1
|
Hellerstedt J, Castelli M, Tadich A, Grubišić-Čabo A, Kumar D, Lowe B, Gicev S, Potamianos D, Schnitzenbaumer M, Scigalla P, Ghan S, Kienberger R, Usman M, Schiffrin A. Direct observation of narrow electronic energy band formation in 2D molecular self-assembly. NANOSCALE ADVANCES 2022; 4:3845-3854. [PMID: 36133344 PMCID: PMC9470058 DOI: 10.1039/d2na00385f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
Surface-supported molecular overlayers have demonstrated versatility as platforms for fundamental research and a broad range of applications, from atomic-scale quantum phenomena to potential for electronic, optoelectronic and catalytic technologies. Here, we report a structural and electronic characterisation of self-assembled magnesium phthalocyanine (MgPc) mono and bilayers on the Ag(100) surface, via low-temperature scanning tunneling microscopy and spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), density functional theory (DFT) and tight-binding (TB) modeling. These crystalline close-packed molecular overlayers consist of a square lattice with a basis composed of a single, flat-adsorbed MgPc molecule. Remarkably, ARPES measurements at room temperature on the monolayer reveal a momentum-resolved, two-dimensional (2D) electronic energy band, 1.27 eV below the Fermi level, with a width of ∼20 meV. This 2D band results from in-plane hybridization of highest occupied molecular orbitals of adjacent, weakly interacting MgPc's, consistent with our TB model and with DFT-derived nearest-neighbor hopping energies. This work opens the door to quantitative characterisation - as well as control and harnessing - of subtle electronic interactions between molecules in functional organic nanofilms.
Collapse
Affiliation(s)
- Jack Hellerstedt
- School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia
| | - Marina Castelli
- School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia
| | - Anton Tadich
- Australian Synchrotron 800 Blackburn Road Clayton Victoria 3168 Australia
| | | | - Dhaneesh Kumar
- School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia
| | - Benjamin Lowe
- School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia
| | - Spiro Gicev
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne Parkville Victoria 3010 Australia
| | | | | | - Pascal Scigalla
- Physik-Department, Technische Universität München 85748 Garching Germany
| | - Simiam Ghan
- Chair for Theoretical Chemistry, Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4, D-85747 Garching Germany
| | | | - Muhammad Usman
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne Parkville Victoria 3010 Australia
| | - Agustin Schiffrin
- School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
2
|
Stein A, Rolf D, Lotze C, Feldmann S, Gerbert D, Günther B, Jeindl A, Cartus JJ, Hofmann OT, Gade LH, Franke KJ, Tegeder P. Electronic Properties of Tetraazaperopyrene Derivatives on Au(111): Energy-Level Alignment and Interfacial Band Formation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:19969-19979. [PMID: 34557263 PMCID: PMC8450938 DOI: 10.1021/acs.jpcc.1c04217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/18/2021] [Indexed: 06/13/2023]
Abstract
N-heteropolycyclic aromatic compounds are promising organic electron-transporting semiconductors for applications in field-effect transistors. Here, we investigated the electronic properties of 1,3,8,10-tetraazaperopyrene derivatives adsorbed on Au(111) using a complementary experimental approach, namely, scanning tunneling spectroscopy and two-photon photoemission combined with state-of-the-art density functional theory. We find signatures of weak physisorption of the molecular layers, such as the absence of charge transfer, a nearly unperturbed surface state, and an intact herringbone reconstruction underneath the molecular layer. Interestingly, molecular states in the energy region of the sp- and d-bands of the Au(111) substrate exhibit hole-like dispersive character. We ascribe this band character to hybridization with the delocalized states of the substrate. We suggest that such bands, which leave the molecular frontier orbitals largely unperturbed, are a promising lead for the design of organic-metal interfaces with a low charge injection barrier.
