1
|
Wang X, Dou L, Bai F, Zhang Y, Wang Z, Shen J, Wen K. Integration of DNA-Decorated Hapten in Emergency Immunoassays for Antibody and Small-Molecule Detection: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39754575 DOI: 10.1021/acs.jafc.4c10521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
DNA-decorated hapten (DDH)-based immunoassays have emerged, demonstrating supreme advantages in sensing applications because of their excellent sensitivity, specificity, and reliability. DDH combines both a recognition element (hapten) and a signal transduction element (DNA portion) with its highly programmable DNA structure enabling the trigger of signal transduction following a recognition event, thereby introducing a novel signal transduction mechanism to immunoassays. In this review, we provide a critical overview of recent research in the DDH-based immunoassays, which are designed to detect specific small molecules and antibodies. On the basis of the following events after binding of antibodies to DDH, the reported studies involved with DDH-based immunoassays can be categorized into three groups: (i) DDH-based immunoassay based on DNA conformational switches induced by antibody binding, (ii) DDH-based immunoassay based on co-localization of nucleic acids induced by antibody binding, and (iii) DDH-based immunoassay based on antibody steric hindrance. We also focus on several fundamental elements of DDH-based immunoassays, including the designed DNA structure, principles of signal transformation, and platform of DDH-based immunoassays. Then, the representative applications of DDH-based immunoassays in areas such as food safety, medical diagnostics, and environmental monitoring as well as the challenges and perspectives of DDH-based immunoassays are also explored.
Collapse
Affiliation(s)
- Xiaonan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Feier Bai
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Zhang X, Du R, Xu S, Wang X, Wang ZG. Enhancing DNA-based nanodevices activation through cationic peptide acceleration of strand displacement. NANOSCALE HORIZONS 2024; 9:1582-1586. [PMID: 39036841 DOI: 10.1039/d4nh00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Dynamic DNA-based nanodevices offer versatile molecular-level operations, but the majority of them suffer from sluggish kinetics, impeding the advancement of device complexity. In this work, we present the self-assembly of a cationic peptide with DNA to expedite toehold-mediated DNA strand displacement (TMSD) reactions, a fundamental mechanism enabling the dynamic control and actuation of DNA nanostructures. The target DNA is modified with a fluorophore and a quencher, so that the TMSD process can be monitored by recording the time-dependent fluorescence changes. The boosting effect of the peptides is found to be dependent on the peptide/DNA N/P ratio, the toehold/invader binding affinity, and the ionic strength with stronger effects observed at lower ionic strengths, suggesting that electrostatic interactions play a key role. Furthermore, we demonstrate that the cationic peptide enhances the responsiveness and robustness of DNA machinery tweezers or logic circuits (AND and OR) involving multiple strand displacement reactions in parallel and cascade, highlighting its broad utility across DNA-based systems of varying complexity. This work offers a versatile approach to enhance the efficiency of toehold-mediated DNA nanodevices, facilitating flexible design and broader applications.
Collapse
Affiliation(s)
- Xianxue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinyue Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Yadav K, Gnanakani SPE, Sahu KK, Veni Chikkula CK, Vaddi PS, Srilakshmi S, Yadav R, Sucheta, Dubey A, Minz S, Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review. Int J Biol Macromol 2024; 274:133244. [PMID: 38901506 DOI: 10.1016/j.ijbiomac.2024.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
DNA nanostructures are a promising tool in cancer treatment, offering an innovative way to improve the effectiveness of therapies. These nanostructures can be made solely from DNA or combined with other materials to overcome the limitations of traditional single-drug treatments. There is growing interest in developing nanosystems capable of delivering multiple drugs simultaneously, addressing challenges such as drug resistance. Engineered DNA nanostructures are designed to precisely deliver different drugs to specific locations, enhancing therapeutic effects. By attaching targeting molecules, these nanostructures can recognize and bind to cancer cells, increasing treatment precision. This approach offers tailored solutions for targeted drug delivery, enabling the delivery of multiple drugs in a coordinated manner. This review explores the advancements and applications of DNA nanostructures in cancer treatment, with a focus on targeted drug delivery and multi-drug therapy. It discusses the benefits and current limitations of nanoscale formulations in cancer therapy, categorizing DNA nanostructures into pure forms and hybrid versions optimized for drug delivery. Furthermore, the review examines ongoing research efforts and translational possibilities, along with challenges in clinical integration. By highlighting the advancements in DNA nanostructures, this review aims to underscore their potential in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai 490024, India
| | - S Princely E Gnanakani
- Department of Pharmaceutical Biotechnology, Parul Institute of Pharmacy, Parul University, Post Limda, Ta.Waghodia - 391760, Dist. Vadodara, Gujarat, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - C Krishna Veni Chikkula
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - Poorna Sai Vaddi
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - S Srilakshmi
- Gitam School of Pharmacy, Department of Pharmaceutical Chemistry, Gitams University, Vishakhapatnam, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (M.P.), India
| | | |
Collapse
|
4
|
Díaz-Fernández A, Ranallo S, Ricci F. Enzyme-Linked DNA Displacement (ELIDIS) Assay for Ultrasensitive Electrochemical Detection of Antibodies. Angew Chem Int Ed Engl 2024; 63:e202314818. [PMID: 37994381 DOI: 10.1002/anie.202314818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Here we report the development of a method for the electrochemical ultrasensitive detection of antibodies that couples the programmability and versatility of DNA-based systems with the sensitivity provided by enzymatic amplification. The platform, termed Enzyme-Linked DNA Displacement (ELIDIS), is based on the use of antigen-DNA conjugates that, upon the bivalent binding of a specific target antibody, induce the release of an enzyme-DNA hybrid strand from a preformed duplex. Such enzyme-DNA hybrid strand can then be electrochemically detected with a disposable electrode with high sensitivity. We applied ELIDIS to demonstrate the sensitive (limit of detection in the picomolar range), specific and multiplexed detection of five different antibodies including three clinically relevant ones. ELIDIS is also rapid (it only requires two reaction steps), works well in complex media (serum) and is cost-effective. A direct comparison with a commercial ELISA kit for the detection of Cetuximab demonstrates the promising features of ELIDIS as a point-of-care platform for antibodies detection.
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Simona Ranallo
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
5
|
Lauzon D, Vallée-Bélisle A. Programing Chemical Communication: Allostery vs Multivalent Mechanism. J Am Chem Soc 2023; 145:18846-18854. [PMID: 37581934 DOI: 10.1021/jacs.3c04045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The emergence of life has relied on chemical communication and the ability to integrate multiple chemical inputs into a specific output. Two mechanisms are typically employed by nature to do so: allostery and multivalent activation. Although a better understanding of allostery has recently provided a variety of strategies to optimize the binding affinity, sensitivity, and specificity of molecular switches, mechanisms relying on multivalent activation remain poorly understood. As a proof of concept to compare the thermodynamic basis and design principles of both mechanisms, we have engineered a highly programmable DNA-based switch that can be triggered by either a multivalent or an allosteric DNA activator. By precisely designing the binding interface of the multivalent activator, we show that the affinity, dynamic range, and activated half-life of the molecular switch can be programed with even more versatility than when using an allosteric activator. The simplicity by which the activation properties of molecular switches can be rationally tuned using multivalent assembly suggests that it may find many applications in biosensing, drug delivery, synthetic biology, and molecular computation fields, where precise control over the transduction of binding events into a specific output is key.
