a potential therapeutic target for alleviating pathological remodeling of the heart following myocardial IRI.
Collapse
Affiliation(s)
- Luyan Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Funan He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Bejing (Q.Z., B.Z., L.W.)
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Shufang Fu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Mingzhi Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Xingzhong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Bejing (Q.Z., B.Z., L.W.)
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Bejing (Q.Z., B.Z., L.W.)
- Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing (L.W.)
| |
Collapse
|
18
|
Liu L, Sun K, Luo Y, Wang B, Yang Y, Chen L, Zheng S, Wu T, Xiao P. Myocardin-related transcription factor A, regulated by serum response factor, contributes to diabetic cardiomyopathy in mice. Life Sci 2023; 317:121470. [PMID: 36758668 DOI: 10.1016/j.lfs.2023.121470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
AIMS Diabetic cardiomyopathy is a significant contributor to the global pandemic of heart failure. In the present study we investigated the involvement of myocardin-related transcription factor A (MRTF-A), a transcriptional regulator, in this process. MATERIALS AND METHODS Diabetic cardiomyopathy was induced in mice by feeding with a high-fat diet (HFD) or streptozotocin (STZ) injection. KEY FINDINGS We report that MRTF-A was up-regulated in the hearts of mice with diabetic cardiomyopathy. MRTF-A expression was also up-regulated by treatment with palmitate in cultured cardiomyocytes in vitro. Mechanistically, serum response factor (SRF) bound to the MRTF-A gene promoter and activated MRTF-A transcription in response to pro-diabetic stimuli. Knockdown of SRF abrogated MRTF-A induction in cardiomyocytes treated with palmitate. When cardiomyocytes conditional MRTF-A knockout mice (MRTF-A CKO) and wild type (WT) mice were placed on an HFD to induce diabetic cardiomyopathy, it was found that the CKO mice and the WT mice displayed comparable metabolic parameters including body weight, blood insulin concentration, blood cholesterol concentration, and glucose tolerance. However, both systolic and diastolic cardiac function were exacerbated by MRTF-A deletion in the heart. SIGNIFICANCE These data suggest that MRTF-A up-regulation might serve as an important compensatory mechanism to safeguard the deterioration of cardiac function during diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ke Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yajun Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bingshu Wang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China; Department of Pathology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Pingxi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
McKinsey TA, Foo R, Anene-Nzelu CG, Travers JG, Vagnozzi RJ, Weber N, Thum T. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovasc Res 2023; 118:3482-3498. [PMID: 36004821 DOI: 10.1093/cvr/cvac142] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases and specifically heart failure (HF) impact global health and impose a significant economic burden on society. Despite current advances in standard of care, the risks for death and readmission of HF patients remain unacceptably high and new therapeutic strategies to limit HF progression are highly sought. In disease settings, persistent mechanical or neurohormonal stress to the myocardium triggers maladaptive cardiac remodelling, which alters cardiac function and structure at both the molecular and cellular levels. The progression and magnitude of maladaptive cardiac remodelling ultimately leads to the development of HF. Classical therapies for HF are largely protein-based and mostly are targeted to ameliorate the dysregulation of neuroendocrine pathways and halt adverse remodelling. More recently, investigation of novel molecular targets and the application of cellular therapies, epigenetic modifications, and regulatory RNAs has uncovered promising new avenues to address HF. In this review, we summarize the current knowledge on novel cellular and epigenetic therapies and focus on two non-coding RNA-based strategies that reached the phase of early clinical development to counteract cardiac remodelling and HF. The current status of the development of translating those novel therapies to clinical practice, limitations, and future perspectives are additionally discussed.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Roger Foo
- NUHS Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Cardiovascular Research Institute, National University Heart Centre, 14 Medical Drive, Level 8, 117599 Singapore, Singapore
| | - Chukwuemeka George Anene-Nzelu
- NUHS Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Cardiovascular Research Institute, National University Heart Centre, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Montreal Heart Institute, 5000 Rue Belanger, H1T 1C8, Montreal, Canada
| | - Joshua G Travers
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Ronald J Vagnozzi
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.,REBIRTH Center for Translational Regenerative Therapies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
20
|
Niu W, Cao W, Wu F, Liang C. SUV39H1 Inhibits Angiogenesis in Limb Ischemia of Mice. Cell Transplant 2023; 32:9636897231198167. [PMID: 37811706 PMCID: PMC10563463 DOI: 10.1177/09636897231198167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
Peripheral arterial disease (PAD), characterized by atherosclerosis of the peripheral arteries or even amputation, has threatened public life and health. However, the underlying mechanism remains largely obscure. SUV39H1, a histone methyltransferase, could specifically methylate lysine 9 of histone H3 and act as a repressor in transcriptional activity. The study aimed to investigate the role of SUV39H1 in limb ischemia. C57BL/6 male mice were randomly divided into Sham or Model groups to investigate the expression of SUV39H1 in the ischemic limbs. Then, pharmaceutical inhibition or genetic deletion of SUV39H1 in the limb ischemia mice model was performed to confirm its effect on limb ischemia. The blood perfusion was quantified by laser speckle contrast imaging (LSCI). Capillary density and muscle edema were measured by CD31 immunohistochemical staining and HE staining. The expressions of SUV39H1 and Catalase were confirmed by western blot. Transcriptome sequencing of siSUV39H1 in human umbilical vein endothelial cells (HUVECs) was used to explore the regulation mechanism of SUV39H1 on angiogenesis. The results showed that SUV39H1 was highly expressed in the ischemic muscle tissue of the mice. Pharmaceutical inhibition or genetic deletion of SUV39H1 significantly improved blood perfusion, capillary density, and angiogenesis in ischemic muscle tissue. Cell experiments showed that SUV39H1 knockdown promoted cell migration, tube formation, and mitochondrial membrane potential in endothelial cells under oxidative stress. The transcriptome sequencing results unmasked mechanisms of the regulation of angiogenesis induced by SUV39H1. Finally, Salvianolic acid B and Astragaloside IV were identified as potential drug candidates for the improvement of endothelial function by repressing SUV39H1. Our study reveals a new mechanism in limb ischemia. Targeting SUV39H1 could improve endothelial dysfunction and thus prevent limb ischemia.
Collapse
Affiliation(s)
- Wenhao Niu
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenyue Cao
- Department of Ultrasonography, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Chaetocin attenuates atherosclerosis progression and inhibits vascular smooth muscle cell phenotype switching. J Cardiovasc Transl Res 2022; 15:1270-1282. [PMID: 35428928 DOI: 10.1007/s12265-022-10258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
We aimed to explore the effect of chaetocin on atherosclerosis and its possible mechanism. In vitro, we observed that chaetocin treatment significantly inhibited the proliferation of VSMCs in concentration- and time-dependent manner. We also found that chaetocin suppressed the migration of VSMCs. Moreover, chaetocin treatment induced a contractile phenotype in VSMCs by increasing α-SMA and SM22α expression. In addition, chaetocin treatment attenuated the accumulation of H3K9me3 on VSMCs contractile gene promoters, which promoted the expression of α-SMA and SM22α. In vivo, chaetocin treatment decreased the H3K9me3 expression, diminished atherosclerotic plaque formation, and increased plaque stability by decreasing necrotic core area and lipid accumulation and increasing collagen content and contractile VSMC phenotype. We demonstrated a new function of chaetocin in inhibiting atherosclerosis progression and increasing plaque stability partly by inhibiting pathological phenotypic switching of VSMCs. These newly identified roles of chaetocin might provide a novel therapeutic target in atherosclerosis.