Collapse
Affiliation(s)
- Arnulf Stein
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Daniela Rolf
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Christian Lotze
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Sascha Feldmann
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - David Gerbert
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Benjamin Günther
- Anorganisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Andreas Jeindl
- Technische
Universität Graz, Institut für Festkörperphysik, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - Johannes J. Cartus
- Technische
Universität Graz, Institut für Festkörperphysik, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - Oliver T. Hofmann
- Technische
Universität Graz, Institut für Festkörperphysik, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - Lutz H. Gade
- Anorganisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Katharina J. Franke
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Petra Tegeder
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
3
|
Hernández-López L, Piquero-Zulaica I, Downing CA, Piantek M, Fujii J, Serrate D, Ortega JE, Bartolomé F, Lobo-Checa J. Searching for kagome multi-bands and edge states in a predicted organic topological insulator. NANOSCALE 2021; 13:5216-5223. [PMID: 33661272 DOI: 10.1039/d0nr08558h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, mixed honeycomb-kagome lattices featuring metal-organic networks have been theoretically proposed as topological insulator materials capable of hosting nontrivial edge states. This new family of so-called "organic topological insulators" are purely two-dimensional and combine polyaromatic-flat molecules with metal adatoms. However, their experimental validation is still pending given the generalized absence of edge states. Here, we generate one such proposed network on a Cu(111) substrate and study its morphology and electronic structure with the purpose of confirming its topological properties. The structural techniques reveal a practically flawless network that results in a kagome network multi-band observed by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. However, at the network island borders we notice the absence of edge states. Bond-resolved imaging of the network exhibits an unexpected structural symmetry alteration that explains such disappearance. This collective lifting of the network symmetry could be more general than initially expected and provide a simple explanation for the recurrent experimental absence of edge states in predicted organic topological insulators.
Collapse
Affiliation(s)
- Leyre Hernández-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Ignacio Piquero-Zulaica
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain and Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Charles A Downing
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain and Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Marten Piantek
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain and Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018, Zaragoza, Spain
| | - Jun Fujii
- Istituto Officina dei Materiali (IOM)-CNR Laboratorio TASC, 34149 Trieste, Italy
| | - David Serrate
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain and Departamento Física Aplicada I, Universidad del País Vasco, 20018-San Sebastian, Spain and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastian, Spain
| | - Fernando Bartolomé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
4
|
Stein A, Rolf D, Lotze C, Günther B, Gade LH, Franke KJ, Tegeder P. Band Formation at Interfaces Between N-Heteropolycycles and Gold Electrodes. J Phys Chem Lett 2021; 12:947-951. [PMID: 33440118 DOI: 10.1021/acs.jpclett.0c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient charge injection at organic semiconductor/metal interfaces is crucial for the performance of organic field effect transistors. Interfacial hybrid band formation between electronic states of the organic compound and the metal electrode facilitates effective charge injection. Here, we show that a long-range ordered monolayer of a flat-lying N-heteropolycyclic aromatic compound on Au(111) leads to dispersing occupied and unoccupied interfacial hybrid bands. Using angle-resolved two-photon photoemission we determine their energy level alignment and dispersion relations. We suggest that band formation proceeds via hybridization of a localized occupied molecular state with the d-bands of the Au substrate, where the large effective mass of the d-bands is significantly reduced in the hybrid band. Hybridization of an unoccupied molecular state with the Au sp-band leads to a band with an even smaller effective mass.
Collapse
Affiliation(s)
- Arnulf Stein
- Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Daniela Rolf
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Lotze
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Benjamin Günther
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lutz H Gade
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Katharina J Franke
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Petra Tegeder
- Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Yamada T, Ito N, Kawakita N, Kato HS, Munakata T. Formation and regulation of unoccupied hybridized band with image potential states at perylene/graphite interface. J Chem Phys 2019; 151:224703. [DOI: 10.1063/1.5126373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Takashi Yamada
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Natsumi Ito
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Noriaki Kawakita
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Hiroyuki S. Kato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Toshiaki Munakata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|
6
|
