1
|
Gozlinski T, Henn M, Wolf T, Le Tacon M, Schmalian J, Wulfhekel W. Bosonic excitation spectra of superconductingBi2Sr2CaCu2O8+δandYBa2Cu3O6+xextracted from scanning tunneling spectra. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:175601. [PMID: 38194720 DOI: 10.1088/1361-648x/ad1ca8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
A detailed interpretation of scanning tunneling spectra obtained on unconventional superconductors enables one to gain information on the pairing boson. Decisive for this approach are inelastic tunneling events. Due to the lack of momentum conservation in tunneling from or to the sharp tip, those are enhanced in the geometry of a scanning tunneling microscope compared to planar tunnel junctions. This work extends the method of obtaining the bosonic excitation spectrum by deconvolution from tunneling spectra to nodald-wave superconductors. In particular, scanning tunneling spectra of slightly underdopedBi2Sr2CaCu2O8+δwith aTcof 82 K and optimally dopedYBa2Cu3O6+xwith aTcof 92 K reveal a resonance mode in their bosonic excitation spectrum atΩres≈63 meVandΩres≈61 meVrespectively. In both cases, the overall shape of the bosonic excitation spectrum is indicative of predominant spin scattering with a resonant mode atΩres<2Δand overdamped spin fluctuations for energies larger than 2Δ. To perform the deconvolution of the experimental data, we implemented an efficient iterative algorithm that significantly enhances the reliability of our analysis.
Collapse
Affiliation(s)
- Thomas Gozlinski
- Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Mirjam Henn
- Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Thomas Wolf
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthieu Le Tacon
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jörg Schmalian
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Wulf Wulfhekel
- Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao HJ, Ding H. Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. Nat Commun 2021; 12:4146. [PMID: 34230479 PMCID: PMC8260634 DOI: 10.1038/s41467-021-24372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/10/2021] [Indexed: 11/29/2022] Open
Abstract
The iron-based superconductor is emerging as a promising platform for Majorana zero mode, which can be used to implement topological quantum computation. One of the most significant advances of this platform is the appearance of large vortex level spacing that strongly protects Majorana zero mode from other low-lying quasiparticles. Despite the advantages in the context of physics research, the inhomogeneity of various aspects hampers the practical construction of topological qubits in the compounds studied so far. Here we show that the stoichiometric superconductor LiFeAs is a good candidate to overcome this obstacle. By using scanning tunneling microscopy, we discover that the Majorana zero modes, which are absent on the natural clean surface, can appear in vortices influenced by native impurities. Our detailed analysis reveals a new mechanism for the emergence of those Majorana zero modes, i.e. native tuning of bulk Dirac fermions. The discovery of Majorana zero modes in this homogeneous material, with a promise of tunability, offers an ideal material platform for manipulating and braiding Majorana zero modes, pushing one step forward towards topological quantum computation. Despite the discovery of Majorana zero modes (MZM) in iron-based superconductors, sample inhomogeneity may destroy MZMs during braiding. Here, authors observe MZM in impurity-assisted vortices due to tuning of the bulk Dirac fermions in a homogeneous superconductor LiFeAs.
Collapse
Affiliation(s)
- Lingyuan Kong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lu Cao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Michał Papaj
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guangyang Dai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Geng Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Fan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenyao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fazhi Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiancheng Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shixuan Du
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
| | - Changqing Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China.
| | - Hong Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
| |
Collapse
|
3
|
Yim CM, Panja SN, Trainer C, Topping C, Heil C, Gibbs AS, Magdysyuk OV, Tsurkan V, Loidl A, Rost AW, Wahl P. Strain-Stabilized (π, π) Order at the Surface of Fe 1+xTe. NANO LETTERS 2021; 21:2786-2792. [PMID: 33797261 PMCID: PMC8050823 DOI: 10.1021/acs.nanolett.0c04821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/25/2021] [Indexed: 06/12/2023]
Abstract
A key property of many quantum materials is that their ground state depends sensitively on small changes of an external tuning parameter, e.g., doping, magnetic field, or pressure, creating opportunities for potential technological applications. Here, we explore tuning of the ground state of the nonsuperconducting parent compound, Fe1+xTe, of the iron chalcogenides by uniaxial strain. Iron telluride exhibits a peculiar (π, 0) antiferromagnetic order unlike the (π, π) order observed in the Fe-pnictide superconductors. The (π, 0) order is accompanied by a significant monoclinic distortion. We explore tuning of the ground state by uniaxial strain combined with low-temperature scanning tunneling microscopy. We demonstrate that, indeed under strain, the surface of Fe1.1Te undergoes a transition to a (π, π)-charge-ordered state. Comparison with transport experiments on uniaxially strained samples shows that this is a surface phase, demonstrating the opportunities afforded by 2D correlated phases stabilized near surfaces and interfaces.
