1
|
Sivkova R, Konefal R, Kostka L, Laga R, García-Briones GS, Kočková O, Pop-Georgievski O, Kubies D. Precise Control of Molecular Weight Characteristics of Charge-Shifting Poly(2-(N,N-Dimethylamino)Ethylacrylate) Synthesized by Reversible Addition-Fragmentation Chain Transfer Polymerization. Macromol Rapid Commun 2024:e2400640. [PMID: 39491052 DOI: 10.1002/marc.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) is a promising charge-shifting polycation with the capacity to form a range of morphologically distinct polyelectrolyte assemblies. Nevertheless, the basic character of the monomer and its hydrolytic instability impedes its controlled synthesis to higher molecular weight (MW). Herein, the reversible addition-fragmentation chain transfer polymerization of DMAEA is reported using a tert-butanol/V70 initiator/trithiocarbonate-based chain transfer agent (CTA) polymerization setup. The CTA instability is demonstrated in the presence of the unprotonated tertiary amino group of the DMAEA monomer, which limits the control over the conversion and MW of the polymer. In contrast, the shielding of the amino groups by their protonation leads to polymerization with high conversions and excellent control over MWs of polymer up to 100 000 g mol-1. Hydrolytic degradation study at pH values ranging from 5 to 9 reveals that both basic and protonated PDMAEA undergo a pH-dependent hydrolysis. The proposed polymerization conditions provide a means of synthesizing PDMAEA with well-controlled characteristics, which are beneficial for controlling the complexation processes during the formation of various polyelectrolyte assemblies.
Collapse
Affiliation(s)
- Radoslava Sivkova
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic
| | - Rafal Konefal
- Department of Structural Analysis, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic
| | - Libor Kostka
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic
| | - Richard Laga
- Department of Polymer and Colloid Immunotherapeutics, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic
| | - Gabriela S García-Briones
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic
| | - Olga Kočková
- Analytical Chemistry Laboratory, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic
| | - Dana Kubies
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic
| |
Collapse
|
2
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
3
|
Mapfumo P, Reichel LS, André T, Hoeppener S, Rudolph LK, Traeger A. Optimizing Biocompatibility and Gene Delivery with DMAEA and DMAEAm: A Niacin-Derived Copolymer Approach. Biomacromolecules 2024; 25:4749-4761. [PMID: 38963401 PMCID: PMC11323007 DOI: 10.1021/acs.biomac.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Gene therapy is pivotal in nanomedicine, offering a versatile approach to disease treatment. This study aims to achieve an optimal balance between biocompatibility and efficacy, which is a common challenge in the field. A copolymer library is synthesized, incorporating niacin-derived monomers 2-acrylamidoethyl nicotinate (AAEN) or 2-(acryloyloxy)ethyl nicotinate (AEN) with N,N-(dimethylamino)ethyl acrylamide (DMAEAm) or hydrolysis-labile N,N-(dimethylamino)ethyl acrylate (DMAEA). Evaluation of the polymers' cytotoxicity profiles reveals that an increase in AAEN or DMAEA molar ratios correlates with improved biocompatibility. Remarkably, an increase in AAEN in both DMAEA and DMAEAm copolymers demonstrated enhanced transfection efficiencies of plasmid DNA in HEK293T cells. Additionally, the top-performing polymers demonstrate promising gene expression in challenging-to-transfect cells (THP-1 and Jurkat cells) and show no significant effect on modulating immune response induction in ex vivo treated murine monocytes. Overall, the best performing candidates exhibit an optimal balance between biocompatibility and efficacy, showcasing potential advancements in gene therapy.
Collapse
Affiliation(s)
- Prosper
P. Mapfumo
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
| | - Liên S. Reichel
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
| | - Thomas André
- Leibniz
Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Stephanie Hoeppener
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | | | - Anja Traeger
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| |
Collapse
|
4
|
Lu D, Jia Z, Monteiro MJ. A Sequence-Defined ABC Dendritic Macromolecule with Amino Acid Peripheral Functionality via Iterative Chemoselective Reactions. Biomacromolecules 2024; 25:2007-2015. [PMID: 38349647 DOI: 10.1021/acs.biomac.3c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chemoselective reactions allow near-precision control over the polymer composition and topology to create sequence-controlled polymers with similar secondary and tertiary structures to those found in proteins. Dendrimers are recognized as well-defined macromolecules with the potential to mimic protein surface functionality due to the large number of functional groups available at its periphery with the internal structure acting as the support scaffold. Transitioning from using small-molecule dendrimers to dendritic macromolecules will not only allow retention of the high peripheral functionality but also provide an internal scaffold with a desired polymer composition within each generational layer. Here, we exemplify a systematic approach to creating a dendritic macromolecule with the placement of different polymer building blocks in precise locations within the internal structure and the placement of three different amino acid moieties clustered at the periphery. The synthesis of this ABC dendritic macromolecule was accomplished through iterative chemoselective reactions.
Collapse
Affiliation(s)
- Derong Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Arjunan N, Thiruvengadam V, Sushil SN. Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review. Mol Biol Rep 2024; 51:355. [PMID: 38400844 DOI: 10.1007/s11033-023-09187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems have emerged as powerful tools in the field of pest management, offering precise and effective means of delivering double-stranded RNA (dsRNA), a potent agent for pest control through RNA interference (RNAi). This comprehensive review aims to evaluate and compare various types of nanoparticles for their suitability in dsRNA delivery for pest management applications. The review begins by examining the unique properties and advantages of different nanoparticle materials, including clay, chitosan, liposomes, carbon, gold and silica. Each material's ability to protect dsRNA from degradation and its potential for targeted delivery to pests are assessed. Furthermore, this review delves into the surface modification strategies employed to enhance dsRNA delivery efficiency. Functionalization with oligonucleotides, lipids, polymers, proteins and peptides is discussed in detail, highlighting their role in improving stability, cellular uptake, and specificity of dsRNA delivery.This review also provides valuable guidance on choosing the most suitable nanoparticle-based system for delivering dsRNA effectively and sustainably in pest management. Moreover, it identifies existing knowledge gaps and proposes potential research directions aimed at enhancing pest control strategies through the utilization of nanoparticles and dsRNA.
Collapse
Affiliation(s)
- Nareshkumar Arjunan
- Division of Molecular Entomology, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India.
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India.
| | - S N Sushil
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India
| |
Collapse
|
6
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
7
|
Li F, Cao D, Yao L, Gu W, Liu Z, Li D, Cui L. Targeted delivery of miR-34a-5p by phenylborate-coupled polyethylenimide nanocarriers for anti-KSHV treatment. Front Bioeng Biotechnol 2024; 11:1343956. [PMID: 38260739 PMCID: PMC10801047 DOI: 10.3389/fbioe.2023.1343956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) can infect a variety of cells and cause malignant tumors. At present, the use of microRNA (miRNA) for anti-KSHV is a promising treatment strategy, but the instability and non-specific uptake of miRNA still limit its use in the treatment of KSHV. In the present study, we constructed a nano-drug delivery system employing chemical grafting and electrostatic adsorption to solve the problems of easy degradation and low cell uptake of miRNA during direct administration. This nano-drug delivery system is to graft 4-carboxyphenylboric acid (PBA) and lauric acid (LA) onto polyethylenimine (PEI) through amidation reaction, and then prepare cationic copolymer nanocarriers (LA-PEI-PBA). The drug-carrying nanocomplex LA-PEI-PBA/miR-34a-5p was formed after further electrostatic adsorption of miR-34a-5p on the carrier and could protect miR-34a-5p from nuclease and serum degradation. Modification of the drug-carrying nanocomplex LA-PEI-PBA/miR-34a-5p by targeted molecule PBA showed effective uptake, increase in the level of miR-34a-5p, and inhibition of cell proliferation and migration in KSHV-infected cells. In addition, the drug-carrying nanocomplex could also significantly reduce the expression of KSHV lytic and latent genes, achieving the purpose of anti-KSHV treatment. In conclusion, these cationic copolymer nanocarriers with PBA targeting possess potential applications in nucleic acid delivery and anti-KSHV therapy.
