1
|
Hartung J, Müller C, Calkhoven CF. The dual role of the TSC complex in cancer. Trends Mol Med 2024:S1471-4914(24)00276-4. [PMID: 39488444 DOI: 10.1016/j.molmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
The tuberous sclerosis complex (TSC1/TSC2/TBC1D7) primarily functions to inhibit the mechanistic target of rapamycin complex 1 (mTORC1), a crucial regulator of cell growth. Mutations in TSC1 or TSC2 cause tuberous sclerosis complex (TSC), a rare autosomal dominant genetic disorder marked by benign tumors in multiple organs that rarely progress to malignancy. Traditionally, TSC proteins are considered tumor suppressive due to their inhibition of mTORC1 and other mechanisms. However, more recent studies have shown that TSC proteins can also promote tumorigenesis in certain cancer types. In this review, we explore the composition and function of the TSC protein complex, the roles of its individual components in cancer biology, and potential future therapeutic targeting strategies.
Collapse
Affiliation(s)
- Josephine Hartung
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
2
|
Kawamukai M. Regulation of sexual differentiation initiation in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2024; 88:475-492. [PMID: 38449372 DOI: 10.1093/bbb/zbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism to explore cellular events owing to rich tools in genetics, molecular biology, cellular biology, and biochemistry. Schizosaccharomyces pombe proliferates continuously when nutrients are abundant but arrests in G1 phase upon depletion of nutrients such as nitrogen and glucose. When cells of opposite mating types are present, cells conjugate, fuse, undergo meiosis, and finally form 4 spores. This sexual differentiation process in S. pombe has been studied extensively. To execute sexual differentiation, the glucose-sensing cAMP-PKA (cyclic adenosine monophosphate-protein kinase A) pathway, nitrogen-sensing TOR (target of rapamycin) pathway, and SAPK (stress-activating protein kinase) pathway are crucial, and the MAPK (mitogen-activating protein kinase) cascade is essential for pheromone sensing. These signals regulate ste11 at the transcriptional and translational levels, and Ste11 is modified in multiple ways. This review summarizes the initiation of sexual differentiation in S. pombe based on results I have helped to obtain, including the work of many excellent researchers.
Collapse
Affiliation(s)
- Makoto Kawamukai
- D epartment of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Nishikawatsu, Matsue, Japan
| |
Collapse
|
3
|
Fu W, Wu G. Design of negative-regulating proteins of Rheb/mTORC1 with much-reduced sizes of the tuberous sclerosis protein complex. Protein Sci 2023; 32:e4731. [PMID: 37462942 PMCID: PMC10382911 DOI: 10.1002/pro.4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.
Collapse
Affiliation(s)
- Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOEShanghai Jiao Tong UniversityShanghaiChina
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOEShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
4
|
LeCroy G, Cendra C, Quill TJ, Moser M, Hallani R, Ponder JF, Stone K, Kang SD, Liang AYL, Thiburce Q, McCulloch I, Spano FC, Giovannitti A, Salleo A. Role of aggregates and microstructure of mixed-ionic-electronic-conductors on charge transport in electrochemical transistors. MATERIALS HORIZONS 2023. [PMID: 37089107 DOI: 10.1039/d3mh00017f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Synthetic efforts have delivered a library of organic mixed ionic-electronic conductors (OMIECs) with high performance in electrochemical transistors. The most promising materials are redox-active conjugated polymers with hydrophilic side chains that reach high transconductances in aqueous electrolytes due to volumetric electrochemical charging. Current approaches to improve transconductance and device stability focus mostly on materials chemistry including backbone and side chain design. However, other parameters such as the initial microstructure and microstructural rearrangements during electrochemical charging are equally important and are influenced by backbone and side chain chemistry. In this study, we employ a polymer system to investigate the fundamental electrochemical charging mechanisms of OMIECs. We couple in situ electronic charge transport measurements and spectroelectrochemistry with ex situ X-ray scattering electrochemical charging experiments and find that polymer chains planarize during electrochemical charging. Our work shows that the most effective conductivity modulation is related to electrochemical accessibility of well-ordered, interconnected aggregates that host high mobility electronic charge carriers. Electrochemical stress cycling induces microstructural changes, but we find that these aggregates can largely maintain order, providing insights on the structural stability and reversibility of electrochemical charging in these systems. This work shows the importance of material design for creating OMIECs that undergo structural rearrangements to accommodate ions and electronic charge carriers during which percolating networks are formed for efficient electronic charge transport.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Camila Cendra
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | - Rawad Hallani
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
| | - James F Ponder
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
- UES, Inc., Dayton, Ohio 45432, USA
| | - Kevin Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Stephen D Kang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Iain McCulloch
- Department of Chemistry, Oxford University, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Mol Cell 2021; 81:2705-2721.e8. [PMID: 33974911 DOI: 10.1016/j.molcel.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/13/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.