Yang X, Egger L, Fuchsberger J, Unzog M, Lüftner D, Hajek F, Hurdax P, Jugovac M, Zamborlini G, Feyer V, Koller G, Puschnig P, Tautz FS, Ramsey MG, Soubatch S. Coexisting Charge States in a Unary Organic Monolayer Film on a Metal. J Phys Chem Lett 2019; 10:6438-6445. [PMID: 31573816 DOI: 10.1021/acs.jpclett.9b02231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The electronic and geometric structures of tetracene films on Ag(110) and Cu(110) have been studied with photoemission tomography and compared to that of pentacene. Despite similar energy level alignment of the two oligoacenes on these surfaces revealed by conventional ultraviolet photoelectron spectroscopy, the momentum-space resolved photoemission tomography reveals a significant difference in both structural and electronic properties of tetracene and pentacene films. Particularly, the saturated monolayer of tetracene on Ag(110) is found to consist of two molecular species that, despite having the same orientation, are electronically very different-while one molecule remains neutral, another is charged because of electron donation from the substrate.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Peter Grünberg Institut (PGI-3) , Forschungszentrum Jülich , 52425 Jülich , Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology , 52425 Jülich , Germany
- Experimental Physics IV A , RWTH Aachen University , 52074 Aachen , Germany
| | - Larissa Egger
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Jana Fuchsberger
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Martin Unzog
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Daniel Lüftner
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Felix Hajek
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Philipp Hurdax
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Matteo Jugovac
- Peter Grünberg Institut (PGI-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Giovanni Zamborlini
- Peter Grünberg Institut (PGI-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Vitaliy Feyer
- Peter Grünberg Institut (PGI-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Georg Koller
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Peter Puschnig
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - F Stefan Tautz
- Peter Grünberg Institut (PGI-3) , Forschungszentrum Jülich , 52425 Jülich , Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology , 52425 Jülich , Germany
- Experimental Physics IV A , RWTH Aachen University , 52074 Aachen , Germany
| | - Michael G Ramsey
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Serguei Soubatch
- Peter Grünberg Institut (PGI-3) , Forschungszentrum Jülich , 52425 Jülich , Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology , 52425 Jülich , Germany
| |
Collapse
|
7
|
Yamane H, Matsui F, Ueba T, Horigome T, Makita S, Tanaka K, Kera S, Kosugi N. Acceptance-cone-tunable electron spectrometer for highly-efficient constant energy mapping. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:093102. [PMID: 31575223 DOI: 10.1063/1.5109453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
We have developed an acceptance-cone-tunable (ACT) electron spectrometer for the highly efficient constant-energy photoelectron mapping of functional materials. The ACT spectrometer consists of the hemispherical deflection analyzer with the mesh-type electrostatic lens near the sample. The photoelectron trajectory can be converged by applying a negative bias to the sample and grounding the mesh lens and the analyzer entrance. The performance of the present ACT spectrometer with neither rotating nor tilting of the sample is demonstrated by the wide-angle observation of the well-known π-band dispersion of a single crystalline graphite over the Brillouin zone. The acceptance cone of the spectrometer is expanded by a factor of 3.30 when the negative bias voltage is 10 times as high as the kinetic energy of photoelectrons.
Collapse
Affiliation(s)
- Hiroyuki Yamane
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Fumihiko Matsui
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Takahiro Ueba
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Toshio Horigome
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Seiji Makita
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Kiyohisa Tanaka
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Satoshi Kera
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuhiro Kosugi
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
8
|
Stadtmüller B, Grad L, Seidel J, Haag F, Haag N, Cinchetti M, Aeschlimann M. Modification of Pb quantum well states by the adsorption of organic molecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:134005. [PMID: 30625428 DOI: 10.1088/1361-648x/aafcf5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The successful implementation of nanoscale materials in next generation optoelectronic devices crucially depends on our ability to functionalize and design low dimensional materials according to the desired field of application. Recently, organic adsorbates have revealed an enormous potential to alter the occupied surface band structure of tunable materials by the formation of tailored molecule-surface bonds. Here, we extend this concept of adsorption-induced surface band structure engineering to the unoccupied part of the surface band structure. This is achieved by our comprehensive investigation of the unoccupied band structure of a lead (Pb) monolayer film on the Ag(1 1 1) surface prior and after the adsorption of one monolayer of the aromatic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). Using two-photon momentum microscopy, we show that the unoccupied states of the Pb/Ag(1 1 1) bilayer system are dominated by a parabolic quantum well state (QWS) in the center of the surface Brillouin zone with Pb p[Formula: see text] orbital character and a side band with almost linear dispersion showing Pb p[Formula: see text] orbital character. After the adsorption of PTCDA, the Pb side band remains completely unaffected while the signal of the Pb QWS is fully suppressed. This adsorption induced change in the unoccupied Pb band structure coincides with an interfacial charge transfer from the Pb layer into the PTCDA molecule. We propose that this charge transfer and the correspondingly vertical (partially chemical) interaction across the PTCDA/Pb interface suppresses the existence of the QWS in the Pb layer. Our results hence unveil a new possibility to orbital selectively tune and control the entire surface band structure of low dimensional systems by the adsorption of organic molecules.