Collapse
Affiliation(s)
- Fangling Li
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China
| | - Dongdong Cao
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lixia Yao
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD, Australia
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China
| | - Dongmei Li
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lin Cui
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
8
|
Cao X, Wang C, Deng Z, Zhong Y, Chen H. Efficient ocular delivery of siRNA via pH-sensitive vehicles for corneal neovascularization inhibition. Int J Pharm X 2023; 5:100183. [PMID: 37234133 PMCID: PMC10206438 DOI: 10.1016/j.ijpx.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Corneal neovascularization (CoNV)-induced blindness is an enduring and challenging condition with limited management options. Small interfering RNA (siRNA) is a promising strategy for preventing CoNV. This study reported a new strategy using siVEGFA to silence vascular endothelial growth factor A (VEGFA) for CoNV treatment. To improve the efficacy of siVEGFA delivery, a pH-sensitive polycationic mPEG2k-PAMA30-P(DEA29-D5A29) (TPPA) was fabricated. TPPA/siVEGFA polyplexes enter cells via clathrin-mediated endocytosis, resulting in higher cellular uptake efficiency and comparable silencing efficiency than that of Lipofectamine 2000 in vitro. Hemolytic assays verified that TPPA safe in normal physiological environments (pH 7.4) but can easily destroy membranes in acidic mature endosomes (pH 4.0). Studies on the distribution of TPPA in vivo showed that it could prolong the retention time of siVEGFA and promote its penetration in the cornea. In a mouse model induced by alkali burn, TPPA efficiently delivered siVEGFA to the lesion site and achieved VEGFA silencing efficiency. Importantly, the inhibitory effect of TPPA/siVEGFA on CoNV was comparable to that of the anti-VEGF drug ranibizumab. Delivering siRNA using pH-sensitive polycations to the ocular environment provides a new strategy to efficiently inhibit CoNV.
Collapse
Affiliation(s)
- Xiaowen Cao
- School of Ophthalmology and Optometry/School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Changrong Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zhennv Deng
- School of Ophthalmology and Optometry/School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiming Zhong
- School of Ophthalmology and Optometry/School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hao Chen
- School of Ophthalmology and Optometry/School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
9
|
Li Y, Zheng H, Lu H, Duan M, Li C, Li M, Li J, Wang L, Li Q, Chen J, Shen J. Noncanonical Condensation of Nucleic Acid Chains by Hydrophobic Gold Nanocrystals. JACS AU 2023; 3:2206-2215. [PMID: 37654586 PMCID: PMC10466341 DOI: 10.1021/jacsau.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Nucleic acid condensates are essential for various biological processes and have numerous applications in nucleic acid nanotechnology, gene therapy, and mRNA vaccines. However, unlike the in vivo condensation that is dependent on motor proteins, the in vitro condensation efficiency remains to be improved. Here, we proposed a hydrophobic interaction-driven mechanism for condensing long nucleic acid chains using atomically precise hydrophobic gold nanoclusters (Au NCs). We found that hydrophobic Au NCs could condense long single-stranded DNA or RNA to form composites of spherical nanostructures, which further assembled into bead-shaped suprastructures in the presence of excessive Au NCs. Thus, suprastructures displayed gel-like behaviors, and Au NCs could diffuse freely inside the condensates, which resemble the collective motions of condensin complexes inside chromosomes. The dynamic hydrophobic interactions between Au NCs and bases allow for the reversible release of nucleic acids in the presence of mild triggering agents. Our method represents a significant advancement toward the development of more efficient and versatile nucleic acid condensation techniques.
Collapse
Affiliation(s)
- Yu Li
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Department
of Stem Cells and Regenerative Medicine, Translational Medicine Research
Center, Naval Medical University, 800, Xiangyin Road, Shanghai 200433 ,China
| | - Haoran Zheng
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lu
- Zhangjiang
Laboratory, 100 Haike
Road, Shanghai 201210, China
| | - Mulin Duan
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Zhangjiang
Laboratory, 100 Haike
Road, Shanghai 201210, China
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Chen
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jianlei Shen
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023; 14:1127704. [PMID: 36969193 PMCID: PMC10033545 DOI: 10.3389/fimmu.2023.1127704] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Modulation of a non-adequate, amplified immune response enables to attenuate the clinical course of a disease and restore homeostasis. The potential targets to modulate immunity are as multiple as the components of the immune system, thus creating various possibilities for intervention. However, immunomodulation faces new challenges to design safer and more efficacious therapeutic compounds. This review offers a cross-sectional picture of the currently used and newest pharmacological interventions, genomic editing, and tools for regenerative medicine involving immunomodulation. We reviewed currently available experimental and clinical evidence to prove the efficiency, safety, and feasibility of immunomodulation in vitro and in vivo. We also reviewed the advantages and limitations of the described techniques. Despite its limitations, immunomodulation is considered as therapy itself or as an adjunct with promising results and developing potential.
Collapse
|
11
|
Shaharyar MA, Bhowmik R, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sarkar A, Kazmi I, Karmakar S. Vaccine Formulation Strategies and Challenges Involved in RNA Delivery for Modulating Biomarkers of Cardiovascular Diseases: A Race from Laboratory to Market. Vaccines (Basel) 2023; 11:vaccines11020241. [PMID: 36851119 PMCID: PMC9963957 DOI: 10.3390/vaccines11020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
It has been demonstrated that noncoding RNAs have significant physiological and pathological roles. Modulation of noncoding RNAs may offer therapeutic approaches as per recent findings. Small RNAs, mostly long noncoding RNAs, siRNA, and microRNAs make up noncoding RNAs. Inhibiting or promoting protein breakdown by binding to 3' untranslated regions of target mRNA, microRNAs post-transcriptionally control the pattern of gene expression. Contrarily, long non-coding RNAs perform a wider range of tasks, including serving as molecular scaffolding, decoys, and epigenetic regulators. This article provides instances of long noncoding RNAs and microRNAs that may be a biomarker of CVD (cardiovascular disease). In this paper we highlight various RNA-based vaccine formulation strategies designed to target these biomarkers-that are either currently in the research pipeline or are in the global pharmaceutical market-along with the physiological hurdles that need to be overcome.
Collapse
Affiliation(s)
- Md. Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| |
Collapse
|
12
|
Liang X, Gillies ER. Self-immolative Amphiphilic Diblock Copolymers with Individually Triggerable Blocks. ACS POLYMERS AU 2022; 2:313-323. [PMID: 36254315 PMCID: PMC9562457 DOI: 10.1021/acspolymersau.2c00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Self-immolative polymers
are a growing class of degradable polymers
that undergo end-to-end depolymerization after the stimuli-responsive
cleavage of an end-cap or backbone unit. Their incorporation into
amphiphilic block copolymers can lead to functions such as the disintegration
of copolymer nanoassemblies when depolymerization is triggered. However,
diblock copolymers have not yet been developed where both blocks are
self-immolative. Described here is the synthesis, self-assembly, and
triggered depolymerization of self-immolative block copolymers with
individually triggerable hydrophilic and hydrophobic blocks. Neutral
and cationic hydrophilic polyglyxoylamides (PGAm) with acid-responsive
end caps were synthesized and coupled to an ultraviolet (UV) light-triggerable
poly(ethyl glyoxylate) (PEtG) hydrophobic block. The resulting block
copolymers self-assembled to form nanoparticles in aqueous solution,
and their depolymerization in response to acid and UV light was studied
by techniques including light scattering, NMR spectroscopy, and electron
microscopy. Acid led to selective depolymerization of the PGAm blocks,
leading to aggregation, while UV light led to selective depolymerization
of the PEtG block, leading to disassembly. This self-immolative block
copolymer system provides an enhanced level of control over smart
copolymer assemblies and their degradation.
