1
|
Hernández JC, González-Delgado S, Aliende-Hernández M, Alfonso B, Rufino-Navarro A, Hernández CA. Natural acidified marine systems: Lessons and predictions. ADVANCES IN MARINE BIOLOGY 2024; 97:59-78. [PMID: 39307559 DOI: 10.1016/bs.amb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Natural acidified marine systems (ASs) are environments with relatively low pH levels due to natural causes such as volcanic activity, geochemical reactions, and biological processes. These systems act as natural laboratories for the study of the effects of ocean acidification, allowing for the observation of long-term ecological and evolutionary responses. Understanding these systems is crucial for predicting the effects of anthropogenic ocean acidification (OA) on marine ecosystems. There are 23 ASs in which scientific research has shown significant parallelisms in their results worldwide, such as the disappearance of calcareous organisms and the loss of species with key ecological functions under OA conditions. Future research should emphasize continuous collaboration among teams, as well as public access to oceanographic and biological data along with the monitoring of environmental variables at each AS. To preserve these areas, it is imperative to employ non-destructive methods and protect them as human heritage sites.
Collapse
Affiliation(s)
- José Carlos Hernández
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| | - Sara González-Delgado
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - M Aliende-Hernández
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - B Alfonso
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - A Rufino-Navarro
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - C A Hernández
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
2
|
Peña-Salinas ME, Speth DR, Utter DR, Spelz RM, Lim S, Zierenberg R, Caress DW, Núñez PG, Vázquez R, Orphan VJ. Thermotogota diversity and distribution patterns revealed in Auka and JaichMaa 'ja 'ag hydrothermal vent fields in the Pescadero Basin, Gulf of California. PeerJ 2024; 12:e17724. [PMID: 39175749 PMCID: PMC11340630 DOI: 10.7717/peerj.17724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
Discovering new deep hydrothermal vent systems is one of the biggest challenges in ocean exploration. They are a unique window to elucidate the physical, geochemical, and biological processes that occur on the seafloor and are involved in the evolution of life on Earth. In this study, we present a molecular analysis of the microbial composition within the newly discovered hydrothermal vent field, JaichMaa 'ja 'ag, situated in the Southern Pescadero Basin within the Gulf of California. During the cruise expedition FK181031 in 2018, 33 sediment cores were collected from various sites within the Pescadero vent fields and processed for 16S rRNA amplicon sequence variants (ASVs) and geochemical analysis. Correlative analysis of the chemical composition of hydrothermal pore fluids and microbial abundances identified several sediment-associated phyla, including Thermotogota, that appear to be enriched in sediment horizons impacted by hydrothermal fluid flow. Comparative analysis of Thermotogota with the previously explored Auka hydrothermal vent field situated 2 km away displayed broad similarity between the two locations, although at finer scales (e.g., ASV level), there were notable differences that point to core-to-core and site-level factors revealing distinct patterns of distribution and abundance within these two sediment-hosted hydrothermal vent fields. These patterns are intricately linked to the specific physical and geochemical conditions defining each vent, illuminating the complexity of this unique deep ocean chemosynthetic ecosystem.