Collapse
|
22
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Liu SB, Meng XM, Li YM, Wang JM, Guo HH, Wang C, Zhu BM. Histone methyltransferase KMT2D contributes to the protection of myocardial ischemic injury. Front Cell Dev Biol 2022; 10:946484. [PMID: 35938163 PMCID: PMC9354747 DOI: 10.3389/fcell.2022.946484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Histone H3 lysine 4 (H3K4) methyltransferase 2D (KMT2D) plays an important role in cell development in early life. However, the function of KMT2D in adult cells such as cardiomyocytes or neurons has not been reported. In this study, cardiomyocyte-specific KMT2D knockout (KMT2D-cKO) and control (KMT2D-Ctl) mice were exposed to sham or myocardial ischemia (MI) surgery. Depletion of KMT2D aggravated the ischemic area, led to the increased mortality (26.5% in KMT2D-cKO vs 12.5% in KMT2D-Ctl) of the mice, and weakened the left ventricular systolic function. RNA-seq analysis in cardiac tissues identified genes whose expression was changed by MI and KMT2D deletion. Combined with the genome-wide association study (GWAS) analysis, cardiac disease-associated genes Rasd1, Thsd7a, Ednra, and Tns1 were identified. The expression of the Rasd1 was significantly decreased by MI or the loss of KMT2D in vivo. Meanwhile, ChIP assays demonstrated that either MI or loss of KMT2D attenuated monomethylated H3K4 (H3K4me1) enrichment on the enhancer of Rasd1. By generating a KMT2D knockout (H9C2-KO) H9C2 monoclone, we verified that the expression of Rasd1 was controlled by KMT2D, and the expression of Rasd1 was decreased by serum starvation but not low-(O2) treatment in H9C2 cells. KMT2D has a protective effect on ischemic myocardium by regulating cardiac disease-associated genes including Rasd1. KMT2D is required for the H3K4me1 deposition on the enhancer of Rasd1. Our data for the first time suggest that KMT2D-mediated Rasd1 expression may play an important protective effect on adult cells during nutritional deficiency caused by ischemic injury.
Collapse
Affiliation(s)
- Shu-Bao Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Meng Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, Zhejiang, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| |
Collapse
|
24
|
Ren SC, Chen X, Gong H, Wang H, Wu C, Li PH, Chen XF, Qu JH, Tang X. SIRT6 in Vascular Diseases, from Bench to Bedside. Aging Dis 2022; 13:1015-1029. [PMID: 35855341 PMCID: PMC9286919 DOI: 10.14336/ad.2021.1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/04/2021] [Indexed: 11/12/2022] Open
Abstract
Aging is a key risk factor for angiogenic dysfunction and cardiovascular diseases, including heart failure, hypertension, atherosclerosis, diabetes, and stroke. Members of the NAD+-dependent class III histone deacetylase family, sirtuins, are conserved regulators of aging and cardiovascular and cerebrovascular diseases. The sirtuin SIRT6 is predominantly located in the nucleus and shows deacetylase activity for acetylated histone 3 lysine 56 and lysine 9 as well as for some non-histone proteins. Over the past decade, experimental analyses in rodents and non-human primates have demonstrated the critical role of SIRT6 in extending lifespan. Recent studies highlighted the pleiotropic protective actions of SIRT6 in angiogenesis and cardiovascular diseases, including atherosclerosis, hypertension, heart failure, and stroke. Mechanistically, SIRT6 participates in vascular diseases via epigenetic regulation of endothelial cells, vascular smooth muscle cells, and immune cells. Importantly, SIRT6 activators (e.g., MDL-800/MDL-811) have provided therapeutic value for treating age-related vascular disorders. Here, we summarized the roles of sirtuins in cardiovascular diseases; reviewed recent advances in the understanding of SIRT6 in vascular biology, cardiovascular aging, and diseases; highlighted its therapeutic potential; and discussed future perspectives.
Collapse
Affiliation(s)
- Si-Chong Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiangqi Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hui Gong
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Han Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Pei-Heng Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiao-Feng Chen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jia-Hua Qu
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Yang S, Wang C, Ruan C, Chen M, Cao R, Sheng L, Chang N, Xu T, Zhao P, Liu X, Zhu F, Xiao Q, Gao S. Novel Insights into the Cardioprotective Effects of Calcitriol in Myocardial Infarction. Cells 2022; 11:1676. [PMID: 35626713 PMCID: PMC9139780 DOI: 10.3390/cells11101676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Increasing evidence indicates that vitamin D deficiency negatively affects the cardiovascular system. Here we studied the therapeutic effects of calcitriol in myocardial infarction (MI) and investigated its underlying mechanisms. METHODS A MI model of Kun-ming mice induced by left anterior descending coronary artery ligation was utilized to study the potential therapeutic effects of calcitriol on MI. AC16 human cardiomyocyte-like cells treated with TNF-α were used for exploring the mechanisms that underlie the cardioprotective effects of calcitriol. RESULTS We observed that calcitriol reversed adverse cardiovascular function and cardiac remodeling in post-MI mice. Mechanistically, calcitriol suppressed MI-induced cardiac inflammation, ameliorated cardiomyocyte death, and promoted cardiomyocyte proliferation. Specifically, calcitriol exerted these cellular effects by upregulating Vitamin D receptor (VDR). Increased VDR directly interacted with p65 and retained p65 in cytoplasm, thereby dampening NF-κB signaling and suppressing inflammation. Moreover, up-regulated VDR was translocated into nuclei where it directly bound to IL-10 gene promoters to activate IL-10 gene transcription, further inhibiting inflammation. CONCLUSION We provide new insights into the cellular and molecular mechanisms underlying the cardioprotective effects of calcitriol, and we present comprehensive evidence to support the preventive and therapeutic effects of calcitriol on MI.
