1
|
Shivalkar S, Roy A, Chaudhary S, Samanta SK, Chowdhary P, Sahoo AK. Strategies in design of self-propelling hybrid micro/nanobots for bioengineering applications. Biomed Mater 2023; 18:062003. [PMID: 37703889 DOI: 10.1088/1748-605x/acf975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Micro/nanobots are integrated devices developed from engineered nanomaterials that have evolved significantly over the past decades. They can potentially be pre-programmed to operate robustly at numerous hard-to-reach organ/tissues/cellular sites for multiple bioengineering applications such as early disease diagnosis, precision surgeries, targeted drug delivery, cancer therapeutics, bio-imaging, biomolecules isolation, detoxification, bio-sensing, and clearing up clogged arteries with high soaring effectiveness and minimal exhaustion of power. Several techniques have been introduced in recent years to develop programmable, biocompatible, and energy-efficient micro/nanobots. Therefore, the primary focus of most of these techniques is to develop hybrid micro/nanobots that are an optimized combination of purely synthetic or biodegradable bots suitable for the execution of user-defined tasks more precisely and efficiently. Recent progress has been illustrated here as an overview of a few of the achievable construction principles to be used to make biomedical micro/nanobots and explores the pivotal ventures of nanotechnology-moderated development of catalytic autonomous bots. Furthermore, it is also foregrounding their advancement offering an insight into the recent trends and subsequent prospects, opportunities, and challenges involved in the accomplishments of the effective multifarious bioengineering applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Pallabi Chowdhary
- Department of Biotechnology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| |
Collapse
|
2
|
Xu Y, Li C, Wu X, Li MX, Ma Y, Yang H, Zeng Q, Sessler JL, Wang ZX. Sheet-like 2D Manganese(IV) Complex with High Photothermal Conversion Efficiency. J Am Chem Soc 2022; 144:18834-18843. [PMID: 36201849 DOI: 10.1021/jacs.2c04734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a stable, water-soluble, mononuclear manganese(IV) complex [MnIV(H2L)]·5H2O (Mn-HDCL) that acts as an efficient photothermal material. This system is based on a hexahydrazide clathrochelate ligand (L/HDCL) and is obtained via an efficient one-pot templated synthesis that avoids the need for harsh reaction conditions. Scanning tunneling microscopy images reveal that Mn-HDCL exists as a 2D sheet-like structure. In Mn-HDCL, the manganese(IV) ion is trapped within the cavity of the cage-like ligand. This effectively shields the Mn(IV) ion from the external environment while providing adequate water solubility. As a result of orbital transitions involving the coordinated manganese(IV) ion, as well as metal-to-ligand charge transfer effects, Mn-HDCL possesses a large extinction coefficient and displays a photothermal performance comparable to single-wall carbon nanotubes in the solid state. A high photothermal conversion efficiency (ca. 71%) was achieved in aqueous solution when subjected to near-infrared 730 nm laser photo-irradiation. Mn-HDCL is paramagnetic and provides a modest increase in the T1-weighted contrast of magnetic resonance images both in vitro and in vivo. Mn-HDCL was found to target tumors passively and allow tumor margins to be distinguished in vivo in a mouse model. In addition, it also exhibited an efficient laser-triggered photothermal therapy effect in vitro and in vivo. We thus propose that Mn-HDCL could have a role to play as a tumor-targeting photothermal sensitizer.
Collapse
Affiliation(s)
- Ye Xu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Chao Li
- Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Wu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Ming-Xing Li
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Yunsheng Ma
- Jiangsu Key Laboratory of Advanced Functional Materials, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Hong Yang
- Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, Unites States
| | - Zhao-Xi Wang
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Ren Z, Cui J, Sun Q, Qin D, Tan H, Li M. Polyethylene glycol-modified nanoscale conjugated polymer for the photothermal therapy of lung cancer. NANOTECHNOLOGY 2022; 33:455101. [PMID: 35917695 DOI: 10.1088/1361-6528/ac85f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Killing tumor cells efficiently with photothermal therapy remains a huge challenge. In this study, we successfully prepared a novel polymer with photothermal conversion capability via a condensation reaction, and then subjected it to Polyethylene glycol (PEG) modification and ultrasonic nanocrystalline treatment to make it suitable forin vivophotothermal therapy applications. The conjugated polymer demonstrated good biocompatibility and photothermal conversion ability and was shown in cell experiments to be effective in killing tumor cells after laser irradiation. In addition, the conjugated polymer-based photothermal therapy, guided by photoacoustic real-time imaging and mediated by laser irradiation, of a tumor-bearing mouse model could effectively inhibit the growth of tumor tissue and demonstrated goodin vivobiosafety. Thus, photothermal therapy based on the conjugated polymer synthesized in this study provides a new idea and strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zhentai Ren
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Jing Cui
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou 450003, People's Republic of China
| | - Qiang Sun
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou 450003, People's Republic of China
| | - Dehua Qin
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Haisong Tan
- Department of Urology, Shanghai Jiao Tong University, School of Medicine Affiliated Ninth People's Hospital, Shanghai 200011, People's Republic of China
| | - Minjie Li
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
4
|
Liposomes containing nanoparticles: preparation and applications. Colloids Surf B Biointerfaces 2022; 218:112737. [DOI: 10.1016/j.colsurfb.2022.112737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022]
|
5
|
Salimi M, Mosca S, Gardner B, Palombo F, Matousek P, Stone N. Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:922. [PMID: 35335735 PMCID: PMC8951621 DOI: 10.3390/nano12060922] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022]
Abstract
The development of new effective cancer treatment methods has attracted much attention, mainly due to the limited efficacy and considerable side effects of currently used cancer treatment methods such as radiation therapy and chemotherapy. Photothermal therapy based on the use of plasmonically resonant metallic nanoparticles has emerged as a promising technique to eradicate cancer cells selectively. In this method, plasmonic nanoparticles are first preferentially uptaken by a tumor and then selectively heated by exposure to laser radiation with a specific plasmonic resonant wavelength, to destroy the tumor whilst minimizing damage to adjacent normal tissue. However, several parameters can limit the effectiveness of photothermal therapy, resulting in insufficient heating and potentially leading to cancer recurrence. One of these parameters is the patient's pain sensation during the treatment, if this is performed without use of anesthetic. Pain can restrict the level of applicable laser radiation, cause an interruption to the treatment course and, as such, affect its efficacy, as well as leading to a negative patient experience and consequential general population hesitancy to this type of therapy. Since having a comfortable and painless procedure is one of the important treatment goals in the clinic, along with its high effectiveness, and due to the relatively low number of studies devoted to this specific topic, we have compiled this review. Moreover, non-invasive and painless methods for temperature measurement during photothermal therapy (PTT), such as Raman spectroscopy and nanothermometry, will be discussed in the following. Here, we firstly outline the physical phenomena underlying the photothermal therapy, and then discuss studies devoted to photothermal cancer treatment concerning pain management and pathways for improved efficiency of photothermal therapy whilst minimizing pain experienced by the patient.