Collapse
Affiliation(s)
- Manet E. Peña-Salinas
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Daan R. Speth
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Daniel R. Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Ronald M. Spelz
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Sujung Lim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Robert Zierenberg
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States
| | - David W. Caress
- Science Division, Monterey Bay Aquarium Research Institute, Moss Landing, California, United States
| | - Patricia G. Núñez
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Roberto Vázquez
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| |
Collapse
|
3
|
Martín-Díaz JP, González-Vega A, Barreyre T, Cornide B, Arrieta JM, Vázquez JT, Palomino D, Lozano Rodríguez JA, Escánez-Pérez J, Presas-Navarro C, Fraile-Nuez E. Unveiling the inherent physical-chemical dynamics: Direct measurements of hydrothermal fluid flow, heat, and nutrient outflow at the Tagoro submarine volcano (Canary Islands, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170565. [PMID: 38331280 DOI: 10.1016/j.scitotenv.2024.170565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Tagoro is one of the few submarine volcanoes in the world that has been monitored since its early eruptive stage in 2011 to present day. After six multidisciplinary oceanographic cruises conducted between 2014 and 2023 to gather a comprehensive dataset of georeferenced video-imagery and in situ measurements of hydrothermal flow velocities and hydrothermal fluid samples, we provide a robust characterization of the ongoing hydrothermal fluid velocity, heat flux, and nutrient release, along with an accurate delimitation of the hydrothermal field area. Our results reveal that Tagoro hydrothermal system extends from the main hydrothermal crater up to the summit, covering an area of 7600 m2. This hydrothermal field comprises thousands of small individual vents, displaying diverse morphologies such as crevices and delicate chimney-like structures, irregularly scattered across the dominant diffuse venting surface. Hydrothermal fluid temperatures and velocities at the substratum level reveal a clustered spatial distribution, ranging from 21.0 to 33.3 °C and 1.6-26.8 cm min-1, respectively. Furthermore, our findings indicate a discernible correlation between hydrothermal fluid temperature and vent density, while significant differences were observed between velocities from diffuse and focused areas. Additionally, heat fluxes exceed 200 MW across the entire active region, with heat flux values ranging from 6.06 to 146.87 kW m-2 and dissolve inorganic nutrient concentrations exhibit significant enrichments, comparable to the magnitude of important nutrient sources in the area as upwelling systems or mesoscale structures.
Collapse
Affiliation(s)
- Juan Pablo Martín-Díaz
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 38180 Santa Cruz de Tenerife, Spain; Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Alba González-Vega
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 38180 Santa Cruz de Tenerife, Spain
| | | | | | - Jesús M Arrieta
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 38180 Santa Cruz de Tenerife, Spain
| | - Juan-Tomás Vázquez
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 29002 Málaga, Spain
| | - Desirée Palomino
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 29002 Málaga, Spain
| | - José A Lozano Rodríguez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 38180 Santa Cruz de Tenerife, Spain
| | - José Escánez-Pérez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 38180 Santa Cruz de Tenerife, Spain
| | - Carmen Presas-Navarro
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 38180 Santa Cruz de Tenerife, Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 38180 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
4
|
Kikkawa Y, Nagasaki M, Koyama E, Tsuzuki S, Fouquet T, Hiratani K. Dynamic host-guest behavior in halogen-bonded two-dimensional molecular networks investigated by scanning tunneling microscopy at the solid/liquid interface. NANOSCALE ADVANCES 2020; 2:4895-4901. [PMID: 36132910 PMCID: PMC9419264 DOI: 10.1039/d0na00616e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/14/2023]
Abstract
The fabrication of supramolecularly engineered two-dimensional (2D) networks using simple molecular building blocks is an effective means for studying host-guest chemistry at surfaces toward the potential application of such systems in nanoelectronics and molecular devices. In this study, halogen-bonded molecular networks were constructed by the combination of linear halogen-bond donor and acceptor ligands, and their 2D structures at the highly oriented pyrolytic graphite/1-phenyloctane interface were studied by scanning tunneling microscopy. The bi-component blend of the molecular building blocks possessing tetradecyloxy chains formed a lozenge structure via halogen bonding. Upon the introduction of an appropriate guest molecule (e.g., coronene) into the system, the 2D structure transformed into a hexagonal array, and the central pore of this array was occupied by the guest molecules. Remarkably, the halogen bonding of the original structure was maintained after the introduction of the guest molecule. Thus, the halogen-bonded molecular networks are applicable for assembling guest species on the substrate without the requirement of the conventional rigid molecular building blocks with C 3 symmetry.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Emiko Koyama
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Thierry Fouquet
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
5
|
Pichler T, Biscéré T, Kinch J, Zampighi M, Houlbrèque F, Rodolfo-Metalpa R. Suitability of the shallow water hydrothermal system at Ambitle Island (Papua New Guinea) to study the effect of high pCO 2 on coral reefs. MARINE POLLUTION BULLETIN 2019; 138:148-158. [PMID: 30660256 DOI: 10.1016/j.marpolbul.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Volcanic CO2 seeps were successfully used to predict coral reef response to ocean acidification, although toxic elements, often characteristic of hydrothermal vents were rarely reported. We measured the physicochemical conditions, seawater carbonate chemistry and trace elements in Tutum Bay, Papua New Guinea. There, intense emission of hydrothermal fluids and CO2 expose the coral reef to a seawater pHT between 7.6 and 7.7. Arsenic and silica were enriched by up to six times in surface seawater, while bottom concentrations were lower and thus similar to coral reefs worldwide. Manganese, cesium, iron and zinc concentrations fell into the range of other coastal environments. Our measurements suggest that Tutum Bay is a suitable site to study the response of coral reefs to high pCO2. Considering that arsenic is a common metal in hydrothermal fluids, its characterization should be included in any study that uses volcanic CO2 seeps as natural laboratories for ocean acidification.