Collapse
Affiliation(s)
- Chi Ming Yim
- SUPA,
School of Physics and Astronomy, University
of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, U.K.
- Tsung
Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Soumendra Nath Panja
- SUPA,
School of Physics and Astronomy, University
of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, U.K.
| | - Christopher Trainer
- SUPA,
School of Physics and Astronomy, University
of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, U.K.
| | - Craig Topping
- SUPA,
School of Physics and Astronomy, University
of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, U.K.
| | - Christoph Heil
- Institute
of Theoretical and Computational Physics, Graz University of Technology,
NAWI Graz, 8010 Graz, Austria
| | - Alexandra S. Gibbs
- ISIS
Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
- School
of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SA, U.K.
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Oxana V. Magdysyuk
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Vladimir Tsurkan
- Center
for Electronic Correlations and Magnetism, University of Augsburg, D-86159 Augsburg, Germany
- Institute
of Applied Physics, Academiei
5, MD 2028, Chisinau, Republic of Moldova
| | - Alois Loidl
- Center
for Electronic Correlations and Magnetism, University of Augsburg, D-86159 Augsburg, Germany
| | - Andreas W. Rost
- SUPA,
School of Physics and Astronomy, University
of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, U.K.
| | - Peter Wahl
- SUPA,
School of Physics and Astronomy, University
of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, U.K.
| |
Collapse
|
4
|
Bu K, Zhang W, Fei Y, Zheng Y, Ai F, Wu Z, Wang Q, Wo H, Zhao J, Yin Y. Observation of an electronic order along [110] direction in FeSe. Nat Commun 2021; 12:1385. [PMID: 33654059 PMCID: PMC7925548 DOI: 10.1038/s41467-021-21318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple ordered states have been observed in unconventional superconductors. Here, we apply scanning tunneling microscopy to probe the intrinsic ordered states in FeSe, the structurally simplest iron-based superconductor. Besides the well-known nematic order along [100] direction, we observe a checkerboard charge order in the iron lattice, which we name a [110] electronic order in FeSe. The [110] electronic order is robust at 77 K, accompanied with the rather weak [100] nematic order. At 4.5 K, The [100] nematic order is enhanced, while the [110] electronic order forms domains with reduced correlation length. In addition, the collective [110] order is gaped around [−40, 40] meV at 4.5 K. The observation of this exotic electronic order may shed new light on the origin of the ordered states in FeSe. Understanding the relation of different electronic orders in high temperature superconductors is of fundamental interest. Here, the authors observe a checkerboard charge order along [110] direction of FeSe.
Collapse
Affiliation(s)
- Kunliang Bu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Wenhao Zhang
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Ying Fei
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Yuan Zheng
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Fangzhou Ai
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Zongxiu Wu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Qisi Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Hongliang Wo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Jun Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yi Yin
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Song SY, Martiny JHJ, Kreisel A, Andersen BM, Seo J. Visualization of Local Magnetic Moments Emerging from Impurities in Hund's Metal States of FeSe. PHYSICAL REVIEW LETTERS 2020; 124:117001. [PMID: 32242691 DOI: 10.1103/physrevlett.124.117001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Understanding the origin of the magnetism of high temperature superconductors is crucial for establishing their unconventional pairing mechanism. Recently, theory predicts that FeSe is close to a magnetic quantum critical point, and thus weak perturbations such as impurities could induce local magnetic moments. To elucidate such quantum instability, we have employed scanning tunneling microscopy and spectroscopy. In particular, we have grown FeSe film on superconducting Pb(111) using molecular beam epitaxy and investigated magnetic excitation caused by impurities in the proximity-induced superconducting gap of FeSe. Our study provides deep insight into the origin of the magnetic ordering of FeSe by showing the way local magnetic moments develop in response to impurities near the magnetic quantum critical point.