Collapse
Affiliation(s)
- Marzieh Salimi
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK; (M.S.); (B.G.); (F.P.)
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, The Science and Technology Facilities Council Rutherford Appleton Laboratory, UK Research and Innovation, Didcot OX11 0QX, UK;
| | - Benjamin Gardner
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK; (M.S.); (B.G.); (F.P.)
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK; (M.S.); (B.G.); (F.P.)
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, The Science and Technology Facilities Council Rutherford Appleton Laboratory, UK Research and Innovation, Didcot OX11 0QX, UK;
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK; (M.S.); (B.G.); (F.P.)
| |
Collapse
|
6
|
Reghu S, Miyako E. Nanoengineered Bifidobacterium bifidum with Optical Activity for Photothermal Cancer Immunotheranostics. NANO LETTERS 2022; 22:1880-1888. [PMID: 35179380 DOI: 10.1021/acs.nanolett.1c04037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is substantial interest regarding the understanding and designing of nanoengineered bacteria to combat various fatal diseases. Here, we report the nanoengineering of Bifidobacterium bifidum using Cremophor EL to encapsulate organic dye molecules by simple incubation and washing processes while maintaining the bacterial morphology and viability. The prepared functional bacteria exhibit characteristics such as optical absorbance, unique fluorescence, powerful photothermal conversion, low toxicity, excellent tumor targeting, and anticancer efficacy. They also displayed significant in vivo fluorescent expression in implanted colorectal cancerous tumors. Moreover, the powerful photothermal conversion of the functional bacteria could be spatiotemporally evoked by biologically penetrable near-infrared laser for effective tumor regression in mice, with the help of immunological responses. Our study demonstrates that a nanoengineering approach can provide the strong physicochemical traits and attenuation of living bacterial cells for cancer immunotheranostics.
Collapse
Affiliation(s)
- Sheethal Reghu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
7
|
Ye L, Chen W, Chen Y, Qiu Y, Yi J, Li X, Lin Q, Guo B. Functionalized multiwalled carbon nanotube-ethosomes for transdermal delivery of ketoprofen: Ex vivo and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Wang C, Xie F, Zhong H, Wang F, Huang N. Hierarchical lyotropic liquid crystalline behaviors of supramolecular polymers influenced by alkyl chain branching. Polym Chem 2022. [DOI: 10.1039/d2py00786j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peripheral chain branching in monomeric structures influences the hierarchical supramolecular assembly and lyotropic liquid crystalline properties.
Collapse
Affiliation(s)
- Cong Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fei Xie
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ningdong Huang
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
Liang P, Mao L, Dong Y, Zhao Z, Sun Q, Mazhar M, Ma Y, Yang S, Ren W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021; 13:2070. [PMID: 34959351 PMCID: PMC8704010 DOI: 10.3390/pharmaceutics13122070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yanli Dong
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China;
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
10
|
Takada S, Hirata E, Sakairi M, Miyako E, Takano Y, Ushijima N, Yudasaka M, Iijima S, Yokoyama A. Carbon nanohorn coating by electrodeposition accelerate bone formation on titanium implant. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:20-29. [PMID: 33522305 DOI: 10.1080/21691401.2020.1865388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022]
Abstract
Direct contact between bone and implant materials is required for dental implants. Titanium is used for the implant material owing to its mechanical and biological properties. The anodisation as the surface treatment was employed to enhance osteogenesis around titanium. Moreover, carbon nanohorn (CNH), a type of nanometer-sized carbon material, was reported to promote the bone formation. Thus, it is expected that if the surface of anodised Ti (AnTi) is modified with CNHs, Ti-bone contact would be enhanced. In this study, the Ti surface was modified with CNHs by electrophoresis and obtained anodised titanium coated with CNHs (CNH/AnTi). In vitro, CNH/AnTi attracted osteoblastic cells more than AnTi, thereby the proliferation of osteoblastic cell was enhanced by CNH/AnTi more than by AnTi. In vivo, at 7 and 28 days after implantation of CNH/AnTi or AnTi into the rat femur, more aggressive bone formation was observed on the surface of CNH/AnTi than on AnTi. More importantly, the area where newly formed bone tissue directly attached to CNH/AnTi was significantly larger than that for AnTi, suggesting that "contact osteogenesis" was accelerated on CNH/AnTi during the early post-implantation period. CNH/AnTi would be advantageous especially for the early stages of bone regeneration after surgery.
Collapse
Affiliation(s)
- Sari Takada
- Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Eri Hirata
- Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Masatoshi Sakairi
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Yuta Takano
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Natsumi Ushijima
- Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute, Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Graduate School of Science and Technology, Meijo University, Nagoya, Japan
| | - Sumio Iijima
- Nanomaterials Research Institute, Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Graduate School of Science and Technology, Meijo University, Nagoya, Japan
| | - Atsuro Yokoyama
- Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems. Biophys Rev 2021; 14:41-54. [PMID: 35340595 PMCID: PMC8921355 DOI: 10.1007/s12551-021-00854-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractCould enzymatic activities and their cooperative functions act as cellular temperature-sensing systems? This review introduces recent opto-thermal technologies for microscopic analyses of various types of cellular temperature-sensing system. Optical microheating technologies have been developed for local and rapid temperature manipulations at the cellular level. Advanced luminescent thermometers visualize the dynamics of cellular local temperature in space and time during microheating. An optical heater and thermometer can be combined into one smart nanomaterial that demonstrates hybrid function. These technologies have revealed a variety of cellular responses to spatial and temporal changes in temperature. Spatial temperature gradients cause asymmetric deformations during mitosis and neurite outgrowth. Rapid changes in temperature causes imbalance of intracellular Ca2+ homeostasis and membrane potential. Among those responses, heat-induced muscle contractions are highlighted. It is also demonstrated that the short-term heating hyperactivates molecular motors to exceed their maximal activities at optimal temperatures. We discuss future prospects for opto-thermal manipulation of cellular functions and contributions to obtain a deeper understanding of the mechanisms of cellular temperature-sensing systems.