Collapse
Affiliation(s)
- Dominic Lauzon
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal QC H2V 0B3, Canada
| | - Alexis Vallée-Bélisle
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal QC H2V 0B3, Canada
| |
Collapse
|
6
|
Liang Y, Qie Y, Yang J, Wu R, Cui S, Zhao Y, Anderson GJ, Nie G, Li S, Zhang C. Programming conformational cooperativity to regulate allosteric protein-oligonucleotide signal transduction. Nat Commun 2023; 14:4898. [PMID: 37580346 PMCID: PMC10425332 DOI: 10.1038/s41467-023-40589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Conformational cooperativity is a universal molecular effect mechanism and plays a critical role in signaling pathways. However, it remains a challenge to develop artificial molecular networks regulated by conformational cooperativity, due to the difficulties in programming and controlling multiple structural interactions. Herein, we develop a cooperative strategy by programming multiple conformational signals, rather than chemical signals, to regulate protein-oligonucleotide signal transduction, taking advantage of the programmability of allosteric DNA constructs. We generate a cooperative regulation mechanism, by which increasing the loop lengths at two different structural modules induced the opposite effects manifesting as down- and up-regulation. We implement allosteric logic operations by using two different proteins. Further, in cell culture we demonstrate the feasibility of this strategy to cooperatively regulate gene expression of PLK1 to inhibit tumor cell proliferation, responding to orthogonal protein-signal stimulation. This programmable conformational cooperativity paradigm has potential applications in the related fields.
Collapse
Affiliation(s)
- Yuan Liang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
- School of Control and Computer Engineering, North China Electric Power University, 102206, Beijing, China
| | - Yunkai Qie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, 102206, Beijing, China
| | - Ranfeng Wu
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
| | - Shuang Cui
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
| | - Greg J Anderson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, Queensland, 4029, Australia
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China.
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China.
| |
Collapse
|
7
|
Prasad PK, Eizenshtadt N, Goliand I, Fellus-Alyagor L, Oren R, Golani O, Motiei L, Margulies D. Chemically programmable bacterial probes for the recognition of cell surface proteins. Mater Today Bio 2023; 20:100669. [PMID: 37334185 PMCID: PMC10275978 DOI: 10.1016/j.mtbio.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Common methods to label cell surface proteins (CSPs) involve the use of fluorescently modified antibodies (Abs) or small-molecule-based ligands. However, optimizing the labeling efficiency of such systems, for example, by modifying them with additional fluorophores or recognition elements, is challenging. Herein we show that effective labeling of CSPs overexpressed in cancer cells and tissues can be obtained with fluorescent probes based on chemically modified bacteria. The bacterial probes (B-probes) are generated by non-covalently linking a bacterial membrane protein to DNA duplexes appended with fluorophores and small-molecule binders of CSPs overexpressed in cancer cells. We show that B-probes are exceptionally simple to prepare and modify because they are generated from self-assembled and easily synthesized components, such as self-replicating bacterial scaffolds and DNA constructs that can be readily appended, at well-defined positions, with various types of dyes and CSP binders. This structural programmability enabled us to create B-probes that can label different types of cancer cells with distinct colors, as well as generate very bright B-probes in which the multiple dyes are spatially separated along the DNA scaffold to avoid self-quenching. This enhancement in the emission signal enabled us to label the cancer cells with greater sensitivity and follow the internalization of the B-probes into these cells. The potential to apply the design principles underlying B-probes in therapy or inhibitor screening is also discussed here.
Collapse
Affiliation(s)
- Pragati K. Prasad
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Noa Eizenshtadt
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Inna Goliand
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| |
Collapse
|
8
|
Mariottini D, Idili A, Ercolani G, Ricci F. Thermo-Programmed Synthetic DNA-Based Receptors. ACS NANO 2023; 17:1998-2006. [PMID: 36689298 PMCID: PMC9933611 DOI: 10.1021/acsnano.2c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Herein, we present a generalizable and versatile strategy to engineer synthetic DNA ligand-binding devices that can be programmed to load and release a specific ligand at a defined temperature. We do so by re-engineering two model DNA-based receptors: a triplex-forming bivalent DNA-based receptor that recognizes a specific DNA sequence and an ATP-binding aptamer. The temperature at which these receptors load/release their ligands can be finely modulated by controlling the entropy associated with the linker connecting the two ligand-binding domains. The availability of a set of receptors with tunable and reversible temperature dependence allows achieving complex load/release behavior such as sustained ligand release over a wide temperature range. Similar programmable thermo-responsive synthetic ligand-binding devices can be of utility in applications such as drug delivery and production of smart materials.
Collapse
Affiliation(s)
- Davide Mariottini
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Andrea Idili
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Gianfranco Ercolani
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
9
|
Li N, Li M, Li M. A programmable catalytic molecular nanomachine for highly sensitive protein and small molecule detection. Analyst 2023; 148:328-336. [PMID: 36484518 DOI: 10.1039/d2an01798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the construction of a programmable catalytic molecular nanomachine based on a cross-linked catalytic hairpin assembly (CCHA) reaction for the one-step highly sensitive detection of proteins and small molecules. In this system, when the recognition elements attached on split initiators bind to the target proteins, it can trigger the cascade of the CCHA reaction, resulting in the formation of many macromolecular fluorescent products for signaling. This platform couples the advantages of highly efficient DNA-based nanotechnology with specific protein-small molecule interactions. We demonstrated the sensitive detection of streptavidin and anti-digoxigenin antibody with detection limits as low as 48.8 pM and 0.85 nM, respectively. This nanomachine also demonstrated its flexibility in the nanomolar detection of corresponding small molecules, such as biotin and digoxigenin, using a competitive method. In addition, the nanomachine was robust enough to perform well with human serum samples. Overall, this programmable catalytic molecular nanomachine provides a versatile platform for the detection of proteins and small molecules by replacing the recognition elements, which can promote the development of DNA nanotechnology in disease diagnosis and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Minhui Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Mei Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
10
|
Bridge T, Sachdeva A. Engineering Homogeneous Photoactive Antibody Fragments. Methods Mol Biol 2023; 2676:21-40. [PMID: 37277622 DOI: 10.1007/978-1-0716-3251-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetically encoded site-specifically incorporated noncanonical amino acids (ncAAs) have been used to modulate properties of several proteins. Here, we describe a procedure for engineering photoactive antibody fragments that bind to their target antigen only after irradiation with 365 nm light. The procedure starts with identification of tyrosine residues in antibody fragments that are important for antibody-antigen binding and thus targets for replacement with photocaged tyrosine (pcY). This is followed by cloning of plasmids and expression of pcY-containing antibody fragments in E. coli. Finally, we describe a cost-effective and biologically-relevant method for measuring the binding affinity of photoactive antibody fragments to antigens expressed on the surface of live cancer cells.
Collapse
Affiliation(s)
- Thomas Bridge
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Amit Sachdeva
- School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
11
|
Bucci J, Irmisch P, Del Grosso E, Seidel R, Ricci F. Orthogonal Enzyme-Driven Timers for DNA Strand Displacement Reactions. J Am Chem Soc 2022; 144:19791-19798. [PMID: 36257052 DOI: 10.1021/jacs.2c06599] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we demonstrate a strategy to rationally program a delayed onset of toehold-mediated DNA strand displacement reactions (SDRs). The approach is based on blocker strands that efficiently inhibit the strand displacement by binding to the toehold domain of the target DNA. Specific enzymatic degradation of the blocker strand subsequently enables SDR. The kinetics of the blocker enzymatic degradation thus controls the time at which the SDR starts. By varying the concentration of the blocker strand and the concentration of the enzyme, we show that we can finely tune and modulate the delayed onset of SDR. Additionally, we show that the strategy is versatile and can be orthogonally controlled by different enzymes each specifically targeting a different blocker strand. We designed and established three different delayed SDRs using RNase H and two DNA repair enzymes (formamidopyrimidine DNA glycosylase and uracil-DNA glycosylase) and corresponding blockers. The achieved temporal delay can be programed with high flexibility without undesired leak and can be conveniently predicted using kinetic modeling. Finally, we show three possible applications of the delayed SDRs to temporally control the ligand release from a DNA nanodevice, the inhibition of a target protein by a DNA aptamer, and the output signal generated by a DNA logic circuit.