Collapse
Affiliation(s)
- Sang Yong Song
- Department of Emerging Materials Science, DGIST, 333 Techno-Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - J H J Martiny
- Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - A Kreisel
- Institut für Theoretische Physik, Universität Leipzig, D-04103 Leipzig, Germany
| | - B M Andersen
- Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
| | - Jungpil Seo
- Department of Emerging Materials Science, DGIST, 333 Techno-Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Korea
| |
Collapse
|
6
|
Chen C, Liu C, Liu Y, Wang J. Bosonic Mode and Impurity-Scattering in Monolayer Fe(Te,Se) High-Temperature Superconductors. NANO LETTERS 2020; 20:2056-2061. [PMID: 32045257 DOI: 10.1021/acs.nanolett.0c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electron pairing mechanism has always been one of the most challenging problems in high-temperature superconductors. Fe(Te,Se), as the superconductor with intrinsic topological property, may host Majorana bound states and has attracted tremendous interest. While in bulk Fe(Te,Se) the pairing mechanism has been experimentally investigated, it remains little understood in its two-dimensional limit counterpart. Here, by in situ scanning tunneling spectroscopy, we show clear evidence of the bosonic mode Ω beyond the superconducting gap Δ in monolayer FeTe0.5Se0.5/SrTiO3(001) high-temperature superconductor. Statistically, Ω shows an obvious anticorrelation with Δ and appears below 2Δ, consistent with the spin-excitation nature. Furthermore, the in-gap bound states induced by two types of magnetically different impurities support the sign-reversing pairing scenario. Our results not only suggest that the spin-excitation-like bosonic mode within a sign-reversing pairing plays an essential role in monolayer FeTe0.5Se0.5/SrTiO3(001) but also offer the crucial information for investigating the high-temperature superconductivity in interfacial iron selenides.
Collapse
Affiliation(s)
- Cheng Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Chaofei Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Yi Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, P.R. China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
| |
Collapse
|
7
|
Yang H, Li YY, Liu TT, Xue HY, Guan DD, Wang SY, Zheng H, Liu CH, Fu L, Jia JF. Superconductivity of Topological Surface States and Strong Proximity Effect in Sn 1- x Pb x Te-Pb Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905582. [PMID: 31721337 DOI: 10.1002/adma.201905582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Superconducting topological crystalline insulators are expected to form a new type of topological superconductors to host Majorana zero modes under the protection of lattice symmetries. The bulk superconductivity of topological crystalline insulators can be induced through chemical doping and the proximity effect. However, only conventional full gaps are observed, so the existence of topological superconductivity in topological crystalline insulators is still controversial. Here, the successful fabrication of atomically flat lateral and vertical Sn1- x Pbx Te-Pb heterostructures by molecular beam epitaxy is reported. The superconductivity of the Sn1- x Pbx Te-Pb heterostructures can be directly investigated by scanning tunneling spectroscopy. Unconventional peak-dip-hump gap features and fourfold symmetric quasiparticle interference patterns taken at the zero energy in the superconducting gap support the presence of the topological superconductivity in superconducting Sn1- x Pbx Te. Strong superconducting proximity effect and easy preparation of various constructions between Sn1- x Pbx Te and Pb make the heterostructures to be a promising candidate for topological superconducting devices to detect and manipulate Majorana zero modes in the future.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao-Yi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Teng-Teng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huan-Yi Xue
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan-Dan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shi-Yong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Can-Hua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liang Fu
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin-Feng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Liu C, Wang Z, Ye S, Chen C, Liu Y, Wang Q, Wang QH, Wang J. Detection of Bosonic Mode as a Signature of Magnetic Excitation in One-Unit-Cell FeSe on SrTiO 3. NANO LETTERS 2019; 19:3464-3472. [PMID: 31117746 DOI: 10.1021/acs.nanolett.9b00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A "fingerprint" of Cooper pairing mediated by collective bosonic excitation mode is the reconstruction of the quasiparticle-density-of-states (DOS) spectrum with an additional "dip-hump" structure located outside the superconducting coherence peak. Here, we report an in situ scanning tunneling spectroscopy study of one-unit-cell (1-UC) FeSe film on a SrTiO3(001) substrate. In the quasiparticle-DOS spectrum, the bosonic excitation mode characterized by the dip-hump structure is detected outside the larger superconducting gap. Statistically, the excitation mode shows an anticorrelation with pairing strength in magnitude and yields an energy scale upper-bounded by twice the superconducting gap. The observation coincides with the characteristics of magnetic resonance in cuprates and iron-based superconductors. Furthermore, the local response of superconducting spectra to magnetically distinct Se defects all exhibits the induced in-gap quasiparticle bound states, indicating an unconventional sign-reversing pairing over the Fermi surface in 1-UC FeSe. These results clarify the magnetic nature of the bosonic excitation mode and reveal a signature of electron-magnetic-excitation coupling in 1-UC FeSe/SrTiO3(001) besides the previously established pairing channel of electron-phonon interaction.
