1
|
Liu P, Sun L, Zhang Y, Tan Y, Zhu Y, Peng C, Wang J, Yan H, Mao D, Liang G, Liang G, Li X, Liang Y, Wang F, He Z, Tang W, Huang D, Chen C. The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains. MOLECULAR PLANT 2024; 17:1733-1752. [PMID: 39354718 DOI: 10.1016/j.molp.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024]
Abstract
Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yongjun Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuxing Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Can Peng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoxiang Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy ofAgricultural Sciences, Nanning 530007, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Yao Q, Yang Y, Chen J, Li X, He M, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y, Cheng Y. Soil application of FeCl 3 and Fe 2(SO 4) 3 reduced grain cadmium concentration in Polish wheat (Triticum polonicum L.). BMC PLANT BIOLOGY 2024; 24:930. [PMID: 39370516 PMCID: PMC11457330 DOI: 10.1186/s12870-024-05652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Wheat is one of major sources of human cadmium (Cd) intake. Reducing the grain Cd concentrations in wheat is urgently required to ensure food security and human health. In this study, we performed a field experiment at Wenjiang experimental field of Sichuan Agricultural University (Chengdu, China) to reveal the effects of FeCl3 and Fe2(SO4)3 on reducing grain Cd concentrations in dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB). RESULTS Soil application of FeCl3 and Fe2(SO4)3 (0.04 M Fe3+/m2) significantly reduced grain Cd concentration in DPW at maturity by 19.04% and 33.33%, respectively. They did not reduce Cd uptake or root-to-shoot Cd translocation, but increased Cd distribution in lower leaves, lower internodes, and glumes. Meanwhile, application of FeCl3 and Fe2(SO4)3 up-regulated the expression of TpNRAMP5, TpNRAMP2 and TpYSL15 in roots, and TpYSL15 and TpZIP3 in shoots; they also downregulated the expression of TpZIP1 and TpZIP3 in roots, and TpIRT1 and TpNRAMP5 in shoots. CONCLUSIONS The reduction in grain Cd concentration caused by application of FeCl3 and Fe2(SO4)3 was resulted from changes in shoot Cd distribution via regulating the expression of some metal transporter genes. Overall, this study reports the physiological pathways of soil applied Fe fertilizer on grain Cd concentration in wheat, suggests a strategy for reducing grain Cd concentration by altering shoot Cd distribution.
Collapse
Affiliation(s)
- Qin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Chengdu Agricultural College, Wenjiang, 611130, Sichuan, China
| | - Yueying Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jia Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xiaoying Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Miao He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
3
|
Che J, Yamaji N, Wang SF, Xia Y, Yang SY, Su YH, Shen RF, Ma JF. OsHAK4 functions in retrieving sodium from the phloem at the reproductive stage of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:76-90. [PMID: 39139125 DOI: 10.1111/tpj.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Soil salinity significantly limits rice productivity, but it is poorly understood how excess sodium (Na+) is delivered to the grains at the reproductive stage. Here, we functionally characterized OsHAK4, a member of the clade IV HAK/KUP/KT transporter subfamily in rice. OsHAK4 was localized to the plasma membrane and exhibited influx transport activity for Na+, but not for K+. Analysis of organ- and growth stage-dependent expression patterns showed that very low expression levels of OsHAK4 were detected at the vegetative growth stage, but its high expression in uppermost node I, peduncle, and rachis was found at the reproductive stage. Immunostaining indicated OsHAK4 localization in the phloem region of node I, peduncle, and rachis. Knockout of OsHAK4 did not affect the growth and Na+ accumulation at the vegetative stage. However, at the reproductive stage, the hak4 mutants accumulated higher Na+ in the peduncle, rachis, husk, and brown rice compared to the wild-type rice. Element imaging revealed higher Na+ accumulation at the phloem region of the peduncle in the mutants. These results indicate that OsHAK4 plays a crucial role in retrieving Na+ from the phloem in the upper nodes, peduncle, and rachis, thereby preventing Na+ distribution to the grains at the reproductive stage of rice.
Collapse
Affiliation(s)
- Jing Che
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Shao Fei Wang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Xia
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shun Ying Yang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yan Hua Su
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
4
|
Hu S, Zhou L, Wang J, Mawia AM, Hui S, Xu B, Jiao G, Sheng Z, Shao G, Wei X, Wang L, Xie L, Zhao F, Tang S, Hu P. Production of grains with ultra-low heavy metal accumulation by pyramiding novel Alleles of OsNramp5 and OsLsi2 in two-line hybrid rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2921-2931. [PMID: 38898780 DOI: 10.1111/pbi.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Ensuring rice yield and grain safety quality are vital for human health. In this study, we developed two-line hybrid rice (TLHR) with ultra-low grain cadmium (Cd) and arsenic (As) accumulation by pyramiding novel alleles of OsNramp5 and OsLsi2. We first generated low Cd accumulation restorer (R) lines by editing OsNramp5, OsLCD, and OsLCT1 in japonica and indica. After confirming that OsNramp5 was most efficient in reducing Cd, we edited this gene in C815S, a genic male sterile line (GMSL), and screened it for alleles with low Cd accumulation. Next, we generated R and GMSL lines with low As accumulation by editing OsLsi2 in a series of YK17 and C815S lines. When cultivated in soils that were heavily polluted with Cd and As, the edited R, GMSL, and TLHR plants showed significantly reduced heavy metal accumulation, while maintaining a relatively stable yield potential. This study provides an effective scheme for the safe production of grains in As- and/or Cd-polluted paddy fields.
Collapse
Affiliation(s)
- Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Ling Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Lihong Xie
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Guo Z, Guo J, Yu H, Huang H, Ye D, Liu T, Zhang X, Zhang L, Zheng Z, Wang Y, Li T. OsWNK9 regulates cadmium concentration in brown rice by restraining cadmium transport from straw to brown rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116810. [PMID: 39096692 DOI: 10.1016/j.ecoenv.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Selecting and breeding rice cultivars that enable strong cadmium (Cd) accumulation in rice straw but low accumulation in brown rice is a promising way to achieve Cd phytoremediation as well as to ensure the food safety of rice. Herein, we isolated a gene OsWNK9 from the quantitative trait locus associated with reducing Cd translocation from rice straw to brown rice and decreasing the Cd concentration in brown rice (BRCdC). Continuous strong expression of OsWNK9 was observed in nodes and internode and was induced after Cd supply. OsWNK9 was localized in the rice cell nucleus and participated in the regulation of Cd transport in yeast. Two independent oswnk9 rice mutants were generated via CRISPR/Cas9 gene-editing and showed significantly higher BRCdC than that of the wild type (WT). The BRCdC of knockout oswnk9 mutants was 0.227 mg kg-1and 0.238 mg kg-1, increased by 14 % and 19 % compared with that of the WT due to the lower Cd allocation in the basal stem, internode, and node III, which was unrelated to Cd uptake. Interestingly, OsWNK9 could promote iron (Fe) accumulation in rice under Cd-contaminated conditions, suggesting that OsWNK9 is an ideal gene for Cd phytoremediation and Fe biofortification in rice to support safe food production.
Collapse
Affiliation(s)
- Zhipeng Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Jingyi Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China; Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben 06466, Germany
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Lu Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China.
| |
Collapse
|
6
|
Huang H, Yamaji N, Huang S, Ma JF. Uptake and Accumulation of Cobalt Is Mediated by OsNramp5 in Rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39222021 DOI: 10.1111/pce.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cobalt (Co) contamination in soils potentially affects human health through the food chain. Although rice (Oryza sativa) as a staple food is a major dietary source of human Co intake, it is poorly understood how Co is taken up by the roots and accumulated in rice grain. In this study, we physiologically characterized Co accumulation and identified the transporter for Co2+ uptake in rice. A dose-dependent experiment showed that Co mainly accumulated in rice roots. Further analysis with LA-ICP-MS showed Co deposited in most tissue of the roots, including exodermis, endodermis and stele region. Co accumulation analysis using mutants defective in divalent cation uptake showed that Co2+ uptake in rice is mediated by the Mn2+/Cd2+/Pb2+ transporter OsNramp5, rather than OsIRT1 for Fe2+ and OsZIP9 for Zn2+. Knockout of OsNramp5 enhanced tolerance to Co toxicity. Heterologous expression of OsNramp5 showed transport activity for Co2+ in Saccharomyces cerevisiae. Co2+ uptake was inhibited by either Mn2+ or Cd2+ supply. At the reproductive stage, the Co concentration in the straw and grains of the OsNramp5 knockout lines was decreased by 41%-48% and 28%-36%, respectively, compared with that of the wild-type rice. The expression level of OsNramp5 in the roots was not affected by Co2+. Taken together, our results indicate that OsNramp5 is a major transporter for Co2+ uptake in rice, which ultimately mediates Co accumulation in the grains.