Collapse
Affiliation(s)
- Xiaoli Liang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
- The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada, N6A 5B9
| |
Collapse
|
13
|
Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: Design and recent applications. EXPLORATION (BEIJING, CHINA) 2022; 2:20210217. [PMID: 36249890 PMCID: PMC9539018 DOI: 10.1002/exp.20210217] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
The rational design and application of mRNA-based medicine have recently yielded some key successes in the clinical management of human diseases. mRNA technology allows for the facile and direct production of proteins in vivo, thus circumventing the need for lengthy drug development cycles and complex production workflows. As such, mRNA formulations can significantly improve upon the biological therapies that have become commonplace in modern medicine. Despite its many advantages, mRNA is inherently fragile and has specific delivery requirements. Leveraging the engineering flexibility of nanobiotechnology, mRNA payloads can be incorporated into nanoformulations such that they do not invoke unwanted immune responses, are targeted to tissues of interest, and can be delivered to the cytosol, resulting in improved safety while enhancing bioactivity. With the rapidly evolving landscape of nanomedicine, novel technologies that are under development have the potential to further improve the clinical utility of mRNA medicine. This review covers the design principles relevant to engineering mRNA-based nanomedicine platforms. It also details the current research on mRNA nanoformulations for addressing viral infections, cancers, and genetic diseases. Given the trends in the field, future mRNA-based nanomedicines have the potential to change how many types of diseases are managed in the clinic.
Collapse
Affiliation(s)
- Luke J. Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
14
|
Algarni A, Pilkington EH, Suys EJA, Al-Wassiti H, Pouton CW, Truong NP. In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression. Biomater Sci 2022; 10:2940-2952. [PMID: 35475455 DOI: 10.1039/d2bm00168c] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionizable cationic lipids play a critical role in developing new gene therapies for various biomedical applications, including COVID-19 vaccines. However, it remains unclear whether the formulation of lipid nanoparticles (LNPs) using DLin-MC3-DMA, an optimized ionizable lipid clinically used for small interfering RNA (siRNA) therapy, also facilitates high liver-selective transfection of other gene therapies such as plasmid DNA (pDNA). Here we report the first investigation into pDNA transfection efficiency in different mouse organs after intramuscular and intravenous administration of lipid nanoparticles (LNPs) where DLin-MC3-DMA, DLin-KC2-DMA or DODAP are used as the ionizable cationic lipid component of the LNP. We discovered that these three benchmark lipids previously developed for siRNA delivery followed an unexpected characteristic rank order in gene expression efficiency when utilized for pDNA. In particular, DLin-KC2-DMA facilitated higher in vivo pDNA transfection than DLin-MC3-DMA and DODAP, possibly due to its head group pKa and lipid tail structure. Interestingly, LNPs formulated with either DLin-KC2-DMA or DLin-MC3-DMA exhibited significantly higher in vivo protein production in the spleen than in the liver. This work sheds light on the importance of the choice of ionizable cationic lipid and nucleic acid cargo for organ-selective gene expression. The study also provides a new design principle towards the formulation of more effective LNPs for biomedical applications of pDNA, such as gene editing, vaccines and immunotherapies.
Collapse
Affiliation(s)
- Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Emily H Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Estelle J A Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Colin W Pouton
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Nghia P Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| |
Collapse
|
15
|
Wang J, Chen G, Liu N, Han X, Zhao F, Zhang L, Chen P. Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Adv Colloid Interface Sci 2022; 302:102638. [PMID: 35299136 DOI: 10.1016/j.cis.2022.102638] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
In the past decades, the striking development of cationic polypeptides and cell-penetrating peptides (CPPs) tailored for small interfering RNA (siRNA) delivery has been fuelled by the conception of nuclear acid therapy and precision medicine. Owing to their amino acid compositions, inherent secondary structures as well as diverse geometrical shapes, peptides or peptide-containing polymers exhibit good biodegradability, high flexibility, and bio-functional diversity as nonviral siRNA vectors. Also, a variety of noncovalent nanocomplexes could be built via self-assembling and electrostatic interactions between cationic peptides and siRNAs. Although the peptide/siRNA nanocomplex-based RNAi therapies, STP705 and MIR-19, are under clinical trials, a guideline addressing the current bottlenecks of peptide/siRNA nanocomplex delivery is in high demand for future research and development. In this review, we present strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes in the treatment of genetic disorders. Through thorough analysis of those RNAi formulations using different delivery strategies, we seek to shed light on the rationale of peptide design and modification in constructing robust siRNA delivery systems, including targeted and co-delivery systems. Based on this, we provide a timely and comprehensive understanding of how to engineer biocompatible and efficient peptide-based siRNA vectors.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nan Liu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Xiaoxia Han
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China.
| |
Collapse
|
16
|
Zanata DDM, Felisberti MI. Thermo- and pH-responsive POEGMA-b-PDMAEMA-b-POEGMA triblock copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Huang X, Liu C, Kong N, Xiao Y, Yurdagul A, Tabas I, Tao W. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nat Protoc 2022; 17:748-780. [PMID: 35121853 PMCID: PMC9734002 DOI: 10.1038/s41596-021-00665-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Macrophages in atherosclerotic lesions promote plaque progression and are an attractive therapeutic target in cardiovascular research. Here we present a protocol for synthesis of small interfering RNA (siRNA) nanoparticles (NP) that target lesional macrophages as a potential treatment for atherosclerosis. Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) activity in macrophages of advanced human and mouse atherosclerotic plaques drives necrosis by downregulating the expression of the efferocytosis receptor MerTK. Therefore, selective inhibition of CaMKIIγ in lesional macrophages holds great promise for the treatment of advanced atherosclerosis. We recently developed a siRNA NP platform that can selectively silence CaMKIIγ in macrophages, resulting in increased plaque stability. We provide a detailed protocol for the synthesis of NP components, the preparation and characterization (physicochemical and in vitro) of siRNA NPs, and the evaluation of in vivo therapeutic effects of siRNA NPs and their biocompatibility in atherosclerotic mice. Our siRNA-loaded polymer-lipid hybrid NPs are constructed via a robust self-assembly method, exhibiting excellent in vivo features for systemic siRNA delivery. Following this protocol, it takes 3-5 d to prepare the siRNA NPs, 8-10 d to characterize the NPs and 4-5 weeks to evaluate their therapeutic effects in established atherosclerotic mice. By changing the RNA molecules loaded in the NPs, lesional macrophages can be targeted for the exploration and validation of new targets/pathways in atherosclerosis.
Collapse
Affiliation(s)
- Xiangang Huang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yufen Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, LA, 71130, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release 2022; 342:241-279. [PMID: 35016918 PMCID: PMC8743282 DOI: 10.1016/j.jconrel.2022.01.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
RNA-based therapy is a promising and potential strategy for disease treatment by introducing exogenous nucleic acids such as messenger RNA (mRNA), small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides (ASO) to modulate gene expression in specific cells. It is exciting that mRNA encoding the spike protein of COVID-19 (coronavirus disease 2019) delivered by lipid nanoparticles (LNPs) exhibits the efficient protection of lungs infection against the virus. In this review, we introduce the biological barriers to RNA delivery in vivo and discuss recent advances in non-viral delivery systems, such as lipid-based nanoparticles, polymeric nanoparticles, N-acetylgalactosamine (GalNAc)-siRNA conjugate, and biomimetic nanovectors, which can protect RNAs against degradation by ribonucleases, accumulate in specific tissue, facilitate cell internalization, and allow for the controlled release of the encapsulated therapeutics.
Collapse
Affiliation(s)
- Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiao-Yu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiang-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lin-Xia Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China..
| |
Collapse
|
19
|
Shevtsov V, Hsin TY, Shieh YT. Preparation of amphiphilic copolymers via base-catalyzed hydrolysis of quaternized poly[2-(dimethylamino)ethyl methacrylate]. Polym Chem 2022. [DOI: 10.1039/d1py01697k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multi-stimuli-responsiveness of tertiary amine-containing polyacrylates makes them highly attractive for use in a wide range of applications. In the last decade, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) has received exceptionally large attention...