Collapse
Affiliation(s)
- Benjamin Stadtmüller
- Department of Physics and OPTIMAS Research Center, TU Kaiserslautern, Erwin-Schrödinger-Strasse 46, 67663 Kaiserslautern, Germany. Graduate School of Excellence Materials Science in Mainz, Erwin-Schrödinger-Strasse 46, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Barborini M, Sorella S, Rontani M, Corni S. Angle-resolved photoemission spectroscopy from first-principles quantum Monte Carlo. J Chem Phys 2018; 149:154102. [DOI: 10.1063/1.5038864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Sandro Sorella
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy
| | | | - Stefano Corni
- CNR-NANO, Via Campi 213/a, 41125 Modena, Italy
- Dipartimento di Scienze Chimiche—Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
10
|
Yamada T, Kinoshita M, Araragi K, Watanabe Y, Ueba T, Kato HS, Munakata T. Direct visualization of diffuse unoccupied molecular orbitals at a rubrene/graphite interface. Phys Chem Chem Phys 2018; 20:17415-17422. [DOI: 10.1039/c8cp01796d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Using a combination of spectroscopic and microscopic imaging techniques, localized and delocalized unoccupied states are visualized at the molecular level.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka 560-0043
- Japan
| | - Mariko Kinoshita
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka 560-0043
- Japan
| | - Kento Araragi
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka 560-0043
- Japan
| | - Yu Watanabe
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka 560-0043
- Japan
| | - Takahiro Ueba
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka 560-0043
- Japan
| | - Hiroyuki S. Kato
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka 560-0043
- Japan
| | - Toshiaki Munakata
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka 560-0043
- Japan
| |
Collapse
|
11
|
Yamane H, Kosugi N. High Hole-Mobility Molecular Layer Made from Strong Electron Acceptor Molecules with Metal Adatoms. J Phys Chem Lett 2017; 8:5366-5371. [PMID: 29043806 DOI: 10.1021/acs.jpclett.7b02390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electronic structure of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-TCNQ (F4TCNQ) monolayers on Au(111) has been investigated by means of angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. In contrast to the physisorbed TCNQ/Au(111) interface, the high-resolution core-level photoemission spectra and the low-energy electron diffraction at the F4TCNQ/Au(111) interface show evidence for the strong charge transfer (CT) from Au to F4TCNQ and for the Au atom segregation from the underlying Au(111) surface, suggesting a possible origin of the spontaneous formation of the two-dimensional F4TCNQ-Au network. The ARPES experiment reveals a low hole-injection barrier and large band dispersion in the CT-induced topmost valence level of the F4TCNQ-Au network with 260 meV bandwidth due to the adatom-mediated intermolecular interaction. These results indicate that strong electron acceptor molecules with metal adatoms can form high hole-mobility molecular layers by controlling the molecule-metal ordered structure and their CT interaction.
Collapse
Affiliation(s)
- Hiroyuki Yamane
- Institute for Molecular Science, National Institutes of Natural Sciences , Myodaiji, Okazaki 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies) , Myodaiji, Okazaki 444-8585, Japan
| | - Nobuhiro Kosugi
- Institute for Molecular Science, National Institutes of Natural Sciences , Myodaiji, Okazaki 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies) , Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
12
|
Udhardt C, Otto F, Kern C, Lüftner D, Huempfner T, Kirchhuebel T, Sojka F, Meissner M, Schröter B, Forker R, Puschnig P, Fritz T. Influence of Film and Substrate Structure on Photoelectron Momentum Maps of Coronene Thin Films on Ag(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:12285-12293. [PMID: 28620448 PMCID: PMC5467179 DOI: 10.1021/acs.jpcc.7b03500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 05/17/2023]
Abstract
Angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) was measured for one-monolayer coronene films deposited on Ag(111). The (kx ,ky )-dependent photoelectron momentum maps (PMMs), which were extracted from the ARUPS data by cuts at fixed binding energies, show finely structured patterns for the highest and the second-highest occupied molecular orbitals. While the substructure of the PMM main features is related to the 4 × 4 commensurate film structure, various features with three-fold symmetry imply an additional influence of the substrate. PMM simulations on the basis of both free-standing coronene assemblies and coronene monolayers on the Ag(111) substrate confirm a sizable molecule-molecule interaction because no substructure was observed for PMM simulations using free coronene molecules.