Collapse
|
6
|
Ramlaul K, Fu W, Li H, de Martin Garrido N, He L, Trivedi M, Cui W, Aylett CHS, Wu G. Architecture of the Tuberous Sclerosis Protein Complex. J Mol Biol 2021; 433:166743. [PMID: 33307091 PMCID: PMC7840889 DOI: 10.1016/j.jmb.2020.166743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
The Tuberous Sclerosis Complex (TSC) protein complex (TSCC), comprising TSC1, TSC2, and TBC1D7, is widely recognised as a key integration hub for cell growth and intracellular stress signals upstream of the mammalian target of rapamycin complex 1 (mTORC1). The TSCC negatively regulates mTORC1 by acting as a GTPase-activating protein (GAP) towards the small GTPase Rheb. Both human TSC1 and TSC2 are important tumour suppressors, and mutations in them underlie the disease tuberous sclerosis. We used single-particle cryo-EM to reveal the organisation and architecture of the complete human TSCC. We show that TSCC forms an elongated scorpion-like structure, consisting of a central "body", with a "pincer" and a "tail" at the respective ends. The "body" is composed of a flexible TSC2 HEAT repeat dimer, along the surface of which runs the TSC1 coiled-coil backbone, breaking the symmetry of the dimer. Each end of the body is structurally distinct, representing the N- and C-termini of TSC1; a "pincer" is formed by the highly flexible N-terminal TSC1 core domains and a barbed "tail" makes up the TSC1 coiled-coil-TBC1D7 junction. The TSC2 GAP domain is found abutting the centre of the body on each side of the dimerisation interface, poised to bind a pair of Rheb molecules at a similar separation to the pair in activated mTORC1. Our architectural dissection reveals the mode of association and topology of the complex, casts light on the recruitment of Rheb to the TSCC, and also hints at functional higher order oligomerisation, which has previously been predicted to be important for Rheb-signalling suppression.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom
| | - Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China
| | - Natàlia de Martin Garrido
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom
| | - Lin He
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Manjari Trivedi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Christopher H S Aylett
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom.
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Yang H, Yu Z, Chen X, Li J, Li N, Cheng J, Gao N, Yuan HX, Ye D, Guan KL, Xu Y. Structural insights into TSC complex assembly and GAP activity on Rheb. Nat Commun 2021; 12:339. [PMID: 33436626 PMCID: PMC7804450 DOI: 10.1038/s41467-020-20522-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) integrates upstream stimuli and regulates cell growth by controlling the activity of mTORC1. TSC complex functions as a GTPase-activating protein (GAP) towards small GTPase Rheb and inhibits Rheb-mediated activation of mTORC1. Mutations in TSC genes cause tuberous sclerosis. In this study, the near-atomic resolution structure of human TSC complex reveals an arch-shaped architecture, with a 2:2:1 stoichiometry of TSC1, TSC2, and TBC1D7. This asymmetric complex consists of two interweaved TSC1 coiled-coil and one TBC1D7 that spans over the tail-to-tail TSC2 dimer. The two TSC2 GAP domains are symmetrically cradled within the core module formed by TSC2 dimerization domain and central coiled-coil of TSC1. Structural and biochemical analyses reveal TSC2 GAP-Rheb complimentary interactions and suggest a catalytic mechanism, by which an asparagine thumb (N1643) stabilizes γ-phosphate of GTP and accelerate GTP hydrolysis of Rheb. Our study reveals mechanisms of TSC complex assembly and GAP activity.
