1
|
Wu S, Garg A, Mazanek Z, Belotte G, Zhou JJ, Stallings CM, Lueck J, Roland A, Chattergoon MA, Sohn J. Design principles for inflammasome inhibition by pyrin-only-proteins. eLife 2024; 13:e81918. [PMID: 38252125 PMCID: PMC10803020 DOI: 10.7554/elife.81918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammasomes are filamentous signaling platforms essential for host defense against various intracellular calamities such as pathogen invasion and genotoxic stresses. However, dysregulated inflammasomes cause an array of human diseases including autoinflammatory disorders and cancer. It was recently identified that endogenous pyrin-only-proteins (POPs) regulate inflammasomes by directly inhibiting their filament assembly. Here, by combining Rosetta in silico, in vitro, and in cellulo methods, we investigate the target specificity and inhibition mechanisms of POPs. We find here that POP1 is ineffective in directly inhibiting the central inflammasome adaptor ASC. Instead, POP1 acts as a decoy and targets the assembly of upstream receptor pyrin-domain (PYD) filaments such as those of AIM2, IFI16, NLRP3, and NLRP6. Moreover, not only does POP2 directly suppress the nucleation of ASC, but it can also inhibit the elongation of receptor filaments. In addition to inhibiting the elongation of AIM2 and NLRP6 filaments, POP3 potently suppresses the nucleation of ASC. Our Rosetta analyses and biochemical experiments consistently suggest that a combination of favorable and unfavorable interactions between POPs and PYDs is necessary for effective recognition and inhibition. Together, we reveal the intrinsic target redundancy of POPs and their inhibitory mechanisms.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Archit Garg
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zachary Mazanek
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gretchen Belotte
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeffery J Zhou
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Christina M Stallings
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jacob Lueck
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Aubrey Roland
- Division of Infectious Diseases, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael A Chattergoon
- Division of Infectious Diseases, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
- Division of Rheumatology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
2
|
Liu Y, Zhang C, Cheng L, Wang H, Lu M, Xu H. Enhancing both oral bioavailability and anti-ischemic stroke efficacy of ginkgolide B by preparing nanocrystals self-stabilized Pickering nano-emulsion. Eur J Pharm Sci 2024; 192:106620. [PMID: 37871688 DOI: 10.1016/j.ejps.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Ginkgolide B (GB), which has been demonstrated as the most efficacious naturally occurring platelet-activating factor (PAF) antagonist, is extensively utilized for the management of cardiovascular and cerebrovascular ailments. Nevertheless, its limited oral bioavailability is hindered by its low solubility in gastric acid and inadequate stability in intestinal fluid, thereby constraining its practical application. This study aimed to develop GB nanocrystals (GB-NCs) and GB nanocrystals self-stabilized Pickering nano-emulsion (GB-NSSPNE) using a miniaturized wet bead milling method. Comparative evaluations were conducted in vivo and in vitro to assess their effectiveness. The findings revealed that GB-NSSPNE, with its intact nanoparticle slow release and absorption, was more effective in enhancing the oral bioavailability of GB compared to the rapid release and absorption of GB-NCs. This finding suggests a potential novel strategy for the oral delivery of GB.
Collapse
Affiliation(s)
- Yun Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China
| | - Chungang Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China; Department of Pharmacy, Changzhi Medical College, Changzhi, China; Key Laboratory of Ministry of Education, Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China; Qimeng Co., LTD, Chifeng, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China.