Collapse
Affiliation(s)
- Simin Yang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
| | - Chunmiao Wang
- Department of Cardiology, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China;
| | - Chengshao Ruan
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
| | - Meiling Chen
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
- Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China;
| | - Ran Cao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
- Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China;
| | - Liang Sheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
- Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China;
| | - Naiying Chang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
- Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China;
| | - Tong Xu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
| | - Peiwen Zhao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China;
| | - Fengqin Zhu
- Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China;
| | - Qingzhong Xiao
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; (S.Y.); (C.R.); (M.C.); (R.C.); (L.S.); (N.C.); (T.X.); (P.Z.)
| |
Collapse
|
26
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
27
|
Ionescu-Tucker A, Tong L, Berchtold NC, Cotman CW. Inhibiting BDNF Signaling Upregulates Hippocampal H3K9me3 in a Manner Dependent On In Vitro Aging and Oxidative Stress. FRONTIERS IN AGING 2022; 3:796087. [PMID: 35821854 PMCID: PMC9261402 DOI: 10.3389/fragi.2022.796087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
Histone modifications are key contributors to the cognitive decline that occurs in aging and Alzheimer's disease. Our lab has previously shown that elevated H3K9me3 in aged mice is correlated with synaptic loss, cognitive impairment and a reduction in brain derived neurotrophic factor (BDNF). However, the mechanism of H3K9me3 regulation remains poorly understood. In this study, we investigated the role of age-associated stressors on H3K9me3 regulation and examined if changes in H3K9me3 were age dependent. We used cultured hippocampal neurons at 6, 12, and 21 days in vitro (DIV) to examine the effect of different stressors on H3K9me3 across neuron ages. We found that the oxidative stressor hydrogen peroxide (H2O2) does not induce H3K9me3 in 12 DIV neurons. Inhibiting BDNF signaling via TrkB-Fc elevated H3K9me3 in 12 and 21 DIV neurons compared to 6 DIV neurons. Antioxidant treatment prevented H3K9me3 elevation in 12 DIV neurons treated with TrkB-Fc and H2O2. H2O2 elevated the epigenetic regulator SIRT1 in 6 DIV neurons but did not increase H3K9me3 levels. Our findings demonstrate that inhibiting BDNF signaling elevates hippocampal H3K9me3 in a manner dependent on in vitro age and oxidative stress.
Collapse
Affiliation(s)
- Andra Ionescu-Tucker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States,*Correspondence: Andra Ionescu-Tucker,
| | - Liqi Tong
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Nicole C. Berchtold
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Carl W. Cotman
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
28
|
Yi X, Zhu QX, Wu XL, Tan TT, Jiang XJ. Histone Methylation and Oxidative Stress in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6023710. [PMID: 35340204 PMCID: PMC8942669 DOI: 10.1155/2022/6023710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
Abstract
Oxidative stress occurs when ROS overproduction overwhelms the elimination ability of antioxidants. Accumulated studies have found that oxidative stress is regulated by histone methylation and plays a critical role in the development and progression of cardiovascular diseases. Targeting the underlying molecular mechanism to alter the interplay of oxidative stress and histone methylation may enable creative and effective therapeutic strategies to be developed against a variety of cardiovascular disorders. Recently, some drugs targeting epigenetic modifiers have been used to treat specific types of cancers. However, the comprehensive signaling pathways bridging oxidative stress and histone methylation need to be deeply explored in the contexts of cardiovascular physiology and pathology before clinical therapies be developed. In the present review, we summarize and update information on the interplay between histone methylation and oxidative stress during the development of cardiovascular diseases such as atherosclerosis, coronary artery disease, pulmonary hypertension, and diabetic macro- and microvascular pathologies.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qiu-Xia Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xing-Liang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tuan-Tuan Tan
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xue-Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
29
|
Guo J, Xu F, Ji H, Jing Y, Shen L, Weng X, Hu L. Isolevuglandins Scavenger Ameliorates Myocardial Ischemic Injury by Suppressing Oxidative Stress, Apoptosis, and Inflammation. Front Cell Dev Biol 2022; 10:836035. [PMID: 35356291 PMCID: PMC8959416 DOI: 10.3389/fcell.2022.836035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Augmented levels of reactive isolevuglandins (IsoLGs) are responsible for cardiovascular diseases. The role of IsoLGs in myocardial infarction (MI) remains elusive. Here we explored the effect of IsoLGs scavenger 2-hydroxybenzylamine (2-HOBA) in post-infarction cardiac repair. We observed that infarcted cardiac tissues expressed high IsoLGs in mice. Following MI injury, 2-HOBA treated mice displayed decreased infarction area and improved heart function compared with the saline-treated group. Moreover, 2-HOBA effectively attenuated MI-induced cardiac remodeling, oxidative stress, apoptosis, and inflammation. 4-hydroxybenzylamine (4-HOBA), a less reactive isomer of 2-HOBA, barely antagonized the MI-induced injury. These findings suggest that IsoLGs elimination may be helpful in MI therapy.
Collapse
Affiliation(s)
- Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Municipal Key Laboratory of Hypertension (Key Laboratory of Cardiovascular Medicine), Qingdao, China
- *Correspondence: Junjie Guo, ; Xinyu Weng, ; Longgang Hu,
| | - Fengqiang Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Municipal Key Laboratory of Hypertension (Key Laboratory of Cardiovascular Medicine), Qingdao, China
| | - Hongwei Ji
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Municipal Key Laboratory of Hypertension (Key Laboratory of Cardiovascular Medicine), Qingdao, China
| | - Yajun Jing
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Junjie Guo, ; Xinyu Weng, ; Longgang Hu,
| | - Longgang Hu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
- *Correspondence: Junjie Guo, ; Xinyu Weng, ; Longgang Hu,
| |
Collapse
|
30
|
Huang S, Shao T, Liu H, Li T, Gui X, Zhao Q. Resident Fibroblast MKL1 Is Sufficient to Drive Pro-fibrogenic Response in Mice. Front Cell Dev Biol 2022; 9:812748. [PMID: 35178401 PMCID: PMC8844195 DOI: 10.3389/fcell.2021.812748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is an evolutionarily conserved pathophysiological process serving bifurcated purposes. On the one hand, fibrosis is essential for wound healing and contributes to the preservation of organ function. On the other hand, aberrant fibrogenic response may lead to tissue remodeling and precipitate organ failure. Recently lineage tracing studies have shown that resident fibroblasts are the primary mediator of fibrosis taking place in key organs such as the heart, the lungs, and the kidneys. Megakaryocytic leukemia 1 (MKL1) is transcriptional regulator involved in tissue fibrosis. Here we generated resident fibroblast conditional MKL1 knockout (CKO) mice by crossing the Mkl1f/f mice to the Col1a2-CreERT2 mice. Models of cardiac fibrosis, pulmonary fibrosis, and renal fibrosis were reproduced in the CKO mice and wild type (WT) littermates. Compared to the WT mice, the CKO mice displayed across-the-board attenuation of fibrosis in different models. Our data cement the pivotal role MKL1 plays in tissue fibrosis but point to the cellular origin from which MKL1 exerts its pro-fibrogenic effects.