Collapse
Affiliation(s)
- Christian Udhardt
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Felix Otto
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Christian Kern
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Daniel Lüftner
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Tobias Huempfner
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Tino Kirchhuebel
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Falko Sojka
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Matthias Meissner
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Bernd Schröter
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Roman Forker
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Peter Puschnig
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Torsten Fritz
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Helmholtzweg 5, 07743 Jena, Germany
| |
Collapse
|
13
|
Henneke C, Felter J, Schwarz D, Stefan Tautz F, Kumpf C. Controlling the growth of multiple ordered heteromolecular phases by utilizing intermolecular repulsion. NATURE MATERIALS 2017; 16:628-633. [PMID: 28272503 DOI: 10.1038/nmat4858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Metal/organic interfaces and their structural, electronic, spintronic and thermodynamic properties have been investigated intensively, aiming to improve and develop future electronic devices. In this context, heteromolecular phases add new design opportunities simply by combining different molecules. However, controlling the desired phases in such complex systems is a challenging task. Here, we report an effective way of steering the growth of a bimolecular system composed of adsorbate species with opposite intermolecular interactions-repulsive and attractive, respectively. The repulsive species forms a two-dimensional lattice gas, the density of which controls which crystalline phases are stable. Critical gas phase densities determine the constant-area phase diagram that describes our experimental observations, including eutectic regions with three coexisting phases. We anticipate the general validity of this type of phase diagram for binary systems containing two-dimensional gas phases, and also show that the density of the gas phase allows engineering of the interface structure.
Collapse
Affiliation(s)
- Caroline Henneke
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - Janina Felter
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - Daniel Schwarz
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - F Stefan Tautz
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - Christian Kumpf
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
| |
Collapse
|
14
|
Puschnig P, Boese AD, Willenbockel M, Meyer M, Lüftner D, Reinisch EM, Ules T, Koller G, Soubatch S, Ramsey MG, Tautz FS. Energy Ordering of Molecular Orbitals. J Phys Chem Lett 2017; 8:208-213. [PMID: 27935313 PMCID: PMC5220489 DOI: 10.1021/acs.jpclett.6b02517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/09/2016] [Indexed: 05/17/2023]
Abstract
Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations.
Collapse
Affiliation(s)
- P. Puschnig
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz
5, 8010 Graz, Austria
- E-mail:
| | - A. D. Boese
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| | - M. Willenbockel
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen
Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - M. Meyer
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen
Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - D. Lüftner
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz
5, 8010 Graz, Austria
| | - E. M. Reinisch
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz
5, 8010 Graz, Austria
| | - T. Ules
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz
5, 8010 Graz, Austria
| | - G. Koller
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz
5, 8010 Graz, Austria
| | - S. Soubatch
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen
Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - M. G. Ramsey
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz
5, 8010 Graz, Austria
| | - F. S. Tautz
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen
Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| |
Collapse
|
15
|
Zhang YQ, Björk J, Barth JV, Klappenberger F. Intermolecular Hybridization Creating Nanopore Orbital in a Supramolecular Hydrocarbon Sheet. NANO LETTERS 2016; 16:4274-4281. [PMID: 27253516 DOI: 10.1021/acs.nanolett.6b01324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular orbital engineering is a key ingredient for the design of organic devices. Intermolecular hybridization promises efficient charge carrier transport but usually requires dense packing for significant wave function overlap. Here we use scanning tunneling spectroscopy to spatially resolve the electronic structure of a surface-confined nanoporous supramolecular sheet of a prototypical hydrocarbon compound featuring terminal alkyne (-CCH) groups. Surprisingly, localized nanopore orbitals are observed, with their electron density centered in the cavities surrounded by the functional moieties. Density functional theory calculations reveal that these new electronic states originate from the intermolecular hybridization of six in-plane π-orbitals of the carbon-carbon triple bonds, exhibiting significant electronic splitting and an energy downshift of approximately 1 eV. Importantly, these nanopore states are distinct from previously reported interfacial states. We unravel the underlying connection between the formation of nanopore orbital and geometric arrangements of functional groups, thus demonstrating the generality of applying related orbital engineering concepts in various types of porous organic structures.