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hengyu Xu
- Medical Mass Spectrometry Technology Innovation Center of Liaoning Province, Shenyang Harmony Health Medical Laboratory, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Cavalcante-Silva J, Koh TJ. Targeting the NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome to Improve Healing of Diabetic Wounds. Adv Wound Care (New Rochelle) 2023; 12:644-656. [PMID: 34841901 PMCID: PMC10701516 DOI: 10.1089/wound.2021.0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Significance: Chronic skin wounds are a significant health problem around the world, often leading to amputation and even death. Although persistent inflammation is a hallmark of these poorly healing wounds, few available therapies have been designed to target inflammation. In this review, we summarize available evidence of the role of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in impaired wound healing and describe strategies to inhibit the inflammasome to improve wound healing. Recent Advances: The NLRP3 inflammasome plays an important physiological role in skin wound healing, during which transient inflammasome activity contributes to both epidermal and dermal healing. In contrast, sustained activity of the NLRP3 inflammasome leads to impaired epidermal and dermal healing associated with diabetes. Of importance, preclinical studies have demonstrated that inhibiting the NLRP3 inflammasome-induced resolution of inflammation, increased granulation tissue formation and collagen deposition, and accelerated reepithelialization and wound closure. Critical Issues: NLRP3 inflammasome inhibitors have appealing potential for translation into therapies for chronic wounds. Although preclinical studies have shown promising results, there is a need for human/clinical studies to evaluate dosing formulations, potential therapeutic effects, dose-response relationships, and possible side effects. Future Directions: Among strategies to inhibit the NLRP3 inflammasome, glyburide, metformin, peroxisome proliferator-activated receptor agonists, and the dipeptidyl peptidase 4 inhibitor saxagliptin appear to be closest to clinical translation, as these drugs are already Food and Drug Administration approved for other indications. Future clinical studies are needed to develop topical formulations of these drugs, and to assess the safety and efficacy of these inhibitors, to improve healing of chronic wounds.
Collapse
Affiliation(s)
- Jacqueline Cavalcante-Silva
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Ahmad B, Achek A, Farooq M, Choi S. Accelerated NLRP3 inflammasome-inhibitory peptide design using a recurrent neural network model and molecular dynamics simulations. Comput Struct Biotechnol J 2023; 21:4825-4835. [PMID: 37854633 PMCID: PMC10579963 DOI: 10.1016/j.csbj.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Anomalous NLRP3 inflammasome responses have been linked to multiple health issues, including but not limited to atherosclerosis, diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disease. Thus, targeting NLRP3 and modulating its associated immune response might be a promising strategy for developing new anti-inflammatory drugs. Herein, we report a computational method for de novo peptide design for targeting NLRP3 inflammasomes. The described method leverages a long-short-term memory (LSTM) network based on a recurrent neural network (RNN) to model a valuable latent space of molecules. The resulting classifiers are utilized to guide the selection of molecules generated by the model based on circular dichroism spectra and physicochemical features derived from high-throughput molecular dynamics simulations. Of the experimentally tested sequences, 60% of the peptides showed NLRP3-mediated inhibition of IL-1β and IL-18. One peptide displayed high potency against NLRP3-mediated IL-1β inhibition. However, NLRC4 and AIM2 inflammasome-mediated IL-1β secretion was uninterrupted by this peptide, demonstrating its selectivity toward the NLRP3 inflammasome. Overall, these results indicate that deep learning and molecular dynamics can accelerate the discovery of NLRP3 inhibitors with potent and selective activity.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| | - Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- Technology Development Platform, Institut Pasteur Korea, Seongnam 13488, Soouth Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| |
Collapse
|
5
|
Devi S, Indramohan M, Jäger E, Carriere J, Chu LH, de Almeida L, Greaves DR, Stehlik C, Dorfleutner A. CARD-only proteins regulate in vivo inflammasome responses and ameliorate gout. Cell Rep 2023; 42:112265. [PMID: 36930645 PMCID: PMC10151391 DOI: 10.1016/j.celrep.2023.112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Inflammatory responses are crucial for controlling infections and initiating tissue repair. However, excessive and uncontrolled inflammation causes inflammatory disease. Processing and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 depend on caspase-1 activation within inflammasomes. Assembly of inflammasomes is initiated upon activation of cytosolic pattern recognition receptors (PRRs), followed by sequential polymerization of pyrin domain (PYD)-containing and caspase recruitment domain (CARD)-containing proteins mediated by homotypic PYD and CARD interactions. Small PYD- or CARD-only proteins (POPs and COPs, respectively) evolved in higher primates to target these crucial interactions to limit inflammation. Here, we show the ability of COPs to regulate inflammasome activation by modulating homotypic CARD-CARD interactions in vitro and in vivo. CARD16, CARD17, and CARD18 displace crucial CARD interactions between caspase-1 proteins through competitive binding and ameliorate uric acid crystal-mediated NLRP3 inflammasome activation and inflammatory disease. COPs therefore represent an important family of inflammasome regulators and ameliorate inflammatory disease.