Collapse
|
20
|
Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Adv Drug Deliv Rev 2022; 180:114029. [PMID: 34752841 DOI: 10.1016/j.addr.2021.114029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy has great potential to treat brain diseases. However, genetic drugs need to overcome a cascade of barriers for their full potential. The conventional delivery systems often struggle to meet expectations. Natural biological particles that are highly optimized for specific functions in body, can inspire optimization of dynamic gene-loaded nanoassemblies (DGN). The DGN refer to gene loaded nanoassemblies whose functions and structures are changeable in response to the biological microenvironments or can dynamically interact with tissues or cells. The nature-inspired DGN can meet the needs in brain diseases treatment, including i) Non-elimination in blood (N), ii) Across the blood-brain barrier (A), iii) Targeting cells (T), iv) Efficient uptake (U), v) Controllable release (R), vi) Eyeable (E)-abbreviated as the "NATURE". In this Review, from nature to "NATURE", we mainly summarize the specific application of nature-inspired DGN in the "NATURE" cascade process. Furthermore, the Review provides an outlook for this field.
Collapse
|
21
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
22
|
Li H, Zhang K, Binzel DW, Shlyakhtenko LS, Lyubchenko YL, Chiu W, Guo P. RNA nanotechnology to build a dodecahedral genome of single-stranded RNA virus. RNA Biol 2021; 18:2390-2400. [PMID: 33845711 PMCID: PMC8632126 DOI: 10.1080/15476286.2021.1915620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
The quest for artificial RNA viral complexes with authentic structure while being non-replicative is on its way for the development of viral vaccines. RNA viruses contain capsid proteins that interact with the genome during morphogenesis. The sequence and properties of the protein and genome determine the structure of the virus. For example, the Pariacoto virus ssRNA genome assembles into a dodecahedron. Virus-inspired nanotechnology has progressed remarkably due to the unique structural and functional properties of viruses, which can inspire the design of novel nanomaterials. RNA is a programmable biopolymer able to self-assemble sophisticated 3D structures with rich functionalities. RNA dodecahedrons mimicking the Pariacoto virus quasi-icosahedral genome structures were constructed from both native and 2'-F modified RNA oligos. The RNA dodecahedron easily self-assembled using the stable pRNA three-way junction of bacteriophage phi29 as building blocks. The RNA dodecahedron cage was further characterized by cryo-electron microscopy and atomic force microscopy, confirming the spontaneous and homogenous formation of the RNA cage. The reported RNA dodecahedron cage will likely provide further studies on the mechanisms of interaction of the capsid protein with the viral genome while providing a template for further construction of the viral RNA scaffold to add capsid proteins for the assembly of the viral nucleocapsid as a model. Understanding the self-assembly and RNA folding of this RNA cage may offer new insights into the 3D organization of viral RNA genomes. The reported RNA cage also has the potential to be explored as a novel virus-inspired nanocarrier.
Collapse
Affiliation(s)
- Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kaiming Zhang
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lyudmila S. Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
23
|
In Vitro Cellular Uptake and Transfection of Oligoarginine-Conjugated Glycol Chitosan/siRNA Nanoparticles. Polymers (Basel) 2021; 13:polym13234219. [PMID: 34883722 PMCID: PMC8659484 DOI: 10.3390/polym13234219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chitosan and its derivatives have been extensively utilized in gene delivery applications because of their low toxicity and positively charged characteristics. However, their low solubility under physiological conditions often limits their application. Glycol chitosan (GC) is a derivative of chitosan that exhibits excellent solubility in physiological buffer solutions. However, it lacks the positive characteristics of a gene carrier. Thus, we hypothesized that the introduction of oligoarginine peptide to GC could improve the formation of complexes with siRNA, resulting in enhanced uptake by cells and increased transfection efficiency in vitro. A peptide with nine arginine residues and 10 glycine units (R9G10) was successfully conjugated to GC, which was confirmed by infrared spectroscopy, 1H NMR spectroscopy, and elemental analysis. The physicochemical characteristics of R9G10-GC/siRNA complexes were also investigated. The size and surface charge of the R9G10-GC/siRNA nanoparticles depended on the amount of R9G10 coupled to the GC. In addition, the R9G10-GC/siRNA nanoparticles showed improved uptake in HeLa cells and enhanced in vitro transfection efficiency while maintaining low cytotoxicity determined by the MTT assay. Oligoarginine-modified glycol chitosan may be useful as a potential gene carrier in many therapeutic applications.
Collapse
|
24
|
Hausig F, Sobotta FH, Richter F, Harz DO, Traeger A, Brendel JC. Correlation between Protonation of Tailor-Made Polypiperazines and Endosomal Escape for Cytosolic Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35233-35247. [PMID: 34283557 DOI: 10.1021/acsami.1c00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Responsive polymers, which become protonated at decreasing pH, are considered a milestone in the development of synthetic cell entry vectors. Exact correlations between their properties and their ability to escape the endosome, however, often remain elusive due to hydrophobic interactions or limitations in the design of water-soluble materials with suitable basicity. Here, we present a series of well-defined, hydrophilic polypiperazines, where systematic variation of the amino moiety facilitates an unprecedented fine-tuning of the basicity or pKa value within the physiologically relevant range (pH 6-7.4). Coincubation of HEK 293T cells with various probes, including small fluorophores or functioning proteins, revealed a rapid increase of endosomal release for polymers with pKa values above 6.5 or 7 in serum-free or serum-containing media, respectively. Similarly, cytotoxic effects became severe at increased pKa values (>7). Although the window for effective transport appears narrow, the discovered correlations offer a principal guideline for the design of effective polymers for endosomal escape.
Collapse
Affiliation(s)
- Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Fabian H Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Dominic O Harz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
25
|
Bozzer S, Bo MD, Toffoli G, Macor P, Capolla S. Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model. Pharmaceutics 2021; 13:1106. [PMID: 34452067 PMCID: PMC8400075 DOI: 10.3390/pharmaceutics13081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/29/2022] Open
Abstract
Oligonucleotide (ON) therapeutics are molecular target agents composed of chemically synthesized DNA or RNA molecules capable of inhibiting gene expression or protein function. How ON therapeutics can efficiently reach the inside of target cells remains a problem still to be solved in the majority of potential clinical applications. The chemical structure of ON compounds could affect their capability to pass through the plasma membrane. Other key factors are nuclease degradation in the extracellular space, renal clearance, reticulo-endothelial system, and at the target cell level, the endolysosomal system and the possible export via exocytosis. Several delivery platforms have been proposed to overcome these limits including the use of lipidic, polymeric, and inorganic nanoparticles, or hybrids between them. The possibility of evaluating the efficacy of the proposed therapeutic strategies in useful in vivo models is still a pivotal need, and the employment of zebrafish (ZF) models could expand the range of possibilities. In this review, we briefly describe the main ON therapeutics proposed for anticancer treatment, and the different strategies employed for their delivery to cancer cells. The principal features of ZF models and the pros and cons of their employment in the development of ON-based therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| |
Collapse
|
26
|
Sun Y, Ma X, Jing X, Hu H. PAMAM-Functionalized Cellulose Nanocrystals with Needle-Like Morphology for Effective Cancer Treatment. NANOMATERIALS 2021; 11:nano11071640. [PMID: 34206695 PMCID: PMC8307312 DOI: 10.3390/nano11071640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy is used to correct or compensate for diseases caused by gene defects and abnormalities. Improving the transfection efficiency and reducing the toxicity of gene carriers are the keys to gene therapy. Similar to a typical cationic gene carrier—polyethylenimine (PEI, 25 kDa)—the polyamidoamine (PAMAM) dendrimer also has a large number of amino groups. These amino groups can be complexed with nucleic acids after protonation under physiological conditions. However, the concentrated positive charge can cause undesirable cytotoxicity. Cellulose nanocrystals (CNCs) have good biocompatibility and unique needle-like morphology, and have been proven to be efficiently taken up by cells. In this article, three-dimensional spherical PMAMA dendrimers are conjugated onto the surface of CNCs to obtain a kind of needle-like cationic carrier (CNC-PAMAM). PAMAM dendrimers act as anchors to bind the plasmid DNAs (pDNA) to the surface of the CNC. The prepared CNC-based carrier showed high transfection efficiency and low toxicity. The CNC-PAMAM can effectively deliver the suicide gene to the tumor site, enabling the suicide gene/prodrug system (cytosine deaminase/5-fluorocytosine (CD/5-FC)) to play an effective anti-tumor role in vivo. This research demonstrates that the functionalization of CNCs with PAMAM dendrimers is an effective method for developing novel gene delivery systems.