Collapse
Affiliation(s)
- Hengliang Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
7
|
Xu FQ, Meng LL, Kuča K, Wu QS. The mechanism of arbuscular mycorrhizal fungi-alleviated manganese toxicity in plants: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108808. [PMID: 38865805 DOI: 10.1016/j.plaphy.2024.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The development of the mining industry and the overuse of inorganic fertilizers have led to an excess of manganese (Mn) in the soil, thereby, contaminating the soil environment and people's health. On heavy metal-contaminated soils, the combined arbuscular mycorrhizal fungi (AMF)-phytoremediation technique becomes a hotspot because of its environmentally friendly, in situ remediation. AMF inoculation often leads to a decrease in host Mn acquisition, which provides a basis for its application in phytoremediation of contaminated soils. Moreover, the utilization value of native AMF is greater than that of exotic AMF, because native AMF can adapt better to Mn-contaminated soils. In addition to the fact that AMF enhance plant Mn tolerance responses such as regionalization, organic matter chelation, limiting uptake and efflux, and so on, AMF also develop plant-independent fungal pathways such as direct biosorption of Mn by mycorrhizal hyphae, fungal Mn transporter genes, and sequestration of Mn by mycorrhizal hyphae, glomalin, and arbuscule-containing root cortical cells, which together mitigate excessive Mn toxicity to plants. Clarifying AMF-plant interactions under Mn stress will provide support for utilizing AMF as a phytoremediation in Mn-contaminated soils. The review reveals in detail how AMF develop its own mechanisms for responding to excess Mn and how AMF enhance plant Mn tolerance, accompanied by perspectives for future research.
Collapse
Affiliation(s)
- Fu-Qi Xu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, Yangtze University, Jingzhou, 434025, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Lu-Lu Meng
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, Yangtze University, Jingzhou, 434025, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuča
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Qiang-Sheng Wu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, Yangtze University, Jingzhou, 434025, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China; Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
8
|
Huang S, Yamaji N, Ma JF. Metal Transport Systems in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:1-25. [PMID: 38382903 DOI: 10.1146/annurev-arplant-062923-021424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plants take up metals, including essential micronutrients [iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn)] and the toxic heavy metal cadmium (Cd), from soil and accumulate these metals in their edible parts, which are direct and indirect intake sources for humans. Multiple transporters belonging to different families are required to transport a metal from the soil to different organs and tissues, but only a few of them have been fully functionally characterized. The transport systems (the transporters required for uptake, translocation, distribution, redistribution, and their regulation) differ with metals and plant species, depending on the physiological roles, requirements of each metal, and anatomies of different organs and tissues. To maintain metal homeostasis in response to spatiotemporal fluctuations of metals in soil, plants have developed sophisticated and tightly regulated mechanisms through the regulation of transporters at the transcriptional and/or posttranscriptional levels. The manipulation of some transporters has succeeded in generating crops rich in essential metals but low in Cd accumulation. A better understanding of metal transport systems will contribute to better and safer crop production.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| |
Collapse
|
9
|
Liu Y, Ma J, Li F, Zeng X, Wu Z, Huang Y, Xue Y, Wang Y. High Concentrations of Se Inhibited the Growth of Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1580. [PMID: 38891388 PMCID: PMC11174541 DOI: 10.3390/plants13111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Selenium (Se) is crucial for both plants and humans, with plants acting as the main source for human Se intake. In plants, moderate Se enhances growth and increases stress resistance, whereas excessive Se leads to toxicity. The physiological mechanisms by which Se influences rice seedlings' growth are poorly understood and require additional research. In order to study the effects of selenium stress on rice seedlings, plant phenotype analysis, root scanning, metal ion content determination, physiological response index determination, hormone level determination, quantitative PCR (qPCR), and other methods were used. Our findings indicated that sodium selenite had dual effects on rice seedling growth under hydroponic conditions. At low concentrations, Se treatment promotes rice seedling growth by enhancing biomass, root length, and antioxidant capacity. Conversely, high concentrations of sodium selenite impair and damage rice, as evidenced by leaf yellowing, reduced chlorophyll content, decreased biomass, and stunted growth. Elevated Se levels also significantly affect antioxidase activities and the levels of proline, malondialdehyde, metal ions, and various phytohormones and selenium metabolism, ion transport, and antioxidant genes in rice. The adverse effects of high Se concentrations may directly disrupt protein synthesis or indirectly induce oxidative stress by altering the absorption and synthesis of other compounds. This study aims to elucidate the physiological responses of rice to Se toxicity stress and lay the groundwork for the development of Se-enriched rice varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanyan Wang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.)
| |
Collapse
|
10
|
Yamaji N, Yoshioka Y, Huang S, Miyaji T, Sasaki A, Ma JF. An oligo peptide transporter family member, OsOPT7, mediates xylem unloading of Fe for its preferential distribution in rice. THE NEW PHYTOLOGIST 2024; 242:2620-2634. [PMID: 38600023 DOI: 10.1111/nph.19756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Iron (Fe) needs to be delivered to different organs and tissues of above-ground parts for playing its multiple physiological functions once it is taken up by the roots. However, the mechanisms underlying Fe distribution are poorly understood. We functionally characterized OsOPT7, a member of oligo peptide transporter family in terms of expression patterns, localization, transport activity and phenotypic analysis of knockdown lines. OsOPT7 was highly expressed in the nodes, especially in the uppermost node I, and its expression was upregulated by Fe-deficiency. OsOPT7 transports ferrous iron into the cells coupled with proton. Immunostaining revealed that OsOPT7 is mainly localized in the xylem parenchyma cells of the enlarged vascular bundles in the nodes and vascular tissues in the leaves. Knockdown of OsOPT7 did not affect the Fe uptake, but altered Fe distribution; less Fe was distributed to the new leaf, upper nodes and developing panicle, but more Fe was distributed to the old leaves. Furthermore, knockdown of OsOPT7 also resulted in less Fe distribution to the leaf sheath, but more Fe to the leaf blade. Taken together, OsOPT7 is involved in the xylem unloading of Fe for both long-distance distribution to the developing organs and local distribution within the leaf in rice.
Collapse
Affiliation(s)
- Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Yuma Yoshioka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Takaaki Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
- Department of Genomics & Proteomics, Advanced Science Research Center, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
| | - Akimasa Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
11
|
Zeng L, Liu X, Ma J, Yang J, Yang J, Zhou Y. Current progress on manganese in constructed wetlands: Bibliometrics, effects on wastewater treatment, and plant uptake. ENVIRONMENTAL RESEARCH 2024; 249:118382. [PMID: 38331160 DOI: 10.1016/j.envres.2024.118382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Constructed wetlands (CWs) are a pollutant treatment design inspired by natural wetlands and are widely utilized for the removal of common pollutants. The research focus lies in the circulation of manganese (Mn) in the environment to enhance pollutant removal within CWs. This paper provides a comprehensive review of recent advancements in understanding the role and effects of Mn in chemical weapons, based on literature retrieval from 2002 to 2021. Ecological risk assessment and heavy metals within CWs emerge as current areas of research interest. Mn sources within CWs primarily include natural deposition, heavy metal wastewater, and intentional addition. The cycling between Mn(II) and Mn(IV) facilitates enhanced wastewater treatment within CWs. Moreover, employing a Mn matrix proves effective in reducing ammonia nitrogen wastewater, organic pollutants, as well as heavy metals such as Cd and Pb, thereby addressing complex pollution challenges practically. To comprehensively analyze influencing factors on the system's performance, both internal factors (biological species, design parameters, pH levels, etc.) and external factors (seasonal climate variations, precipitation patterns, ultraviolet radiation exposure, etc.) were discussed. Among these factors, microorganisms, pollutants, and temperature are the most important influencing factors, which emphasizes the importance of these factors for wetland operation. Lastly, this paper delves into plant absorption of Mn along with coping strategies employed by plants when faced with Mn poisoning or deficiency scenarios. When utilizing Mn for the regulation of constructed wetlands, it is crucial to consider the tolerance levels of associated plant species. Furthermore, the study predicts future research hotspots encompass high-efficiency catalysis techniques, matrix-filling approaches, and preparation of resource utilization methods involving Mn nanomaterials.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiezhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha City, Hunan Province, 410013, China.