Collapse
Affiliation(s)
- Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Jiaxuan Cheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hai-Xin Yuan
- The Molecular and Cell Biology Research Lab, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Ye
- The Molecular and Cell Biology Research Lab, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
8
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Xie W, Sowemimo I, Hayashi R, Wang J, Burkard TR, Brennecke J, Ameres SL, Patel DJ. Structure-function analysis of microRNA 3'-end trimming by Nibbler. Proc Natl Acad Sci U S A 2020; 117:30370-30379. [PMID: 33199607 PMCID: PMC7720153 DOI: 10.1073/pnas.2018156117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nibbler (Nbr) is a 3'-to-5' exoribonuclease whose catalytic 3'-end trimming activity impacts microRNA (miRNA) and PIWI-interacting RNA (piRNA) biogenesis. Here, we report on structural and functional studies to decipher the contributions of Nbr's N-terminal domain (NTD) and exonucleolytic domain (EXO) in miRNA 3'-end trimming. We have solved the crystal structures of the NTD core and EXO domains of Nbr, both in the apo-state. The NTD-core domain of Aedes aegypti Nbr adopts a HEAT-like repeat scaffold with basic patches constituting an RNA-binding surface exhibiting a preference for binding double-strand RNA (dsRNA) over single-strand RNA (ssRNA). Structure-guided functional assays in Drosophila S2 cells confirmed a principal role of the NTD in exonucleolytic miRNA trimming, which depends on basic surface patches. Gain-of-function experiments revealed a potential role of the NTD in recruiting Nbr to Argonaute-bound small RNA substrates. The EXO domain of A. aegypti and Drosophila melanogaster Nbr adopt a mixed α/β-scaffold with a deep pocket lined by a DEDDy catalytic cleavage motif. We demonstrate that Nbr's EXO domain exhibits Mn2+-dependent ssRNA-specific 3'-to-5' exoribonuclease activity. Modeling of a 3' terminal Uridine into the catalytic pocket of Nbr EXO indicates that 2'-O-methylation of the 3'-U would result in a steric clash with a tryptophan side chain, suggesting that 2'-O-methylation protects small RNAs from Nbr-mediated trimming. Overall, our data establish that Nbr requires its NTD as a substrate recruitment platform to execute exonucleolytic miRNA maturation, catalyzed by the ribonuclease EXO domain.
Collapse
Affiliation(s)
- Wei Xie
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Ivica Sowemimo
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria
| | - Rippei Hayashi
- Department of Genome Sciences, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Thomas R Burkard
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria;
| | - Stefan L Ameres
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria;
- Max Perutz Labs, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
10
|
Natarajan N, Thiruvenkatam V. An Insight of Scientific Developments in TSC for Better Therapeutic Strategy. Curr Top Med Chem 2020; 20:2080-2093. [PMID: 32842942 DOI: 10.2174/1568026620666200825170355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disease, which is characterized by noncancerous tumors in multi-organ systems in the body. Mutations in the TSC1 or TSC2 genes are known to cause the disease. The resultant mutant proteins TSC1 (hamartin) and TSC2 (tuberin) complex evade its normal tumor suppressor function, which leads to abnormal cell growth and proliferation. Both TSC1 and TSC2 are involved in several protein-protein interactions, which play a significant role in maintaining cellular homeostasis. The recent biochemical, genetic, structural biology, clinical and drug discovery advancements on TSC give a useful insight into the disease as well as the molecular aspects of TSC1 and TSC2. The complex nature of TSC disease, a wide range of manifestations, mosaicism and several other factors limits the treatment choices. This review is a compilation of the course of TSC, starting from its discovery to the current findings that would take us a step ahead in finding a cure for TSC.
Collapse
Affiliation(s)
- Nalini Natarajan
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| |
Collapse
|
11
|
Rosengren T, Nanhoe S, de Almeida LGD, Schönewolf-Greulich B, Larsen LJ, Hey CAB, Dunø M, Ek J, Risom L, Nellist M, Møller LB. Mutational analysis of TSC1 and TSC2 in Danish patients with tuberous sclerosis complex. Sci Rep 2020; 10:9909. [PMID: 32555378 PMCID: PMC7303179 DOI: 10.1038/s41598-020-66588-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in the skin and other organs, including brain, heart, lung, kidney and bones. TSC is caused by mutations in TSC1 and TSC2. Here, we present the TSC1 and TSC2 variants identified in 168 Danish individuals out of a cohort of 327 individuals suspected of TSC. A total of 137 predicted pathogenic or likely pathogenic variants were identified: 33 different TSC1 variants in 42 patients, and 104 different TSC2 variants in 126 patients. In 40 cases (24%), the identified predicted pathogenic variant had not been described previously. In total, 33 novel variants in TSC2 and 7 novel variants in TSC1 were identified. To assist in the classification of 11 TSC2 variants, we investigated the effects of these variants in an in vitro functional assay. Based on the functional results, as well as population and genetic data, we classified 8 variants as likely to be pathogenic and 3 as likely to be benign.