Collapse
Affiliation(s)
- Juliette Bucci
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Patrick Irmisch
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Erica Del Grosso
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Francesco Ricci
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
12
|
Gao J, Gao L, Tang Y, Li F. Homogeneous protein assays mediated by dynamic DNA nanotechnology. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Driven by recent advances in DNA nanotechnology, analytical methods have been greatly improved for designing simple and homogeneous assays for proteins. The translation from target proteins to DNA outputs dramatically enhances the sensitivity of protein assays. More importantly, the protein-responsive DNA nanotechnology has offered diverse assay mechanisms, allowing flexible assay designs and high sensitivity without the need for sophisticated operational procedures. This review will focus on the design principles and mechanistic insight of analytical assays mediated by protein-responsive DNA nanotechnology, which will serve a general guide for assay design and applications.
Collapse
Affiliation(s)
- Jiajie Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Lu Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Yanan Tang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ONL2S 3A1, Canada
| |
Collapse
|
13
|
Rajwar A, Shetty SR, Vaswani P, Morya V, Barai A, Sen S, Sonawane M, Bhatia D. Geometry of a DNA Nanostructure Influences Its Endocytosis: Cellular Study on 2D, 3D, and in Vivo Systems. ACS NANO 2022; 16:10496-10508. [PMID: 35715010 DOI: 10.1021/acsnano.2c01382] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fabrication of nanoscale DNA devices to generate 3D nano-objects with precise control of shape, size, and presentation of ligands has shown tremendous potential for therapeutic applications. The interactions between the cell membrane and different topologies of 3D DNA nanostructures are crucial for designing efficient tools for interfacing DNA devices with biological systems. The practical applications of these DNA nanocages are still limited in cellular and biological systems owing to the limited understanding of their interaction with the cell membrane and endocytic pathway. The correlation between the geometry of DNA nanostructures and their internalization efficiency remains elusive. We investigated the influence of the shape and size of 3D DNA nanostructures on their cellular internalization efficiency. We found that one particular geometry, i.e., the tetrahedral shape, is more favored over other designed geometries for their cellular uptake in 2D and 3D cell models. This is also replicable for cellular processes like cell invasion assays in a 3D spheroid model, and passing the epithelial barriers in in vivo zebrafish model systems. Our work provides detailed information for the rational design of DNA nanodevices for their upcoming biological and biomedical applications.
Collapse
Affiliation(s)
- Anjali Rajwar
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Shravani Reddy Shetty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Payal Vaswani
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Vinod Morya
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Amlan Barai
- Bioscience and Bioengineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shamik Sen
- Bioscience and Bioengineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
14
|
Cui MR, Chen Y, Zhu D, Chao J. Intelligent Programmable DNA Nanomachines for the Spatially Controllable Imaging of Intracellular MicroRNA. Anal Chem 2022; 94:10874-10884. [PMID: 35856834 DOI: 10.1021/acs.analchem.2c02299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high programmability of DNA molecules makes them particularly suitable for constructing artificial molecular machines to perform sophisticated functions by simulating complex living systems. However, intelligent DNA nanomachines which can perform precise tasks logically in complex environments still remain challenging. Herein, we develop a general strategy to design a pH-responsive programmable DNA (PRPD) nanomachine to perform multilayer DNA cascades, enabling precise sensing and calculation of intracellular biomolecules. The PRPD nanomachine is built on a four-stranded DNAzyme walker precursor with a DNA switch on the surface of an Au nanoparticle, which is capable of precisely responding to pH variations in living cells by sequence tuning. This multilayer DNA cascade networks have been applicated in spatially controlled imaging of intracellular microRNA, which efficiently avoided the DNA nanomachine activated by nonspecific extracellular molecules and achieved apparent signal amplification. Our strategy enables the sensing-computing-output functional integration of DNA nanomachines, facilitating the application of programmable and complex nanomachines in nanoengineering, chemistry, and biomedicine.
Collapse
Affiliation(s)
- Mei-Rong Cui
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Yan Chen
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Chen R, Mao Z, Lu R, Wang Z, Hou Y, Zhu W, Li S, Ren S, Han D, Liang J, Gao Z. Simple and programmed three-dimensional DNA tweezer for simultaneous one-step detection of ochratoxin A and zearalenone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120991. [PMID: 35182923 DOI: 10.1016/j.saa.2022.120991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional (TD) deoxyribonucleic acid (DNA) tweezers were programmed for one-step identification and detection of ochratoxin A (OTA) and zearalenone (ZEN). The unfolding of the TD-DNA tweezers by aptamers specific to these two mycotoxins "turned" the fluorescent signals "on." The bonding of the aptamers to their corresponding targets in OTA and ZEN "turned" the fluorescent signals and the DNA tweezers "off." The detection limit of the TD-DNA tweezers for OTA and ZEN was 0.032 and 0.037 ng mL-1, respectively. The feasibility of this method was tested using two samples. Detection via this method increased the recovery of OTA and ZEN from 95.8% to 110.2%. Spike recovery and certified food products were used to detect applicability in actual situations. Analyte detection in complex samples using TD-DNA tweezers is rapid, as the process involves a single operational step. This proposed design has considerable potential for application in mycotoxin detection.
Collapse
Affiliation(s)
- Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zefeng Mao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ran Lu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiguang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Hou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenyan Zhu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
16
|
Wang M, Li X, He F, Li J, Wang HH, Nie Z. The Advances in Designer DNA Nanorobots Enabling Programmable Functions. Chembiochem 2022; 23:e202200119. [DOI: 10.1002/cbic.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Fang He
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Juan Li
- Hunan University College of Biology CHINA
| | - Hong-Hui Wang
- Hunan University College of Biology 410082 Changsha CHINA
| | - Zhou Nie
- Hunan University College of Chemistry and Chemical Engineering Yuelushan, Changsha, Hunan, 410082, P.R.China 410082 Changsha CHINA
| |
Collapse
|
17
|
Loukanov A, Kuribara A, Filipov C, Nikolova S. Theranostic nanomachines for cancer treatment. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e80595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multifunctional programmed nanomachines with theranostic functions demonstrated great potential in the clinical practice of oncology, as well as the personalized nanomedicine. The reason is because such nanoagents with combined diagnostic and therapeutic functions were found to be highly effective for cancer treatment. The appropriate design of nanomachines allows them to overcome the biological barriers of proliferative tumors and to distinguish the cancer cells from their normal counterparts. Moreover, the use of biocompatible and biodegradable precursors for construction of nanomachines minimize significantly the caused adverse effects to the normal tissue cells, which is a main problem of the chemotherapy. In addition, the utilization of theranostic nanomachines also enables an improved selectivity to the cancer in respect to its intrinsic complexity, heterogeneity, and dynamic evolution. Here we present the programmable functions and performance of the microenvironment-responsive nanomachines at a molecular level for cancer imaging and therapy.
Collapse
|
18
|
Fortunati S, Vasini I, Giannetto M, Mattarozzi M, Porchetta A, Bertucci A, Careri M. Controlling Dynamic DNA Reactions at the Surface of Single-Walled Carbon Nanotube Electrodes to Design Hybridization Platforms with a Specific Amperometric Readout. Anal Chem 2022; 94:5075-5083. [PMID: 35303407 PMCID: PMC8968946 DOI: 10.1021/acs.analchem.1c05294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Carbon nanotube (CNT)-based
electrodes are cheap, highly performing,
and robust platforms for the fabrication of electrochemical sensors.
Engineering programmable DNA nanotechnologies on the CNT surface can
support the construction of new electrochemical DNA sensors providing
an amperometric output in response to biomolecular recognition. This
is a significant challenge, since it requires gaining control of specific
hybridization processes and functional DNA systems at the interface,
while limiting DNA physisorption on the electrode surface, which contributes
to nonspecific signal. In this study, we provide design rules to program
dynamic DNA structures at the surface of single-walled carbon nanotubes
electrodes, showing that specific DNA interactions can be monitored
through measurement of the current signal provided by redox-tagged
DNA strands. We propose the use of pyrene as a backfilling agent to
reduce nonspecific adsorption of reporter DNA strands and demonstrate
the controlled formation of DNA duplexes on the electrode surface,
which we then apply in the design and conduction of programmable DNA
strand displacement reactions. Expanding on this aspect, we report
the development of novel amperometric hybridization platforms based
on artificial DNA structures templated by the small molecule melamine.