| | - Jie Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
12
|
An Q, Zheng N, Ji Y, Sun S, Wang S, Li X, Chen C, Li N, Pan J. Exploration the interaction of cadmium and copper toxic effects in pakchoi (Brassica chinensis L) roots through combinatorial transcriptomic and weighted gene co-expression network analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120956. [PMID: 38669883 DOI: 10.1016/j.jenvman.2024.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The interaction between cadmium(Cd) and copper(Cu) during combined pollution can lead to more complex toxic effects on humans and plants.However, there is still a lack of sufficient understanding regarding the types of interactions at the plant molecular level and the response strategies of plants to combined pollution. To assess this, we investigated the phenotypic and transcriptomic patterns of pakchoi (Brassica chinensis L) roots in response to individual and combined pollution of Cd and Cu. The results showed that compared to single addition, the translocation factor of heavy metals in roots significantly decreased (p < 0.05) under the combined addition, resulting in higher accumulation of Cd and Cu in the roots. Transcriptomic analysis of pakchoi roots revealed that compared to single pollution, there were 312 and 1926 differentially expressed genes (DEGs) specifically regulated in the Cd2Cu20 and Cd2Cu100 combined treatments, respectively. By comparing the expression of these DEGs among different treatments, we found that the combined pollution of Cd and Cu mainly affected the transcriptome of the roots in an antagonistic manner. Enrichment analysis indicated that pakchoi roots upregulated the expression of genes involved in glucosetransferase activity, phospholipid homeostasis, proton transport, and the biosynthesis of phenylpropanoids and flavonoids to resist Cd and Cu combined pollution. Using weighted gene co-expression network analysis (WGCNA), we identified hub genes related to the accumulation of Cd and Cu in the roots, which mainly belonged to the LBD, thaumatin-like protein, ERF, MYB, WRKY, and TCP transcription factor families. This may reflect a transcription factor-driven trade-off strategy between heavy metal accumulation and growth in pakchoi roots. Additionally, compared to single metal pollution, the expression of genes related to Nramp, cation/H+ antiporters, and some belonging to the ABC transporter family in the pakchoi roots was significantly upregulated under combined pollution. This could lead to increased accumulation of Cd and Cu in the roots. These findings provide new insights into the interactions and toxic mechanisms of multiple metal combined pollution at the molecular level in plants.
Collapse
Affiliation(s)
- Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Ning Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|
13
|
Kanwal F, Riaz A, Ali S, Zhang G. NRAMPs and manganese: Magic keys to reduce cadmium toxicity and accumulation in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171005. [PMID: 38378068 DOI: 10.1016/j.scitotenv.2024.171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Cadmium (Cd), a toxic heavy metal, poses significant threats to both crop production and human health worldwide. Manganese (Mn), an essential micronutrient, plays a crucial role in plant growth and development. NRAMPs (Natural Resistance-Associated Macrophage Proteins) function as common transporters for both Cd and Mn. Deep understanding of the regulatory mechanisms governing NRAMP-mediated Cd and Mn transport is imperative for developing the crop varieties with high tolerance and low accumulation of Cd. This review reported the advance in studies on the fundamental properties and classification of NRAMPs in plants, and structural characteristics, expression patterns, and diverse functions of NRAMP genes across different plant species. We highlighted the pivotal role of NRAMPs in Cd/Mn uptake and transport in plants as a common transporter. Finally, we also comprehensively discussed over the strategies for reducing Cd uptake and accumulation in plants through using antagonism of Mn over Cd and altering the expression of NRAMP genes.
Collapse
Affiliation(s)
- Farah Kanwal
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Asad Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Brisbane 4072, Australia; Centre of Excellence for Plant Success in Nature and Agriculture, Saint Lucia, Brisbane 4072, Australia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China; Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China.
| |
Collapse
|
14
|
Fang X, Colina Blanco AE, Christl I, Le Bars M, Straub D, Kleindienst S, Planer-Friedrich B, Zhao FJ, Kappler A, Kretzschmar R. Simultaneously decreasing arsenic and cadmium in rice by soil sulfate and limestone amendment under intermittent flooding. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123786. [PMID: 38484962 DOI: 10.1016/j.envpol.2024.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Water management in paddy soils can effectively reduce the soil-to-rice grain transfer of either As or Cd, but not of both elements simultaneously due to the higher mobility of As under reducing and Cd under oxidizing soil conditions. Limestone amendment, the common form of liming, is well known for decreasing Cd accumulation in rice grown on acidic soils. Sulfate amendment was suggested to effectively decrease As accumulation in rice, especially under intermittent soil flooding. To study the unknown effects of combined sulfate and limestone amendment under intermittent flooding for simultaneously decreasing As and Cd in rice, we performed a pot experiment using an acidic sandy loam paddy soil. We also included a clay loam paddy soil to study the role of soil texture in low-As rice production under intermittent flooding. We found that liming not only decreased rice Cd concentrations but also greatly decreased dimethylarsenate (DMA) accumulation in rice. We hypothesize that this is due to suppressed sulfate reduction, As methylation, and As thiolation by liming in the sulfate-amended soil and a higher share of deprotonated DMA at higher pH which is taken up less readily than protonated DMA. Decreased gene abundance of potential soil sulfate-reducers by liming further supported our hypothesis. Combined sulfate and limestone amendment to the acidic sandy loam soil produced rice with 43% lower inorganic As, 72% lower DMA, and 68% lower Cd compared to the control soil without amendment. A tradeoff between soil aeration and water availability was observed for the clay loam soil, suggesting difficulties to decrease As in rice while avoiding plant water stress under intermittent flooding in fine-textured soils. Our results suggest that combining sulfate amendment, liming, and intermittent flooding can help to secure rice safety when the presence of both As and Cd in coarse-textured soils is of concern.
Collapse
Affiliation(s)
- Xu Fang
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, CH-8092, Zurich, Switzerland.
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Iso Christl
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Maureen Le Bars
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Daniel Straub
- Quantitative Biology Center (QBiC), University of Tuebingen, 72076, Tuebingen, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen, 72076, Germany
| | - Sara Kleindienst
- Microbial Ecology, Department of Geosciences, University of Tuebingen, 72076, Tuebingen, Germany; Now: Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, 70569, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Andreas Kappler
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen, 72076, Germany; Geomicrobiology, Department of Geosciences, Tuebingen University, 72076, Tuebingen, Germany
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
15
|
Charagh S, Hui S, Wang J, Raza A, Zhou L, Xu B, Zhang Y, Sheng Z, Tang S, Hu S, Hu P. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14226. [PMID: 38410873 DOI: 10.1111/ppl.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| |
Collapse
|
16
|
Rasheed A, Al-Huqail AA, Ali B, Alghanem SMS, Shah AA, Azeem F, Rizwan M, Al-Qthanin RN, Soudy FA. Molecular characterization of genes involved in tolerance of cadmium in Triticum aestivum (L.) under Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132955. [PMID: 37976857 DOI: 10.1016/j.jhazmat.2023.132955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The NRAMPs (natural resistance-associated macrophage proteins) are major transporters for the absorption and transport of metals like Pb, Zn, Mn, Fe, and Cd in plants. While NRAMP gene family members have been extensively studied as metal transporters in model and other plants, little information has been reported on their role in Triticum aestivum, particularly in response to Cd stress. Current study reported 13 NRAMP candidates in the genome of T. aestivum. Phylogenetic analysis divided these into three clades. Motif and gene structure study showed that members in the same clades shared the same location and pattern, which further supported the phylogenetic analysis. The analysis of cis-acting elements in promoter sequences of NRAMP genes in wheat identified stress-responsive transcription factor binding sites. Multiple sequence alignment identified the conservation of important residues. Based on RNA-seq and qRT-PCR analysis, Cd stress-responsive variations of TaNRAMP gene expression were reported. This study provides comprehensive data to understand the TaNRAMP gene family, its features, and its expression, which will be a helpful framework for functional research.