Collapse
Affiliation(s)
- Thomas Rosengren
- Clinical Genetics Clinic, Copenhagen University Hospital, Rigshospitalet. Address 1: Kennedy Center, Gl landevej 7, DK-2600, Glostrup, Denmark. Address 2: 4062, Blegdamsvej 9, DK-2100, Østerbro, Denmark
| | - Santoesha Nanhoe
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Luis Gustavo Dufner de Almeida
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bitten Schönewolf-Greulich
- Clinical Genetics Clinic, Copenhagen University Hospital, Rigshospitalet. Address 1: Kennedy Center, Gl landevej 7, DK-2600, Glostrup, Denmark. Address 2: 4062, Blegdamsvej 9, DK-2100, Østerbro, Denmark
| | - Lasse Jonsgaard Larsen
- Clinical Genetics Clinic, Copenhagen University Hospital, Rigshospitalet. Address 1: Kennedy Center, Gl landevej 7, DK-2600, Glostrup, Denmark. Address 2: 4062, Blegdamsvej 9, DK-2100, Østerbro, Denmark
| | - Caroline Amalie Brunbjerg Hey
- Clinical Genetics Clinic, Copenhagen University Hospital, Rigshospitalet. Address 1: Kennedy Center, Gl landevej 7, DK-2600, Glostrup, Denmark. Address 2: 4062, Blegdamsvej 9, DK-2100, Østerbro, Denmark
| | - Morten Dunø
- Clinical Genetics Clinic, Copenhagen University Hospital, Rigshospitalet. Address 1: Kennedy Center, Gl landevej 7, DK-2600, Glostrup, Denmark. Address 2: 4062, Blegdamsvej 9, DK-2100, Østerbro, Denmark
| | - Jakob Ek
- Clinical Genetics Clinic, Copenhagen University Hospital, Rigshospitalet. Address 1: Kennedy Center, Gl landevej 7, DK-2600, Glostrup, Denmark. Address 2: 4062, Blegdamsvej 9, DK-2100, Østerbro, Denmark
| | - Lotte Risom
- Clinical Genetics Clinic, Copenhagen University Hospital, Rigshospitalet. Address 1: Kennedy Center, Gl landevej 7, DK-2600, Glostrup, Denmark. Address 2: 4062, Blegdamsvej 9, DK-2100, Østerbro, Denmark
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lisbeth Birk Møller
- Clinical Genetics Clinic, Copenhagen University Hospital, Rigshospitalet. Address 1: Kennedy Center, Gl landevej 7, DK-2600, Glostrup, Denmark. Address 2: 4062, Blegdamsvej 9, DK-2100, Østerbro, Denmark.
| |
Collapse
|
12
|
Georgescu MM, Li Y, Islam MZ, Notarianni C, Sun H, Olar A, Fuller GN. Mutations of the MAPK/TSC/mTOR pathway characterize periventricular glioblastoma with epithelioid SEGA-like morphology-morphological and therapeutic implications. Oncotarget 2019; 10:4038-4052. [PMID: 31258848 PMCID: PMC6592288 DOI: 10.18632/oncotarget.27005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Epithelioid glioblastoma is a recognized glioblastoma variant, recently added to the World Health Organization brain tumor classification, with similar prognosis as the classic variant and B-Raf V600E mutations in 50% of the cases. We identified a new subset of epithelioid glioblastoma with periventricular location and subependymal giant cell astrocytoma (SEGA)-like morphology. Genomic profiling of these tumors revealed driver mutations in NF1, subclonal mutations in TSC1, and a novel driver mutation in MTOR, suggesting upregulation of the MAPK/TSC1/mTOR pathway. Strong mTOR activation was confirmed by immunohistochemistry for the mTOR kinase target 4E-BP1. TSC1 and MTOR mutations have been previously described in low-grade glioma, such as SEGA, and focal cortical dysplasia, respectively, that display large cells with abundant cytoplasm, most likely resulting from the biogenetic signaling of mTOR. Unlike these, the mutations in SEGA-like glioblastoma occurred in the context of other genetic aberrations present in high-grade neoplasms, including in the CDKN2A/B, PIK3R1, PIK3CA and EGFR genes. For one patient with two temporally distinct specimens, the subclonal TSC1 pathogenic mutation was detected only in the specimen showing SEGA-like morphology, indicating requirement for mTOR activation as trigger for specific epithelioid/SEGA-like morphology. As FDA-approved kinase inhibitors are available and target many steps of the MAPK/mTOR pathway, recognition of this new subset of periventricular high-grade gliomas with clear phenotypic-genotypic correlates is essential for prompt biomarker testing and appropriate targeted therapeutic management of these patients.