Collapse
Affiliation(s)
- T Pichler
- Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany.
| | - T Biscéré
- ENTROPIE IRD - Université de La Réunion - CNRS, Nouméa 98848, New Caledonia
| | - J Kinch
- National Fisheries College, PO Box 239, Kavieng, New Ireland Province 611, Papua New Guinea
| | - M Zampighi
- ENTROPIE IRD - Université de La Réunion - CNRS, Nouméa 98848, New Caledonia
| | - F Houlbrèque
- ENTROPIE IRD - Université de La Réunion - CNRS, Nouméa 98848, New Caledonia
| | - R Rodolfo-Metalpa
- ENTROPIE IRD - Université de La Réunion - CNRS, Nouméa 98848, New Caledonia
| |
Collapse
|
6
|
González-Delgado S, Hernández JC. The Importance of Natural Acidified Systems in the Study of Ocean Acidification: What Have We Learned? ADVANCES IN MARINE BIOLOGY 2018; 80:57-99. [PMID: 30368306 DOI: 10.1016/bs.amb.2018.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human activity is generating an excess of atmospheric CO2, resulting in what we know as ocean acidification, which produces changes in marine ecosystems. Until recently, most of the research in this area had been done under small-scale, laboratory conditions, using few variables, few species and few life cycle stages. These limitations raise questions about the reproducibility of the environment and about the importance of indirect effects and synergies in the final results of these experiments. One way to address these experimental problems is by conducting studies in situ, in natural areas where expected future pH conditions already occur, such as CO2 vent systems. In the present work, we compile and discuss the latest research carried out in these natural laboratories, with the objective to summarize their advantages and disadvantages for research to improve these investigations so they can better help us understand how the oceans of the future will change.
Collapse
Affiliation(s)
- Sara González-Delgado
- Marine Community Ecology and Climate Change, Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - José Carlos Hernández
- Marine Community Ecology and Climate Change, Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
7
|
Hernández CA, Sangil C, Hernández JC. A new CO2 vent for the study of ocean acidification in the Atlantic. MARINE POLLUTION BULLETIN 2016; 109:419-426. [PMID: 27210563 DOI: 10.1016/j.marpolbul.2016.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 06/05/2023]
Abstract
Natural CO2 vents are considered the gold standard of ocean acidification (OA) studies. In coastal areas these rare vents have only been investigated at the Mediterranean temperate rocky reefs and at Indo-Pacific coral reefs, although there should be more at other volcanic shores around the world. Substantial scientific efforts on investigating OA effects have been mostly performed by laboratory experiments. However, there is a debate on how acute this kind of approach truly represents the responses to OA scenarios, since it generally involves short-term, rapid perturbation and single variable and species experiments. Due to these limitations, world areas with natural CO2 vents are essential to understand long-term marine ecosystem responses to rising human derived atmospheric CO2 concentrations. Here, we presented a new vent found in the subtropical North East Atlantic reefs (28°N, La Palma Island) that shows moderate CO2 emission (900ppm), reducing pH values to an annual average of 7.86±0.16.
Collapse
Affiliation(s)
- C A Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - C Sangil
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - J C Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|