Collapse
|
12
|
Zhao Y, Zhao T, Cao Y, Sun J, Zhou Q, Chen H, Guo S, Wang Y, Zhen Y, Liang XJ, Zhang S. Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS NANO 2021; 15:6517-6529. [PMID: 33749240 DOI: 10.1021/acsnano.0c08790] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of photothermal therapy (PTT) and gene therapy (GT) shows great potential to achieve synergistic anti-tumor activity. However, the lack of a controlled release of genes from carriers remains a severe hindrance. Herein, peptide lipid (PL) and sucrose laurate (SL) were used to coat single-walled carbon nanotubes (SCNTs) and multi-walled carbon nanotubes (MCNTs) to form bifunctional delivery systems (denoted SCNT-PS and MCNT-PS, respectively) with excellent temperature-sensitivity and photothermal performance. CNT/siRNA suppressed tumor growth by silencing survivin expression while exhibiting photothermal effects under near-infrared (NIR) light. SCNT-PS/siRNA showed very high anti-tumor activity, resulting in the complete inhibition of some tumors. It was highly efficient for systemic delivery to tumor sites and to facilitate siRNA release owing to the phase transition of the temperature-sensitive lipids, due to PL and SL coating. Thus, SCNT-PS/siRNA is a promising anti-tumor nanocarrier for combined PTT and GT.
Collapse
Affiliation(s)
- Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Tianyi Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yingnan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yifeng Wang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
13
|
Qiao B, Luo Y, Cheng HB, Ren J, Cao J, Yang C, Liang B, Yang A, Yuan X, Li J, Deng L, Li P, Ran HT, Hao L, Zhou Z, Li M, Zhang Y, Timashev PS, Liang XJ, Wang Z. Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. ACS NANO 2020; 14:12652-12667. [PMID: 32986406 DOI: 10.1021/acsnano.0c00771] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic-inorganic hybrid materials have drawn increasing attention as photothermal agents in tumor therapy due to the advantages of green synthesis, high loading efficiency of hydrophobic drugs, facile incorporation of theranostic iron, and excellent photothermal efficiency without inert components or additives. Herein, we proposed a strategy for biomimetic engineering-mediated enhancement of photothermal performance in the tumor microenvironment (TME). This strategy is based on the specific characteristics of organic-inorganic hybrid materials and endows these materials with homologous targeting ability and photothermal stability in the TME. The hybrid materials perform the functions of cancer cells to target homolytic tumors (acting as "artificial nanotargeted cells (ANTC)"). Inspired by the pH-dependent disassembly behaviors of tannic acid (TA) and ferric ion (FeIII) and subsequent attenuation of photothermal performance, cancer cell membranes were self-deposited onto the surfaces of protoporphyrin-encapsulated TA and FeIII nanoparticles to achieve ANTC with TME-stable photothermal performance and tumor-specific phototherapy. The resulting ANTC can be used as contrast agents for concurrent photoacoustic imaging, magnetic resonance imaging, and photothermal imaging to guide the treatment. Importantly, the high loading efficiency of protoporphyrin enables the initiation of photodynamic therapy to enhance photothermal therapeutic efficiency, providing antitumor function with minimal side effects.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yuanli Luo
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jianli Ren
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jin Cao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital of Chinese Academy of Sciences, Chongqing 400014, P.R. China
| | - Bing Liang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Anyu Yang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xun Yuan
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jinrui Li
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Liming Deng
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Pan Li
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hai-Tao Ran
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Lan Hao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhiyi Zhou
- Department of General Medicine, Chongqing General Hospital of Chinese Academy of Sciences, Chongqing 400014, P.R. China
| | - Maoping Li
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101-4135, United States
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhigang Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
14
|
|
15
|
Zhang Y, Mao X, Li F, Li M, Jing X, Ge Z, Wang L, Liu K, Zhang H, Fan C, Zuo X. Nanoparticle‐Assisted Alignment of Carbon Nanotubes on DNA Origami. Angew Chem Int Ed Engl 2020; 59:4892-4896. [DOI: 10.1002/anie.201916043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Yueyue Zhang
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
- Division of Physical BiologyCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Xiuhai Mao
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Min Li
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Xinxin Jing
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Zhilei Ge
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Lihua Wang
- Division of Physical BiologyCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- Shanghai Synchrotron Radiation FacilityZhangjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 China
| | - Kai Liu
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Hongjie Zhang
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Chunhai Fan
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Xiaolei Zuo
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
16
|
Zhang Y, Mao X, Li F, Li M, Jing X, Ge Z, Wang L, Liu K, Zhang H, Fan C, Zuo X. Nanoparticle‐Assisted Alignment of Carbon Nanotubes on DNA Origami. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yueyue Zhang
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
- Division of Physical BiologyCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Xiuhai Mao
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Min Li
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Xinxin Jing
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Zhilei Ge
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Lihua Wang
- Division of Physical BiologyCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- Shanghai Synchrotron Radiation FacilityZhangjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 China
| | - Kai Liu
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Hongjie Zhang
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Chunhai Fan
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Xiaolei Zuo
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
17
|