Collapse
Affiliation(s)
- Shan Huang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianhua Gui
- Department of Respiratory Medicine, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
31
|
Yang HY, Chen JY, Huo YN, Yu PL, Lin PZ, Hsu SC, Huang SM, Tsai CS, Lin CY. The Role of Sirtuin 1 in Palmitic Acid-Induced Endoplasmic Reticulum Stress in Cardiac Myoblasts. Life (Basel) 2022; 12:life12020182. [PMID: 35207470 PMCID: PMC8878829 DOI: 10.3390/life12020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Lipotoxicity causes endoplasmic reticulum (ER) stress, leading to cell apoptosis. Sirtuin 1 (Sirt1) regulates gene transcription and cellular metabolism. In this study, we investigated the role of Sirt1 in palmitate-induced ER stress. Methods: Both H9c2 myoblasts and heart-specific Sirt1 knockout mice fed a palmitate-enriched high-fat diet were used. Results: The high-fat diet induced C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) expression in both Sirt1 knockout mice and controls. The Sirt1 knockout mice showed higher CHOP and ATF4 expression compared to those in the control. Palmitic acid (PA) induced ATF4 and CHOP expression in H9c2 cells. PA-treated H9c2 cells showed decreased cytosolic NAD+/NADH alongside reduced Sirt1′s activity. The H9c2 cells showed increased ATF4 and CHOP expression when transfected with plasmid encoding dominant negative mutant Sirt1. Sirt1 activator SRT1720 did not affect CHOP and ATF4 expression. Although SRT1720 enhanced the nuclear translocation of ATF4, the extent of the binding of ATF4 to the CHOP promoter did not increase in PA treated-H9c2 cells. Conclusion: PA-induced ER stress is mediated through the upregulation of ATF4 and CHOP. Cytosolic NAD+ concentration is diminished by PA-induced ER stress, leading to decreased Sirt1 activity. The Sirt1 activator SRT1720 promotes the nuclear translocation of ATF4 in PA-treated H9c2 cells.
Collapse
Affiliation(s)
- Hsiang-Yu Yang
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | - Jhao-Ying Chen
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | - Yen-Nien Huo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 114, Taiwan;
| | - Pei-Ling Yu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | - Pei-Zhen Lin
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | | | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (C.-S.T.); (C.-Y.L.); Tel.: +886-2-8792-7212 (C.-Y.L.); Fax: +886-2-8792-7376 (C.-Y.L.)
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
- Correspondence: (C.-S.T.); (C.-Y.L.); Tel.: +886-2-8792-7212 (C.-Y.L.); Fax: +886-2-8792-7376 (C.-Y.L.)
| |
Collapse
|
32
|
Shao T, Xue Y, Fang M. Epigenetic Repression of Chloride Channel Accessory 2 Transcription in Cardiac Fibroblast: Implication in Cardiac Fibrosis. Front Cell Dev Biol 2021; 9:771466. [PMID: 34869368 PMCID: PMC8633401 DOI: 10.3389/fcell.2021.771466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a key pathophysiological process that contributes to heart failure. Cardiac resident fibroblasts, exposed to various stimuli, are able to trans-differentiate into myofibroblasts and mediate the pro-fibrogenic response in the heart. The present study aims to investigate the mechanism whereby transcription of chloride channel accessory 2 (Clca2) is regulated in cardiac fibroblast and its potential implication in fibroblast-myofibroblast transition (FMyT). We report that Clca2 expression was down-regulated in activated cardiac fibroblasts (myofibroblasts) compared to quiescent cardiac fibroblasts in two different animal models of cardiac fibrosis. Clca2 expression was also down-regulated by TGF-β, a potent inducer of FMyT. TGF-β repressed Clca2 expression at the transcriptional level likely via the E-box element between -516 and -224 of the Clca2 promoter. Further analysis revealed that Twist1 bound directly to the E-box element whereas Twist1 depletion abrogated TGF-β induced Clca2 trans-repression. Twist1-mediated Clca2 repression was accompanied by erasure of histone H3/H4 acetylation from the Clca2 promoter. Mechanistically Twist1 interacted with HDAC1 and recruited HDAC1 to the Clca2 promoter to repress Clca2 transcription. Finally, it was observed that Clca2 over-expression attenuated whereas Clca2 knockdown enhanced FMyT. In conclusion, our data demonstrate that a Twist1-HDAC1 complex represses Clca2 transcription in cardiac fibroblasts, which may contribute to FMyT and cardiac fibrosis.
Collapse
Affiliation(s)
- Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
33
|
Chen TT, Wu SM, Chen KY, Tseng CH, Ho SC, Chuang HC, Feng PH, Liu WT, Han CL, Huang EWC, Yeh YK, Lee KY. Suppressor of variegation 3-9 homologue 1 impairment and neutrophil-skewed systemic inflammation are associated with comorbidities in COPD. BMC Pulm Med 2021; 21:276. [PMID: 34598691 PMCID: PMC8487160 DOI: 10.1186/s12890-021-01628-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic manifestations and comorbidities are characteristics of chronic obstructive pulmonary disease (COPD) and are probably due to systemic inflammation. The histone methyltransferase SUV39H1 controls the Th1/Th2 balance. We previously reported that reduced SUV39H1 expression contributed to abnormal inflammation in COPD. Here, we aimed to determine whether impaired SUV39H1 expression in COPD patients associated with neutrophilic/eosinophilic inflammation responses and comorbidities. METHODS A total of 213 COPD patients and 13 healthy controls were recruited from the Shuang Ho Hospital, Taipei Medical University. SUV39H1 levels in peripheral blood mononuclear cells (PBMCs) from 13 healthy and 30 COPD participants were measured by immunoblotting. We classified the patients into two groups based on low (fold change, FC < 0.5) and high SUV39H1 expression (FC ≥ 0.5) compared to normal controls. Clinical outcomes including neutrophil or eosinophil counts associated with SUV39H1-related inflammation were evaluated by Chi square analyses or Mann-Whitney U test. The correlations between the percentage of neutrophils and number of COPD comorbidities or Charlson Comorbidity Index (CCI) scores were performed by Spearman's rank analysis. RESULTS Low SUV39H1 expression group had high neutrophil counts relative to high SUV39H1expression group. In the COPD cohort, the high comorbidity group (≥ 2 comorbidities) had higher counts of whole white blood cell (WBC) and neutrophil, and lower proportion of eosinophil and eosinophil/neutrophil, as compared with low comorbidity group (0 and 1 comorbidities). The quantity of neutrophils was associated with COPD comorbidities (Spearman's r = 0.388, p < 0.001), but not with CCI scores. We also found that the high comorbidity group had more exacerbations per year compared with low comorbidity group (1.5 vs. 0.9 average exacerbations, p = 0.005). However, there were no significant differences between groups with these non-frequent (0-1 exacerbation) and frequent exacerbations per year (> 1 exacerbation) in numbers of WBC and proportion of neutrophils, eosinophils or eosinophil/neutrophil. Finally, patients with high comorbidities had lower SUV39H1 levels in their PBMCs than did those with low comorbidities. CONCLUSION Blood neutrophil counts are associated with comorbidities in COPD patients. Impaired SUV39H1 expression in PBMCs from COPD patients are correlated with neutrophilic inflammation and comorbidities.