Collapse
Affiliation(s)
- Yi-Qi Zhang
- Physik-Department E20, Technische Universität München , 85748 Garching, Germany
| | - Jonas Björk
- Department of Physics, Chemistry and Biology (IFM), Linköping University , 58183 Linköping, Sweden
| | - Johannes V Barth
- Physik-Department E20, Technische Universität München , 85748 Garching, Germany
| | | |
Collapse
|
16
|
Vasseur G, Abadia M, Miccio LA, Brede J, Garcia-Lekue A, de Oteyza DG, Rogero C, Lobo-Checa J, Ortega JE. Π Band Dispersion along Conjugated Organic Nanowires Synthesized on a Metal Oxide Semiconductor. J Am Chem Soc 2016; 138:5685-92. [PMID: 27115554 PMCID: PMC4858753 DOI: 10.1021/jacs.6b02151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Surface-confined dehalogenation reactions
are versatile bottom-up
approaches for the synthesis of carbon-based nanostructures with predefined
chemical properties. However, for devices generally requiring low-conductivity
substrates, potential applications are so far severely hampered by
the necessity of a metallic surface to catalyze the reactions. In
this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4″-dibromoterphenyl
precursors. The supramolecular phase is clearly distinguished from
the polymeric one using low-energy electron diffraction and scanning
tunneling microscopy as the substrate temperature used for deposition
is varied. X-ray photoelectron spectroscopy of C 1s and Br 3d core
levels traces the temperature of the onset of dehalogenation to around
475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding
calculations identify a highly dispersive band characteristic of a
substantial overlap between the precursor’s π states
along the polymer, considered as the fingerprint of a successful polymerization.
Thus, these results establish the first spectroscopic evidence that
atomically precise carbon-based nanostructures can readily be synthesized
on top of a transition-metal oxide surface, opening the prospect for
the bottom-up production of novel molecule–semiconductor devices.
Collapse
Affiliation(s)
- Guillaume Vasseur
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC)/Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC) , Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain.,Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain
| | - Mikel Abadia
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC)/Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC) , Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
| | - Luis A Miccio
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC)/Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC) , Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain.,Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain
| | - Jens Brede
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC)/Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC) , Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain.,Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain
| | - Aran Garcia-Lekue
- Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science , 48011 Bilbao, Spain
| | - Dimas G de Oteyza
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC)/Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC) , Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain.,Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science , 48011 Bilbao, Spain
| | - Celia Rogero
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC)/Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC) , Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain.,Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain
| | - Jorge Lobo-Checa
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC)/Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC) , Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain.,Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza , 50009 Zaragoza, Spain.,Departamento de Física de la Materia Condensada, Universidad de Zaragoza , 50009 Zaragoza, Spain
| | - J Enrique Ortega
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC)/Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC) , Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain.,Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain.,Departamento Física Aplicada I, Universidad del País Vasco , 20018 San Sebastián, Spain
| |
Collapse
|
17
|
Graus M, Grimm M, Metzger C, Dauth M, Tusche C, Kirschner J, Kümmel S, Schöll A, Reinert F. Electron-Vibration Coupling in Molecular Materials: Assignment of Vibronic Modes from Photoelectron Momentum Mapping. PHYSICAL REVIEW LETTERS 2016; 116:147601. [PMID: 27104726 DOI: 10.1103/physrevlett.116.147601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 05/09/2023]
Abstract
Electron-phonon coupling is one of the most fundamental effects in condensed matter physics. We here demonstrate that photoelectron momentum mapping can reveal and visualize the coupling between specific vibrational modes and electronic excitations. When imaging molecular orbitals with high energy resolution, the intensity patterns of photoelectrons of the vibronic sidebands of molecular states show characteristic changes due to the distortion of the molecular frame in the vibronically excited state. By comparison to simulations, an assignment of specific vibronic modes is possible, thus providing unique information on the coupling between electronic and vibronic excitation.