Collapse
Affiliation(s)
- Asima Rasheed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
17
|
Huang S, Konishi N, Yamaji N, Ma JF. Local distribution of manganese to leaf sheath is mediated by OsNramp5 in rice. THE NEW PHYTOLOGIST 2024; 241:1708-1719. [PMID: 38084009 DOI: 10.1111/nph.19454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/15/2023] [Indexed: 01/26/2024]
Abstract
To play essential roles of manganese (Mn) in plant growth and development, it needs to be transported to different organs and tissues after uptake. However, the molecular mechanisms underlying Mn distribution between different tissues are poorly understood. We functionally characterized a member of rice natural resistance-associated macrophage protein (NRAMP) family, OsNramp5 in terms of its tissue specificity of gene expression, cell-specificity of protein localization, phenotypic analysis of leaf growth and response to Mn fluctuations. OsNramp5 is highly expressed in the leaf sheath. Immunostaining revealed that OsNramp5 is polarly localized at the proximal side of xylem parenchyma cells of the leaf sheath. Both the gene expression and protein abundance of OsNramp5 are unaffected by different Mn concentrations. Knockout of OsNramp5 decreased the distribution of Mn to the leaf sheath, but increased the distribution to the leaf blade at both low and high Mn supplies, resulting in reduced growth of leaf sheath. Furthermore, expression of OsNramp5 under the control of root-specific promoter in osnramp5 mutant complemented Mn uptake, but could not complement Mn distribution to the leaf sheath. These results indicate that OsNramp5 expressed in the leaf sheath plays an important role in unloading Mn from the xylem for the local distribution in rice.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| |
Collapse
|
18
|
Xu E, Zou Y, Yang G, Zhang P, Ha MN, Mai Le Q, Zhang W, Chen X. The Golgi-localized transporter OsPML4 contributes to manganese homeostasis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111935. [PMID: 38049038 DOI: 10.1016/j.plantsci.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Manganese (Mn), an indispensable plant micronutrient, functions as a vital enzyme co-factor in numerous biochemical reactions. In rice, the Golgi-localized PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 3 (OsPML3), a member of the UNCHARACTERIZED PROTEIN FAMILY (UPF0016), plays a pivotal role in Mn homeostasis, particularly in rapidly developing tissues. This study focused on the functional characterization of another UPF0016 family member in rice, OsPML4, to elucidate its involvement in Mn homeostasis. OsPML4 had a 73% sequence identity with OsPML3 and exhibited expression in both shoots and roots, albeit at a lower transcriptional level than OsPML3. Furthermore, subcellular localization studies confirmed that OsPML4 localizes in the Golgi apparatus. Notably, heterologous expression of OsPML4 restored growth in the Mn uptake-deficient yeast strain Δsmf1 under Mn-limited conditions. Under Mn-deficient conditions, OsPML4 knockout exacerbated the decline in shoot dry weight and intensified necrosis in young leaves of OsPML3 knockout lines, which displayed stunted growth. The Mn concentration in OsPML3PML4 double knockout lines was lower than in wild-type (WT) and OsPML3 knockout lines. At the reproductive phase, OsPML3PML4 double knockout lines exhibited reduced fertility and grain yield compared to WT and OsPML3 knockout lines. Notably, reductions were observed in the deposition of cell wall polysaccharides and the content of Lea (Lewis A structure)-containing N-glycans in the young leaves of OsPML3PML4 double knockout lines, surpassing the reductions in WT and OsPML3 knockout lines. These findings underscore the significance of OsPML4 in Mn homeostasis in the Golgi apparatus, where it co-functions with OsPML3 to regulate cell wall polysaccharide deposition and late-stage Golgi N-glycosylation.
Collapse
Affiliation(s)
- Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China; Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
19
|
Pang B, Zuo D, Yang T, Yu J, Zhou L, Hou Y, Yu J, Ye L, Gu L, Wang H, Du X, Liu Y, Zhu B. BcaSOD1 enhances cadmium tolerance in transgenic Arabidopsis by regulating the expression of genes related to heavy metal detoxification and arginine synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108299. [PMID: 38150840 DOI: 10.1016/j.plaphy.2023.108299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Cadmium (Cd), which is a nonessential heavy metal element for organisms, can have a severe impact on the growth and development of organisms that absorb excessive Cd. Studies have shown that Brassica carinata, a semiwild oil crop, has strong tolerance to various abiotic stresses, and RNA-seq has revealed that the B. carinata superoxide dismutase gene (BcaSOD1) likely responds to Cd stress. To elucidate the BcaSOD1 function involved in tolerance of Cd stress, we cloned the coding sequences of BcaSOD1 from a purple B. carinata accession and successfully transferred it into Arabidopsis thaliana. The subcellular localization results demonstrated that BcaSOD1 was primarily located in the plasma membrane, mitochondria and nucleus. Overexpression of BcaSOD1 in transgenic Arabidopsis (OE) effectively decreased the toxicity caused by Cd stress. Compared to the WT (wild type lines), the OE lines exhibited significantly increased activities of antioxidant enzymes (APX, CAT, POD, and SOD) after exposure to 2.5 mM CdCl2. The Cd content of underground (root) in the OE line was dominantly higher than that in the WT; however, the Cd content of aboveground (shoot) was comparable between the OE and WT types. Moreover, the qRT‒PCR results showed that several heavy metal detoxification-related genes (AtIREG2, AtMTP3, AtHMA3, and AtNAS4) were significantly upregulated in the roots of OE lines under Cd treatment, suggesting that these genes are likely involved in Cd absorption in the roots of OE lines. In addition, both comparable transcriptome and qRT-PCR analyses revealed that exogenous BcaSOD1 noticeably facilitates detoxification by stimulating the expression of two arginine (Arg) biosynthesis genes (AtGDH1 and AtGDH2) while inhibiting the expression of AtARGAH1, a negative regulator in biosynthesis of Arg. The Arg content was subsequently confirmed to be significantly enhanced in OE lines under Cd treatment, indicating that BcaSOD1 likely strengthened Cd tolerance by regulating the expression of Arg-related genes. This study demonstrates that BcaSOD1 can enhance Cd tolerance and reveals the molecular mechanism of this gene, providing valuable insights into the molecular mechanism of Cd tolerance in plants.
Collapse
Affiliation(s)
- Biao Pang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Tinghai Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lizhou Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lvlan Ye
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yingliang Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
20
|
Li C, Zhang J, Li Q, Chen Z, Hou X, Zhao C, Guo Q. IlNRAMP5 is required for cadmium accumulation and the growth in Iris lactea under cadmium exposures. Int J Biol Macromol 2023; 253:127103. [PMID: 37769763 DOI: 10.1016/j.ijbiomac.2023.127103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Iris lactea is potentially applied for remediating Cd-contaminated soils due to the strong ability of Cd uptake and accumulation. However, its molecular mechanism underlying Cd uptake pathway remains unknown. Here, we report a member of NRAMP (Natural Resistance-Associated Macrophage Protein) family, IlNRAMP5, is involved in Cd/Mn uptake and the growth in I. lactea response to Cd. IlNRAMP5 was localized onto the plasma membrane, and was induced by Cd. It was expressed in the root cortex rather than the central vasculature, and in leaf vascular bundle and mesophyll cells. Heterologous expression in yeast showed that IlNRAMP5 could transport Cd and Mn, but not Fe. Knockdown of IlNRAMP5 triggered a significant reduction in Cd uptake, further diminishing the accumulation of Cd. In addition, silencing IlNRAMP5 disrupted Mn homeostasis by lowering Mn uptake and Mn allocation, accompanied by remarkably inhibiting photosynthesis under Cd conditions. Overall, the findings suggest that IlNRAMP5 plays versatile roles in Cd accumulation by mediating Cd uptake, and contributes to maintain the growth via modulating Mn homeostasis in I. lactea under Cd exposures. This would provide a mechanistic understanding Cd phytoremediation efficiency in planta.
Collapse
Affiliation(s)
- Cui Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jia Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qidong Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhimin Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xincun Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunqiao Zhao
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiang Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
21
|
Dou C, Qi C. Rhizospheric Precipitation of Manganese by Phosphate: A Novel Strategy to Enhance Mn Tolerance in the Hyperaccumulator Phytolacca americana. TOXICS 2023; 11:977. [PMID: 38133377 PMCID: PMC10747473 DOI: 10.3390/toxics11120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Manganese (Mn) exclusion in the Mn hyperaccumulator pokeweed (Phytolacca americana L.) was investigated. Hydroponic experiments were carried out to observe the responses of pokeweeds continually exposed to high levels of Mn. In this study, crystals were observed to appear firstly on the root hair, and soon after, more crystals appeared on the root surface, and crystals of Mn phosphate were observed to appear on the root surface in a time sequence negatively correlated with the number of leaves treated with 5 mM Mn. Crystals were identified via phase analysis of X-ray diffraction and element analysis, and these white insoluble crystals were identified using XRD to be Mn phosphate, with the molecular formula (Mn,Fe)3(PO4)2·4H2O. The nutrient solution pH increased from 4.5 to about 5.6 before the crystals appeared. Mn phosphate crystals appeared in all solutions except those without phosphate and emerged earlier in the solutions containing no Fe. Compared with control group, pokeweed accumulated much more Mn in the leaves when treated without phosphate or Fe. The present study suggests that pokeweed can exclude Mn by means of rhizosphere precipitation by phosphate to form Mn phosphate crystals that accumulate on the root surface. Although the detailed mechanism requires further investigation, this study provides the first direct evidence of a novel strategy to inhibit Mn uptake in the roots of a hyperaccumulator in a P-enriched environment.