Collapse
Affiliation(s)
- Tzu-Tao Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei, Taiwan
| | - Erick Wan-Chun Huang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Woolcock Institute of Medical Research, Sydney, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Yun-Kai Yeh
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. .,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Hao S, Sui X, Wang J, Zhang J, Pei Y, Guo L, Liang Z. Secretory products from epicardial adipose tissue induce adverse myocardial remodeling after myocardial infarction by promoting reactive oxygen species accumulation. Cell Death Dis 2021; 12:848. [PMID: 34518516 PMCID: PMC8438091 DOI: 10.1038/s41419-021-04111-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Adverse myocardial remodeling, manifesting pathologically as myocardial hypertrophy and fibrosis, often follows myocardial infarction (MI) and results in cardiac dysfunction. In this study, an obvious epicardial adipose tissue (EAT) was observed in the rat model of MI and the EAT weights were positively correlated with cardiomyocyte size and myocardial fibrosis areas in the MI 2- and 4-week groups. Then, rat cardiomyocyte cell line H9C2 and primary rat cardiac fibroblasts were cultured in conditioned media generated from EAT of rats in the MI 4-week group (EAT-CM). Functionally, EAT-CM enlarged the cell surface area of H9C2 cells and reinforced cardiac fibroblast activation into myofibroblasts by elevating intracellular reactive oxygen species (ROS) levels. Mechanistically, miR-134-5p was upregulated by EAT-CM in both H9C2 cells and primary rat cardiac fibroblasts. miR-134-5p knockdown promoted histone H3K14 acetylation of manganese superoxide dismutase and catalase by upregulating lysine acetyltransferase 7 expression, thereby decreasing ROS level. An in vivo study showed that miR-134-5p knockdown limited adverse myocardial remodeling in the rat model of MI, manifesting as alleviation of cardiomyocyte hypertrophy and fibrosis. In general, our study clarified a new pathological mechanism involving an EAT/miRNA axis that explains the adverse myocardial remodeling occurring after MI.
Collapse
Affiliation(s)
- Shuang Hao
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China.
| | - Xin Sui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Jing Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Jingchao Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Yu Pei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Longhui Guo
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Zhenxing Liang
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| |
Collapse
|
35
|
Luu J, Kallestad L, Hoang T, Lewandowski D, Dong Z, Blackshaw S, Palczewski K. Epigenetic hallmarks of age-related macular degeneration are recapitulated in a photosensitive mouse model. Hum Mol Genet 2021; 29:2611-2624. [PMID: 32691052 DOI: 10.1093/hmg/ddaa158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a chronic, multifactorial disorder and a leading cause of blindness in the elderly. Characterized by progressive photoreceptor degeneration in the central retina, disease progression involves epigenetic changes in chromatin accessibility resulting from environmental exposures and chronic stress. Here, we report that a photosensitive mouse model of acute stress-induced photoreceptor degeneration recapitulates the epigenetic hallmarks of human AMD. Global epigenomic profiling was accomplished by employing an Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq), which revealed an association between decreased chromatin accessibility and stress-induced photoreceptor cell death in our mouse model. The epigenomic changes induced by light damage include reduced euchromatin and increased heterochromatin abundance, resulting in transcriptional and translational dysregulation that ultimately drives photoreceptor apoptosis and an inflammatory reactive gliosis in the retina. Of particular interest, pharmacological inhibition of histone deacetylase 11 (HDAC11) and suppressor of variegation 3-9 homolog 2 (SUV39H2), key histone-modifying enzymes involved in promoting reduced chromatin accessibility, ameliorated light damage in our mouse model, supporting a causal link between decreased chromatin accessibility and photoreceptor degeneration, thereby elucidating a potential new therapeutic strategy to combat AMD.
Collapse
Affiliation(s)
- Jennings Luu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.,Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, CA 92697, USA
| | - Les Kallestad
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, CA 92697, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, CA 92697, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, CA 92697, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Ophthalmology, Department of Neurology, Center for Human Systems Biology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, CA 92697, USA.,Department of Physiology & Biophysics, School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.,Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
36
|
Wang L, Yu F. SCD leads to the development and progression of acute myocardial infarction through the AMPK signaling pathway. BMC Cardiovasc Disord 2021; 21:197. [PMID: 33879068 PMCID: PMC8059031 DOI: 10.1186/s12872-021-02011-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is myocardial necrosis caused by acute coronary ischemia and hypoxia. It can be complicated by arrhythmia, shock, heart failure and other symptoms that can be life-threatening. A multi-regulator driven dysfunction module for AMI was constructed. It is intended to explore the pathogenesis and functional pathways regulation of acute myocardial infarction. Methods Combining differential expression analysis, co-expression analysis, and the functional enrichment analysis, a set of expression disorder modules related to AMI was obtained. Hypergeometric test was performed to calculate the potential regulatory effects of multiple factors on the module, identifying a range of non-coding RNA and transcription factors. Results A total of 4551 differentially expressed genes for AMI and seven co-expression modules were obtained. These modules are primarily involved in the metabolic processes of prostaglandin transport processes, regulating DNA recombination and AMPK signal transduction. Based on this set of functional modules, 3 of 24 transcription factors (TFs) including NFKB1, MECP2 and SIRT1, and 3 of 782 non-coding RNA including miR-519D-3P, TUG1 and miR-93-5p were obtained. These core regulators are thought to be involved in the progression of AMI disease. Through the AMPK signal transduction, the critical gene stearoyl-CoA desaturase (SCD) can lead to the occurrence and development of AMI. Conclusions In this study, a dysfunction module was used to explore the pathogenesis of multifactorial mediated AMI and provided new methods and ideas for subsequent research. It helps researchers to have a deeper understanding of its potential pathogenesis. The conclusion provides a theoretical basis for biologists to design further experiments related to AMI. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02011-8.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| | - Fengxia Yu
- Department of General Practice, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| |
Collapse
|
37
|
Kashyap S, Mukker A, Gupta D, Datta PK, Rappaport J, Jacobson JM, Ebert SN, Gupta MK. Antiretroviral Drugs Regulate Epigenetic Modification of Cardiac Cells Through Modulation of H3K9 and H3K27 Acetylation. Front Cardiovasc Med 2021; 8:634774. [PMID: 33898535 PMCID: PMC8062764 DOI: 10.3389/fcvm.2021.634774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Antiretroviral therapy (ART) has significantly reduced the rate of mortality in HIV infected population, but people living with HIV (PLWH) show higher rates of cardiovascular disease (CVD). However, the effect of antiretroviral (ARV) drug treatment on cardiac cells is not clear. In this study, we explored the effect of ARV drugs in cardiomyocyte epigenetic remodeling. Primary cardiomyocytes were treated with a combination of four ARV drugs (ritonavir, abacavir, atazanavir, and lamivudine), and epigenetic changes were examined. Our data suggest that ARV drugs treatment significantly reduces acetylation at H3K9 and H3K27 and promotes methylation at H3K9 and H3K27, which are histone marks for gene expression activation and gene repression, respectively. Besides, ARV drugs treatment causes pathological changes in the cell through increased production of reactive oxygen species (ROS) and cellular hypertrophy. Further, the expression of chromatin remodeling enzymes was monitored in cardiomyocytes treated with ARV drugs using PCR array. The PCR array data indicated that the expression of epigenetic enzymes was differentially regulated in the ARV drugs treated cardiomyocytes. Consistent with the PCR array result, SIRT1, SUV39H1, and EZH2 protein expression was significantly upregulated in ARV drugs treated cardiomyocytes. Furthermore, gene expression analysis of the heart tissue from HIV+ patients showed that the expression of SIRT1, SUV39H1, and EZH2 was up-regulated in patients with a history of ART. Additionally, we found that expression of SIRT1 can protect cardiomyocytes in presence of ARV drugs through reduction of cellular ROS and cellular hypertrophy. Our results reveal that ARV drugs modulate the epigenetic histone markers involved in gene expression, and play a critical role in histone deacetylation at H3K9 and H3K27 during cellular stress. This study may lead to development of novel therapeutic strategies for the treatment of CVD in PLWH.