These platforms enable dynamic strand exchange reactions orthogonal
to conventional toehold-mediated strand displacement and may support
new strategies in electrochemical sensing of biomolecular targets,
combining the physicochemical properties of nanostructured carbon-based
materials with programmable nucleic acid hybridization.
Collapse
Affiliation(s)
- Simone Fortunati
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Ilaria Vasini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Giannetto
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Alessandro Porchetta
- Department of Chemical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Bertucci
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
19
|
Ranallo S, Sorrentino D, Delibato E, Ercolani G, Plaxco KW, Ricci F. Protein–Protein Communication Mediated by an Antibody‐Responsive DNA Nanodevice**. Angew Chem Int Ed Engl 2022; 61:e202115680. [DOI: 10.1002/anie.202115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Simona Ranallo
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Daniela Sorrentino
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health Istituto Superiore di Sanità Viale Regina Elena 299 Rome Italy
| | - Gianfranco Ercolani
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
20
|
Aye SL, Sato Y. Therapeutic Applications of Programmable DNA Nanostructures. MICROMACHINES 2022; 13:315. [PMID: 35208439 PMCID: PMC8876680 DOI: 10.3390/mi13020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
Deoxyribonucleic acid (DNA) nanotechnology, a frontier in biomedical engineering, is an emerging field that has enabled the engineering of molecular-scale DNA materials with applications in biomedicine such as bioimaging, biodetection, and drug delivery over the past decades. The programmability of DNA nanostructures allows the precise engineering of DNA nanocarriers with controllable shapes, sizes, surface chemistries, and functions to deliver therapeutic and functional payloads to target cells with higher efficiency and enhanced specificity. Programmability and control over design also allow the creation of dynamic devices, such as DNA nanorobots, that can react to external stimuli and execute programmed tasks. This review focuses on the current findings and progress in the field, mainly on the employment of DNA nanostructures such as DNA origami nanorobots, DNA nanotubes, DNA tetrahedra, DNA boxes, and DNA nanoflowers in the biomedical field for therapeutic purposes. We will also discuss the fate of DNA nanostructures in living cells, the major obstacles to overcome, that is, the stability of DNA nanostructures in biomedical applications, and the opportunities for DNA nanostructure-based drug delivery in the future.
Collapse
Affiliation(s)
| | - Yusuke Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan;
| |
Collapse
|
21
|
Ranallo S, Sorrentino D, Delibato E, Ercolani G, Plaxco KW, Ricci F. Protein–Protein Communication Mediated by an Antibody‐Responsive DNA Nanodevice**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simona Ranallo
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Daniela Sorrentino
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health Istituto Superiore di Sanità Viale Regina Elena 299 Rome Italy
| | - Gianfranco Ercolani
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
22
|
Zhang C, Ma X, Zheng X, Ke Y, Chen K, Liu D, Lu Z, Yang J, Yan H. Programmable allosteric DNA regulations for molecular networks and nanomachines. SCIENCE ADVANCES 2022; 8:eabl4589. [PMID: 35108052 PMCID: PMC8809682 DOI: 10.1126/sciadv.abl4589] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Structure-based molecular regulations have been widely adopted to modulate protein networks in cells and recently developed to control allosteric DNA operations in vitro. However, current examples of programmable allosteric signal transmission through integrated DNA networks are stringently constrained by specific design requirements. Developing a new, more general, and programmable scheme for establishing allosteric DNA networks remains challenging. Here, we developed a general strategy for programmable allosteric DNA regulations that can be finely tuned by varying the dimensions, positions, and number of conformational signals. By programming the allosteric signals, we realized fan-out/fan-in DNA gates and multiple-layer DNA cascading networks, as well as expanding the approach to long-range allosteric signal transmission through tunable DNA origami nanomachines ~100 nm in size. This strategy will enable programmable and complex allosteric DNA networks and nanodevices for nanoengineering, chemical, and biomedical applications displaying sense-compute-actuate molecular functionalities.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing 100871, China
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| | - Xueying Ma
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
- Bio-evidence Sciences Academy, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Kuiting Chen
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuhong Lu
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| |
Collapse
|
23
|
Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal. Biosens Bioelectron 2022; 197:113739. [PMID: 34781175 PMCID: PMC8553638 DOI: 10.1016/j.bios.2021.113739] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
The molecular biomarkers are molecules that are closely related to specific physiological states. Numerous molecular biomarkers have been identified as targets for disease diagnosis and biological research. To date, developing highly efficient probes for the precise detection of biomarkers has become an attractive research field which is very important for biological and biochemical studies. During the past decades, not only the small chemical probe molecules but also the biomacromolecules such as enzymes, antibodies, and nucleic acids have been introduced to construct of biosensor platform to achieve the detection of biomarkers in a highly specific and highly efficient way. Nevertheless, improving the performance of the biosensors, especially in clinical applications, is still in urgent demand in this field. A noteworthy example is the Corona Virus Disease 2019 (COVID-19) that breaks out globally in a short time in 2020. The COVID-19 was caused by the virus called SARS-CoV-2. Early diagnosis is very important to block the infection of the virus. Therefore, during these months scientists have developed dozens of methods to achieve rapid and sensitive detection of the virus. Nowadays some of these new methods have been applied for producing the commercial detection kit and help people against the disease worldwide. DNA-based biosensors are useful tools that have been widely applied in the detection of molecular biomarkers. The good stability, high specificity, and excellent biocompatibility make the DNA-based biosensors versatile in application both in vitro and in vivo. In this paper, we will review the major methods that emerged in recent years on the design of DNA-based biosensors and their applications. Moreover, we will also briefly discuss the possible future direction of DNA-based biosensors design. We believe this is helpful for people interested in not only the biosensor field but also in the field of analytical chemistry, DNA nanotechnology, biology, and disease diagnosis.
Collapse
|
24
|
Fu H, Lv H, Zhang Q. Using entropy-driven amplifier circuit response to build nonlinear model under the influence of Lévy jump. BMC Bioinformatics 2022; 22:437. [PMID: 35057730 PMCID: PMC8772049 DOI: 10.1186/s12859-021-04331-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Bioinformatics is a subject produced by the combination of life science and computer science. It mainly uses computer technology to study the laws of biological systems. The design and realization of DNA circuit reaction is one of the important contents of bioinformatics. Results In this paper, nonlinear dynamic system model with Lévy jump based on entropy-driven amplifier (EDA) circuit response is studied. Firstly, nonlinear biochemical reaction system model is established based on EDA circuit response. Considering the influence of disturbance factors on the system, nonlinear biochemical reaction system with Lévy jump is built. Secondly, in order to prove that the constructed system conforms to the actual meaning, the existence and uniqueness of the system solution is analyzed. Next, the sufficient conditions for the end and continuation of EDA circuit reaction are certified. Finally, the correctness of the theoretical results is proved by numerical simulation, and the reactivity of THTSignal in EDA circuit under different noise intensity is verified. Conclusions In EDA circuit reaction, the intensity of external noise has a significant impact on the system. The end of EDA circuit reaction is closely related to the intensity of Lévy noise, and Lévy jump has a significant impact on the nature of biochemical reaction system.
Collapse
|
25
|
Cui X, Liu Y, Zhang Q. DNA tile self-assembly driven by antibody-mediated four-way branch migration. Analyst 2022; 147:2223-2230. [DOI: 10.1039/d1an02273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antibody-mediated four-way branch migration mechanism provides a novel idea for realizing the assembly of nanostructures, simply by attaching structures such as tiles, proteins, quantum dots, etc. to the ends of the four-way branches.