Collapse
Affiliation(s)
- Savita Devi
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohanalaxmi Indramohan
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elisabeth Jäger
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lan H Chu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
6
|
de Almeida L, Devi S, Indramohan M, Huang QQ, Ratsimandresy RA, Pope RM, Dorfleutner A, Stehlik C. POP1 inhibits MSU-induced inflammasome activation and ameliorates gout. Front Immunol 2022; 13:912069. [PMID: 36225929 PMCID: PMC9550078 DOI: 10.3389/fimmu.2022.912069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023] Open
Abstract
Canonical inflammasomes are innate immune protein scaffolds that enable the activation of inflammatory caspase-1, and subsequently the processing and release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death. Inflammasome assembly and activation occurs in response to sensing of infectious, sterile and self-derived molecular patterns by cytosolic pattern recognition receptors, including the Nod-like receptor NLRP3. While these responses are essential for host defense, excessive and uncontrolled NLRP3 inflammasome responses cause and contribute to a wide spectrum of inflammatory diseases, including gout. A key step in NLRP3 inflammasome assembly is the sequentially nucleated polymerization of Pyrin domain (PYD)- and caspase recruitment domain (CARD)-containing inflammasome components. NLRP3 triggers polymerization of the adaptor protein ASC through PYD-PYD interactions, but ASC polymerization then proceeds in a self-perpetuating manner and represents a point of no return, which culminates in the activation of caspase-1 by induced proximity. In humans, small PYD-only proteins (POPs) lacking an effector domain regulate this key process through competitive binding, but limited information exists on their physiological role during health and disease. Here we demonstrate that POP1 expression in macrophages is sufficient to dampen MSU crystal-mediated inflammatory responses in animal models of gout. Whether MSU crystals are administered into a subcutaneous airpouch or into the ankle joint, the presence of POP1 significantly reduces neutrophil infiltration. Also, airpouch exudates have much reduced IL-1β and ASC, which are typical pro-inflammatory indicators that can also be detected in synovial fluids of gout patients. Exogenous expression of POP1 in mouse and human macrophages also blocks MSU crystal-induced NLRP3 inflammasome assembly, resulting in reduced IL-1β and IL-18 secretion. Conversely, reduced POP1 expression in human macrophages enhances IL-1β secretion. We further determined that the mechanism for the POP1-mediated inhibition of NLRP3 inflammasome activation is through its interference with the crucial NLRP3 and ASC interaction within the inflammasome complex. Strikingly, administration of an engineered cell permeable version of POP1 was able to ameliorate MSU crystal-mediated inflammation in vivo, as measured by neutrophil infiltration. Overall, we demonstrate that POP1 may play a crucial role in regulating inflammatory responses in gout.