Collapse
Affiliation(s)
- Maria-Magdalena Georgescu
- Department of Pathology and Pathobiology and Feist-Weiller Cancer Center, Louisiana State University, Shreveport, LA 71103, USA
| | - Yan Li
- Department of Pathology and Pathobiology and Feist-Weiller Cancer Center, Louisiana State University, Shreveport, LA 71103, USA
| | - Mohammad Zahidul Islam
- Department of Pathology and Pathobiology and Feist-Weiller Cancer Center, Louisiana State University, Shreveport, LA 71103, USA
| | - Christina Notarianni
- Department of Neurosurgery, Louisiana State University, Shreveport, LA 71103, USA
| | - Hai Sun
- Department of Neurosurgery, Louisiana State University, Shreveport, LA 71103, USA
| | - Adriana Olar
- Department of Pathology and Laboratory Medicine and Neurosurgery, Medical University of South Carolina and Hollings Cancer Center, Charleston, SC 29425, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, TX 77030, USA
| |
Collapse
|
13
|
Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. Genetic Etiologies, Diagnosis, and Treatment of Tuberous Sclerosis Complex. Annu Rev Genomics Hum Genet 2019; 20:217-240. [PMID: 31018109 DOI: 10.1146/annurev-genom-083118-015354] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects multiple organ systems due to an inactivating variant in either TSC1 or TSC2, resulting in the hyperactivation of the mechanistic target of rapamycin (mTOR) pathway. Dysregulated mTOR signaling results in increased cell growth and proliferation. Clinically, TSC patients exhibit great phenotypic variability, but the neurologic and neuropsychiatric manifestations of the disease have the greatest morbidity and mortality. TSC-associated epilepsy occurs in nearly all patients and is often difficult to treat because it is refractory to multiple antiseizure medications. The advent of mTOR inhibitors offers great promise in the treatment of TSC-associated epilepsy and other neurodevelopmental manifestations of the disease; however, the optimal timing of therapeutic intervention is not yet fully understood.
Collapse
Affiliation(s)
- Catherine L Salussolia
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Katarzyna Klonowska
- Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
14
|
Peron A, Au KS, Northrup H. Genetics, genomics, and genotype-phenotype correlations of TSC: Insights for clinical practice. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:281-290. [PMID: 30255984 DOI: 10.1002/ajmg.c.31651] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 01/28/2023]
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem autosomal dominant condition caused by inactivating pathogenic variants in either the TSC1 or the TSC2 gene, leading to hyperactivation of the mTOR pathway. Here, we present an update on the genetic and genomic aspects of TSC, with a focus on clinical and laboratory practice. We briefly summarize the structure of TSC1 and TSC2 as well as their protein products, and discuss current diagnostic testing, addressing mosaicism. We consider genotype-phenotype correlations as an example of precision medicine, and discuss genetic counseling in TSC, with the aim of providing geneticists and health care practitioners involved in the care of TSC individuals with useful tools for their practice.
Collapse
Affiliation(s)
- Angela Peron
- Child Neuropsychiatry Unit-Epilepsy Center (Service of Medical Genetics), San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
15
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
16
|
Mutational analysis of TSC1 and TSC2 genes in Tuberous Sclerosis Complex patients from Greece. Sci Rep 2017; 7:16697. [PMID: 29196670 PMCID: PMC5711901 DOI: 10.1038/s41598-017-16988-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder causing benign tumors in the brain and other vital organs. The genes implicated in disease development are TSC1 and TSC2. Here, we have performed mutational analysis followed by a genotype-phenotype correlation study based on the clinical characteristics of the affected individuals. Twenty unrelated probands or families from Greece have been analyzed, of whom 13 had definite TSC, whereas another 7 had a possible TSC diagnosis. Using direct sequencing, we have identified pathogenic mutations in 13 patients/families (6 in TSC1 and 7 in TSC2), 5 of which were novel. The mutation identification rate for patients with definite TSC was 85%, but only 29% for the ones with a possible TSC diagnosis. Multiplex ligation-dependent probe amplification (MLPA) did not reveal any genomic rearrangements in TSC1 and TSC2 in the samples with no mutations identified. In general, TSC2 disease was more severe than TSC1, with more subependymal giant cell astrocytomas and angiomyolipomas, higher incidence of pharmacoresistant epileptic seizures, and more severe neuropsychiatric disorders. To our knowledge, this is the first comprehensive TSC1 and TSC2 mutational analysis carried out in TSC patients in Greece.