Yuba E. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B 2020; 8:1093-1107. [PMID: 31960007 DOI: 10.1039/c9tb02470k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Liposomes are a promising nanocarrier for drug delivery because of their biocompatibility and the encapsulation capacity of drugs. Liposomes can be functionalized easily by introduction of functional materials such as stimulus-responsive materials. Temperature-responsive liposomes and pH-responsive liposomes are representative stimulus-responsive liposomes that can deliver drugs to locally heated target tissues and intracellular organelles. Here, temperature-responsive liposomes for the selective release of cargo and pH-responsive liposomes for the induction of antigen-specific immunity are overviewed. Temperature-responsive polymer-modified liposomes immediately released drugs in response to heating, which achieved selective drug release at a tumour after topical heating of tumour-bearing mice. Introduction of MR-detectable molecules enabled the tracing of liposome accumulation into target sites to optimize the heating timing. These liposomes can also be combined with magnetic nanoparticles or carbon nanomaterials to attain magnetic field-responsive, electric field-responsive and light-responsive properties to support on-demand drug release or control of biological reactions using these external stimuli. pH-Responsive liposomes were produced by modification of poly(carboxylic acid) derivatives or by pH-responsive amphiphiles. These liposomes delivered antigenic proteins into the cytosol of antigen presenting cells, which induced cross-presentation and antigen-specific cellular immunity. Adjuvant molecules or bioactive polysaccharide-based pH-responsive polymers improved their immunity-inducing effect further, leading to tumour regression in tumour-bearing mice. Precise design and control of the structures of stimulus-responsive materials and combination with functional materials are expected to create novel methodologies to control biological functions and to produce highly potent liposomal drugs that can achieve selective release of bioactive molecules.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
18
|
Choudhury P, Dinda S, Kumar Das P. Fabrication of soft-nanocomposites from functional molecules with diversified applications. SOFT MATTER 2020; 16:27-53. [PMID: 31693041 DOI: 10.1039/c9sm01304k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing demand for new soft materials having excellent physical and biological characteristics and functionality, the design of hybrid materials offers a simple, yet versatile platform for the development of materials with specific and tunable properties. By definition a "soft-nanocomposite" is the combination of supramolecular self-assemblies with nanomaterials of different origins (inorganic/metallic nanoparticles and carbonaceous allotropes like carbon nanotubes and graphene) through covalent/non-covalent interactions. Dynamic supramolecular self-assemblies can serve as excellent hosts for the incorporation of these dimensionally different nanomaterials. Nanomaterials within the matrix of supramolecular self-assemblies can give rise to new characteristics due to the synergistic contribution of both materials. Although the very initial work intended to use molecular gels as media for the preparation and stabilization of nanoparticles, recent reports have suggested that amalgamation of different supramolecular self-assemblies with nanoparticles is advantageous for both constituents. These newly developed soft-nanocomposites have interesting properties including electrical conductivity, viscoelasticity, thermal robustness, magnetic, phase-selective, redox and near-infrared radiation sensitive properties and so on. This review will focus on some of the most recent advancements in the development of novel soft-nanocomposites. In particular, we intend to correlate various design strategies for synthesis as well as composite preparation from functional molecules with interesting applications in the area of supercapacitors, nanoelectronics, photovoltaic devices, chemical and biosensors, biomedicine and so on. We expect that this article will be a general and conceptual demonstration of various approaches to develop different soft-nanocomposites and will highlight their applications across disciplines.
Collapse
Affiliation(s)
- Pritam Choudhury
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-700 032, India.
| | - Soumik Dinda
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-700 032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-700 032, India.
| |
Collapse
|
19
|
Aubert S, Bezagu M, Spivey AC, Arseniyadis S. Spatial and temporal control of chemical processes. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0139-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Chen P, Ma Y, Zheng Z, Wu C, Wang Y, Liang G. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nat Commun 2019; 10:1192. [PMID: 30867429 PMCID: PMC6416255 DOI: 10.1038/s41467-019-09226-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Development of photothermal materials which are able to harness sunlight and convert it to thermal energy seems attractive. Besides carbon-based nanomaterials, conjugated polymers are emerging promising photothermal materials but their facile syntheses remain challenging. In this work, by modification of a CBT-Cys click condensation reaction and rational design of the starting materials, we facilely synthesize conjugated polymers poly-2-phenyl-benzobisthiazole (PPBBT) and its dihexyl derivative with good photothermal properties. Under the irradiation of either sunlight-mimicking Xe light or near-infrared laser, we verify that PPBBT has comparable photothermal heating-up speed to that of star material single-wall carbon nanotube. Moreover, PPBBT is used to fabricate water-soluble NPPPBBT nanoparticles which maintain excellent photothermal properties in vitro and photothermal therapy effect on the tumours exposed to laser irradiation. We envision that our synthetic method provides a facile approach to fabricate conjugated polymers for more promising applications in biomedicine or photovoltaics in the near future.
Collapse
Affiliation(s)
- Peiyao Chen
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Yinchu Ma
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Zhen Zheng
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Chengfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Yucai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China.
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J Control Release 2019; 300:114-140. [PMID: 30853528 DOI: 10.1016/j.jconrel.2019.03.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022]
Abstract
Antioxidants (AOs) play a crucial role in the protection and maintenance of health and are also integral ingredients in beauty products. Unfortunately, most of them are sensitive due to their instability and insolubility. The use of liposomes to protect AOs and expand their applicability to cosmeceuticals, thereby, is one of the most effective solutions. Notwithstanding their offered advantages for the delivery of AOs, liposomes, in their production and application, present many challenges. Here, we provide a critical review of the major problems complicating the development of liposomes for AO delivery. Along with issues related to preparation techniques and encapsulation efficiency, the loss of protective function and inefficiency of skin permeability are the main disadvantages of liposomes. Corresponding development strategies for resolving these problems, with their respective advantages and drawbacks, are introduced, discussed in some depth, and summarized in these pages as well. Advanced liposomes have a vital role to play in the development and delivery of AOs in practical cosmeceutical product applications.
Collapse
|
22
|
Yan T, Yang F, Qi S, Fan X, Liu S, Ma N, Luo Q, Dong Z, Liu J. Supramolecular nanochannels self-assembled by helical pyridine–pyridazine oligomers. Chem Commun (Camb) 2019; 55:2509-2512. [DOI: 10.1039/c8cc10098e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present a novel helix-based supramolecular nanochannel, wherein alkali ions could be easily collected, transported and even controllably released.