Collapse
Affiliation(s)
- Shiridhar Kashyap
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Avni Mukker
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Deepti Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Prasun K Datta
- Division of Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Jay Rappaport
- Division of Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Jeffrey M Jacobson
- Department of Medicine, Center for AIDS Research, Case Medical Center, Case Western Reserve University and University Hospital, Cleveland, OH, United States
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Manish K Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
38
|
Liu L, Zhao Q, Lin L, Yang G, Yu L, Zhuo L, Yang Y, Xu Y. Myeloid MKL1 Disseminates Cues to Promote Cardiac Hypertrophy in Mice. Front Cell Dev Biol 2021; 9:583492. [PMID: 33898415 PMCID: PMC8063155 DOI: 10.3389/fcell.2021.583492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac hypertrophy is a key pathophysiological process in the heart in response to stress cues. Although taking place in cardiomyocytes, the hypertrophic response is influenced by other cell types, both within the heart and derived from circulation. In the present study we investigated the myeloid-specific role of megakaryocytic leukemia 1 (MKL1) in cardiac hypertrophy. Following transverse aortic constriction (TAC), myeloid MKL1 conditional knockout (MFCKO) mice exhibit an attenuated phenotype of cardiac hypertrophy compared to the WT mice. In accordance, the MFCKO mice were protected from excessive cardiac inflammation and fibrosis as opposed to the WT mice. Conditioned media collected from macrophages enhanced the pro-hypertrophic response in cardiomyocytes exposed to endothelin in an MKL1-dependent manner. Of interest, expression levels of macrophage derived miR-155, known to promote cardiac hypertrophy, were down-regulated in the MFCKO mice compared to the WT mice. MKL1 depletion or inhibition repressed miR-155 expression in macrophages. Mechanistically, MKL1 interacted with NF-κB to activate miR-155 transcription in macrophages. In conclusion, our data suggest that MKL1 may contribute to pathological hypertrophy via regulating macrophage-derived miR-155 transcription.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lin Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Department of Pathology, Suzhou Municipal Hospital Affiliated with Nanjing Medical University, Suzhou, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
39
|
SIRT1 stabilizes extrachromosomal gene amplification and contributes to repeat-induced gene silencing. J Biol Chem 2021; 296:100356. [PMID: 33539925 PMCID: PMC7949162 DOI: 10.1016/j.jbc.2021.100356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a protein deacetylase that maintains genome stability by preventing the activation of latent replication origins. Amplified genes in cancer cells localize on either extrachromosomal double minutes (DMs) or the chromosomal homogeneously staining region. Previously, we found that a plasmid with a mammalian replication initiation region and a matrix attachment region spontaneously mimics gene amplification in cultured animal cells and efficiently generates DMs and/or an homogeneously staining region. Here, we addressed the possibility that SIRT1 might be involved in initiation region/matrix attachment region–mediated gene amplification using SIRT1-knockout human COLO 320DM cells. Consequently, we found that extrachromosomal amplification was infrequent in SIRT1-deficient cells, suggesting that DNA breakage caused by latent origin activation prevented the formation of stable extrachromosomal amplicons. Moreover, we serendipitously found that reporter gene expression from the amplified repeats, which is commonly silenced by repeat-induced gene silencing (RIGS) in SIRT1-proficient cells, was strikingly higher in SIRT1-deficient cells, especially in the culture treated with the histone deacetylase inhibitor butyrate. Compared with the SIRT1-proficient cells, the gene expression per copy was up to thousand-fold higher in the sorter-isolated highest 10% cells among the SIRT1-deficient cells. These observations suggest that SIRT1 depletion alleviates RIGS. Thus, SIRT1 may stabilize extrachromosomal amplicons and facilitate RIGS. This result could have implications in cancer malignancy and protein expression.
Collapse
|
40
|
Chen L, Li S, Zhu J, You A, Huang X, Yi X, Xue M. Mangiferin prevents myocardial infarction-induced apoptosis and heart failure in mice by activating the Sirt1/FoxO3a pathway. J Cell Mol Med 2021; 25:2944-2955. [PMID: 33523605 PMCID: PMC7957271 DOI: 10.1111/jcmm.16329] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction (MI) commonly leads to cardiomyocyte apoptosis and heart failure. Mangiferin is a natural glucosylxanthone extracted from mango fruits and leaves, which has anti-apoptotic and anti-inflammatory properties in experimental cardiovascular diseases. In the present study, we investigated the role and detailed mechanism of mangiferin in MI. We used ligation of the left anterior descending coronary artery to establish an MI model in vivo, and cardiomyocyte-specific Sirt1 knockout mice were used to identify the mechanism of mangiferin. For in vitro studies, oxygen and glucose deprivation (OGD) was used to mimic ischaemia in H9c2 cardiomyocytes. In mice, mangiferin treatment increased Sirt1 expression after MI, significantly reduced the infarct area, and prevented MI-induced apoptosis and heart failure. Mangiferin reduced OGD-induced cellular apoptosis in H9c2 cells. Meanwhile, Sirt1 knockout/silencing abolished the protective effects of mangiferin. Further studies revealed that mangiferin increased FoxO3a deacetylation by up-regulating Sirt1, thus preventing apoptosis, and adenovirus-mediated constitutive acetylation of FoxO3a restricted the anti-apoptotic effects of mangiferin in vivo and in vitro. Our results indicate that mangiferin prevents cardiomyocyte apoptosis and the subsequent heart failure by activating the Sirt1/FoxO3a pathway in MI, and suggest that mangiferin may have an interesting potential in following studies towards clinical evaluation.