Collapse
|
17
|
Bhangoo MS, Zhou JY, Ali SM, Madison R, Schrock AB, Costantini C. Objective response to mTOR inhibition in a metastatic collision tumor of the liver composed of melanoma and adenocarcinoma with TSC1 loss: a case report. BMC Cancer 2017; 17:197. [PMID: 28302097 PMCID: PMC5353950 DOI: 10.1186/s12885-017-3167-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/02/2017] [Indexed: 11/30/2022] Open
Abstract
Background Collision tumors are uncommon but well described clinical entities composed of distinct tumor histologies occurring within the same anatomic site. Optimal management of patients with collision tumors remains highly variable and depends on clinical characteristics such as the involved tumor types, predominant histology, as well as the extent of disease. Comprehensive genomic profiling is a means of identifying genomic alterations to suggest benefit from targeted therapy. Case presentation A 78-year-old woman presented to medical oncology with liver metastases occurring within the background of a 1-year history of uveal melanoma. Biopsy of the liver metastases revealed presence of adenocarcinoma along with nests of malignant melanoma consistent with a collision tumor. The disease was refractory to several lines of conventional cytotoxic chemotherapy, and the patient later developed pulmonary metastases while on chemotherapy. The patient’s tumor tissue was assayed by comprehensive genomic profiling which revealed presence of a TSC1 partial loss. The patient was subsequently initiated on temsirolimus 15 mg intravenously weekly for 4 months. Restaging imaging demonstrated a partial response to therapy by RECIST 1.1 criteria and clinical benefit for 6 months until the patient passed away secondary to unrelated causes. Conclusions We report the first case of a collision tumor composed of adenocarcinoma and melanoma with a TSC1 mutation that objectively and durably responded to mTOR inhibition.
Collapse
Affiliation(s)
- Munveer S Bhangoo
- Division of Hematology Oncology, Scripps Clinic, 10666 N. Torrey Pines Ave, La Jolla, CA, 92037, USA.
| | - Jenny Y Zhou
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA, USA
| | | | | | | | - Carrie Costantini
- Division of Hematology Oncology, Scripps Clinic, 10666 N. Torrey Pines Ave, La Jolla, CA, 92037, USA
| |
Collapse
|
18
|
Abstract
Mesenchymal stem cells (MSC) from bone marrow and periosteum are known to be heavily involved in fracture repair and bone regeneration is thought to be impaired when the surrounding skeletal muscle is damaged. Recent literature from mouse in vivo models suggest that cells originating from skeletal muscle can occupy a fracture callus during open fracture repair when periosteum is compromised. This systematic review set out to ascertain whether there are MSCs residing in human skeletal muscle and whether cells from human skeletal muscle are capable of forming bone in vitro and in vivo. Original journal articles were selected if they included the terms "skeletal muscle" and "mesenchymal" and used human skeletal muscle samples. Between January 2005 and September 2016, 1000 articles were screened of which, 16 studies met the inclusion criteria for this review. Human skeletal muscle derived cells (SMDC) had the MSC phenotype, positive for CD73, CD90 and CD105 and negative for CD34 and CD45 as well as the potential to differentiate into osteoblasts, chondrocytes and adipocytes in vitro. In addition, SMDC could form bone in vivo when seeded onto an osteoinductive scaffold. A subset of SMDC expressing a pericyte marker (PDGFRα) also expressed the MSC phenotype and were more osteogenic in vivo in comparison to SMDC expressing a satellite cell marker (CD56). The studies included were limited through variation of SMDC extraction methods and tissue culture conditions, which causes heterogeneuous cell cultures. Also, in vitro differentiation assays were not always carried out with bone marrow MSC positive controls. Current evidence suggests that cells with the MSC phenotype reside within human skeletal muscle and are capable of in vivo bone formation in combination with osteoinductive bone scaffolds. This has implications of future development of guided bone regeneration strategies to enhance large bone defect repair, whereby more thought into whether the fracture site should be "blocked" from the skeletal muscle should be carried out.
Collapse
|
19
|
Zech R, Kiontke S, Mueller U, Oeckinghaus A, Kümmel D. Structure of the Tuberous Sclerosis Complex 2 (TSC2) N Terminus Provides Insight into Complex Assembly and Tuberous Sclerosis Pathogenesis. J Biol Chem 2016; 291:20008-20. [PMID: 27493206 DOI: 10.1074/jbc.m116.732446] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the TSC1 and TSC2 tumor suppressor genes. The gene products hamartin and tuberin form the TSC complex that acts as GTPase-activating protein for Rheb and negatively regulates the mammalian target of rapamycin complex 1 (mTORC1). Tuberin contains a RapGAP homology domain responsible for inactivation of Rheb, but functions of other protein domains remain elusive. Here we show that the TSC2 N terminus interacts with the TSC1 C terminus to mediate complex formation. The structure of the TSC2 N-terminal domain from Chaetomium thermophilum and a homology model of the human tuberin N terminus are presented. We characterize the molecular requirements for TSC1-TSC2 interactions and analyze pathological point mutations in tuberin. Many mutations are structural and produce improperly folded protein, explaining their effect in pathology, but we identify one point mutant that abrogates complex formation without affecting protein structure. We provide the first structural information on TSC2/tuberin with novel insight into the molecular function.