Collapse
Affiliation(s)
- Tengfei Yan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ningning Ma
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
23
|
Toth I, Khongkow M, Liu TY, Bartlett S, Hussein WM, Nevagi R, Jia Z, Monteiro MJ, Wells J, Ruktanonchai UR, Skwarczynski M. Liposomal formulation of polyacrylate-peptide conjugate as a new vaccine candidate against cervical cancer. PRECISION NANOMEDICINE 2018. [DOI: 10.33218/prnano1(3).181003.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peptide-based vaccines have been proposed as a therapeutic strategy for many infectious diseases, including human papilloma virus (HPV)-related cervical cancer. Peptide-based vaccines are a better treatment option than traditional chemotherapeutic agents and surgery, as they rely on the use of the body’s immune system to fight cancer cells, resulting in minimal risk of side effects. However, to increase the efficacy of peptide-based vaccines, the application of potent adjuvant and a suitable delivery system is essential. In this study, we developed a self-adjuvanting delivery system based on a combination of polymer and liposomes, for a therapeutic vaccine against cervical cancer. Peptide epitope (8Qm) derived from HPV-16 E7 protein was conjugated to dendritic poly(tert-butyl acrylate) as a primary delivery system and incorporated into cationic liposomes, which served as a secondary delivery system. Our vaccine candidate was able to kill established HPV-16 E7-positive tumor (TC-1) cells in mice following a single immunization. The immunized mice had 80% survival rate after two months. In contrast, both polymer-8Qm conjugate and liposomes bearing 8Qm failed to eradicate TC-1 tumors. The survival rate of mice was only 20% when immunized with 8Qm formulated with standard incomplete Freund’s adjuvant.
Collapse
|
24
|
Kaboudin B, Saghatchi F, Kazemi F, Akbari-Birgani S. A Novel Magnetic Carbon Nanotubes Functionalized with Pyridine Groups: Synthesis, Characterization and Their Application as an Efficient Carrier for Plasmid DNA and Aptamer. ChemistrySelect 2018. [DOI: 10.1002/slct.201800708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang; Zanjan 45137-66731 Iran
- Center for Research in Basic Sciences and Contemporary Technologies
| | - Fatemeh Saghatchi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang; Zanjan 45137-66731 Iran
| | - Foad Kazemi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang; Zanjan 45137-66731 Iran
| | - Shiva Akbari-Birgani
- Center for Research in Basic Sciences and Contemporary Technologies
- Faculty of Biological Sciences; Institute for Advanced Studies in Basic Sciences (IASBS), GavaZang; Zanjan 45137-66731 Iran
| |
Collapse
|
25
|
Kokubun K, Matsumura S, Yudasaka M, Iijima S, Shiba K. Immobilization of a carbon nanomaterial-based localized drug-release system using a bispecific material-binding peptide. Int J Nanomedicine 2018; 13:1643-1652. [PMID: 29588591 PMCID: PMC5862015 DOI: 10.2147/ijn.s155913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Introduction Inorganic materials are widely used in medical devices, such as artificial hearts, vessels, and joints, in stents, and as nanocarriers for drug-delivery systems. Carbon nanomaterials are of particular interest due to their biological inertness and their capability to accommodate molecules. Several attempts have been proposed, in which carbon nanomaterials are used as nanocarriers for the systemic delivery of drugs. Materials and methods We developed a drug-delivery system in which oxidized single-walled carbon nanohorns (oxSWNHs) were immobilized on a titanium (Ti) surface using material-binding peptides to enable localized drug delivery. For this purpose, we utilized a bispecific peptidic aptamer comprising a core sequence of a Ti-binding peptide and a SWNH-binding peptide to immobilize oxSWNHs on Ti. Results Scanning electron microscopy was used to confirm the presence of oxSWNHs adsorbed onto the Ti surface, and a quartz crystal microbalance was used to evaluate the binding process during oxSWNH adsorption. The oxSWNHs-ornamented Ti substrate was nontoxic to cells and released biologically active dexamethasone over a sustained period. Conclusion This oxSWNHs-immobilized system can be used to modify the surface of Ti in implants and be loaded with drugs that stimulate osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Katsutoshi Kokubun
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Clinical Pathophysiology, Tokyo Dental College, Tokyo, Japan
| | - Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Graduate School of Science and Technology, Meijo University, Nagoya, Japan
| | - Sumio Iijima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Graduate School of Science and Technology, Meijo University, Nagoya, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
26
|
Dinda S, Mandal D, Sarkar S, Das PK. Self-Assembled Vesicle-Carbon Nanotube Conjugate Formation through a Boronate-Diol Covalent Linkage. Chemistry 2017; 23:15194-15202. [DOI: 10.1002/chem.201703452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Soumik Dinda
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Deep Mandal
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Saheli Sarkar
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Prasanta Kumar Das
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| |
Collapse
|
27
|
Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 2017; 8:15432. [PMID: 28561016 PMCID: PMC5460022 DOI: 10.1038/ncomms15432] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Room temperature liquid metals (LMs) represent a class of emerging multifunctional
materials with attractive novel properties. Here, we show that photopolymerized LMs
present a unique nanoscale capsule structure characterized by high water
dispersibility and low toxicity. We also demonstrate that the LM nanocapsule
generates heat and reactive oxygen species under biologically neutral near-infrared
(NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation
in LM shape, destruction of the nanocapsules, contactless controlled release of the
loaded drugs, optical manipulations of a microfluidic blood vessel model and
spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and
a living mouse. By exploiting the physicochemical properties of LMs, we achieve
effective cancer cell elimination and control of intercellular calcium ion flux. In
addition, LMs display a photoacoustic effect in living animals during NIR laser
treatment, making this system a powerful tool for bioimaging. Liquid metals are excellent candidate materials for biomedicine, owing to their
intriguing optical properties and chemical stability. Here, the authors design
multifunctional theranostic liquid metal nanocapsules that, upon irradiation, generate
heat and reactive oxygen species and change shape to release drugs.
Collapse
Affiliation(s)
- Svetlana A Chechetka
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), Singapore 637457, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), Singapore 637457, Singapore
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
28
|
Zhang Y, Wei J, Liu S, Wang J, Han X, Qin H, Lang J, Cheng K, Li Y, Qi Y, Anderson GJ, Sukumar S, Li S, Nie G. Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics 2017; 7:1062-1071. [PMID: 28435448 PMCID: PMC5399576 DOI: 10.7150/thno.17908] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/04/2017] [Indexed: 12/05/2022] Open
Abstract
Extensive evidence has shown that platelets support tumor metastatic progression by inducing epithelial-mesenchymal transition of cancer cells and by shielding circulating tumor cells from immune-mediated elimination. Therefore, blocking platelet function represents a potential new avenue for therapy focused on eliminating metastasis. Here we show that liposomal nanoparticles bearing the tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) can deliver a platelet inhibitor, ticagrelor, into tumor tissues to specifically inhibit tumor-associated platelets. The drug-loaded nanoparticles (CREKA-Lipo-T) efficiently blocked the platelet-induced acquisition of an invasive phenotype by tumor cells and inhibited platelet-tumor cell interaction in vitro. Intravenously administered CREKA-Lipo-T effectively targeted tumors within 24 h, and inhibited tumor metastasis without overt side effects. Thus, the CREKA-Lipo formulation provides a simple strategy for the efficient delivery of anti-metastatic drugs and shows considerable promise as a platform for novel cancer therapeutics.