Collapse
Affiliation(s)
- Lucia de Almeida
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Savita Devi
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Mohanalaxmi Indramohan
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Qi-Quan Huang
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rojo A. Ratsimandresy
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Richard M. Pope
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrea Dorfleutner
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States,3Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States,4The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,*Correspondence: Andrea Dorfleutner, ; Christian Stehlik,
| | - Christian Stehlik
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States,3Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States,4The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,5Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,*Correspondence: Andrea Dorfleutner, ; Christian Stehlik,
| |
Collapse
|
7
|
Lara-Reyna S, Caseley EA, Topping J, Rodrigues F, Jimenez Macias J, Lawler SE, McDermott MF. Inflammasome activation: from molecular mechanisms to autoinflammation. Clin Transl Immunology 2022; 11:e1404. [PMID: 35832835 PMCID: PMC9262628 DOI: 10.1002/cti2.1404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammasomes are assembled by innate immune sensors that cells employ to detect a range of danger signals and respond with pro-inflammatory signalling. Inflammasomes activate inflammatory caspases, which trigger a cascade of molecular events with the potential to compromise cellular integrity and release the IL-1β and IL-18 pro-inflammatory cytokines. Several molecular mechanisms, working in concert, ensure that inflammasome activation is tightly regulated; these include NLRP3 post-translational modifications, ubiquitination and phosphorylation, as well as single-domain proteins that competitively bind to key inflammasome components, such as the CARD-only proteins (COPs) and PYD-only proteins (POPs). These diverse regulatory systems ensure that a suitable level of inflammation is initiated to counteract any cellular insult, while simultaneously preserving tissue architecture. When inflammasomes are aberrantly activated can drive excessive production of pro-inflammatory cytokines and cell death, leading to tissue damage. In several autoinflammatory conditions, inflammasomes are aberrantly activated with subsequent development of clinical features that reflect the degree of underlying tissue and organ damage. Several of the resulting disease complications may be successfully controlled by anti-inflammatory drugs and/or specific cytokine inhibitors, in addition to more recently developed small-molecule inhibitors. In this review, we will explore the molecular processes underlying the activation of several inflammasomes and highlight their role during health and disease. We also describe the detrimental effects of these inflammasome complexes, in some pathological conditions, and review current therapeutic approaches as well as future prospective treatments.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Institute of Microbiology and Infection University of Birmingham Birmingham UK
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences University of Leeds Leeds UK
| | - Joanne Topping
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| | - François Rodrigues
- AP-HP, Hôpital Tenon, Sorbonne Université, Service de Médecine interne Centre de Référence des Maladies Auto-inflammatoires et des Amyloses d'origine inflammatoire (CEREMAIA) Paris France
| | - Jorge Jimenez Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Sean E Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| |
Collapse
|
8
|
Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human disease. Immunology 2021; 163:363-376. [PMID: 34021586 DOI: 10.1111/imm.13372] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) and leucine-rich repeat (LRR)-containing receptors or NOD-like receptors (NLRs) are cytosolic pattern recognition receptors, which sense conserved microbial patterns and host-derived danger signals to elicit innate immune responses. The activation of several prototypic NLRs, including NLR and pyrin domain (PYD) containing (NLRP) 1, NLRP3 and NLR and caspase recruitment domain (CARD) containing (NLRC) 4, results in the assembly of inflammasomes, which are large, cytoplasmic multiprotein signalling platforms responsible for the maturation and release of the pro-inflammatory cytokines IL-1β and IL-18, and for the induction of a specialized form of inflammatory cell death called pyroptosis. However, the function of other members of the NLR family, including NLRP7, are less well understood. NLRP7 has been linked to innate immune signalling, but its precise role is still controversial as it has been shown to positively and negatively affect inflammasome responses. Inflammasomes are essential for homeostasis and host defence, but inappropriate inflammasome responses due to hereditary mutations and somatic mosaicism in inflammasome components and defective regulation have been linked to a broad spectrum of human diseases. A compelling connection between NLRP7 mutations and reproductive diseases, and in particular molar pregnancy, has been established. However, the molecular mechanisms by which NLRP7 mutations contribute to reproductive diseases are largely unknown. In this review, we focus on NLRP7 and discuss the current evidence of its role in inflammasome regulation and its implication in human reproductive diseases.