Collapse
Affiliation(s)
- Xingdi Cui
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
26
|
Engelen W, Sigl C, Kadletz K, Willner EM, Dietz H. Antigen-Triggered Logic-Gating of DNA Nanodevices. J Am Chem Soc 2021; 143:21630-21636. [PMID: 34927433 PMCID: PMC8719334 DOI: 10.1021/jacs.1c09967] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Synthetic nanoscale
devices that reconfigure dynamically in response
to physiological stimuli could offer new avenues for diagnostics and
therapy. Here, we report a strategy for controlling the state of DNA
nanodevices based on sensing antigens with IgG antibodies. To this
end, we use IgG antibodies as structural elements to kinetically trap
reconfigurable DNA origami structures in metastable states. Addition
of soluble antigens displace the IgGs from the objects and triggers
reconfiguration. We demonstrate this mechanism by antigen-triggered
disassembly of DNA origami shells for two different IgGs and their
cognate antigens, and we determined the corresponding dose response
curves. We also describe the logic-gated actuation of DNA objects
with combinations of antigens, as demonstrated with AND-type shells
that disassemble only when two different antigens are detected simultaneously.
We apply our system for the antigen-triggered release of molecular
payload as exemplified by the release of virus particles that we loaded
into the DNA origami shells. We expect our approach to be applicable
in many types of DNA nanostructures and with many other IgG-antigen
combinations.
Collapse
Affiliation(s)
- Wouter Engelen
- Laboratory for Biomolecular Nanotechnology, Physics Department, Technical University of Munich, Garching near Munich 85748, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Garching near Munich 85748, Germany
| | - Christian Sigl
- Laboratory for Biomolecular Nanotechnology, Physics Department, Technical University of Munich, Garching near Munich 85748, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Garching near Munich 85748, Germany
| | - Karoline Kadletz
- Laboratory for Biomolecular Nanotechnology, Physics Department, Technical University of Munich, Garching near Munich 85748, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Garching near Munich 85748, Germany
| | - Elena M Willner
- Laboratory for Biomolecular Nanotechnology, Physics Department, Technical University of Munich, Garching near Munich 85748, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Garching near Munich 85748, Germany
| | - Hendrik Dietz
- Laboratory for Biomolecular Nanotechnology, Physics Department, Technical University of Munich, Garching near Munich 85748, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Garching near Munich 85748, Germany
| |
Collapse
|
27
|
Rubio-Sánchez R, Fabrini G, Cicuta P, Di Michele L. Amphiphilic DNA nanostructures for bottom-up synthetic biology. Chem Commun (Camb) 2021; 57:12725-12740. [PMID: 34750602 PMCID: PMC8631003 DOI: 10.1039/d1cc04311k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
DNA nanotechnology enables the construction of sophisticated biomimetic nanomachines that are increasingly central to the growing efforts of creating complex cell-like entities from the bottom-up. DNA nanostructures have been proposed as both structural and functional elements of these artificial cells, and in many instances are decorated with hydrophobic moieties to enable interfacing with synthetic lipid bilayers or regulating bulk self-organisation. In this feature article we review recent efforts to design biomimetic membrane-anchored DNA nanostructures capable of imparting complex functionalities to cell-like objects, such as regulated adhesion, tissue formation, communication and transport. We then discuss the ability of hydrophobic modifications to enable the self-assembly of DNA-based nanostructured frameworks with prescribed morphology and functionality, and explore the relevance of these novel materials for artificial cell science and beyond. Finally, we comment on the yet mostly unexpressed potential of amphiphilic DNA-nanotechnology as a complete toolbox for bottom-up synthetic biology - a figurative and literal scaffold upon which the next generation of synthetic cells could be built.
Collapse
Affiliation(s)
- Roger Rubio-Sánchez
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Giacomo Fabrini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Lorenzo Di Michele
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
28
|
Yang P, Zhou R, Kong C, Fan L, Dong C, Chen J, Hou X, Li F. Stimuli-Responsive Three-Dimensional DNA Nanomachines Engineered by Controlling Dynamic Interactions at Biomolecule-Nanoparticle Interfaces. ACS NANO 2021; 15:16870-16877. [PMID: 34596378 DOI: 10.1021/acsnano.1c07598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stimuli-responsive nanomachines are attractive tools for biosensing, imaging, and drug delivery. Herein, we demonstrate that the orientation of macromolecules and subsequent dynamic interactions at the biomolecule-nanoparticle (bio-nano) interfaces can be rationally controlled to engineer stimuli-responsive DNA nanomachines. The success of this design principle was demonstrated by engineering a series of antibody-responsive DNA walkers capable of moving persistently on a three-dimensional track made of DNA functionalized gold nanoparticles. We show that drastically different responses to antibodies could be achieved using DNA walkers of identical sequences but with varying number or sites of modifications. We also show that multiple interfacial factors could be combined to engineer stimuli-responsive DNA nanomachines with high sensitivity and modularity. The potential of our strategy for practical uses was finally demonstrated for the amplified detection of antibodies and small molecules in both buffer and human serum samples. Unlike many DNA-based nanomachines, the performance of which could be significantly hindered by the matrix of serum, our system shows a matrix-enhanced sensitivity as a result of the engineering approach at the bio-nano interface.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Rongxing Zhou
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610064
| | - Chuipeng Kong
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
| | - Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, China, 030006
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, China, 030006
| | - Junbo Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
29
|
He JY, Shang X, Yang CL, Zuo SY, Yuan R, Xu WJ. Antibody-Responsive Ratiometric Fluorescence Biosensing of Biemissive Silver Nanoclusters Wrapped in Switchable DNA Tweezers. Anal Chem 2021; 93:11634-11640. [PMID: 34378382 DOI: 10.1021/acs.analchem.1c02444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exploring the ratiometric fluorescence biosensing of DNA-templated biemissive silver nanoclusters (AgNCs) is significant in bioanalysis, yet the design of a stimuli-responsive DNA device is a challenge. Herein, using the anti-digoxin antibody (anti-Dig) with two identical binding sites as a model, a tweezer-like DNA architecture is assembled to populate fluorescent green- and red-AgNCs (g-AgNCs and r-AgNCs), aiming to produce a ratio signal via specific recognition of anti-Dig with two haptens (DigH). To this end, four DNA probes are programmed, including a reporter strand (RS) dually ended with a g-/r-AgNC template sequence, an enhancer strand (ES) tethering two same G-rich tails (G18), a capture strand (CS) labeled with DigH at two ends, and a help strand (HS). Initially, both g-AgNCs and r-AgNCs wrapped in the intact RS are nonfluorescent, whereas the base pairing between RS, ES, CS, and HS resulted in the construction of DNA mechanical tweezers with two symmetric arms hinged by a rigid "fulcrum", in which g-AgNCs are lighted up due to G18 proximity ("green-on"), and r-AgNCs away from G18 are still dark ("red-off"). When two DigHs in proximity recognize and bind anti-Dig, the conformation switch of these tweezers resultantly occurs, taking g-AgNCs away from G18 for "green-off" and bringing r-AgNCs close to G18 for "red-on". As such, the ratiometric fluorescence of r-AgNCs versus g-AgNCs is generated in response to anti-Dig, achieving reliable quantization with a limit of detection at the picomolar level. Based on the fast stimulated switch of unique DNA tweezers, our ratiometric strategy of dual-emitting AgNCs would provide a new avenue for a variety of bioassays.