Collapse
Affiliation(s)
- Chaofei Liu
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Ziqiao Wang
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Shusen Ye
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Cheng Chen
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Yi Liu
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Qingyan Wang
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | | | - Jian Wang
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100871 , China
- CAS Center for Excellence in Topological Quantum Computation , University of Chinese Academy of Sciences , Beijing 100190 , China
- Beijing Academy of Quantum Information Sciences , Beijing 100193 , China
| |
Collapse
|
9
|
Yim CM, Trainer C, Aluru R, Chi S, Hardy WN, Liang R, Bonn D, Wahl P. Discovery of a strain-stabilised smectic electronic order in LiFeAs. Nat Commun 2018; 9:2602. [PMID: 29973598 PMCID: PMC6031620 DOI: 10.1038/s41467-018-04909-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
In many high temperature superconductors, small orthorhombic distortions of the lattice structure result in surprisingly large symmetry breaking of the electronic states and macroscopic properties, an effect often referred to as nematicity. To directly study the impact of symmetry-breaking lattice distortions on the electronic states, using low-temperature scanning tunnelling microscopy we image at the atomic scale the influence of strain-tuned lattice distortions on the correlated electronic states in the iron-based superconductor LiFeAs, a material which in its ground state is tetragonal with four-fold (C4) symmetry. Our experiments uncover a new strain-stabilised modulated phase which exhibits a smectic order in LiFeAs, an electronic state which not only breaks rotational symmetry but also reduces translational symmetry. We follow the evolution of the superconducting gap from the unstrained material with C4 symmetry through the new smectic phase with two-fold (C2) symmetry and charge-density wave order to a state where superconductivity is completely suppressed.
Collapse
Affiliation(s)
- Chi Ming Yim
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Christopher Trainer
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Ramakrishna Aluru
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Shun Chi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Walter N Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ruixing Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Doug Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Peter Wahl
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK.
| |
Collapse
|
10
|
Choi S, Johnston S, Jang WJ, Koepernik K, Nakatsukasa K, Ok JM, Lee HJ, Choi HW, Lee AT, Akbari A, Semertzidis YK, Bang Y, Kim JS, Lee J. Correlation of Fe-Based Superconductivity and Electron-Phonon Coupling in an FeAs/Oxide Heterostructure. PHYSICAL REVIEW LETTERS 2017; 119:107003. [PMID: 28949163 DOI: 10.1103/physrevlett.119.107003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Interfacial phonons between iron-based superconductors (FeSCs) and perovskite substrates have received considerable attention due to the possibility of enhancing preexisting superconductivity. Using scanning tunneling spectroscopy, we studied the correlation between superconductivity and e-ph interaction with interfacial phonons in an iron-based superconductor Sr_{2}VO_{3}FeAs (T_{c}≈33 K) made of alternating FeSC and oxide layers. The quasiparticle interference measurement over regions with systematically different average superconducting gaps due to the e-ph coupling locally modulated by O vacancies in the VO_{2} layer, and supporting self-consistent momentum-dependent Eliashberg calculations provide a unique real-space evidence of the forward-scattering interfacial phonon contribution to the total superconducting pairing.
Collapse
Affiliation(s)
- Seokhwan Choi
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Steven Johnston
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Won-Jun Jang
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34051, Korea
| | | | - Ken Nakatsukasa
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Jong Mok Ok
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Hyun-Jung Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Hyun Woo Choi
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Alex Taekyung Lee
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - Alireza Akbari
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Korea
| | - Yannis K Semertzidis
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34051, Korea
| | - Yunkyu Bang
- Department of Physics, Chonnam National University, Gwangju 61186, Korea
| | - Jun Sung Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jhinhwan Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|