Collapse
Affiliation(s)
- Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Chen L, Liu S, Xiao L, Chen K, Tang J, Huang C, Luo W, Ferrandon D, Lai K, Li Z. An initial assessment of the involvement of transglutaminase2 in eosinophilic bronchitis using a disease model developed in C57BL/6 mice. Sci Rep 2021; 11:11946. [PMID: 34099759 PMCID: PMC8184915 DOI: 10.1038/s41598-021-90950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
The detailed pathogenesis of eosinophilic bronchitis (EB) remains unclear. Transglutaminase 2 (TG2) has been implicated in many respiratory diseases including asthma. Herein, we aim to assess preliminarily the relationship of TG2 with EB in the context of the development of an appropriate EB model through ovalbumin (OVA) sensitization and challenge in the C57BL/6 mouse strain. Our data lead us to propose a 50 μg dose of OVA challenge as appropriate to establish an EB model in C57BL/6 mice, whereas a challenge with a 400 μg dose of OVA significantly induced asthma. Compared to controls, TG2 is up-regulated in the airway epithelium of EB mice and EB patients. When TG2 activity was inhibited by cystamine treatment, there were no effects on airway responsiveness; in contrast, the lung pathology score and eosinophil counts in bronchoalveolar lavage fluid were significantly increased whereas the cough frequency was significantly decreased. The expression levels of interleukin (IL)-4, IL-13, IL-6, mast cell protease7 and the transient receptor potential (TRP) ankyrin 1 (TRPA1), TRP vanilloid 1 (TRPV1) were significantly decreased. These data open the possibility of an involvement of TG2 in mediating the increased cough frequency in EB through the regulation of TRPA1 and TRPV1 expression. The establishment of an EB model in C57BL/6 mice opens the way for a genetic investigation of the involvement of TG2 and other molecules in this disease using KO mice, which are often generated in the C57BL/6 genetic background.
Collapse
Affiliation(s)
- Lan Chen
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Shuyan Liu
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Linzhuo Xiao
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Kanyao Chen
- Sino-French Hoffmann Institute, Guangzhou, China
| | | | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, M3I UPR9022 du CNRS, 67000, Strasbourg, France
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Wang Z, Li L, Wang C, Piao Y, Jiang J, Li L, Yan G, Piao H. Recombinant Pyrin Domain Protein Attenuates Airway Inflammation and Alleviates Epithelial-Mesenchymal Transition by Inhibiting Crosstalk Between TGFβ1 and Notch1 Signaling in Chronic Asthmatic Mice. Front Physiol 2020; 11:559470. [PMID: 33192556 PMCID: PMC7645102 DOI: 10.3389/fphys.2020.559470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
This article aims to investigate the effects of recombinant pyrin domain (RPYD) on airway inflammation and remodeling in mice with chronic asthma. The chronic asthma BALB/c mouse model was first sensitized by ovalbumin (OVA) and then challenged by OVA nebulization. RPYD or dexamethasone was given before OVA challenge. Our results showed that RPYD significantly inhibited the increase of total cell number, eosinophils, neutrophils and lymphocytes in bronchoalveolar lavage fluid (BALF) induced by OVA, and reduced the infiltration of inflammatory cells, the proliferation of goblet cells and collagen deposition. In addition, RPYD inhibited the mRNA and protein levels of α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, Jagged1, Notch1, Hes1 and Smad3, as well as Smad3 phosphorylation. TGFβ1 down-regulated the level of E-cadherin and promoted the expression of α-SMA, thus inducing epithelial-mesenchymal transition (EMT) in bronchial epithelial cells. We found that RPYD reduced EMT by inhibiting TGFβ1/smad3 and Jagged1/Notch1 signaling pathways. Further overexpression of NICD showed that under the stimulation of TGFβ1, NICD enhanced the phosphorylated Smad3 and nuclear Smad3, accompanied by the increased expression of Notch1 target gene Hes1. In contrast, after treatment with smad3 siRNA, the expression of Hes1 was down regulated as the decrease of Smad3, which indicates that there is crosstalk between smad3 and NICD on Hes1 expression. In conclusion, RPYD reduces airway inflammation, improves airway remodeling and reduces EMT in chronic asthmatic mice by inhibiting the crosstalk between TGFβ1/smad3 and Jagged1/Notch1 signaling pathways.