Collapse
Affiliation(s)
| | - Cuicui Qi
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei 230061, China;
| |
Collapse
|
22
|
Li J, Liu Y, Kong L, Xu E, Zou Y, Zhang P, Zhang W, Chen X. An intracellular transporter OsNRAMP7 is required for distribution and accumulation of iron into rice grains. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111831. [PMID: 37598889 DOI: 10.1016/j.plantsci.2023.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and human health. Plants have evolved an efficient transport system for absorbing and redistributing Fe from the soil to other organs; however, the molecular mechanisms underlying Fe loading into grains are poorly understood. Our study shows that OsNRAMP7, a member of the natural resistance-associated macrophage protein (NRAMP) family, is a rice Fe transporter that localizes to the Golgi and trans-Golgi network (TGN). OsNRAMP7 was highly expressed in leaf blade, node I, pollen, and vascular tissues of almost tissues at the rice flowering stage. OsNRAMP7 knockdown by RNA interference (RNAi) increased Fe accumulation in the flag leaf blade, but decreased the Fe concentration in node I and rice grains. In addition, the knockdown of OsNRAMP7 also reduced grain fertility, pollen viability, and grain Fe concentration in the paddy fields; OsNRAMP7 overexpression significantly promoted Fe accumulation in the grains. Thus, our results suggest that OsNRAMP7 is required for the distribution and accumulation of Fe in rice grains and its overexpression could be a novel strategy for Fe biofortification in staple food crops.
Collapse
Affiliation(s)
- Jingjun Li
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanyuan Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Linghui Kong
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
23
|
Zhou L, Ye L, Pang B, Hou Y, Yu J, Du X, Gu L, Wang H, Zhu B. Overexpression of ApHIPP26 from the Hyperaccumulator Arabis paniculata Confers Enhanced Cadmium Tolerance and Accumulation to Arabidopsis thaliana. Int J Mol Sci 2023; 24:15052. [PMID: 37894733 PMCID: PMC10606507 DOI: 10.3390/ijms242015052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that seriously affects metabolism after accumulation in plants, and it also causes adverse effects on humans through the food chain. The HIPP gene family has been shown to be highly tolerant to Cd stress due to its special domain and molecular structure. This study described the Cd-induced gene ApHIPP26 from the hyperaccumulator Arabis paniculata. Its subcellular localization showed that ApHIPP26 was located in the nucleus. Transgenic Arabidopsis overexpressing ApHIPP26 exhibited a significant increase in main root length and fresh weight under Cd stress. Compared with wild-type lines, Cd accumulated much more in transgenic Arabidopsis both aboveground and underground. Under Cd stress, the expression of genes related to the absorption and transport of heavy metals underwent different changes in parallel, which were involved in the accumulation and distribution of Cd in plants, such as AtNRAMP6 and AtNRAMP3. Under Cd stress, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) in the transgenic lines were higher than those in the wild type. The physiological and biochemical indices showed that the proline and chlorophyll contents in the transgenic lines increased significantly after Cd treatment, while the malondialdehyde (MDA) content decreased. In addition, the gene expression profile analysis showed that ApHIPP26 improved the tolerance of Arabidopsis to Cd by regulating the changes of related genes in plant hormone signal transduction pathway. In conclusion, ApHIPP26 plays an important role in cadmium tolerance by alleviating oxidative stress and regulating plant hormones, which provides a basis for understanding the molecular mechanism of cadmium tolerance in plants and provides new insights for phytoremediation in Cd-contaminated areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (L.Y.); (B.P.); (Y.H.); (J.Y.); (X.D.); (L.G.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (L.Y.); (B.P.); (Y.H.); (J.Y.); (X.D.); (L.G.)
| |
Collapse
|
24
|
Huang G, Huang Y, Ding X, Ding M, Wang P, Wang Z, Jiang Y, Zou L, Zhang W, Li Z. Effects of high manganese-cultivated seedlings on cadmium uptake by various rice (Oryza sativa L.) genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115440. [PMID: 37688861 DOI: 10.1016/j.ecoenv.2023.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Cadmium (Cd) contamination in paddy soil threatens rice growth and food safety, enriching manganese (Mn) in rice seedlings is expected to reduce Cd uptake by rice. The effects of 250 μM Mn-treated seedlings on reducing Cd uptake of four rice genotypes (WYJ21, ZJY1578, HHZ, and HLYSM) planted in 0.61 mg kg-1 Cd-contaminated soil, were studied through the hydroponic and pot experiments. The results showed that the ZJY1578 seedling had the highest Mn level (459 μg plant-1), followed by WYJ21 (309 μg plant-1), and less Mn accumulated in the other genotypes. The relative expression of OsNramp5 (natural resistance-associated macrophage protein) was reduced by 42.7 % in ZJY1578 but increased by 23.3 % in HLYSM. The expressions of OsIRT1 (iron-regulated transporter-like protein) were reduced by 24.0-56.0 % in the four genotypes, with the highest reduction in ZJY1578. Consequently, a greater reduction of Cd occurred in ZJY1578 than that in the other genotypes, i.e., the root and shoot Cd at the tillering were reduced by 27.8 % and 48.5 %, respectively. At the mature stage, total Cd amount and distribution in the shoot and brown rice were also greatly reduced in ZJY1578, but the inhibitory effects were weakened compared to the tillering stage. This study found various responses of Cd uptake and transporters to Mn-treated seedlings among rice genotypes, thus resulting in various Cd reductions. In the future, the microscopic transport processes of Cd within rice should be explored to deeply explain the genotypic variation.
Collapse
Affiliation(s)
- Gaoxiang Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yunpei Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Xinya Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Mingjun Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Peng Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Zhongfu Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Yinghui Jiang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Long Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Wendong Zhang
- Agricultural and Rural Grain Bureau of Yujiang District, Yingtan 335200, China
| | - Zhenling Li
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
25
|
Li RT, Yang YJ, Liu WJ, Liang WW, Zhang M, Dong SC, Shu YJ, Guo DL, Guo CH, Bi YD. MsNRAMP2 Enhances Tolerance to Iron Excess Stress in Nicotiana tabacum and MsMYB Binds to Its Promoter. Int J Mol Sci 2023; 24:11278. [PMID: 37511038 PMCID: PMC10379929 DOI: 10.3390/ijms241411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Iron(Fe) is a trace metal element necessary for plant growth, but excess iron is harmful to plants. Natural resistance-associated macrophage proteins (NRAMPs) are important for divalent metal transport in plants. In this study, we isolated the MsNRAMP2 (MN_547960) gene from alfalfa, the perennial legume forage. The expression of MsNRAMP2 is specifically induced by iron excess. Overexpression of MsNRAMP2 conferred transgenic tobacco tolerance to iron excess, while it conferred yeast sensitivity to excess iron. Together with the MsNRAMP2 gene, MsMYB (MN_547959) expression is induced by excess iron. Y1H indicated that the MsMYB protein could bind to the "CTGTTG" cis element of the MsNRAMP2 promoter. The results indicated that MsNRAMP2 has a function in iron transport and its expression might be regulated by MsMYB. The excess iron tolerance ability enhancement of MsNRAMP2 may be involved in iron transport, sequestration, or redistribution.