Collapse
|
29
|
|
30
|
Abstract
Over the last decade mass spectrometry imaging (MSI) has been integrated in to many areas of drug discovery and development. It can have significant impact in oncology drug discovery as it allows efficacy and safety of compounds to be assessed against the backdrop of the complex tumour microenvironment. We will discuss the roles of MSI in investigating compound and metabolite biodistribution and defining pharmacokinetic -pharmacodynamic relationships, analysis that is applicable to all drug discovery projects. We will then look more specifically at how MSI can be used to understand tumour metabolism and other applications specific to oncology research. This will all be described alongside the challenges of applying MSI to industry research with increased use of metrology for MSI.
Collapse
|
31
|
Chechetka SA, Doi M, Pichon BP, Bégin-Colin S, Miyako E. Photothermal and mechanical stimulation of cells via dualfunctional nanohybrids. NANOTECHNOLOGY 2016; 27:475102. [PMID: 27779117 DOI: 10.1088/0957-4484/27/47/475102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stimulating cells by light is an attractive technology to investigate cellular function and deliver innovative cell-based therapy. However, current techniques generally use poorly biopermeable light, which prevents broad applicability. Here, we show that a new type of composite nanomaterial, synthesized from multi-walled carbon nanotubes, magnetic iron nanoparticles, and polyglycerol, enables photothermal and mechanical control of Ca2+ influx into cells overexpressing transient receptor potential vanilloid type-2. The nanohybrid is simply operated by application of highly biotransparent near-infrared light and a magnetic field. The technology may revolutionize remote control of cellular function.
Collapse
Affiliation(s)
- Svetlana A Chechetka
- Nanomaterial Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | | | | | | | | |
Collapse
|
32
|
Bairi P, Minami K, Hill JP, Nakanishi W, Shrestha LK, Liu C, Harano K, Nakamura E, Ariga K. Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth. ACS NANO 2016; 10:8796-802. [PMID: 27541964 DOI: 10.1021/acsnano.6b04535] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supramolecular assembly can be used to construct a wide variety of ordered structures by exploiting the cumulative effects of multiple noncovalent interactions. However, the construction of anisotropic nanostructures remains subject to some limitations. Here, we demonstrate the preparation of anisotropic fullerene-based nanostructures by supramolecular differentiation, which is the programmed control of multiple assembly strategies. We have carefully combined interfacial assembly and local phase separation phenomena. Two fullerene derivatives, PhH and C12H, were together formed into self-assembled anisotropic nanostructures by using this approach. This technique is applicable for the construction of anisotropic nanostructures without requiring complex molecular design or complicated methodology.
Collapse
Affiliation(s)
- Partha Bairi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Material Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kosuke Minami
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Material Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Material Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Waka Nakanishi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Material Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Lok Kumar Shrestha
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Material Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Chao Liu
- Department of Chemistry, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Material Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
33
|
Hirata E, Miyako E, Hanagata N, Ushijima N, Sakaguchi N, Russier J, Yudasaka M, Iijima S, Bianco A, Yokoyama A. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation. NANOSCALE 2016; 8:14514-14522. [PMID: 27412794 DOI: 10.1039/c6nr02756c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.
Collapse
Affiliation(s)
- Eri Hirata
- Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gorgoll RM, Harano K, Nakamura E. Nanoscale Control of Polymer Assembly on a Synthetic Catalyst–Bilayer System. J Am Chem Soc 2016; 138:9675-81. [DOI: 10.1021/jacs.6b05414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ricardo M. Gorgoll
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Chechetka SA, Yuba E, Kono K, Yudasaka M, Bianco A, Miyako E. Magnetically and Near-Infrared Light-Powered Supramolecular Nanotransporters for the Remote Control of Enzymatic Reactions. Angew Chem Int Ed Engl 2016; 55:6476-81. [DOI: 10.1002/anie.201602453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Svetlana A. Chechetka
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Eiji Yuba
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Kenji Kono
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Masako Yudasaka
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire; Laboratoire d'Immunopathologie et Chimie Thérapeutique; 15 Rue René Descartes 67084 Strasbourg France
| | - Eijiro Miyako
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| |
Collapse
|
36
|
Chechetka SA, Yuba E, Kono K, Yudasaka M, Bianco A, Miyako E. Magnetically and Near-Infrared Light-Powered Supramolecular Nanotransporters for the Remote Control of Enzymatic Reactions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Svetlana A. Chechetka
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Eiji Yuba
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Kenji Kono
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Masako Yudasaka
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire; Laboratoire d'Immunopathologie et Chimie Thérapeutique; 15 Rue René Descartes 67084 Strasbourg France
| | - Eijiro Miyako
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| |
Collapse
|
37
|
Affiliation(s)
- Svetlana A. Chechetka
- Nanomaterials Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Central 5, 1-1-1 Higashi, Tsukuba Ibaraki 305-8565 Japan
| | - Eijiro Miyako
- Nanomaterials Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Central 5, 1-1-1 Higashi, Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
38
|
Mehra NK, Jain NK. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J Drug Target 2015; 24:294-308. [PMID: 26147085 DOI: 10.3109/1061186x.2015.1055571] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon nanotubes (CNTs) have emerged as an intriguing nanotechnological tool for numerous biomedical applications including biocompatible modules for the bioactives delivery ascribed to their unique properties, such as greater loading efficiency, biocompatibility, non-immunogenicity, high surface area and photoluminescence, that make them ideal candidate in pharmaceutical and biomedical science. The design of multifunctional hybrid-CNTs for drug delivery and targeting may differ from the conventional drug delivery system. The conventional nanocarriers have few limitations, such as inappropriate availability of surface-chemical functional groups for conjugation, low entrapment/loading efficiency as well as stability as per ICH guidelines with generally regarded as safe (GRAS) prominences. The multifunctional hybrid-CNTs will sparked and open a new door for researchers, scientist of the pharmaceutical and biomedical arena. This review summarizes the vivid aspects of CNTs like characterization, supramolecular chemistry of CNTs-dendrimer, CNTs-nanoparticles, CNTs-quantum dots conjugate for delivery of bioactives, not discussed so far.