Collapse
Affiliation(s)
- Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| |
Collapse
|
11
|
Devi S, Stehlik C, Dorfleutner A. An Update on CARD Only Proteins (COPs) and PYD Only Proteins (POPs) as Inflammasome Regulators. Int J Mol Sci 2020; 21:E6901. [PMID: 32962268 PMCID: PMC7555848 DOI: 10.3390/ijms21186901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are protein scaffolds required for the activation of caspase-1 and the subsequent release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death to restore homeostasis following infection and sterile tissue damage. However, excessive inflammasome activation also causes detrimental inflammatory disease. Therefore, extensive control mechanisms are necessary to prevent improper inflammasome responses and inflammatory disease. Inflammasomes are assembled by sequential nucleated polymerization of Pyrin domain (PYD) and caspase recruitment domain (CARD)-containing inflammasome components. Once polymerization is nucleated, this process proceeds in a self-perpetuating manner and represents a point of no return. Therefore, regulation of this key step is crucial for a controlled inflammasome response. Here, we provide an update on two single domain protein families containing either a PYD or a CARD, the PYD-only proteins (POPs) and CARD-only proteins (COPs), respectively. Their structure allows them to occupy and block access to key protein-protein interaction domains necessary for inflammasome assembly, thereby regulating the threshold of these nucleated polymerization events, and consequently, the inflammatory host response.
Collapse
Affiliation(s)
- Savita Devi
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, and Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA 90048, USA
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Sun X, Pang H, Li J, Luo S, Huang G, Li X, Xie Z, Zhou Z. The NLRP3 Inflammasome and Its Role in T1DM. Front Immunol 2020; 11:1595. [PMID: 32973739 PMCID: PMC7481449 DOI: 10.3389/fimmu.2020.01595] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
The NLRP3 (nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome is a protein complex expressed in cells. It detects danger signals and induces the production of active caspase-1 and the maturation and release of IL (interleukin)-33, IL-18, IL-1β and other cytokines. T1DM (type 1 diabetes mellitus) is defined as a chronic autoimmune disorder characterized by the autoreactive T cell-mediated elimination of insulin-positive pancreatic beta-cells. Although the exact underlying mechanisms are obscure, researchers have proposed that both environmental and genetic factors are involved in the pathogenesis of T1DM. Furthermore, immune responses, including innate and adaptive immunity, play an important role in this process. Recently, the NLRP3 inflammasome, a critical component of innate immunity, was reported to be associated with T1DM. Here, we review the assembly and function of the NLRP3 inflammasome. In addition, the activation and regulatory mechanisms that enhance or attenuate NLRP3 inflammasome activation are discussed. Finally, we focus on the relationship between the NLRP3 inflammasome and T1DM, as well as its potential value for clinical use.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Haipeng Pang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Jiaqi Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
13
|
McKee CM, Coll RC. NLRP3 inflammasome priming: A riddle wrapped in a mystery inside an enigma. J Leukoc Biol 2020; 108:937-952. [PMID: 32745339 DOI: 10.1002/jlb.3mr0720-513r] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is an immunological sensor that detects a wide range of microbial- and host-derived signals. Inflammasome activation results in the release of the potent pro-inflammatory cytokines IL-1β and IL-18 and triggers a form of inflammatory cell death known as pyroptosis. Excessive NLRP3 activity is associated with the pathogenesis of a wide range of inflammatory diseases, thus NLRP3 activation mechanisms are an area of intensive research. NLRP3 inflammasome activation is a tightly regulated process that requires both priming and activation signals. In particular, recent research has highlighted the highly complex nature of the priming step, which involves transcriptional and posttranslational mechanisms, and numerous protein binding partners. This review will describe the current understanding of NLRP3 priming and will discuss the potential opportunities for targeting this process therapeutically to treat NLRP3-associated diseases.