Collapse
Affiliation(s)
- Lingli Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jianyu Zhu
- Department of Traumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anfu You
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingzhou Huang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinchu Yi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,People's Hospital of Deyang City, Deyang, China
| | - Mei Xue
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, Zhao XR, Zhao H, Hao MF, Li MD, Tie YY, Qu L, Li XY. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020; 24:12355-12367. [PMID: 32961025 PMCID: PMC7687015 DOI: 10.1111/jcmm.15725] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes is a disorder of glucose metabolism, and over 90% are type 2 diabetes. Diabetic cardiomyopathy (DCM) is one of the type 2 diabetes complications, usually accompanied by changes in myocardial structure and function, together with cardiomyocyte apoptosis. Our study investigated the effect of curcumin on regulating oxidative stress (OS) and apoptosis in DCM. In vivo, diabetes was induced in an experimental rat model by streptozoticin (STZ) together with high‐glucose and high‐fat (HG/HF) diet feeding. In vitro, H9c2 cardiomyocytes were cultured with high‐glucose and saturated free fatty acid palmitate. Curcumin was orally or directly administered to rats or cells, respectively. Streptozoticin ‐induced diabetic rats showed metabolism abnormalities and elevated markers of OS (superoxide dismutase [SOD], malondialdehyde [MDA], gp91phox, Cyt‐Cyto C), enhanced cell apoptosis (Bax/Bcl‐2, Cleaved caspase‐3, TUNEL‐positive cells), together with reduced Akt phosphorylation and increased Foxo1 acetylation. Curcumin attenuated the myocardial dysfunction, OS and apoptosis in the heart of diabetic rats. Curcumin treatment also enhanced phosphorylation of Akt and inhibited acetylation of Foxo1. These results strongly suggest that apoptosis was increased in the heart of diabetic rats, and curcumin played a role in diabetic cardiomyopathy treatment by modulating the Sirt1‐Foxo1 and PI3K‐Akt pathways.
Collapse
Affiliation(s)
- Bin-Cheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu-Fei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shan-Shan Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Cheng
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Yang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Guang Cui
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin-Rui Zhao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Zhao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min-Feng Hao
- Department of Neurology, Xi'an Central Hospital, Xi'an, China
| | - Meng-Dan Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan-Yuan Tie
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Qu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue-Yi Li
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Epi-drugs as triple-negative breast cancer treatment. Epigenomics 2020; 12:725-742. [PMID: 32396394 DOI: 10.2217/epi-2019-0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) types with poor prognosis are due to the absence of estrogen receptors, progesterone receptors and HEGFR-2. The lack of suitable therapy for TNBC has led the research community to turn toward epigenetic regulation and its protagonists that can modulate certain oncogenes and tumor suppressors. This has opened an important new field of therapy using epi-drugs, in preclinical and clinical trials. The epi-drugs are natural or synthetic molecules capable of inhibiting or modulating the activity of epigenetic proteins such as DNA methyltransferases, modulating the expression of interferon microRNAs, as well as histone methyltransferases, demethylases, acetyltransferases and deacetylases. This review investigated the epi-drugs used in the treatment of TNBC.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France.,Department of Biopathology, Centre Jean Perrin, 58 Rue Montalembert, Clermont-Ferrand 63011, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| |
Collapse
|
43
|
Luo Y, Fan C, Yang M, Dong M, Bucala R, Pei Z, Zhang Y, Ren J. CD74 knockout protects against LPS-induced myocardial contractile dysfunction through AMPK-Skp2-SUV39H1-mediated demethylation of BCLB. Br J Pharmacol 2020; 177:1881-1897. [PMID: 31877229 PMCID: PMC7070165 DOI: 10.1111/bph.14959] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Lipopolysaccharides (LPS), an outer membrane component of Gram-negative bacteria, triggers myocardial anomalies in sepsis. Recent findings indicated a role for inflammatory cytokine MIF and its receptor, CD74, in septic organ injury, although little is known of the role of MIF-CD74 in septic cardiomyopathy. EXPERIMENTAL APPROACH This study evaluated the impact of CD74 ablation on endotoxaemia-induced cardiac anomalies. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were examined. KEY RESULTS Our data revealed compromised cardiac function (lower fractional shortening, enlarged LV end systolic diameter, decreased peak shortening, maximal velocity of shortening/relengthening, prolonged duration of relengthening and intracellular Ca2+ mishandling) and ultrastructural derangement associated with inflammation, O2 - production, apoptosis, excess autophagy, phosphorylation of AMPK and JNK and dampened mTOR phosphorylation. These effects were attenuated or mitigated by CD74 knockout. LPS challenge also down-regulated Skp2, an F-box component of Skp1/Cullin/F-box protein-type ubiquitin ligase, while up-regulating that of SUV39H1 and H3K9 methylation of the Bcl2 protein BCLB. These effects were reversed by CD74 ablation. In vitro study revealed that LPS facilitated GFP-LC3B formation and cardiomyocyte defects. These effects were prevented by CD74 ablation. Interestingly, the AMPK activator AICAR, the autophagy inducer rapamycin and the demethylation inhibitor difenoconazole inhibited the effects of CD74 ablation against LPS-induced cardiac dysfunction, while the SUV39H1 inhibitor chaetocin or methylation inhibitor 5-AzaC ameliorated LPS-induced GFP-LC3B formation and cardiomyocyte contractile dysfunction. CONCLUSION AND IMPLICATIONS Our data suggested that CD74 ablation protected against LPS-induced cardiac anomalies, O2 - production, inflammation and apoptosis through suppression of autophagy in a Skp2-SUV39H1-mediated mechanism.
Collapse
Affiliation(s)
- Yuanfei Luo
- The Second Department of CardiologyThe Third Hospital of NanchangNanchangChina
- Jiangxi University of Traditional MedicineNanchangChina
| | - Congcong Fan
- The Second Department of CardiologyThe Third Hospital of NanchangNanchangChina
- Jiangxi University of Traditional MedicineNanchangChina
| | - Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular DiseasesFudan University Zhongshan HospitalShanghaiChina
| | - Maolong Dong
- Department of Burns, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Richard Bucala
- Department of MedicineYale School of MedicineNew HavenConnecticut
| | - Zhaohui Pei
- The Second Department of CardiologyThe Third Hospital of NanchangNanchangChina
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular DiseasesFudan University Zhongshan HospitalShanghaiChina
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular DiseasesFudan University Zhongshan HospitalShanghaiChina
| |
Collapse
|
44
|
Liu S, Yang Y, Gao H, Zhou N, Wang P, Zhang Y, Zhang A, Jia Z, Huang S. Trehalose attenuates renal ischemia-reperfusion injury by enhancing autophagy and inhibiting oxidative stress and inflammation. Am J Physiol Renal Physiol 2020; 318:F994-F1005. [PMID: 32068461 DOI: 10.1152/ajprenal.00568.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal ischemia-reperfusion (IR) injury is one of the most common acute kidney injuries, but there is still a lack of effective treatment in the clinical setting. Trehalose (Tre), a natural disaccharide, has been demonstrated to protect against oxidative stress, inflammation, and apoptosis. However, whether it could protect against IR-induced renal injury needs to be investigated. In an in vivo experiment, C57BL/6J mice were pretreated with or without Tre (2 g/kg) through a daily single intraperitoneal injection from 3 days before renal IR surgery. Renal function, apoptosis, oxidative stress, and inflammation were analyzed to evaluate kidney injury. In an in vitro experiment, mouse proximal tubular cells were treated with or without Tre under a hypoxia/reoxygenation condition. Western blot analysis, autophagy flux detection, and apoptosis assay were performed to evaluate the level of autophagy and antiapoptotic effect of Tre. The in vivo results showed that the renal damage induced by IR was ameliorated by Tre treatment, as renal histology and renal function were improved and the enhanced protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin were blocked. Moreover, autophagy was activated by Tre pretreatment along with inhibition of the IR injury-induced apoptosis, oxidative stress, and inflammation. The in vitro results showed that Tre treatment activated autophagy and protected against hypoxia/reoxygenation-induced tubular cell apoptosis and oxidative stress. Our results demonstrated that Tre protects against IR-induced renal injury, possibly by enhancing autophagy and blocking oxidative stress, inflammation, and apoptosis, suggesting its potential use for the clinical treatment of renal IR injury.