Collapse
Affiliation(s)
- Reinhard Zech
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stephan Kiontke
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Uwe Mueller
- Macromolecular Crystallography (BESSY-MX), Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany, and
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Medical Faculty of the WWU Münster, 48149 Münster Germany
| | - Daniel Kümmel
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany,
| |
Collapse
|
20
|
Qin J, Wang Z, Hoogeveen-Westerveld M, Shen G, Gong W, Nellist M, Xu W. Structural Basis of the Interaction between Tuberous Sclerosis Complex 1 (TSC1) and Tre2-Bub2-Cdc16 Domain Family Member 7 (TBC1D7). J Biol Chem 2016; 291:8591-601. [PMID: 26893383 PMCID: PMC4861430 DOI: 10.1074/jbc.m115.701870] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/07/2023] Open
Abstract
Mutations in TSC1 or TSC2 cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by the occurrence of benign tumors in various vital organs and tissues. TSC1 and TSC2, the TSC1 and TSC2 gene products, form the TSC protein complex that senses specific cellular growth conditions to control mTORC1 signaling. TBC1D7 is the third subunit of the TSC complex, and helps to stabilize the TSC1-TSC2 complex through its direct interaction with TSC1. Homozygous inactivation of TBC1D7 causes intellectual disability and megaencephaly. Here we report the crystal structure of a TSC1-TBC1D7 complex and biochemical characterization of the TSC1-TBC1D7 interaction. TBC1D7 interacts with the C-terminal region of the predicted coiled-coil domain of TSC1. The TSC1-TBC1D7 interface is largely hydrophobic, involving the α4 helix of TBC1D7. Each TBC1D7 molecule interacts simultaneously with two parallel TSC1 helices from two TSC1 molecules, suggesting that TBC1D7 may stabilize the TSC complex by tethering the C-terminal ends of two TSC1 coiled-coils.
Collapse
Affiliation(s)
- Jiayue Qin
- From the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, ,the Department of Biological Structure, University of Washington, Seattle, Washington 98195, ,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhizhi Wang
- the Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | | | - Guobo Shen
- the Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Weimin Gong
- From the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, ,the Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China, To whom correspondence may be addressed: Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Tel.: 86-10-64888465; E-mail:
| | - Mark Nellist
- the Department of Clinical Genetics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands, and , To whom correspondence may be addressed. Tel.: 31-10-7043153; E-mail:
| | - Wenqing Xu
- From the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, ,the Department of Biological Structure, University of Washington, Seattle, Washington 98195, , To whom correspondence may be addressed: Dept. of Biological Structure, University of Washington, Seattle, WA 98195. Tel.: 206-221-5609; Fax: 206-543-1524; E-mail:
| |
Collapse
|
21
|
Gai Z, Chu W, Deng W, Li W, Li H, He A, Nellist M, Wu G. Structure of the TBC1D7-TSC1 complex reveals that TBC1D7 stabilizes dimerization of the TSC1 C-terminal coiled coil region. J Mol Cell Biol 2016; 8:411-425. [PMID: 26798146 DOI: 10.1093/jmcb/mjw001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023] Open
Abstract
TSC1 and TSC2 mutations account for the majority of tuberous sclerosis complex cases. The TSC1 and TSC2 proteins assemble into a complex that is stabilized by TBC1D7 through its direct interaction with the TSC1 coiled coil (CC) region. Loss of TBC1D7 is associated with intellectual disability and megalencephaly. Here, we determine the crystal structure of the complex between TBC1D7 and the C-terminal part (residues 939-992) of TSC1-CC. The structure reveals that two TSC1-CCs form a parallel homodimer, which results in the formation of two symmetric surfaces for interaction with TBC1D7. TBC1D7 employs its α4 and α5 helices to interact with the α1 helix of one TSC1 (939-992) molecule mainly through hydrophobic interactions, and simultaneously associates with the other TSC1 (939-992) molecule using the C-terminal tip of its α4 helix. Biochemical and cell biological data demonstrate that TBC1D7 indeed substantially stabilizes the homodimerization of TSC1-CC, and mutations to the critical interface residues greatly compromise this effect. Together, our data reveal the molecular mechanism underlying TBC1D7-mediated stabilization of TSC1 dimerization, and its contribution to the structural integrity of the holo-TSC complex.