Collapse
Affiliation(s)
- M Graus
- University of Würzburg, Experimental Physics VII, 97074 Würzburg, Germany
| | - M Grimm
- University of Würzburg, Experimental Physics VII, 97074 Würzburg, Germany
| | - C Metzger
- University of Würzburg, Experimental Physics VII, 97074 Würzburg, Germany
| | - M Dauth
- University of Bayreuth, Theoretical Physics IV, 95440 Bayreuth, Germany
| | - C Tusche
- Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - J Kirschner
- Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
| | - S Kümmel
- University of Bayreuth, Theoretical Physics IV, 95440 Bayreuth, Germany
| | - A Schöll
- University of Würzburg, Experimental Physics VII, 97074 Würzburg, Germany
| | - F Reinert
- University of Würzburg, Experimental Physics VII, 97074 Würzburg, Germany
| |
Collapse
|
18
|
Vasseur G, Fagot-Revurat Y, Sicot M, Kierren B, Moreau L, Malterre D, Cardenas L, Galeotti G, Lipton-Duffin J, Rosei F, Di Giovannantonio M, Contini G, Le Fèvre P, Bertran F, Liang L, Meunier V, Perepichka DF. Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires. Nat Commun 2016; 7:10235. [PMID: 26725974 PMCID: PMC4725758 DOI: 10.1038/ncomms10235] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022] Open
Abstract
On-surface covalent self-assembly of organic molecules is a very promising bottom-up approach for producing atomically controlled nanostructures. Due to their highly tuneable properties, these structures may be used as building blocks in electronic carbon-based molecular devices. Following this idea, here we report on the electronic structure of an ordered array of poly(para-phenylene) nanowires produced by surface-catalysed dehalogenative reaction. By scanning tunnelling spectroscopy we follow the quantization of unoccupied molecular states as a function of oligomer length, with Fermi level crossing observed for long chains. Angle-resolved photoelectron spectroscopy reveals a quasi-1D valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the band structure, including the gap size and charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour.
Collapse
Affiliation(s)
- Guillaume Vasseur
- Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS, BP 70239, F-54506 Vandoeuvre-les-Nancy, France
| | - Yannick Fagot-Revurat
- Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS, BP 70239, F-54506 Vandoeuvre-les-Nancy, France
| | - Muriel Sicot
- Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS, BP 70239, F-54506 Vandoeuvre-les-Nancy, France
| | - Bertrand Kierren
- Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS, BP 70239, F-54506 Vandoeuvre-les-Nancy, France
| | - Luc Moreau
- Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS, BP 70239, F-54506 Vandoeuvre-les-Nancy, France
| | - Daniel Malterre
- Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS, BP 70239, F-54506 Vandoeuvre-les-Nancy, France
| | - Luis Cardenas
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Quebec, Canada J3X 1S2
- IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Villeurbanne 69626, France
| | - Gianluca Galeotti
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Quebec, Canada J3X 1S2
| | - Josh Lipton-Duffin
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Quebec, Canada J3X 1S2
- Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Quebec, Canada J3X 1S2
- Institute for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | - Giorgio Contini
- Instituto di Struttura della Materia, CNR, Via Fosso del Cavaliere 100, 00133 Roma, Italy
- Physics Department, University of Rome ‘Tor Vergata', Via della Ricerca Scientifica 1, I-00133 Roma, Italy
| | - Patrick Le Fèvre
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif sur Yvette, France
| | - François Bertran
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif sur Yvette, France
| | - Liangbo Liang
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Vincent Meunier
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Dmitrii F. Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
19
|
Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography. Nat Commun 2015; 6:8287. [PMID: 26437297 PMCID: PMC4600719 DOI: 10.1038/ncomms9287] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/06/2015] [Indexed: 11/08/2022] Open
Abstract
Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule. Experimental data from angle-resolved photoemission spectroscopy can be utilized on molecular films to retrieve real-space images of molecular orbitals in two dimensions. Here, by scanning initial states as a function of photon energy, the authors can reconstruct three-dimensional orbital images.
Collapse
|
20
|
Offenbacher H, Lüftner D, Ules T, Reinisch EM, Koller G, Puschnig P, Ramsey MG. Orbital tomography: Molecular band maps, momentum maps and the imaging of real space orbitals of adsorbed molecules. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA 2015; 204:92-101. [PMID: 26752804 PMCID: PMC4691939 DOI: 10.1016/j.elspec.2015.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The frontier orbitals of molecules are the prime determinants of their chemical, optical and electronic properties. Arguably, the most direct method of addressing the (filled) frontier orbitals is ultra-violet photoemission spectroscopy (UPS). Although UPS is a mature technique from the early 1970s on, the angular distribution of the photoemitted electrons was thought to be too complex to be analysed quantitatively. Recently angle resolved UPS (ARUPS) work on conjugated molecules both, in ordered thick films and chemisorbed monolayers, has shown that the angular (momentum) distribution of the photocurrent from orbital emissions can be simply understood. The approach, based on the assumption of a plane wave final state is becoming known as orbital tomography. Here we will demonstrate, with selected examples of pentacene (5A) and sexiphenyl (6P), the potential of orbital tomography. First it will be shown how the full angular distribution of the photocurrent (momentum map) from a specific orbital is related to the real space orbital by a Fourier transform. Examples of the reconstruction of 5A orbitals will be given and the procedure for recovering the lost phase information will be outlined. We then move to examples of sexiphenyl where we interrogate the original band maps of thick sexiphenyl in the light of our understanding of orbital tomography that has developed since then. With comparison to theoretical simulations of the molecular band maps, the molecular conformation and orientation will be concluded. New results for the sexiphenyl monolayer on Al(1 1 0) will then be presented. From the band maps it will be concluded that the molecule is planarised and adopts a tilted geometry. Finally the momentum maps down to HOMO-11 will be analysed and real space orbitals reconstructed.