Collapse
Affiliation(s)
- Jia-Yang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin Shang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chun-Li Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Si-Yu Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Ju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
30
|
He JY, Chen ZH, Deng HL, Yuan R, Xu WJ. Antibody-powered DNA switches to initiate the hybridization chain reaction for the amplified fluorescence immunoassay. Analyst 2021; 146:5067-5073. [PMID: 34297024 DOI: 10.1039/d1an01045j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing antibody-powered DNA nanodevice switches is crucial and fascinating to perform a variety of functions in response to specific antibodies as regulatory inputs, achieving highly sensitive detection by integration with simple amplified methods. In this work, we report a unique DNA-based conformational switch, powered by a targeted anti-digoxin mouse monoclonal antibody (anti-Dig) as a model, to rationally initiate the hybridization chain reaction (HCR) for enzyme-free signal amplification. As a proof-of-concept, both a fluorophore Cy3-labeled reporter hairpin (RH) in the 3' terminus and a single-stranded helper DNA (HS) were individually hybridized with a recognition single-stranded DNA (RS) modified with Dig hapten, while the unpaired loop of RH was hybridized with the exposed 3'-toehold of HS, isothermally self-assembling an intermediate metastable DNA structure. The introduction of target anti-Dig drove the concurrent conjugation with two tethered Dig haptens, powering the directional switch of this DNA structure into a stable conformation. In this case, the unlocked 3'-stem of RH was implemented to unfold the 5'-stem of the BHQ-2-labeled quench hairpin (QH), rationally initiating the HCR between them by the overlapping complementary hybridization. As a result, numerous pairs of Cy3 and BHQ-2 in the formed long double helix were located in spatial proximity. In response to this, the significant quenching of the fluorescence intensity of Cy3 by BHQ-2 was dependent on the variable concentration of anti-Dig, achieving a highly sensitive quantification down to the picomolar level based on a simplified protocol integrated with enzyme-free amplification.
Collapse
Affiliation(s)
- Jia-Yang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ze-Hui Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hui-Lin Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Wen-Ju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
31
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
32
|
Tang Q, Lai W, Wang P, Xiong X, Xiao M, Li L, Fan C, Pei H. Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. Angew Chem Int Ed Engl 2021; 60:15013-15019. [PMID: 33893703 DOI: 10.1002/anie.202102169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Indexed: 01/17/2023]
Abstract
Developing smart material systems for performing different tasks in diverse environments remains challenging. Here, we show that by integrating stimuli-responsive soft materials with multi-mode reconfigurable DNA-based chemical reaction circuits (D-CRCs), it can control size change of microgels with multiple reaction pathways and adapt expansion behaviors to meet diverse environments. We first use pH-responsive intramolecular conformational switches for regulating DNA strand displacement reactions (SDRs). The ability to regulate SDRs with tunable pH-dependence allows to build dynamic chemical reaction networks with diverse reaction pathways. We confirm that the designed DNA switching circuits are reconfigurable at different pH and perform different logic operations, and the swelling of DNA switching circuit-integrated microgel systems can be programmably directed by D-CRCs. Our approach provides insight into building smart responsive materials and fabricating autonomous soft robots.
Collapse
Affiliation(s)
- Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Peipei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
33
|
Tang Q, Lai W, Wang P, Xiong X, Xiao M, Li L, Fan C, Pei H. Multi‐Mode Reconfigurable DNA‐Based Chemical Reaction Circuits for Soft Matter Computing and Control. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Peipei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| |
Collapse
|
34
|
Smart Nucleic Acids as Future Therapeutics. Trends Biotechnol 2021; 39:1289-1307. [PMID: 33980422 DOI: 10.1016/j.tibtech.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022]
Abstract
Nucleic acid therapeutics (NATs) hold promise in treating undruggable diseases and are recognized as the third major category of therapeutics in addition to small molecules and antibodies. Despite the milestones that NATs have made in clinical translation over the past decade, one important challenge pertains to increasing the specificity of this class of drugs. Activating NATs exclusively in disease-causing cells is highly desirable because it will safely broaden the application of NATs to a wider range of clinical indications. Smart NATs are triggered through a photo-uncaging reaction or a specific molecular input such as a transcript, protein, or small molecule, thus complementing the current strategy of targeting cells and tissues with receptor-specific ligands to enhance specificity. This review summarizes the programmable modalities that have been incorporated into NATs to build in responsive behaviors. We discuss the various inputs, transduction mechanisms, and output response functions that have been demonstrated to date.
Collapse
|
35
|
Synthetic chemical ligands and cognate antibodies for biorthogonal drug targeting and cell engineering. Adv Drug Deliv Rev 2021; 170:281-293. [PMID: 33486005 DOI: 10.1016/j.addr.2021.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
A vast range of biomedical applications relies on the specificity of interactions between an antigen and its cognate receptor or antibody. This specificity can be highest when said antigen is a non-natural (synthetic) molecule introduced into a biological setting as a bio-orthogonal ligand. This review aims to present the development of this methodology from the early discovery of haptens a century ago to the recent clinical trials. We discuss such methodologies as antibody recruitment, artificial internalizing receptors and chemically induced dimerization, present the use of chimeric receptors and/or bispecific antibodies to achieve drug targeting and transcytosis, and illustrate how these platforms most impressively found use in the engineering of therapeutic cells such as the chimeric antigen receptor cells. This review aims to be of interest to a broad scientific audience and to spur the development of synthetic artificial ligands for biomedical applications.
Collapse
|
36
|
Zhou Z, Fan D, Wang J, Sohn YS, Nechushtai R, Willner I. Triggered Dimerization and Trimerization of DNA Tetrahedra for Multiplexed miRNA Detection and Imaging of Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007355. [PMID: 33470517 DOI: 10.1002/smll.202007355] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Indexed: 05/21/2023]
Abstract
The reversible and switchable triggered reconfiguration of tetrahedra nanostructures from monomer tetrahedra structures into dimer or trimer structures is introduced. The triggered bridging of monomer tetrahedra by K+ -ion-stabilized G-quadruplexes or T-A•T triplexes leads to dimer or trimer tetrahedra structures that are separated by crown ether or basic pH conditions, respectively. The signal-triggered dimerization/trimerization of DNA tetrahedra structures is used to develop multiplexed miRNA-sensing platforms, and the tetrahedra mixture is used for intracellular sensing and imaging of miRNAs.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Daoqing Fan
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jianbang Wang
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
37
|
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. NATURE REVIEWS. MATERIALS 2021; 6:766-783. [PMID: 34026278 PMCID: PMC8132739 DOI: 10.1038/s41578-021-00315-x] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Biomolecule-based nanostructures are inherently multifunctional and harbour diverse biological activities, which can be explored for cancer nanomedicine. The supramolecular properties of biomolecules can be precisely programmed for the design of smart drug delivery vehicles, enabling efficient transport in vivo, targeted drug delivery and combinatorial therapy within a single design. In this Review, we discuss biomolecule-based nanostructures, including polysaccharides, nucleic acids, peptides and proteins, and highlight their enormous design space for multifunctional nanomedicines. We identify key challenges in cancer nanomedicine that can be addressed by biomolecule-based nanostructures and survey the distinct biological activities, programmability and in vivo behaviour of biomolecule-based nanostructures. Finally, we discuss challenges in the rational design, characterization and fabrication of biomolecule-based nanostructures, and identify obstacles that need to be overcome to enable clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Lu W, Yao J, Zhu X, Qi Y. Nanomedicines: Redefining traditional medicine. Biomed Pharmacother 2020; 134:111103. [PMID: 33338747 DOI: 10.1016/j.biopha.2020.111103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nanomedicines offer nanoscale drug delivery system. They offer ways of promising drug transportation, and address the issues of lack of targeting and permeability of traditional drugs. The physical and chemical properties in the domain of nanomedicine applications in vivo have not been sufficiently delivered. What's more, the metabolic of nanomedicines is not clear enough. Those factors which mentioned above determine that many nanomedicines have not yet realized clinical application due to their safety problems and in vivo efficacy. For example, they may cause immune response and cytotoxicity, as well as the ability to clear organs in vivo, the penetration ability of them and the lack of targeting ability may also cause poor efficacy of drugs in vivo. In this review, the new progresses of different kinds of nanomedicines (including gold nanoparticles, nanorobots, black phosphorus nanoparticles, brain diseases, gene editing and immunotherapy etc.) in anti-tumor, antibacterial, ocular diseases and arteriosclerosis in recent years were summarized. Their shortcomings were pointed out, and the new methods to improve the biosafety and efficacy were summarized.