Collapse
Affiliation(s)
- Neelesh Kumar Mehra
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University , Sagar , India
| | - Narendra Kumar Jain
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University , Sagar , India
| |
Collapse
|
39
|
Miyako E, Chechetka SA, Doi M, Yuba E, Kono K. In Vivo Remote Control of Reactions inCaenorhabditis elegansby Using Supramolecular Nanohybrids of Carbon Nanotubes and Liposomes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Miyako E, Chechetka SA, Doi M, Yuba E, Kono K. In Vivo Remote Control of Reactions in
Caenorhabditis elegans
by Using Supramolecular Nanohybrids of Carbon Nanotubes and Liposomes. Angew Chem Int Ed Engl 2015; 54:9903-6. [DOI: 10.1002/anie.201504987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterial Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1‐1‐1 Higashi, Tsukuba 305‐8565 (Japan)
| | - Svetlana A. Chechetka
- Department of Materials and Chemistry, Nanomaterial Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1‐1‐1 Higashi, Tsukuba 305‐8565 (Japan)
| | - Motomichi Doi
- Department of Life Science and Biotechnology, Biomedical Research Institute (BRI) & DAILAB, AIST, Central 6, 1‐1‐1 Higashi, Tsukuba 305‐8566 (Japan)
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1‐1 Gakuen‐cho, Naka‐ku, Sakai, Osaka 599‐8531 (Japan)
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1‐1 Gakuen‐cho, Naka‐ku, Sakai, Osaka 599‐8531 (Japan)
| |
Collapse
|
41
|
Pereira S, Lee J, Rubio N, Hassan HAFM, Suffian IBM, Wang JTW, Klippstein R, Ballesteros B, Al-Jamal WT, Al-Jamal KT. Cationic Liposome- Multi-Walled Carbon Nanotubes Hybrids for Dual siPLK1 and Doxorubicin Delivery In Vitro. Pharm Res 2015; 32:3293-308. [PMID: 26085038 PMCID: PMC4577551 DOI: 10.1007/s11095-015-1707-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
Purpose To formulate f-MWNTs-cationic liposome hybrids for the simultaneous delivery of siPLK1 and doxorubicin to cancer cells. Method f-MWNTs-cationic liposome hybrids were prepared by the thin film hydration method where the lipid film was hydrated with 100 μg/ml or 1 mg/ml of ox-MWNTs-NH3+ or MWNTs-NH3+ in 5% dextrose. siRNA complexation and protection ability was determined by agarose gel electrophoresis. f-MWNTs and liposome interaction was evaluated using Nile Red (NR) fluorescence spectroscopy. Cellular uptake in A549 cells was assessed by flow cytometry. Silencing of target proteins was determined by Luciferase and MTT assays. Sub-G1 analysis was performed to evaluate apoptosis following co-delivery of siPLK1 and Doxorubicin (Dox). Results Zeta potential and siRNA complexation profile obtained for all hybrids were comparable to those achieved with cationic liposomes. ox-MWNTs-NH3+ showed greater extent of interaction with cationic liposomes compared to MWNTs-NH3+. ox-MWNTs-NH3+ was able to protect siRNA from nuclease-mediated degradation. Enhanced cellular uptake of both the carrier and loaded siRNA in A549 cell, were observed for this hybrid compared to the liposomal carrier. A synergistic pro-apoptotic effect was obtained when siPLK1 silencing was combined with doxorubicin treatment for the hybrid:siRNA complexes compared to the lipoplexes, in A549 cells in vitro. Conclusions f-MWNTs-cationic liposome hybrid designed in this study can serve as a potential vehicle for the co-delivery of siRNA and cytotoxic drugs to cancer cells in vitro. Electronic supplementary material The online version of this article (doi:10.1007/s11095-015-1707-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Pereira
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jin Lee
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Noelia Rubio
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Hatem A F M Hassan
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Izzat Bin Mohamed Suffian
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Julie T W Wang
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Belén Ballesteros
- ICN2 - Institut de Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Wafa' T Al-Jamal
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
42
|
Wang D, Tu C, Su Y, Zhang C, Greiser U, Zhu X, Yan D, Wang W. Supramolecularly engineered phospholipids constructed by nucleobase molecular recognition: upgraded generation of phospholipids for drug delivery. Chem Sci 2015; 6:3775-3787. [PMID: 29218147 PMCID: PMC5707505 DOI: 10.1039/c5sc01188d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022] Open
Abstract
Supramolecularly engineered phospholipids and liposomes based on complementary hydrogen bonding of nucleosides have been developed.
Despite of great advances of phospholipids and liposomes in clinical therapy, very limited success has been achieved in the preparation of smart phospholipids and controlled-release liposomes for in vivo drug delivery and clinical trials. Here we report a supramolecular approach to synthesize novel supramolecularly engineered phospholipids based on complementary hydrogen bonding of nucleosides, which greatly reduces the need of tedious chemical synthesis, including reducing the strict requirements for multistep chemical reactions, and the purification of the intermediates and the amount of waste generated relative more traditional approaches. These upgraded phospholipids self-assemble into liposome-like bilayer structures in aqueous solution, exhibiting fast stimuli-responsive ability due to the hydrogen bonding connection. In vitro and in vivo evaluations show the resulted supramolecular liposomes from nucleoside phospholipids could effectively transport drug into tumor tissue, rapidly enter tumor cells, and controllably release their payload in response to an intracellular acidic environment, thus resulting in a much higher antitumor activity than conventional liposomes. The present supramolecularly engineered phospholipids represent an important evolution in comparison to conventional covalent-bonded phospholipid systems.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China . ; ; Tel: +86-21-34203400
| | - Chunlai Tu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China . ; ; Tel: +86-21-34203400
| | - Yue Su
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China . ; ; Tel: +86-21-34203400
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China . ; ; Tel: +86-21-34203400
| | - Udo Greiser
- Charles Institute of Dermatology , School of Medicine and Medical Science , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China . ; ; Tel: +86-21-34203400
| | - Deyue Yan
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China . ; ; Tel: +86-21-34203400
| | - Wenxin Wang
- Charles Institute of Dermatology , School of Medicine and Medical Science , University College Dublin , Belfield , Dublin 4 , Ireland .