Collapse
Affiliation(s)
- Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (X.J.)
| | - Xiaoli Ma
- Qingdao Institute of Measurement Technology, Qingdao 266000, China;
| | - Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (X.J.)
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (X.J.)
- Correspondence:
| |
Collapse
|
27
|
Abdellatif Soliman SM, Sanad MF, Shalan AE. Synthesis, characterization and antimicrobial activity applications of grafted copolymer alginate- g-poly( N-vinyl imidazole). RSC Adv 2021; 11:11541-11548. [PMID: 35423628 PMCID: PMC8695916 DOI: 10.1039/d1ra01874d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 02/03/2023] Open
Abstract
N-Vinyl imidazole was grafted onto sodium alginate (PNVI-g-NaAlg) through a free radical polymerization technique in aqueous solution using potassium persulfate (K2S2O8, KPS) initiator material. The conditions of the grafting process onto sodium alginate were adjusted to obtain a grafted copolymer with a high percentage of poly(N-vinyl imidazole). The prepared grafted copolymer sodium alginate (NaAlg-g-PNVI), with high percentage yield, was investigated and characterized under certain conditions in order to detect its antibacterial effect. The prepared grafted copolymer was considered by means of several systems such as Fourier-Transform Infrared spectroscopy (FT-IR), 1H NMR spectroscopy and thermal analysis. The change in the morphology of the alginate distinguished after the grafting process was confirmed using a Scanning Electron Microscope (SEM). The biological activity of the grafted material was considered using Escherichia coli, Neisseria gonorrhoeae (Gram-negative), Bacillus subtilis (Gram-positive) and Candida albicans antifungal activities through the agar diffusion method. The obtained results show excellent improvement in antimicrobial activity of the alginate by grafting against Bacillus subtilis, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans.
Collapse
Affiliation(s)
| | - Mohamed Fathi Sanad
- FabLab, Centre for Emerging Learning Technologies (CELT), Electrical Engineering Department, The British University in Egypt (BUE) Cairo 11387 Egypt
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P.O. Box 87 Helwan Cairo 11421 Egypt
- BCMaterials, Basque Center for Materials, Applications and Nanostructures Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n Leioa 48940 Spain
| |
Collapse
|
28
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
29
|
Dadhwal S, Lee A, Goswami SK, Hook S, Gamble AB. Synthesis and formulation of self‐immolative
PEG
‐aryl azide block copolymers and click‐to‐release reactivity with
trans
‐cyclooctene. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sumit Dadhwal
- School of Pharmacy University of Otago Dunedin New Zealand
- Department of Chemistry University of Otago Dunedin New Zealand
| | - Arnold Lee
- School of Pharmacy University of Otago Dunedin New Zealand
| | | | - Sarah Hook
- School of Pharmacy University of Otago Dunedin New Zealand
| | | |
Collapse
|
30
|
Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, Bi Y. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. Int J Nanomedicine 2021; 16:1525-1551. [PMID: 33658782 PMCID: PMC7920594 DOI: 10.2147/ijn.s293427] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Nanomedicines afford unique advantages in therapeutic intervention against tumors. However, conventional nanomedicines have failed to achieve the desired effect against cancers because of the presence of complicated physiological fluids and the tumor microenvironment. Stimuli-responsive drug-delivery systems have emerged as potential tools for advanced treatment of cancers. Versatile nano-carriers co-triggered by multiple stimuli in different levels of organisms (eg, extracorporeal, tumor tissue, cell, subcellular organelles) have aroused widespread interest because they can overcome sequential physiological and pathological barriers to deliver diverse therapeutic “payloads” to the desired targets. Furthermore, multiple stimuli-responsive drug-delivery systems (MSR-DDSs) offer a good platform for co-delivery of agents and reversing multidrug resistance. This review affords a comprehensive overview on the “landscape” of MSR-DDSs against tumors, highlights the design strategies of MSR-DDSs in recent years, discusses the putative advantage of oncotherapy or the obstacles that so far have hindered the clinical translation of MSR-DDSs.
Collapse
Affiliation(s)
- Ruixin Jia
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, Jilin, People's Republic of China
| | - Lingyu Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ting Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Lu Fu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, People's Republic of China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ye Bi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China.,Practice Training Center, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
31
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
32
|
Ulkoski D, Munson MJ, Jacobson ME, Palmer CR, Carson CS, Sabirsh A, Wilson JT, Krishnamurthy VR. High-Throughput Automation of Endosomolytic Polymers for mRNA Delivery. ACS APPLIED BIO MATERIALS 2021; 4:1640-1654. [PMID: 35014512 DOI: 10.1021/acsabm.0c01463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, there has been an increasing interest in designing delivery systems to enhance the efficacy of RNA-based therapeutics. Here, we have synthesized copolymers comprised of dimethylaminoethyl methacrylate (DMAEMA) or diethylaminoethyl methacrylate (DEAEMA) copolymerized with alkyl methacrylate monomers ranging from 2 to 12 carbons, and developed a high throughput workflow for rapid investigation of their applicability for mRNA delivery. The structure activity relationship revealed that the mRNA encapsulation efficiency is improved by increasing the cationic density and use of shorter alkyl side chains (2-6 carbons). Minimal cytotoxicity was observed when using DEAEMA-co-BMA (EB) polyplexes up to 18 h after dosing, independent of a poly(ethylene glycol) (PEG) first block. The lowest molecular weight polymer (EB10,250) performed best, exhibiting greater transfection than polyethyenimine (PEI) based upon the number of cells transfected and mean intensity. Conventional investigations into the performance of polymeric materials for mRNA delivery is quite tedious, consequently limiting the number of materials and formulation conditions that can be studied. The high throughput approach presented here can accelerate the screening of polymeric systems and paves the way for expanding this generalizable approach to assess various materials for mRNA delivery.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston 02451, United States
| | - Michael J. Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Max E. Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | | |
Collapse
|
33
|
Parkatzidis K, Rolland M, Truong NP, Anastasaki A. Tailoring polymer dispersity by mixing ATRP initiators. Polym Chem 2021. [DOI: 10.1039/d1py01044a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein we present a simple batch method to control polymer dispersity using a mixture of two ATRP initiators with different reactivities.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Manon Rolland
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Jiang X, Abedi K, Shi J. Polymeric nanoparticles for RNA delivery. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2021. [PMCID: PMC8568333 DOI: 10.1016/b978-0-12-822425-0.00017-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As exemplified by recent clinical approval of RNA drugs including the latest COVID-19 mRNA vaccines, RNA therapy has demonstrated great promise as an emerging medicine. Central to the success of RNA therapy is the delivery of RNA molecules into the right cells at the right location. While the clinical success of nanotechnology in RNA therapy has been limited to lipid-based nanoparticles currently, polymers, due to their tunability and robustness, have also evolved as a class of promising material for the delivery of various therapeutics including RNAs. This article overviews different types of polymers used in RNA delivery and the methods for the formulation of polymeric nanoparticles and highlights recent progress of polymeric nanoparticle-based RNA therapy.
Collapse
|
35
|
De Luca S, Treny J, Chen F, Seal P, Stenzel MH, Smith SC. Enhancing Cationic Drug Delivery with Polymeric Carriers: The Coulomb‐pH Switch Approach. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sergio De Luca
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| | - Jennifer Treny
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Prasenjit Seal
- Department of Chemistry University of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sean C. Smith
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
36
|
Zukancic D, Suys EJA, Pilkington EH, Algarni A, Al-Wassiti H, Truong NP. The Importance of Poly(ethylene glycol) and Lipid Structure in Targeted Gene Delivery to Lymph Nodes by Lipid Nanoparticles. Pharmaceutics 2020; 12:E1068. [PMID: 33182382 PMCID: PMC7695259 DOI: 10.3390/pharmaceutics12111068] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Targeted delivery of nucleic acids to lymph nodes is critical for the development of effective vaccines and immunotherapies. However, it remains challenging to achieve selective lymph node delivery. Current gene delivery systems target mainly to the liver and typically exhibit off-target transfection at various tissues. Here we report novel lipid nanoparticles (LNPs) that can deliver plasmid DNA (pDNA) to a draining lymph node, thereby significantly enhancing transfection at this target organ, and substantially reducing gene expression at the intramuscular injection site (muscle). In particular, we discovered that LNPs stabilized by 3% Tween 20, a surfactant with a branched poly(ethylene glycol) (PEG) chain linking to a short lipid tail, achieved highly specific transfection at the lymph node. This was in contrast to conventional LNPs stabilized with a linear PEG chain and two saturated lipid tails (PEG-DSPE) that predominately transfected at the injection site (muscle). Interestingly, replacing Tween 20 with Tween 80, which has a longer unsaturated lipid tail, led to a much lower transfection efficiency. Our work demonstrates the importance of PEGylation in selective organ targeting of nanoparticles, provides new insights into the structure-property relationship of LNPs, and offers a novel, simple, and practical PEGylation technology to prepare the next generation of safe and effective vaccines against viruses or tumours.