Collapse
Affiliation(s)
- Weijia Lu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
| | - Jing Yao
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| | - Yi Qi
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
39
|
Liu C, Liu Y, Zhu E, Zhang Q, Wei X, Wang B. Cross-Inhibitor: a time-sensitive molecular circuit based on DNA strand displacement. Nucleic Acids Res 2020; 48:10691-10701. [PMID: 33045746 PMCID: PMC7641751 DOI: 10.1093/nar/gkaa835] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 01/19/2023] Open
Abstract
Designing biochemical systems that can be effectively used in diverse fields, including diagnostics, molecular computing and nanomachines, has long been recognized as an important goal of molecular programming and DNA nanotechnology. A key issue in the development of such practical devices on the nanoscale lies in the development of biochemical components with information-processing capacity. In this article, we propose a molecular device that utilizes DNA strand displacement networks and allows interactive inhibition between two input signals; thus, it is termed a cross-inhibitor. More specifically, the device supplies each input signal with a processor such that the processing of one input signal will interdict the signal of the other. Biochemical experiments are conducted to analyze the interdiction performance with regard to effectiveness, stability and controllability. To illustrate its feasibility, a biochemical framework grounded in this mechanism is presented to determine the winner of a tic-tac-toe game. Our results highlight the potential for DNA strand displacement cascades to act as signal controllers and event triggers to endow molecular systems with the capability of controlling and detecting events and signals.
Collapse
Affiliation(s)
- Chanjuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Enqiang Zhu
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| |
Collapse
|
40
|
Miao P, Tang Y. DNA Walking and Rolling Nanomachine for Electrochemical Detection of miRNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004518. [PMID: 33140572 DOI: 10.1002/smll.202004518] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
miRNAs, a class of endogenous noncoding RNAs, are involved in many crucial biological processes, which have emerged as a new set of biomarkers for disease theranostics. Exploring efficient signal amplification strategy is highly desired to pursue a highly sensitive miRNA biosensing platform. DNA nanotechnology shows great promise in the fabrication of amplified miRNA biosensors. In this work, a novel DNA walking and rolling nanomachine is developed for highly sensitive and selective detection of miRNA. Particularly, this approach programs two forms of dynamic DNA nanomachines powered by corresponding enzymes, which are well integrated. It is able to achieve a limit of detection as low as 39 × 10-18 m, along with excellent anti-interfering performance and clinical applications. In addition, by designing pH-controlled detachable intermolecular DNA triplex, the main sensing elements can be conveniently reset, which fulfills the requirements of point-of-care profiling of miRNA. The high consistency between the proposed approach and quantitative real-time polymerase chain reaction validates the robustness and reliability. Therefore, it is anticipated that the DNA walking and rolling nanomachine has attractive application prospects in miRNA assay for biological researches and clinical diagnosis.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| |
Collapse
|
41
|
Hu Y, Wang Z, Chen Z, Pan L. Switching the activity of Taq polymerase using clamp-like triplex aptamer structure. Nucleic Acids Res 2020; 48:8591-8600. [PMID: 32644133 PMCID: PMC7470972 DOI: 10.1093/nar/gkaa581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/31/2020] [Accepted: 06/27/2020] [Indexed: 01/22/2023] Open
Abstract
In nature, allostery is the principal approach for regulating cellular processes and pathways. Inspired by nature, structure-switching aptamer-based nanodevices are widely used in artificial biotechnologies. However, the canonical aptamer structures in the nanodevices usually adopt a duplex form, which limits the flexibility and controllability. Here, a new regulating strategy based on a clamp-like triplex aptamer structure (CLTAS) was proposed for switching DNA polymerase activity via conformational changes. It was demonstrated that the polymerase activity could be regulated by either adjusting structure parameters or dynamic reactions including strand displacement or enzymatic digestion. Compared with the duplex aptamer structure, the CLTAS possesses programmability, excellent affinity and high discrimination efficiency. The CLTAS was successfully applied to distinguish single-base mismatches. The strategy expands the application scope of triplex structures and shows potential in biosensing and programmable nanomachines.
Collapse
Affiliation(s)
- Yingxin Hu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
| | - Zhiyu Wang
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Linqiang Pan
- To whom correspondence should be addressed. Tel: +86 27 87556070; Fax: +86 27 87543130;
| |
Collapse
|
42
|
Li C, Chen Z, Zhang Y, He J, Yuan R, Xu W. Guanine-Lighting-Up Fluorescence Biosensing of Silver Nanoclusters Populated in Functional DNA Constructs by a pH-Triggered Switch. Anal Chem 2020; 92:13369-13377. [PMID: 32900187 DOI: 10.1021/acs.analchem.0c02744] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dark or weak-emissive DNA-harbored silver nanoclusters (AgNCs) can be remarkably lighted up when approaching to guanine bases. The resultant bright AgNCs acting as a fluorescent reporter are fascinating in biosensing. To explore the applicable guanine-enhanced emission of AgNCs for biosensing microRNA-155 (miR-155) as a model, here we designed a unique stem-loop hairpin beacon (HB) encoding with an miR-155-recognizable sequence and a AgNCs-nucleable template, as well as a hairpin helper tethering a partially locked guanine-rich (15-nt) tail (G15H), while two identical cytosine-rich segments were inserted in HB and G15H to merge for folding/unfolding of i-motif at changed pHs. Initially, the intact clusters populated in HB (HB/AgNCs) were almost nonfluorescent in a buffer (pH 7.0). Then, miR-155 was introduced to trigger a repeated hairpin assembly of HB and G15H by competitive strand displacement reactions at decreased pH 5.0 within 10 min, consequently generating numerous duplex DNA constructs (DDCs). With the resultant template of pH-responsive i-motifs incorporated in DDCs, their folding at pH 5.0 brought the proximity of unlocked G15 overhang to the clusters in a crowded environment, remarkably lighting up the red-emitting fluorescence of HB/AgNCs (λem = 628 ± 5 nm) for amplified signal readout. About 3.5-fold enhancement of quantum yield was achievable using different variants of i-motif length and G15 position. Simply by adding OH-, the configuration fluctuation of i-motifs was implemented for switchable fluorescence biosensing to variable miR-155. Based on a one-step amplification and signaling scheme, this subtle strategy was rapid, low-cost, and specific for miR-155 with high sensitivity down to 67 pM.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zehui Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yuxuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
43
|
Liang X, Crosby AJ. Programming Impulsive Deformation with Mechanical Metamaterials. PHYSICAL REVIEW LETTERS 2020; 125:108002. [PMID: 32955335 DOI: 10.1103/physrevlett.125.108002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Impulsive deformation is widely observed in biological systems to generate movement with high acceleration and velocity. By storing elastic energy in a quasistatic loading and releasing it through an impulsive elastic recoil, organisms circumvent the intrinsic trade-off between force and velocity and achieve power amplified motion. However, such asymmetry in strain rate in loading and unloading often results in reduced efficiency in converting elastic energy to kinetic energy for homogeneous materials. Here, we demonstrate that specific internal structural designs can offer the ability to tune quasistatic and high-speed recoil independently to control energy storage and conversion processes. Experimental demonstrations with mechanical metamaterials reveal that certain internal structures optimize energy conversion far beyond unstructured materials under the same conditions. Our results provide the first quantitative model and experimental demonstration for tuning energy conversion processes through internal structures of metamaterials.