| |
Collapse
|
43
|
Fang S, Niu Y, Zhu W, Zhang Y, Yu L, Li X. Liposomes assembled from a dual drug-tailed phospholipid for cancer therapy. Chem Asian J 2015; 10:1232-8. [PMID: 25690917 DOI: 10.1002/asia.201500067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Indexed: 12/29/2022]
Abstract
We report a novel dual drug-tailed phospholipid which can form liposomes as a combination of prodrug and drug carrier. An amphiphilic dual chlorambucil-tailed phospholipid (DCTP) was synthesized by a straightforward esterification. With two chlorambucil molecules as hydrophobic tails and one glycerophosphatidylcholine molecule as a hydrophilic head, the DCTP, a phospholipid prodrug, undergoes assembly to form a liposome without any additives by the thin lipid film technique. The DCTP liposomes, as an effective carrier of chlorambucil, exhibited a very high loading capacity and excellent stability. The liposomes had higher cytotoxic effects to cancer cell lines than free DCTP and chlorambucil. The in vivo antitumor activity assessment indicated that the DCTP liposomes could inhibit the tumor growth effectively. This novel strategy of dual drug-tailed phospholipid liposomes may be also applicable to other hydrophobic anticancer drugs which have great potential in cancer therapy.
Collapse
Affiliation(s)
- Shuo Fang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096 (P.R. China)
| | | | | | | | | | | |
Collapse
|
44
|
Chen S, Xiong C, Liu H, Wan Q, Hou J, He Q, Badu-Tawiah A, Nie Z. Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials. NATURE NANOTECHNOLOGY 2015; 10:176-82. [PMID: 25652170 DOI: 10.1038/nnano.2014.282] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/03/2014] [Indexed: 05/28/2023]
Abstract
Label and label-free methods to image carbon-based nanomaterials exist. However, label-based approaches are limited by the risk of tag detachment over time, and label-free spectroscopic methods have slow imaging speeds, weak photoluminescence signals and strong backgrounds. Here, we present a label-free mass spectrometry imaging method to detect carbon nanotubes, graphene oxide and carbon nanodots in mice. The large molecular weights of nanoparticles are difficult to detect using conventional mass spectrometers, but our method overcomes this problem by using the intrinsic carbon cluster fingerprint signal of the nanomaterials. We mapped and quantified the sub-organ distribution of the nanomaterials in mice. Our results showed that most carbon nanotubes and nanodots were found in the outer parenchyma of the kidney, and all three materials were seen in the red pulp of the spleen. The highest concentrations of nanotubes in the spleen were found within the marginal zone.
Collapse
Affiliation(s)
- Suming Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiongqiong Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Abraham Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
45
|
Seeta Rama Raju G, Benton L, Pavitra E, Yu JS. Multifunctional nanoparticles: recent progress in cancer therapeutics. Chem Commun (Camb) 2015; 51:13248-59. [DOI: 10.1039/c5cc04643b] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent times, several biocompatible nanomaterials with different morphologies and compositions, such as metals, metal oxides, and polymers, have been employed as multi-functional biomaterials to target cancer cells.
Collapse
Affiliation(s)
- G. Seeta Rama Raju
- Department of Electronics and Radio Engineering
- Optoelectronics and Nanodevices Laboratory
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Leah Benton
- Department of Biology
- Emory University
- Atlanta
- USA
| | - E. Pavitra
- Department of Electronics and Radio Engineering
- Optoelectronics and Nanodevices Laboratory
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Radio Engineering
- Optoelectronics and Nanodevices Laboratory
- Kyung Hee University
- Yongin-si
- Republic of Korea
| |
Collapse
|
46
|
Miyako E, Russier J, Mauro M, Cebrian C, Yawo H, Ménard-Moyon C, Hutchison JA, Yudasaka M, Iijima S, De Cola L, Bianco A. Photofunctional Nanomodulators for Bioexcitation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Miyako E, Russier J, Mauro M, Cebrian C, Yawo H, Ménard-Moyon C, Hutchison JA, Yudasaka M, Iijima S, De Cola L, Bianco A. Photofunctional Nanomodulators for Bioexcitation. Angew Chem Int Ed Engl 2014; 53:13121-5. [DOI: 10.1002/anie.201407169] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/01/2014] [Indexed: 12/31/2022]
|
48
|
Sada T, Fujigaya T, Nakashima N. Manipulation of cell membrane using carbon nanotube scaffold as a photoresponsive stimuli generator. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:045002. [PMID: 27877703 PMCID: PMC5090691 DOI: 10.1088/1468-6996/15/4/045002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/07/2014] [Accepted: 06/12/2014] [Indexed: 06/06/2023]
Abstract
We describe, for the first time, the perforation of the cell membrane in the targeted single cell based on the nanosecond pulsed near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes that act as an effective photon absorber as well as stimuli generator. When the power of NIR laser is over 17.5 μJ/pulse, the cell membrane after irradiation is irreversibly disrupted and results in cell death. In sharp contrast, the perforation of the cell membrane occurs at suitable laser power (∼15 μJ/pulse) without involving cell termination.
Collapse
Affiliation(s)
- Takao Sada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Japan
| | - Naotoshi Nakashima
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Japan
- Core Research for Evolutionary Science and Technology (JST-CREST), 5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
49
|
Zielinska A, Leonowicz M, Li H, Nakanishi T. Controlled self-assembly of alkylated-π compounds for soft materials — Towards optical and optoelectronic applications. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Wang X, Li G, Ding Y, Sun S. Understanding the photothermal effect of gold nanostars and nanorods for biomedical applications. RSC Adv 2014. [DOI: 10.1039/c4ra02978j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Photothermal properties of GNSs and GNRs are compared both experimentally and theoretically, and results show that GNSs exhibit a higher molar heating rate than GNRs.
Collapse
Affiliation(s)
- Xiaocui Wang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
- Department of Physics
| | - Guohua Li
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
- Department of Physics
| | - Yu Ding
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
- Department of Physics
| | - Shuqing Sun
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
| |
Collapse
|