Collapse
Affiliation(s)
- Danijela Zukancic
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Estelle J. A. Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Emily H. Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Nghia P. Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| |
Collapse
|
37
|
Cazotti JC, Fritz AT, Garcia‐Valdez O, Smeets NMB, Dubé MA, Cunningham MF. Graft modification of starch nanoparticles with pH‐responsive polymers via nitroxide‐mediated polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jaime C. Cazotti
- Department of Chemical EngineeringQueen's University Kingston Ontario Canada
| | - Alexander T. Fritz
- Department of Chemical EngineeringQueen's University Kingston Ontario Canada
| | - Omar Garcia‐Valdez
- Department of Chemical EngineeringQueen's University Kingston Ontario Canada
| | - Niels M. B. Smeets
- Department of Research and DevelopmentEcoSynthetix Inc. Burlington Ontario Canada
| | - Marc A. Dubé
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and InnovationUniversity of Ottawa Ottawa Ontario Canada
| | | |
Collapse
|
38
|
Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12080727. [PMID: 32748821 PMCID: PMC7464408 DOI: 10.3390/pharmaceutics12080727] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer treatment with small interfering RNA (siRNA) is one of the most promising new strategies; however, transfection systems that increase its bioavailability and ensure its delivery to the target cell are necessary. Transfection systems may be just vehicular or could contain fragments with anticancer activity that achieves a synergistic effect with siRNA. Cationic carbosilane dendrimers have proved to be powerful tools as non-viral vectors for siRNA in cancer treatment, and their activity might be potentiated by the inclusion of metallic complexes in its dendritic structure. We have herein explored the interaction between Schiff-base carbosilane copper (II) metallodendrimers, and pro-apoptotic siRNAs. The nanocomplexes formed by metallodendrimers and different siRNA have been examined for their zeta potential and size, and by transmission electron microscopy, fluorescence polarisation, circular dichroism, and electrophoresis. The internalisation of dendriplexes has been estimated by flow cytometry and confocal microscopy in a human breast cancer cell line (MCF-7), following the ability of these metallodendrimers to deliver the siRNA into the cell. Finally, in vitro cell viability experiments have indicated effective interactions between Cu (II) dendrimers and pro-apoptotic siRNAs: Mcl-1 and Bcl-2 in breast cancer cells. Combination of the first-generation derivatives with chloride counterions and with siRNA increases the anticancer activity of the dendriplex constructs and makes them a promising non-viral vector.
Collapse
|
39
|
Vu MN, Kelly HG, Wheatley AK, Peng S, Pilkington EH, Veldhuis NA, Davis TP, Kent SJ, Truong NP. Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002861. [PMID: 32583981 PMCID: PMC7361276 DOI: 10.1002/smll.202002861] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Indexed: 05/21/2023]
Abstract
A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.
Collapse
Affiliation(s)
- Mai N. Vu
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
- Department of PharmaceuticsHanoi University of PharmacyHanoi10000Vietnam
| | - Hannah G. Kelly
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Adam K. Wheatley
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Scott Peng
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Emily H. Pilkington
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Nicholas A. Veldhuis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Stephen J. Kent
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| |
Collapse
|
40
|
Gurnani P, Blakney AK, Terracciano R, Petch JE, Blok AJ, Bouton CR, McKay PF, Shattock RJ, Alexander C. The In Vitro, Ex Vivo, and In Vivo Effect of Polymer Hydrophobicity on Charge-Reversible Vectors for Self-Amplifying RNA. Biomacromolecules 2020; 21:3242-3253. [PMID: 32644777 DOI: 10.1021/acs.biomac.0c00698] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA technology has the potential to revolutionize vaccination. However, the lack of clear structure-property relationships in relevant biological models mean there is no clear consensus on the chemical motifs necessary to improve RNA delivery. In this work, we describe the synthesis of a series of copolymers based on the self-hydrolyzing charge-reversible polycation poly(dimethylaminoethyl acrylate) (pDMAEA), varying the lipophilicity of the additional co-monomers. All copolymers formed stable polyplexes, showing efficient complexation with model nucleic acids from nitrogen/phosphate (N/P) ratios of N/P = 5, with more hydrophobic complexes exhibiting slower charge reversal and disassembly compared to hydrophilic analogues. The more hydrophobic copolymers outperformed hydrophilic versions, homopolymer controls and the reference standard polymer (polyethylenimine), in transfection assays on 2D cell monolayers, albeit with significantly higher toxicities. Similarly, hydrophobic derivatives displayed up to a 4-fold higher efficacy in terms of the numbers of cells expressing green fluorescent protein (GFP+) cells in ex vivo human skin (10%) compared to free RNA (2%), attributed to transfection enrichment in epithelial cells. In contrast, in a mouse model, we observed the reverse trend in terms of RNA transfection, with no observable protein production in more hydrophobic analogues, whereas hydrophilic copolymers induced the highest transfection in vivo. Overall, our results suggest an important relationship between the vector lipophilicity and RNA transfection in vaccine settings, with polymer biocompatibility potentially a key parameter in effective in vivo protein production.
Collapse
Affiliation(s)
- Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom
| | - Anna K Blakney
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, United Kindom
| | - Roberto Terracciano
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom.,Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Joshua E Petch
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom
| | - Andrew J Blok
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom
| | - Clément R Bouton
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, United Kindom
| | - Paul F McKay
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, United Kindom
| | - Robin J Shattock
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, United Kindom
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom
| |
Collapse
|
41
|
Hibbitts AJ, Ramsey JM, Barlow J, MacLoughlin R, Cryan SA. In Vitro and In Vivo Assessment of PEGylated PEI for Anti-IL-8/CxCL-1 siRNA Delivery to the Lungs. NANOMATERIALS 2020; 10:nano10071248. [PMID: 32605011 PMCID: PMC7407419 DOI: 10.3390/nano10071248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Inhalation offers a means of rapid, local delivery of siRNA to treat a range of autoimmune or inflammatory respiratory conditions. This work investigated the potential of a linear 10 kDa Poly(ethylene glycol) (PEG)-modified 25 kDa branched polyethyleneimine (PEI) (PEI-LPEG) to effectively deliver siRNA to airway epithelial cells. Following optimization with anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA, PEI and PEI-LPEG anti-IL8 siRNA nanoparticles were assessed for efficacy using polarised Calu-3 human airway epithelial cells and a twin stage impinger (TSI) in vitro lung model. Studies were then advanced to an in vivo lipopolysaccharide (LPS)-stimulated rodent model of inflammation. In parallel, the suitability of the siRNA-loaded nanoparticles for nebulization using a vibrating mesh nebuliser was assessed. The siRNA nanoparticles were nebulised using an Aerogen® Pro vibrating mesh nebuliser and characterised for aerosol output, droplet size and fine particle fraction. Only PEI anti-IL8 siRNA nanoparticles were capable of significant levels of IL-8 knockdown in vitro in non-nebulised samples. However, on nebulization through a TSI, only PEI-PEG siRNA nanoparticles demonstrated significant decreases in gene and protein expression in polarised Calu-3 cells. In vivo, both anti-CXCL-1 (rat IL-8 homologue) nanoparticles demonstrated a decreased CXCL-1 gene expression in lung tissue, but this was non-significant. However, PEI anti-CXCL-1 siRNA-treated rats were found to have significantly less infiltrating macrophages in their bronchoalveolar lavage (BAL) fluid. Overall, the in vivo gene and protein inhibition findings indicated a result more reminiscent of the in vitro bolus delivery rather than the in vitro nebulization data. This work demonstrates the potential of nebulised PEI-PEG siRNA nanoparticles in modulating pulmonary inflammation and highlights the need to move towards more relevant in vitro and in vivo models for respiratory drug development.