Collapse
Affiliation(s)
- Suwen Liu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Huiping Gao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ning Zhou
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Peipei Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Yu C, Zhuang S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front Pharmacol 2019; 10:1393. [PMID: 31866860 PMCID: PMC6908484 DOI: 10.3389/fphar.2019.01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has demonstrated that epigenetic regulation plays a vital role in gene expression under normal and pathological conditions. Alterations in the expression and activation of histone methyltransferases (HMTs) have been reported in preclinical models of multiple kidney diseases, including acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Pharmacological inhibition of these enzymes has shown promise in preclinical models of those renal diseases. In this review, we summarize recent knowledge regarding expression and activation of various HMTs and their functional roles in some kidney diseases. The preclinical activity of currently available HMT inhibitors and the mechanisms of their actions are highlighted.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
46
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
47
|
Gomes NGM, Pereira RB, Andrade PB, Valentão P. Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Mar Drugs 2019; 17:md17100551. [PMID: 31569621 PMCID: PMC6835637 DOI: 10.3390/md17100551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
While several marine natural products bearing the 2,5-diketopiperazine ring have been reported to date, the unique chemistry of dimeric frameworks appears to remain neglected. Frequently reported from marine-derived strains of fungi, many naturally occurring diketopiperazine dimers have been shown to display a wide spectrum of pharmacological properties, particularly within the field of cancer and antimicrobial therapy. While their structures illustrate the unmatched power of marine biosynthetic machinery, often exhibiting unsymmetrical connections with rare linkage frameworks, enhanced binding ability to a variety of pharmacologically relevant receptors has been also witnessed. The existence of a bifunctional linker to anchor two substrates, resulting in a higher concentration of pharmacophores in proximity to recognition sites of several receptors involved in human diseases, portrays this group of metabolites as privileged lead structures for advanced pre-clinical and clinical studies. Despite the structural novelty of various marine diketopiperazine dimers and their relevant bioactive properties in several models of disease, to our knowledge, this attractive subclass of compounds is reviewed here for the first time.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| |
Collapse
|
48
|
Zhang M, Ma Y, Liu F, Chen S, Lu J, Chen H. Chaetocin attenuates gout in mice through inhibiting HIF-1α and NLRP3 inflammasome-dependent IL-1β secretion in macrophages. Arch Biochem Biophys 2019; 670:94-103. [PMID: 31255694 DOI: 10.1016/j.abb.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
Chaetocin is a fungal metabolite that possesses a potential anti-inflammatory activity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. However, the effect of cheatocin on gout has not been elucidated. In the study, we found that chaetocin could decrease MSU induced IL-1β secretion in bone marrow derived macrophages by several mechanisms, including inhibiting the activation of NLRP3 inflammasome. Chaetocin negatively regulated apoptosis-associated speck-like protein with a CARD domain oligomerization, and caspase-1 processing, key events during inflammasome activation. Furthermore, chaetocin restrain expressions of Hypoxia-inducible factor-1α and Hexokinase 2, mediators of glycolysis, which necessary for synthesis of pro-IL-1β during inflammasome priming. In vivo, chaetocin ameliorate MSU-induced arthritis, which showed as reduced local swelling and inflammatory cell infiltration. In MSU-induced peritonitis model, the peritoneal macrophages of chaetocin-pretreated mice showed significantly decreased mRNA levels of HIF-1α and NLRP3 related genes. These findings suggested that chaetocin has a potent anti-inflammatory effect against gout. More importantly, it is proposed that the inhibiting of glycolysis pathway would be a new avenue for the treatment of gout flare and other IL-1β related diseases.
Collapse
Affiliation(s)
- Mingliang Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiwen Ma
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fengjing Liu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Si Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haibing Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
49
|
Novel Molecular Targets Participating in Myocardial Ischemia-Reperfusion Injury and Cardioprotection. Cardiol Res Pract 2019; 2019:6935147. [PMID: 31275641 PMCID: PMC6558612 DOI: 10.1155/2019/6935147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Worldwide morbidity and mortality from acute myocardial infarction (AMI) and related heart failure remain high. While effective early reperfusion of the criminal coronary artery after a confirmed AMI is the typical treatment at present, collateral myocardial ischemia-reperfusion injury (MIRI) and pertinent cardioprotection are still challenging to address and have inadequately understood mechanisms. Therefore, unveiling the related novel molecular targets and networks participating in triggering and resisting the pathobiology of MIRI is a promising and valuable frontier. The present study specifically focuses on the recent MIRI advances that are supported by sophisticated bio-methodology in order to bring the poorly understood interrelationship among pro- and anti-MIRI participant molecules up to date, as well as to identify findings that may facilitate the further investigation of novel targets.
Collapse
|
50
|
Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP. Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J Cell Physiol 2019; 234:18544-18559. [PMID: 30982985 PMCID: PMC6617719 DOI: 10.1002/jcp.28492] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Low retention of endothelial progenitor cells (EPCs) in the infarct area has been suggested to be responsible for the poor clinical efficacy of EPC therapy for myocardial infarction (MI). This study aimed to evaluate whether magnetized EPCs guided through an external magnetic field could augment the aggregation of EPCs in an ischemia area, thereby enhancing therapeutic efficacy. EPCs from male rats were isolated and labeled with silica‐coated magnetic iron oxide nanoparticles to form magnetized EPCs. Then, the proliferation, migration, vascularization, and cytophenotypic markers of magnetized EPCs were analyzed. Afterward, the magnetized EPCs (1 × 106) were transplanted into a female rat model of MI via the tail vein at 7 days after MI with or without the guidance of an external magnet above the infarct area. Cardiac function, myocardial fibrosis, and the apoptosis of cardiomyocytes were observed at 4 weeks after treatment. In addition, EPC retention and the angiogenesis of ischemic myocardium were evaluated. Labeling with magnetic nanoparticles exhibited minimal influence to the biological functions of EPCs. The transplantation of magnetized EPCs guided by an external magnet significantly improved the cardiac function, decreased infarction size, and reduced myocardial apoptosis in MI rats. Moreover, enhanced aggregations of magnetized EPCs in the infarcted border zone were observed in rats with external magnet‐guided transplantation, accompanied by the significantly increased density of microvessels and upregulated the expression of proangiogenic factors, when compared with non‐external‐magnet‐guided rats. The magnetic field‐guided transplantation of magnetized EPCs was associated with the enhanced aggregation of EPCs in the infarcted border zone, thereby improving the therapeutic efficacy of MI.
Collapse
Affiliation(s)
- Bo-Fang Zhang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Chen
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Qi Hu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Shuo Yang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Xiao-Pei Liu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|