Collapse
Affiliation(s)
- Run-Tian Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yun-Jiao Yang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Wen-Jun Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Wen-Wei Liang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Miao Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Shi-Chen Dong
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yong-Jun Shu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Dong-Lin Guo
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Chang-Hong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ying-Dong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
26
|
Ning M, Liu SJ, Deng F, Huang L, Li H, Che J, Yamaji N, Hu F, Lei GJ. A vacuolar transporter plays important roles in zinc and cadmium accumulation in rice grain. THE NEW PHYTOLOGIST 2023. [PMID: 37366232 DOI: 10.1111/nph.19070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Rice grain is a poor dietary source of zinc (Zn) but the primary source of cadmium (Cd) for humans; however, the molecular mechanisms for their accumulation in rice grain remain incompletely understood. This study functionally characterized a tonoplast-localized transporter, OsMTP1. OsMTP1 was preferentially expressed in the roots, aleurone layer, and embryo of seeds. OsMTP1 knockout decreased Zn concentration in the root cell sap, roots, aleurone layer and embryo, and subsequently increased Zn concentration in shoots and polished rice (endosperm) without yield penalty. OsMTP1 haplotype analysis revealed elite alleles associated with increased Zn level in polished rice, mostly because of the decreased OsMTP1 transcripts. OsMTP1 expression in yeast enhanced Zn tolerance but did not affect that of Cd. While OsMTP1 knockout resulted in decreased uptake, translocation and accumulation of Cd in plant and rice grain, which could be attributed to the indirect effects of altered Zn accumulation. Our results suggest that rice OsMTP1 primarily functions as a tonoplast-localized transporter for sequestrating Zn into vacuole. OsMTP1 knockout elevated Zn concentration but prevented Cd deposition in polished rice without yield penalty. Thus, OsMTP1 is a candidate gene for enhancing Zn level and reducing Cd level in rice grains.
Collapse
Affiliation(s)
- Min Ning
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Shi Jia Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Liyu Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Fengyi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Gui Jie Lei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| |
Collapse
|
27
|
Zheng HX, Liu WS, Sun D, Zhu SC, Li Y, Yang YL, Liu RR, Feng HY, Cai X, Cao Y, Xu GH, Morel JL, van der Ent A, Ma LQ, Liu YG, Rylott EL, Qiu RL, Tang YT. Plasma-Membrane-Localized Transporter NREET1 is Responsible for Rare Earth Element Uptake in Hyperaccumulator Dicranopteris linearis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6922-6933. [PMID: 37071813 DOI: 10.1021/acs.est.2c09320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Dan Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Shi-Chen Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Yang Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Yu-Lu Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Ruo-Rong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Hua-Yuan Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Guo-Hua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, Universitéde Lorraine, INRA, Nancy 54000, France
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- Laboratory of Genetics, Wageningen University and Research, Wageningen 6708 WG, The Netherlands
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yao-Guang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, U.K
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| |
Collapse
|
28
|
Wang S, Yao H, Li L, Du H, Guo P, Wang D, Rennenberg H, Ma M. Differentially-expressed genes related to glutathione metabolism and heavy metal transport reveals an adaptive, genotype-specific mechanism to Hg 2+ exposure in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121340. [PMID: 36828354 DOI: 10.1016/j.envpol.2023.121340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Rice consumption is an essential cause of mercury (Hg) exposure for humans in Asia. However, the mechanism of Hg transport and accumulation in rice plants (Oryza sativa L.) remains unclear. Here, rice genotypes with contrasting Hg uptake and translocation abilities, i.e. H655 (high Hg-accumulator) and H767 (low Hg-accumulator), were selected from 261 genotypes. Through comparative physiological and transcriptome analyses, we investigated the processes responsible for the relationship between Hg accumulation, transport and tolerance. The results showed significant stimulation of antioxidative metabolism, particularly glutathione (GSH) accumulation, and up-regulated expression of regulatory genes of glutathione metabolism for H655, but not for H767. In addition, up-regulated expression of GSH S-transferase (GST) and OsPCS1 in H655 that catalyzes the binding of Hg and GSH, enhances the Hg detoxification capacity, while high-level expression of YSL2 in H655 enhances the transport ability for Hg. Conclusively, Hg accumulation in rice is a consequence of enhanced expression of genes related to Hg binding with GSH and Hg transport. With these results, the present study contributes to the selection of rice genotypes with limited Hg accumulation and to the mitigation of Hg migration in food chains thereby enhancing nutritional safety of Hg-polluted rice fields.
Collapse
Affiliation(s)
- Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hesheng Yao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lingyi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
29
|
Zhou G, An Q, Liu Z, Wan Y, Bao W. Systematic Analysis of NRAMP Family Genes in Areca catechu and Its Response to Zn/Fe Deficiency Stress. Int J Mol Sci 2023; 24:ijms24087383. [PMID: 37108545 PMCID: PMC10139135 DOI: 10.3390/ijms24087383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Areca catechu is a commercially important medicinal plant widely cultivated in tropical regions. The natural resistance-associated macrophage protein (NRAMP) is widespread in plants and plays critical roles in transporting metal ions, plant growth, and development. However, the information on NRAMPs in A. catechu is quite limited. In this study, we identified 12 NRAMPs genes in the areca genome, which were classified into five groups by phylogenetic analysis. Subcellular localization analysis reveals that, except for NRAMP2, NRAMP3, and NRAMP11, which are localized in chloroplasts, all other NRAMPs are localized on the plasma membrane. Genomic distribution analysis shows that 12 NRAMPs genes are unevenly spread on seven chromosomes. Sequence analysis shows that motif 1 and motif 6 are highly conserved motifs in 12 NRAMPs. Synteny analysis provided deep insight into the evolutionary characteristics of AcNRAMP genes. Among the A. catechu and the other three representative species, we identified a total of 19 syntenic gene pairs. Analysis of Ka/Ks values indicates that AcNRAMP genes are subjected to purifying selection in the evolutionary process. Analysis of cis-acting elements reveals that AcNRAMP genes promoter sequences contain light-responsive elements, defense- and stress-responsive elements, and plant growth/development-responsive elements. Expression profiling confirms distinct expression patterns of AcNRAMP genes in different organs and responses to Zn/Fe deficiency stress in leaves and roots. Taken together, our results lay a foundation for further exploration of the AcNRAMPs regulatory function in areca response to Fe and Zn deficiency.
Collapse
Affiliation(s)
- Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qiyuan An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zheng Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wenlong Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| |
Collapse
|
30
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
31
|
Wang X, Ai S, Liao H. Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil. Cells 2023; 12:cells12030441. [PMID: 36766784 PMCID: PMC9913701 DOI: 10.3390/cells12030441] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Acid soils are characterized by deficiencies in essential nutrient elements, oftentimes phosphorus (P), along with toxicities of metal elements, such as aluminum (Al), manganese (Mn), and cadmium (Cd), each of which significantly limits crop production. In recent years, impressive progress has been made in revealing mechanisms underlying tolerance to high concentrations of Al, Mn, and Cd. Phosphorus is an essential nutrient element that can alleviate exposure to potentially toxic levels of Al, Mn, and Cd. In this review, recent advances in elucidating the genes responsible for the uptake, translocation, and redistribution of Al, Mn, and Cd in plants are first summarized, as are descriptions of the mechanisms conferring resistance to these toxicities. Then, literature highlights information on interactions of P nutrition with Al, Mn, and Cd toxicities, particularly possible mechanisms driving P alleviation of these toxicities, along with potential applications for crop improvement on acid soils. The roles of plant phosphate (Pi) signaling and associated gene regulatory networks relevant for coping with Al, Mn, and Cd toxicities, are also discussed. To develop varieties adapted to acid soils, future work needs to further decipher involved signaling pathways and key regulatory elements, including roles fulfilled by intracellular Pi signaling. The development of new strategies for remediation of acid soils should integrate the mechanisms of these interactions between limiting factors in acid soils.
Collapse
Affiliation(s)
- Xiurong Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel./Fax: +86-0591-88260230
| |
Collapse
|
32
|
Tan Z, Li J, Guan J, Wang C, Zhang Z, Shi G. Genome-Wide Identification and Expression Analysis Reveals Roles of the NRAMP Gene Family in Iron/Cadmium Interactions in Peanut. Int J Mol Sci 2023; 24:ijms24021713. [PMID: 36675227 PMCID: PMC9866697 DOI: 10.3390/ijms24021713] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The natural resistance-associated macrophage protein (NRAMP) family plays crucial roles in metal uptake and transport in plants. However, little is known about their functions in peanut. To understand the roles of AhNRAMP genes in iron/cadmium interactions in peanut, genome-wide identification and bioinformatics analysis was performed. A total of 15 AhNRAMP genes were identified from the peanut genome, including seven gene pairs derived from whole-genome duplication and a segmental duplicated gene. AhNRAMP proteins were divided into two distinct subfamilies. Subfamily I contains eight acid proteins with a specific conserved motif 7, which were predicted to localize in the vacuole membrane, while subfamily II includes seven basic proteins sharing specific conserved motif 10, which were localized to the plasma membrane. Subfamily I genes contained four exons, while subfamily II had 13 exons. AhNRAMP proteins are perfectly modeled on the 5m94.1.A template, suggesting a role in metal transport. Most AhNRAMP genes are preferentially expressed in roots, stamens, or developing seeds. In roots, the expression of most AhNRAMPs is induced by iron deficiency and positively correlated with cadmium accumulation, indicating crucial roles in iron/cadmium interactions. The findings provide essential information to understand the functions of AhNRAMPs in the iron/cadmium interactions in peanuts.