Collapse
Affiliation(s)
- Alan J. Hibbitts
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- Trinity Centre for Biomedical Engineering, Trinity College, Dublin D02 R590, Ireland
| | - Joanne M. Ramsey
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
| | - James Barlow
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland;
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
- Aerogen Ltd. Galway Business Park, Galway H91 HE94, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- Trinity Centre for Biomedical Engineering, Trinity College, Dublin D02 R590, Ireland
- Correspondence: ; Tel.: +353-14022741
| |
Collapse
|
42
|
Investigating the Impact of Delivery System Design on the Efficacy of Self-Amplifying RNA Vaccines. Vaccines (Basel) 2020; 8:vaccines8020212. [PMID: 32397231 PMCID: PMC7348957 DOI: 10.3390/vaccines8020212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
messenger RNA (mRNA)-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. In order for these to be applied for clinical use, they require to be formulated with delivery systems. However, there are limited in vivo studies which compare different delivery platforms. Therefore, we have compared four different cationic platforms: (1) liposomes, (2) solid lipid nanoparticles (SLNs), (3) polymeric nanoparticles (NPs) and (4) emulsions, to deliver a self-amplifying mRNA (SAM) vaccine. All formulations contained either the non-ionizable cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDA) and they were characterized in terms of physico-chemical attributes, in vitro transfection efficiency and in vivo vaccine potency. Our results showed that SAM encapsulating DOTAP polymeric nanoparticles, DOTAP liposomes and DDA liposomes induced the highest antigen expression in vitro and, from these, DOTAP polymeric nanoparticles were the most potent in triggering humoral and cellular immunity among candidates in vivo.
Collapse
|
43
|
Ros S, Freitag JS, Smith DM, Stöver HDH. Charge-Shifting Polycations Based on N, N-(dimethylamino)ethyl Acrylate for Improving Cytocompatibility During DNA Delivery. ACS OMEGA 2020; 5:9114-9122. [PMID: 32363263 PMCID: PMC7191589 DOI: 10.1021/acsomega.9b03734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/11/2020] [Indexed: 05/22/2023]
Abstract
Synthetic polycations are studied extensively as DNA delivery agents because of their ease of production, good chemical stability, and low cost relative to viral vectors. This report describes the synthesis of charge-shifting polycations based on N,N-(dimethylamino)ethyl acrylate (DMAEA) and 3-aminopropylmethacryamide (APM), called PAD copolymers, and their use for in vitro DNA delivery into HeLa cells. PAD copolymers of varying compositions were prepared by RAFT polymerization to yield polymers of controlled molecular weights with low dispersities. Model hydrolysis studies were carried out to assess the rate of charge-shifting of the polycations by loss of the cationic dimethylaminoethanol side chains. They showed reduction in the net cationic charge by about 10-50% depending on composition after 2 days at pH 7, forming polyampholytes comprising permanent cationic groups, residual DMAEA, as well as anionic acrylic acid groups. HeLa cells exposed for 4 h to PAD copolymers with the greatest charge-shifting ability showed comparable or higher viability at high concentrations, relative to the noncharge shifting polycations PAPM and polyethyleneimine (PEI) 2 days post-exposure. Cell uptake efficiency of PAD/60bp-Cy3 DNA polyplexes at 2.5:1 N/P ratio was very high (>95%) for all compositions, exceeding the uptake efficiency of PEI polyplexes of equivalent composition. These results suggest that these PAD copolymers, and in particular PAD80 containing 80 mol % DMAEA, have suitable rates of charge-shifting hydrolysis for DNA delivery, as PAD80 showed reduced cytotoxicity at high concentrations, while still retaining high uptake efficiencies. In addition, the polyampholytes formed during DMAEA hydrolysis in PAD copolymers can offer enhanced long-term cytocompatibility.
Collapse
Affiliation(s)
- Samantha Ros
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Jessica S. Freitag
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Saxony, Germany
| | - David M. Smith
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Saxony, Germany
| | - Harald D. H. Stöver
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
44
|
Ros S, Wang J, Burke NAD, Stöver HDH. A Mechanistic Study of the Hydrolysis of Poly[N,N-(dimethylamino)ethyl acrylates] as Charge-Shifting Polycations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Samantha Ros
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jiexi Wang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nicholas A. D. Burke
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Harald D. H. Stöver
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
45
|
Yan R, Liu X, Xiong J, Feng Q, Xu J, Wang H, Xiao K. pH-Responsive hyperbranched polypeptides based on Schiff bases as drug carriers for reducing toxicity of chemotherapy. RSC Adv 2020; 10:13889-13899. [PMID: 35492972 PMCID: PMC9051653 DOI: 10.1039/d0ra01241f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023] Open
Abstract
Polymeric micelles have great potential in drug delivery systems because of their multifunctional adjustability, excellent stability, and biocompatibility. To further increase the drug loading efficiency and controlled release ability, a pH-responsive hyperbranched copolymer methoxy poly(ethylene glycol)-b-polyethyleneimine-poly(Nε-Cbz-l-lysine) (MPEG-PEI-PBLL) was synthesized successfully. MPEG-PEI-NH2 was synthesized to initiate the ring-opening polymerization of benzyloxycarbonyl substituted lysine N-carboxyanhydride (Z-lys NCA). The introduction of Schiff bases in the polymer make it possible to respond to the variation of pH values, which cleaved at pH 5.0 while stable at pH 7.4. As the polymer was amphiphilic, MPEG-PEI-PBLL could self-assemble into micelles. Owing to the introduction of PEI, which make the copolymer hyperbranched, the pH-responsive micelles could efficiently encapsulate theranostic agents, such as doxorubicin (DOX) for chemotherapy and NIRF dye DiD for in vivo near-infrared (NIR) imaging. The drug delivery system prolonged the drug circulation time in blood and allowed the drug accumulate effectively at the tumor site. Following the guidance, the DOX was applied in chemotherapy to achieve cancer therapeutic efficiency. All the results demonstrate that the polymer micelles have great potential for cancer theranostics.
Collapse
Affiliation(s)
- Rui Yan
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Xinyi Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 China
| | - Junjie Xiong
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 China
| | - Qiyi Feng
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 China
| | - Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 China
| |
Collapse
|
46
|
Hou L, Song Z, Xu Z, Wu Y, Shi W. Folate-Mediated Targeted Delivery of siPLK1 by Leucine-Bearing Polyethylenimine. Int J Nanomedicine 2020; 15:1397-1408. [PMID: 32184594 PMCID: PMC7060029 DOI: 10.2147/ijn.s227289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND siRNA-mediated polo-like kinase 1 (PLK1) silencing has been proposed as a promising therapeutic method for multiple cancers. However, the clinic application of this method is still hindered by the low specific delivery of siPLK1 to desired tumor lesions. Herein, folate (FA)-modified and leucine-bearing polyethylenimine was successfully synthesized and showed excellent targeted silencing to folate receptor overexpressed cells. MATERIALS AND METHODS The condensation of siPLK1 by FA-N-Ac-L-Leu-PEI (NPF) was detected by the gel retardation assay. The targeted and silencing efficiency was evaluated by flow cytometry and confocal laser scanning microscope. The PLK1 expressions at gene or protein levels were detected by quantitative real-time PCR and Western blotting assay. Further impacts of the PLK1 silencing on cell viability, cell cycle, migration, and invasion were studied by MTT, colony formation, wound healing and transwell assays. RESULTS The NPF and siPLK1 could efficiently assemble to stable nanoparticles at a weight ratio of 3.0 and showed excellent condensation and protection effect. Owing to the FA-mediated targeted delivery, the uptake and silencing efficiency of NPF/siPLK1 to SGC-7901 cells was higher than that without FA modification. Moreover, NPF-mediated PLK1 silencing showed significant antitumor activity in vitro. The anti-proliferation effect of PLK1 silencing was induced via the mitochondrial-dependent apoptosis pathway with the cell cycle arrest of 45% at G2 phase and the apoptotic ratio of 28.3%. CONCLUSION FA-N-Ac-L-Leu-PEI (NPF) could generate targeted delivery siPLK1 to FA receptor overexpressed cells and dramatically downregulate the expression of PLK1 expression.