Collapse
Affiliation(s)
- Chloe M McKee
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Antrim, UK
| | - Rebecca C Coll
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Antrim, UK
| |
Collapse
|
14
|
Sušjan P, Lainšček D, Strmšek Ž, Hodnik V, Anderluh G, Hafner-Bratkovič I. Selective inhibition of NLRP3 inflammasome by designed peptide originating from ASC. FASEB J 2020; 34:11068-11086. [PMID: 32648626 DOI: 10.1096/fj.201902938rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a multiprotein complex which forms within cells in response to various microbial and self-derived triggers. Mutations in the gene encoding NLRP3 cause rare cryopyrin-associated periodic syndromes (CAPS) and growing evidence links NLRP3 inflammasome to common diseases such as Alzheimer´s disease. In order to modulate different stages of NLRP3 inflammasome assembly nine peptides whose sequences correspond to segments of inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC) were selected. Five peptides inhibited IL-1β release, caspase-1 activation and ASC oligomerization in response to soluble and particulate NLRP3 triggers. Modulatory peptides also attenuated IL-1β maturation induced by constitutive CAPS-associated NLRP3 mutants. Peptide corresponding to H2-H3 segment of ASC pyrin domain selectively inhibited NLRP3 inflammasome by binding to NLRP3 pyrin domain in the micromolar range. The peptide had no effect on AIM2 and NLRC4 inflammasomes as well as NF-κB pathway. The peptide effectively dampened neutrophil infiltration in the silica-induced peritonitis and when equipped with Antennapedia or Angiopep-2 motifs crossed the blood-brain barrier in a mouse model. Our study demonstrates that peptides represent an important tool for targeting multiprotein inflammatory complexes and can serve as the basis for the development of novel anti-inflammatory strategies for neurodegeneration.
Collapse
Affiliation(s)
- Petra Sušjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
15
|
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical bases of NLRP3 activation and regulation and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
Collapse
|
16
|
Indramohan M, Stehlik C, Dorfleutner A. COPs and POPs Patrol Inflammasome Activation. J Mol Biol 2017; 430:153-173. [PMID: 29024695 DOI: 10.1016/j.jmb.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023]
Abstract
Sensing and responding to pathogens and tissue damage is a core mechanism of innate immune host defense, and inflammasomes represent a central cytosolic pattern recognition receptor pathway leading to the generation of the pro-inflammatory cytokines interleukin-1β and interleukin-18 and pyroptotic cell death that causes the subsequent release of danger signals to propagate and perpetuate inflammatory responses. While inflammasome activation is essential for host defense, deregulated inflammasome responses and excessive release of inflammatory cytokines and danger signals are linked to an increasing spectrum of inflammatory diseases. In this review, we will discuss recent developments in elucidating the role of PYRIN domain-only proteins (POPs) and the related CARD-only proteins (COPs) in regulating inflammasome responses and their impact on inflammatory disease.
Collapse
Affiliation(s)
- Mohanalaxmi Indramohan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nat Commun 2017; 8:15556. [PMID: 28580931 PMCID: PMC5465353 DOI: 10.1038/ncomms15556] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 04/07/2017] [Indexed: 01/23/2023] Open
Abstract
Inflammasomes are protein platforms linking recognition of microbe, pathogen-associated and damage-associated molecular patterns by cytosolic sensory proteins to caspase-1 activation. Caspase-1 promotes pyroptotic cell death and the maturation and secretion of interleukin (IL)-1β and IL-18, which trigger inflammatory responses to clear infections and initiate wound-healing; however, excessive responses cause inflammatory disease. Inflammasome assembly requires the PYRIN domain (PYD)-containing adaptor ASC, and depends on PYD–PYD interactions. Here we show that the PYD-only protein POP2 inhibits inflammasome assembly by binding to ASC and interfering with the recruitment of ASC to upstream sensors, which prevents caspase-1 activation and cytokine release. POP2 also impairs macrophage priming by inhibiting the activation of non-canonical IκB kinase ɛ and IκBα, and consequently protects from excessive inflammation and acute shock in vivo. Our findings advance our understanding of the complex regulatory mechanisms that maintain a balanced inflammatory response and highlight important differences between individual POP members. Excessive inflammasome activation leads to inflammatory diseases, but how inflammasomes are regulated by PYD-only adaptors is unclear. Here the authors show that the PYD-only protein POP2 inhibits both inflammasome priming and assembly by interfering, respectively, with IκBα activation and NLRP3-ASC interaction.
Collapse
|