Collapse
|
33
|
Hao X, Mo Y, Ji W, Yang X, Xie Z, Huang D, Li D, Tian L. The OsNramp4 aluminum transporter is involved in cadmium accumulation in rice grains. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
34
|
Guo J, Long L, Chen A, Dong X, Liu Z, Chen L, Wang J, Yuan L. Tonoplast-localized transporter ZmNRAMP2 confers root-to-shoot translocation of manganese in maize. PLANT PHYSIOLOGY 2022; 190:2601-2616. [PMID: 36111860 PMCID: PMC9706481 DOI: 10.1093/plphys/kiac434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 05/16/2023]
Abstract
Almost all living organisms require manganese (Mn) as an essential trace element for survival. To maintain an irreplaceable role in the oxygen-evolving complex of photosynthesis, plants require efficient Mn uptake in roots and delivery to above-ground tissues. However, the underlying mechanisms of root-to-shoot Mn translocation remain unclear. Here, we identified an Natural Resistance Associated Macrophage Protein (NRAMP) family member in maize (Zea mays), ZmNRAMP2, which localized to the tonoplast in maize protoplasts and mediated transport of Mn in yeast (Saccharomyces cerevisiae). Under Mn deficiency, two maize mutants defective in ZmNRAMP2 exhibited remarkable reduction of root-to-shoot Mn translocation along with lower shoot Mn contents, resulting in substantial decreases in Fv/Fm and plant growth inhibition compared to their corresponding wild-type (WT) plants. ZmNRAMP2 transcripts were highly expressed in xylem parenchyma cells of the root stele. Compared to the WT, the zmnramp2-1 mutant displayed lower Mn concentration in xylem sap accompanied with retention of Mn in root stele. Furthermore, the overexpression of ZmNRAMP2 in transgenic maize showed enhanced root-to-shoot translocation of Mn and improved tolerance to Mn deficiency. Taken together, our study reveals a crucial role of ZmNRAMP2 in root-to-shoot translocation of Mn via accelerating vacuolar Mn release in xylem parenchyma cells for adaption of maize plants to low Mn stress and provides a promising transgenic approach to develop low Mn-tolerant crop cultivars.
Collapse
Affiliation(s)
- Jingxuan Guo
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Lizhi Long
- Tea Research Institute of Chinese Academy of Agricultural Sciences and Key Laboratory of Tea Biology and Resources Utilization, MOA, Hangzhou 310008, China
| | - Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaonan Dong
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Zhipeng Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Junying Wang
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
35
|
Zhao FJ, Chang JD. A weak allele of OsNRAMP5 for safer rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6009-6012. [PMID: 36255375 PMCID: PMC9578346 DOI: 10.1093/jxb/erac323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Affiliation(s)
| | - Jia-Dong Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Zou X, Huang R, Wang L, Wang G, Miao Y, Rao I, Liu G, Chen Z. SgNramp1, a plasma membrane-localized transporter, involves in manganese uptake in Stylosanthes guianensis. FRONTIERS IN PLANT SCIENCE 2022; 13:1027551. [PMID: 36275523 PMCID: PMC9583531 DOI: 10.3389/fpls.2022.1027551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 06/12/2023]
Abstract
Transporters belonging to the natural resistance-associated macrophage protein (Nramp) family play important roles in metal uptake and homeostasis. Although Nramp members have been functionally characterized in plants, the role of Nramp in the important tropical forage legume Stylosanthes guianensis (stylo) is largely unknown. This study aimed to determine the responses of Nramp genes to metal stresses and investigate its metal transport activity in stylo. Five SgNramp genes were identified from stylo. Expression analysis showed that SgNramp genes exhibited tissue preferential expressions and diverse responses to metal stresses, especially for manganese (Mn), suggesting the involvement of SgNramps in the response of stylo to metal stresses. Of the five SgNramps, SgNramp1 displayed the highest expression in stylo roots. A close correlation between SgNramp1 expression and root Mn concentration was observed among nine stylo cultivars under Mn limited condition. The higher expression of SgNramp1 was correlated with a high Mn uptake in stylo. Subsequent subcellular localization analysis showed that SgNramp1 was localized to the plasma membrane. Furthermore, heterologous expression of SgNramp1 complemented the phenotype of the Mn uptake-defective yeast (Saccharomyces cerevisiae) mutant Δsmf1. Mn concentration in the yeast cells expressing SgNramp1 was higher than that of the empty vector control, suggesting the transport activity of SgNramp1 for Mn in yeast. Taken together, this study reveals that SgNramp1 is a plasma membrane-localized transporter responsible for Mn uptake in stylo.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rui Huang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Linjie Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Guihua Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ye Miao
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Idupulapati Rao
- Crops for Nutrition and Health, Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, Colombia
| | - Guodao Liu
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhijian Chen
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
37
|
Liu X, Wang H, He F, Du X, Ren M, Bao Y. The TaWRKY22–TaCOPT3D Pathway Governs Cadmium Uptake in Wheat. Int J Mol Sci 2022; 23:ijms231810379. [PMID: 36142291 PMCID: PMC9499326 DOI: 10.3390/ijms231810379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) is a heavy metal nonessential for plants; this toxic metal accumulation in crops has significant adverse effects on human health. The crosstalk between copper (Cu) and Cd has been reported; however, the molecular mechanisms remain unknown. The present study investigated the function of wheat Cu transporter 3D (TaCOPT3D) in Cd tolerance. The TaCOPT3D transcripts significantly accumulated in wheat roots under Cd stress. Furthermore, TaCOPT3D-overexpressing lines were compared to wildtype (WT) plants to test the role of TaCOPT3D in Cd stress response. Under 20 mM Cd treatment, TaCOPT3D-overexpressing lines exhibited more biomass and lower root, shoot, and grain Cd accumulation than the WT plants. In addition, overexpression of TaCOPT3D decreased the reactive oxygen species (ROS) levels and increased the active antioxidant enzymes under Cd conditions. Moreover, the transcription factor (TF) TaWRKY22, which targeted the TaCOPT3D promoter, was identified in the regulatory pathway of TaCOPT3D under Cd stress. Taken together, these results show that TaCOPT3D plays an important role in regulating plant adaptation to cadmium stress through bound by TaWRKY22. These findings suggest that TaCOPT3D is a potential candidate for decreasing Cd accumulation in wheat through genetic engineering.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Agriculture, Guizhou University, Guiyang 550004, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Fang He
- College of Agriculture, Guizhou University, Guiyang 550004, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang 550004, China
- Correspondence: (M.R.); (Y.B.)
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an 271000, China
- Correspondence: (M.R.); (Y.B.)
| |
Collapse
|
38
|
Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals. Int J Mol Sci 2022; 23:ijms23169335. [PMID: 36012598 PMCID: PMC9409101 DOI: 10.3390/ijms23169335] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The main mechanism of plant tolerance is the avoidance of metal uptake, whereas the main mechanism of hyperaccumulation is the uptake and neutralization of metals through specific plant processes. These include the formation of symbioses with rhizosphere microorganisms, the secretion of substances into the soil and metal immobilization, cell wall modification, changes in the expression of genes encoding heavy metal transporters, heavy metal ion chelation, and sequestration, and regenerative heat-shock protein production. The aim of this work was to review the natural plant mechanisms that contribute towards increased heavy metal accumulation and tolerance, as well as a review of the hyperaccumulator phytoremediation capacity. Phytoremediation is a strategy for purifying heavy-metal-contaminated soils using higher plants species as hyperaccumulators.
Collapse
|
39
|
Yu E, Wang W, Yamaji N, Fukuoka S, Che J, Ueno D, Ando T, Deng F, Hori K, Yano M, Shen RF, Ma JF. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain. NATURE FOOD 2022; 3:597-607. [PMID: 37118598 DOI: 10.1038/s43016-022-00569-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 04/30/2023]
Abstract
Global contamination of soils with toxic cadmium (Cd) is a serious health threat. Here we found that a tandem duplication of a gene encoding a manganese/Cd transporter, OsNramp5, was responsible for low-Cd accumulation in Pokkali, an old rice cultivar. This duplication doubled the expression of OsNramp5 gene but did not alter its spatial expression pattern and cellular localization. Higher expression of OsNramp5 increased uptake of Cd and Mn into the root cells but decreased Cd release to the xylem. Introgression of this allele into Koshihikari, an elite rice cultivar, through backcrossing significantly reduced Cd accumulation in the grain when cultivated in soil heavily contaminated with Cd but did not affect both grain yield and eating quality. This study not only reveals the molecular mechanism underlying low-Cd accumulation but also provides a useful target for breeding rice cultivars with low-Cd accumulation.