Collapse
Affiliation(s)
- Zhongchao Gai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wendan Chu
- The China National Center for Protein Sciences (Beijing) Tsinghua University Branch, Beijing, China
| | - Wei Deng
- National Center for Protein Science Shanghai, Shanghai, China
| | - Wenqi Li
- The China National Center for Protein Sciences (Beijing) Tsinghua University Branch, Beijing, China
| | - Hua Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ailiang He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Wong HT, McCartney DL, Lewis JC, Sampson JR, Howe CJ, de Vries PJ. Intellectual ability in tuberous sclerosis complex correlates with predicted effects of mutations on TSC1 and TSC2 proteins. J Med Genet 2015; 52:815-22. [DOI: 10.1136/jmedgenet-2015-103154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/29/2015] [Indexed: 12/13/2022]
|
23
|
Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015; 25:545-55. [PMID: 26159692 DOI: 10.1016/j.tcb.2015.06.002] [Citation(s) in RCA: 573] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
The class I phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling network directs cellular metabolism and growth. Activation of mTORC1 [composed of mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8(mLST8), 40-kDa proline-rich Akt substrate (PRAS40), and DEP domain-containing mTOR-interacting protein (DEPTOR)] depends on the Ras-related GTPases (Rags) and Ras homolog enriched in brain (Rheb) GTPase and requires signals from amino acids, glucose, oxygen, energy (ATP), and growth factors (including cytokines and hormones such as insulin). Here we discuss the signal transduction mechanisms through which growth factor-responsive PI3K signaling activates mTORC1. We focus on how PI3K-dependent activation of Akt and spatial regulation of the tuberous sclerosis complex (TSC) complex (TSC complex) [composed of TSC1, TSC2, and Tre2-Bub2-Cdc16-1 domain family member 7 (TBC1D7)] switches on Rheb at the lysosome, where mTORC1 is activated. Integration of PI3K- and amino acid-dependent signals upstream of mTORC1 at the lysosome is detailed in a working model. A coherent understanding of the PI3K-mTORC1 network is imperative as its dysregulation has been implicated in diverse pathologies including cancer, diabetes, autism, and aging.
Collapse
Affiliation(s)
- Christian C Dibble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
24
|
Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156:771-85. [PMID: 24529379 DOI: 10.1016/j.cell.2013.11.049] [Citation(s) in RCA: 582] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/14/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022]
Abstract
mTORC1 promotes cell growth in response to nutrients and growth factors. Insulin activates mTORC1 through the PI3K-Akt pathway, which inhibits the TSC1-TSC2-TBC1D7 complex (the TSC complex) to turn on Rheb, an essential activator of mTORC1. However, the mechanistic basis of how this pathway integrates with nutrient-sensing pathways is unknown. We demonstrate that insulin stimulates acute dissociation of the TSC complex from the lysosomal surface, where subpopulations of Rheb and mTORC1 reside. The TSC complex associates with the lysosome in a Rheb-dependent manner, and its dissociation in response to insulin requires Akt-mediated TSC2 phosphorylation. Loss of the PTEN tumor suppressor results in constitutive activation of mTORC1 through the Akt-dependent dissociation of the TSC complex from the lysosome. These findings provide a unifying mechanism by which independent pathways affecting the spatial recruitment of mTORC1 and the TSC complex to Rheb at the lysosomal surface serve to integrate diverse growth signals.
Collapse
Affiliation(s)
- Suchithra Menon
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Christian C Dibble
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - George Talbott
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Gerta Hoxhaj
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Alexander J Valvezan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Hidenori Takahashi
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lewis C Cantley
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Santiago Lima AJ, Hoogeveen-Westerveld M, Nakashima A, Maat-Kievit A, van den Ouweland A, Halley D, Kikkawa U, Nellist M. Identification of regions critical for the integrity of the TSC1-TSC2-TBC1D7 complex. PLoS One 2014; 9:e93940. [PMID: 24714658 PMCID: PMC3979717 DOI: 10.1371/journal.pone.0093940] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/07/2014] [Indexed: 12/23/2022] Open
Abstract
The TSC1-TSC2-TBC1D7 complex is an important negative regulator of the mechanistic target of rapamycin complex 1 that controls cell growth in response to environmental cues. Inactivating TSC1 and TSC2 mutations cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterised by the occurrence of benign tumours in various organs and tissues, notably the brain, skin and kidneys. TBC1D7 mutations have not been reported in TSC patients but homozygous inactivation of TBC1D7 causes megaencephaly and intellectual disability. Here, using an exon-specific deletion strategy, we demonstrate that some regions of TSC1 are not necessary for the core function of the TSC1-TSC2 complex. Furthermore, we show that the TBC1D7 binding site is encoded by TSC1 exon 22 and identify amino acid residues involved in the TSC1-TBC1D7 interaction.
Collapse
Affiliation(s)
| | | | | | - Anneke Maat-Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ans van den Ouweland
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dicky Halley
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|