Collapse
Affiliation(s)
| | | | | | | | - Georg Koller
- Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
| | | | - Michael G. Ramsey
- Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
| |
Collapse
|
21
|
Lüftner D, Milko M, Huppmann S, Scholz M, Ngyuen N, Wießner M, Schöll A, Reinert F, Puschnig P. CuPc/Au(1 1 0): Determination of the azimuthal alignment by a combination of angle-resolved photoemission and density functional theory. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA 2014; 195:293-300. [PMID: 25284953 PMCID: PMC4183753 DOI: 10.1016/j.elspec.2014.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (kxky )-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface.
Collapse
Affiliation(s)
- Daniel Lüftner
- Institute of Physics, Karl-Franzens-Universität Graz, NAWI Graz, Austria
| | - Matus Milko
- Institute of Physics, Karl-Franzens-Universität Graz, NAWI Graz, Austria
| | - Sophia Huppmann
- Experimentelle Physik VII und Wilhelm Conrad Roentgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
- Gemeinschaftslabor für Nanoanalytik, Karlsruher Institut für Technologie KIT, 76021 Karlsruhe, Germany
| | - Markus Scholz
- Experimentelle Physik VII und Wilhelm Conrad Roentgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
- Gemeinschaftslabor für Nanoanalytik, Karlsruher Institut für Technologie KIT, 76021 Karlsruhe, Germany
| | - Nam Ngyuen
- Experimentelle Physik VII und Wilhelm Conrad Roentgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
- Gemeinschaftslabor für Nanoanalytik, Karlsruher Institut für Technologie KIT, 76021 Karlsruhe, Germany
| | - Michael Wießner
- Experimentelle Physik VII und Wilhelm Conrad Roentgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
- Gemeinschaftslabor für Nanoanalytik, Karlsruher Institut für Technologie KIT, 76021 Karlsruhe, Germany
| | - Achim Schöll
- Experimentelle Physik VII und Wilhelm Conrad Roentgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
- Gemeinschaftslabor für Nanoanalytik, Karlsruher Institut für Technologie KIT, 76021 Karlsruhe, Germany
| | - Friedrich Reinert
- Experimentelle Physik VII und Wilhelm Conrad Roentgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
- Gemeinschaftslabor für Nanoanalytik, Karlsruher Institut für Technologie KIT, 76021 Karlsruhe, Germany
| | - Peter Puschnig
- Institute of Physics, Karl-Franzens-Universität Graz, NAWI Graz, Austria
| |
Collapse
|
22
|
Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat Commun 2014; 5:4174. [PMID: 24938867 PMCID: PMC4090715 DOI: 10.1038/ncomms5174] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022] Open
Abstract
Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. Understanding and being able to predict alignment between the electrode Fermi energy and the transport states in the organic semiconductor is important. Here, the authors report an electrostatic model, capable of reproducing the full range of interfacial energy level alignment regimes.
Collapse
|
23
|
Wießner M, Hauschild D, Sauer C, Feyer V, Schöll A, Reinert F. Complete determination of molecular orbitals by measurement of phase symmetry and electron density. Nat Commun 2014; 5:4156. [DOI: 10.1038/ncomms5156] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/19/2014] [Indexed: 11/09/2022] Open
|
24
|
Abstract
The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust.
Collapse
|
25
|
Harutyunyan H, Callsen M, Allmers T, Caciuc V, Blügel S, Atodiresei N, Wegner D. Hybridisation at the organic–metal interface: a surface-scientific analogue of Hückel's rule? Chem Commun (Camb) 2013; 49:5993-5. [DOI: 10.1039/c3cc42574f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|