Collapse
Affiliation(s)
- Xudong Liang
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
44
|
Peri-Naor R, Pode Z, Lahav-Mankovski N, Rabinkov A, Motiei L, Margulies D. Glycoform Differentiation by a Targeted, Self-Assembled, Pattern-Generating Protein Surface Sensor. J Am Chem Soc 2020; 142:15790-15798. [PMID: 32786755 DOI: 10.1021/jacs.0c05644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A method for generating targeted, pattern-generating, protein surface sensors via the self-assembly of modified oligodeoxynucleotides (ODNs) is described. The simplicity by which these systems can be created enabled the development of a sensor that can straightforwardly discriminate between distinct glycoform populations. By using this sensor to identify glycosylation states of a therapeutic protein, we demonstrate the diagnostic potential of this approach as well as the feasibility of integrating a wealth of supramolecular receptors and sensors into higher-order molecular analytical devices with advanced properties. For example, the facile device integration was used to attach the well-known anthracene-boronic acid (An-BA) probe to a biomimetic DNA scaffold and consequently, to use the unique photophysical properties of An-BA to improve glycoform differentiation. In addition, the noncovalent assembly enabled us to modify the sensor with a trinitrilotriacetic acid (tri-NTA)-Ni2+ complex, which endows it with selectivity toward a hexa-histidine tag (His-tag). The selective responses of the system to diverse His-tag-labeled proteins further demonstrate the potential applicability of such sensors and validate the mechanism underlying their function.
Collapse
Affiliation(s)
- Ronny Peri-Naor
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zohar Pode
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aharon Rabinkov
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
45
|
Abstract
Over the past decade, DNA nanotechnology has spawned a broad variety of functional nanostructures tailored toward the enabled state at which applications are coming increasingly in view. One of the branches of these applications is in synthetic biology, where the intrinsic programmability of the DNA nanostructures may pave the way for smart task-specific molecular robotics. In brief, the synthesis of the user-defined artificial DNA nano-objects is based on employing DNA molecules with custom lengths and sequences as building materials that predictably assemble together by obeying Watson-Crick base pairing rules. The general workflow of creating DNA nanoshapes is getting more and more straightforward, and some objects can be designed automatically from the top down. The versatile DNA nano-objects can serve as synthetic tools at the interface with biology, for example, in therapeutics and diagnostics as dynamic logic-gated nanopills, light-, pH-, and thermally driven devices. Such diverse apparatuses can also serve as optical polarizers, sensors and capsules, autonomous cargo-sorting robots, rotary machines, precision measurement tools, as well as electric and magnetic-field directed robotic arms. In this review, we summarize the recent progress in robotic DNA nanostructures, mechanics, and their various implementations.
Collapse
Affiliation(s)
- Sami Nummelin
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Petteri Piskunen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Qing Liu
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| |
Collapse
|
46
|
A molecular device: A DNA molecular lock driven by the nicking enzymes. Comput Struct Biotechnol J 2020; 18:2107-2116. [PMID: 32913580 PMCID: PMC7451616 DOI: 10.1016/j.csbj.2020.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022] Open
Abstract
As people are placing more and more importance on information security, how to realize the protection of information has become a hotspot of current research. As a security device, DNA molecular locks have great potential to realize information protection at the molecular level. However, building a highly secure molecular lock is still a serious challenge. Therefore, taking advantage of the DNA strand displacement and enzyme control technology, we constructed a molecular lock with a self-destructive mechanism. This molecular lock is mainly composed of logic circuits and takes nicking enzymes as inputs. To build this molecular lock, we first constructed a series of cascade circuits, including a YES–YES cascade circuit and a YES–AND cascade circuit. Then, an Inhibit logic gate was constructed to explore the inhibitory properties between different combinations of two nicking enzymes. Finally, using the characteristics of mutual inhibition between several enzymes, a DNA molecular lock driven by three nicking enzymes was constructed. In this molecular device, only the correct sequence of nicking enzymes can be input to ensure the normal operation of the molecular lock. Once the wrong password is entered, the device will be destroyed and cannot be recovered, which effectively prevents intruders from cracking the lock through exhaustive methods. The molecular lock has the function of simulating an electronic keyboard, which can realize the protection of information at the molecular level, and provides a new implementation method for building more advanced and complex molecular devices.
Collapse
|
47
|
Mohajeri N, Mostafavi E, Zarghami N. The feasibility and usability of DNA-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111944. [DOI: 10.1016/j.jphotobiol.2020.111944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
|
48
|
Tan X, Jia F, Wang P, Zhang K. Nucleic acid-based drug delivery strategies. J Control Release 2020; 323:240-252. [PMID: 32272123 PMCID: PMC8079167 DOI: 10.1016/j.jconrel.2020.03.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Nucleic acids have not been widely considered as an optimal material for drug delivery. Indeed, unmodified nucleic acids are enzymatically unstable, too hydrophilic for cell uptake and payload encapsulation, and may cause unintended biological responses such as immune system activation and prolongation of the blood coagulation pathway. Recently, however, three major areas of development surrounding nucleic acids have made it worthwhile to reconsider their role for drug delivery. These areas include DNA/RNA nanotechnology, multivalent nucleic acid nanostructures, and nucleic acid aptamers, which, respectively, provide the ability to engineer nanostructures with unparalleled levels of structural control, completely reverse certain biological properties of linear/cyclic nucleic acids, and enable antibody-level targeting using an all-nucleic acid construct. These advances, together with nucleic acids' ability to respond to various stimuli (engineered or natural), have led to a rapidly increasing number of drug delivery systems with potential for spatiotemporally controlled drug release. In this review, we discuss recent progress in nucleic acid-based drug delivery strategies, their potential, unique use cases, and risks that must be overcome or avoided.
Collapse
Affiliation(s)
- Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ke Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Zhang Y, Zhang Y, Zhang X, Li Y, He Y, Liu Y, Ju H. A photo zipper locked DNA nanomachine with an internal standard for precise miRNA imaging in living cells. Chem Sci 2020; 11:6289-6296. [PMID: 32874516 PMCID: PMC7448525 DOI: 10.1039/d0sc00394h] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
DNA nanomachines are capable of converting tiny triggers into autonomous accelerated cascade hybridization reactions and they have been used as a signal amplification strategy for intracellular imaging. However, the "always active" property of most DNA nanomachines with an "absolute intensity-dependent" signal acquisition mode results in "false positive signal amplification" by extracellular analytes and impairs detection accuracy. Here we design a photo zipper locked miRNA responsive DNA nanomachine (PZ-DNA nanomachine) based on upconversion nanoparticles (UCNPs) with a photo-cleavable DNA strand to block the miRNA recognition region, which provided sufficient protection to the DNA nanomachine against nonspecific extracellular activation and allowed satisfactory signal amplification for sensitive miRNA imaging after intracellular photoactivation. Multiple emissions from the UCNPs were also utilized as an internal standard to self-calibrate the intracellular miRNA responsive fluorescence signal. The presented PZ-DNA nanomachine demonstrated the sensitive imaging of intracellular miRNA from different cell lines, which resulted in good accordance with qRT-PCR measurements, providing a universal platform for precise imaging in living cells with high spatial-temporal specificity.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yuyi Li
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Chemistry and Biomedicine Innovation Center , Nanjing University , Nanjing 210023 , China .
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
50
|
Di Z, Liu B, Zhao J, Gu Z, Zhao Y, Li L. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. SCIENCE ADVANCES 2020; 6:eaba9381. [PMID: 32596466 PMCID: PMC7299621 DOI: 10.1126/sciadv.aba9381] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 05/05/2023]
Abstract
Despite the potential of nanodevices for intelligent drug delivery, it remains challenging to develop controllable therapeutic devices with high spatial-temporal selectivity. Here, we report a DNA nanodevice that can achieve tumor recognition and treatment with improved spatiotemporal precision under the regulation of orthogonal near-infrared (NIR) light. The nanodevice is built by combining an ultraviolet (UV) light-activatable aptamer module and a photosensitizer (PS) with up-conversion nanoparticle (UCNP) that enables the operation of the nanodevice with deep tissue-penetrable NIR light. The UCNPs can convert two distinct NIR excitations into orthogonal UV and green emissions for programmable photoactivation of the aptamer modules and PSs, respectively, allowing spatiotemporally controlled target recognition and photodynamic antitumor effect. Furthermore, when combined with immune checkpoint blockade therapy, the nanodevice results in regression of untreated distant tumors. This work provides a new approach for regulation of diagnostic and therapeutic activity at the right time and place.
Collapse
Affiliation(s)
- Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|