Collapse
Affiliation(s)
- Lu Hou
- College of Life Science, Jilin University, Changchun, Jilin130012, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun130012, People’s Republic of China
| | - Zheyu Song
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun130033, People’s Republic of China
| | - Zhonghang Xu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun130033, People’s Republic of China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun130033, People’s Republic of China
| | - Wei Shi
- College of Life Science, Jilin University, Changchun, Jilin130012, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun130012, People’s Republic of China
| |
Collapse
|
47
|
Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers (Basel) 2020; 12:E298. [PMID: 32024289 PMCID: PMC7077443 DOI: 10.3390/polym12020298] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Poly(ethylene glycol) (PEG) is widely used as a gold standard in bioconjugation and nanomedicine to prolong blood circulation time and improve drug efficacy. The conjugation of PEG to proteins, peptides, oligonucleotides (DNA, small interfering RNA (siRNA), microRNA (miRNA)) and nanoparticles is a well-established technique known as PEGylation, with PEGylated products have been using in clinics for the last few decades. However, it is increasingly recognized that treating patients with PEGylated drugs can lead to the formation of antibodies that specifically recognize and bind to PEG (i.e., anti-PEG antibodies). Anti-PEG antibodies are also found in patients who have never been treated with PEGylated drugs but have consumed products containing PEG. Consequently, treating patients who have acquired anti-PEG antibodies with PEGylated drugs results in accelerated blood clearance, low drug efficacy, hypersensitivity, and, in some cases, life-threatening side effects. In this succinct review, we collate recent literature to draw the attention of polymer chemists to the issue of PEG immunogenicity in drug delivery and bioconjugation, thereby highlighting the importance of developing alternative polymers to replace PEG. Several promising yet imperfect alternatives to PEG are also discussed. To achieve asatisfactory alternative, further joint efforts of polymer chemists and scientists in related fields are urgently needed to design, synthesize and evaluate new alternatives to PEG.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
| | - Emily H. Pilkington
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia;
| | - Dai Hai Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29 District 12, Ho Chi Minh City 70000, Vietnam
| | - Jung Seok Lee
- Biomedical Engineering, Malone Engineering Center 402A, Yale University, 55 Prospect St. New Haven, CT 06511, USA;
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Nghia P. Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia;
| |
Collapse
|
48
|
Chen Y, Li X, Wang M, Peng L, Yu Z, Peng X, Song J, Qu J. Virus-Inspired Deformable Mesoporous Nanocomposites for High Efficiency Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906028. [PMID: 31994359 DOI: 10.1002/smll.201906028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Mesoporous nanoparticles as a versatile platform for cancer theranostics have been widely used, but their cellular delivery efficiency is still far from satisfactory. Although deformability is emerging as an important parameter influencing cellular uptake enhancement, the facile synthesis of deformable mesoporous nanocomposite with adjustable mechanical property is challenging but meaningful for a deeper understanding of cellular uptake mechanisms and significantly improving cancer therapy. In this work, yolk-shell structured eccentric mesoporous organosilica (YEMO) nanocomposites with adjustable mechanical property are successfully prepared by an organosilane-assisted anisotropic self-assembly approach. The feasibility to precisely control the mechanical property of the YEMO by manipulating the structural parameters, the crosslinking degree of mesoporous framework, and the rotation rate of the reaction is demonstrated. The study of the fabrication mechanism and mechanical properties of YEMO are discussed in detail. The Young's modulus (EY ) of YEMO can be adjusted from 2.4 to 65 MPa. Thereby, the continuous control of the cellular uptake from ≈15% to ≈80% under the same incubation time is achieved. To further prove the higher efficiency drug delivery of YEMO with soft characteristics, the higher toxicity of the "soft" YEMO loaded with the anticancer drug doxorubicin compared to the "stiff" one is demonstrated.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaobin Li
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Wang
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucheng Peng
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongzheng Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
49
|
Li W, Sun J, Zhang X, Jia L, Qiao M, Zhao X, Hu H, Chen D, Wang Y. Synthesis and Characterization of pH-Responsive PEG-Poly(β-Amino Ester) Block Copolymer Micelles as Drug Carriers to Eliminate Cancer Stem Cells. Pharmaceutics 2020; 12:pharmaceutics12020111. [PMID: 32019122 PMCID: PMC7076537 DOI: 10.3390/pharmaceutics12020111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
PEG-poly(β-amino ester) (PEG-PBAE), which is an effective pH-responsive copolymer, was mainly synthesized by Michael step polymerization. Thioridazine (Thz), which was reported to selectively eliminate cancer stem cells (CSCs), was loaded into PEG-PBAE micelles (PPM) prepared by self-assembly at low concentrations. The critical micelle concentrations (CMC) of PPM in water were 2.49 μg/mL. The pH-responsive PBAE segment was soluble due to protonated tertiary amine groups when the pH decreased below pH 6.8, but it was insoluble at pH 7.4. The Thz-loaded PEG-PBAE micelle (Thz/PPM) exhibited a spherical shape, and the drug loading was 15.5%. In vitro release of Thz/PPM showed that this pH-sensitivity triggered the rapid release of encapsulated Thz in a weakly acidic environment. The in vitro cytotoxicity and cellular uptake of various formulations at pH 7.4 and 5.5 were evaluated on the mammospheres (MS), which were sorted by MCF-7 human breast cancer cell lines and identified to be a CD44+/CD24- phenotype. The results of the cytotoxicity assay showed that blank micelles were nontoxic and Thz/PPM exhibited a similar anti-CSC effect on MS compared to Thz solution. Stronger fluorescence signal of Coumarin-6 (C6) was observed in MS treated by C6-loaded PPM (C6/PPM) at pH 5.5. The tumor inhibition rate and tumor weight of the free DOX and Thz/PPM groups were significantly different from those of the other groups, which free DOX and Thz/PPM effectively suppressed breast tumor growth in vivo. The above experimental results showed that Thz/PPM is an ideal and effective pH-responsive drug delivery carrier to a targeted therapy of CSCs.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.L.)
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Jialin Sun
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
| | - Xiaoyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Li Jia
- Department of Pharmacy, Heze Medical College, Heze 274000, China;
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.L.)
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.L.)
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.L.)
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.L.)
- Correspondence: (D.C.); (Y.W.); Tel./Fax: +86-24-23986306 (D.C.); Tel./Fax: +86-451-87266893 (Y.W.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
- Correspondence: (D.C.); (Y.W.); Tel./Fax: +86-24-23986306 (D.C.); Tel./Fax: +86-451-87266893 (Y.W.)
| |
Collapse
|
50
|
Sims KR, Maceren JP, Strand AI, He B, Overby C, Benoit DSW. Rigor and reproducibility in polymer nanoparticle synthesis and characterization. RSC Adv 2020; 10:2513-2518. [PMID: 34631039 PMCID: PMC8496373 DOI: 10.1039/c9ra10091a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023] Open
Abstract
Standardized process improvement methods and tools were used to enhance the rigor and reproducibility of diblock copolymer nanoparticle (NP) synthesis and characterization. Models linking design parameters with NP characteristics boosted process control for NP synthesis, which may improve translation and commercialization of NP research.
Collapse
Affiliation(s)
- Kenneth R. Sims
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
- Translational Biomedical Science, University of Rochester School of Medicine and DentistryRochesterNYUSA
| | | | | | - Brian He
- Dept. of Statistics, University of RochesterRochesterNYUSA
| | - Clyde Overby
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
| | - Danielle S. W. Benoit
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
- Materials Science ProgramRochesterNYUSA
- Center for Oral Biology, University of RochesterRochesterNYUSA
- Center for Musculoskeletal Research, University of RochesterRochesterNYUSA
- Dept. of Chemical Engineering, University of RochesterRochesterNYUSA
| |
Collapse
|