Collapse
Affiliation(s)
- En Yu
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Wenguang Wang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Shuichi Fukuoka
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Jing Che
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Daisei Ueno
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Tsuyu Ando
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Fenglin Deng
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Kiyosumi Hori
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Masahiro Yano
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| |
Collapse
|
40
|
Tang L, Dong J, Qu M, Lv Q, Zhang L, Peng C, Hu Y, Li Y, Ji Z, Mao B, Peng Y, Shao Y, Zhao B. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155006. [PMID: 35381246 DOI: 10.1016/j.scitotenv.2022.155006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
OsNRAMP5 is a transporter responsible for cadmium (Cd) and manganese (Mn) uptake and root-to-shoot translocation of Mn in rice plants. Knockout of OsNRAMP5 is regarded as an effective approach to minimize Cd uptake and accumulation in rice. It is vital to evaluate the effects of knocking out OsNRAMP5 on Cd and Mn accumulation, as well as Cd tolerance of rice plants in response to varying environmental Cd concentrations, and to uncover the underlying mechanism, which until now, has remained largely unexplored. This study showed that knockout of OsNRAMP5 decreased Cd uptake, but simultaneously facilitated Cd translocation from roots to shoots. The effect of OsNRAMP5 knockout on reducing root Cd uptake weakened, however its effect on improving root-to-shoot Cd translocation was constant with increasing environmental Cd concentrations. As a result, its mutation dramatically reduced Cd accumulation in shoots under low and moderate Cd stress, but inversely increased that under high Cd conditions. Interestingly, Cd tolerance of its knockout mutants was persistently enhanced, irrespective of lower or higher Cd concentrations in shoots, compared with that of wild-type plants. Knockout of OsNRAMP5 mitigated Cd toxicity by dramatically diminishing Cd uptake at low or moderate external Cd concentrations. Remarkably, its knockout effectively complemented deficient mineral nutrients in shoots, thereby indirectly enhancing rice tolerance to severe Cd stress. Additionally, its mutation conferred preferential delivery of Mn to young leaves and grains. These results have important implications for the application of the OsNRAMP5 mutation in mitigating Cd toxicity and lowering the risk of excessive Cd accumulation in rice grains.
Collapse
Affiliation(s)
- Li Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Jiayu Dong
- Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Mengmeng Qu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Liping Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Can Peng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yaokui Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Zhongying Ji
- Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Yan Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; Longping Branch of Graduate School, Hunan University, Changsha 410125, China.
| |
Collapse
|
41
|
Chorianopoulou SN, Bouranis DL. The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. PLANTS 2022; 11:plants11151979. [PMID: 35956455 PMCID: PMC9370111 DOI: 10.3390/plants11151979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional interactions of S with Fe in the Fe-S clusters. This review reports the available information describing the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted. Moreover, the roles of these micronutrients in S homeostasis are also discussed.
Collapse
|
42
|
Yu W, Deng S, Chen X, Cheng Y, Li Z, Wu J, Zhu D, Zhou J, Cao Y, Fayyaz P, Shi W, Luo Z. PcNRAMP1 Enhances Cadmium Uptake and Accumulation in Populus × canescens. Int J Mol Sci 2022; 23:ijms23147593. [PMID: 35886940 PMCID: PMC9316961 DOI: 10.3390/ijms23147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Poplars are proposed for the phytoremediation of heavy metal (HM) polluted soil. Characterization of genes involved in HM uptake and accumulation in poplars is crucial for improving the phytoremediation efficiency. Here, Natural Resistance-Associated Macrophage Protein 1 (NRAMP1) encoding a transporter involved in cadmium (Cd) uptake and transport was functionally characterized in Populus × canescens. Eight putative PcNRAMPs were identified in the poplar genome and most of them were primarily expressed in the roots. The expression of PcNRAMP1 was induced in Cd-exposed roots and it encoded a plasma membrane-localized protein. PcNRAMP1 showed transport activity for Cd2+ when expressed in yeast. The PcNRAMP1-overexpressed poplars enhanced net Cd2+ influxes by 39–52% in the roots and Cd accumulation by 25–29% in aerial parts compared to the wildtype (WT). However, Cd-induced biomass decreases were similar between the transgenics and WT. Further analysis displayed that the two amino acid residues of PcNRAMP1, i.e., M236 and P405, play pivotal roles in regulating its transport activity for Cd2+. These results suggest that PcNRAMP1 is a plasma membrane-localized transporter involved in Cd uptake and transporting Cd from the roots to aerial tissues, and that the conserved residues in PcNRAMP1 are essential for its Cd transport activity in poplars.
Collapse
Affiliation(s)
- Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Xin Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Dongyue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj 75919-63179, Iran;
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| | - Zhibin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| |
Collapse
|
43
|
Li L, Zhu Z, Liao Y, Yang C, Fan N, Zhang J, Yamaji N, Dirick L, Ma JF, Curie C, Huang CF. NRAMP6 and NRAMP1 cooperatively regulate root growth and manganese translocation under manganese deficiency in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1564-1577. [PMID: 35365951 DOI: 10.1111/tpj.15754] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 05/22/2023]
Abstract
The essential micronutrient manganese (Mn) in plants regulates multiple biological processes including photosynthesis and oxidative stress. Some Natural Resistance-Associated Macrophage Proteins (NRAMPs) have been reported to play critical roles in Mn uptake and reutilization in low Mn conditions. NRAMP6 was demonstrated to regulate cadmium tolerance and iron utilization in Arabidopsis. Nevertheless, it is unclear whether NRAMP6 plays a role in Mn nutrition. Here, we report that NRAMP6 cooperates with NRAMP1 in Mn utilization. Mutation of NRAMP6 in nramp1 but not in a wild-type background reduces root growth and Mn translocation from the roots to shoots under Mn deficient conditions. Grafting experiments revealed that NRAMP6 expression in both the roots and shoots is required for root growth and Mn translocation under Mn deficiency. We also showed that NRAMP1 could replace NRAMP6 to sustain root growth under Mn deficiency, but not vice versa. Mn deficiency does not affect the transcript level of NRAMP6, but is able to increase and decrease the protein accumulation of NRAMP6 in roots and shoots, respectively. Furthermore, NRAMP6 can be localized to both the plasma membrane and endomembranes including the endoplasmic reticulum, and Mn deficiency enhances the localization of NRAMP6 to the plasma membrane in Arabidopsis plants. NRAMP6 could rescue the defective growth of the yeast mutant Δsmf2, which is deficient in endomembrane Mn transport. Our results reveal the important role of NRAMP6 in Mn nutrition and in the long-distance signaling between the roots and shoots under Mn deficient conditions.
Collapse
Affiliation(s)
- Lun Li
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongzheng Zhu
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghui Liao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Changhong Yang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ni Fan
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Léon Dirick
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Catherine Curie
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Kozak K, Papierniak-Wygladala A, Palusińska M, Barabasz A, Antosiewicz DM. Regulation and Function of Metal Uptake Transporter NtNRAMP3 in Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:867967. [PMID: 35712563 PMCID: PMC9195099 DOI: 10.3389/fpls.2022.867967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 05/06/2023]
Abstract
Natural resistance-associated macrophage protein (NRAMP) genes encode proteins with low substrate specificity, important for maintaining metal cross homeostasis in the cell. The role of these proteins in tobacco, an important crop plant with wide application in the tobacco industry as well as in phytoremediation of metal-contaminated soils, remains unknown. Here, we identified NtNRAMP3, the closest homologue to NRAMP3 proteins from other plant species, and functionally characterized it. A NtNRAMP3-GFP fusion protein was localized to the plasma membrane in tobacco epidermal cells. Expression of NtNRAMP3 in yeast was able to rescue the growth of Fe and Mn uptake defective Δfet3fet4 and Δsmf1 mutant yeast strains, respectively. Furthermore, NtNRAMP3 expression in wild-type Saccharomyces cerevisiae DY1457 yeast strain increased sensitivity to elevated concentrations of iron (Fe), manganese (Mn), copper (Cu), cobalt (Co), nickel (Ni), and cadmium (Cd). Taken together, these results point to a possible role in the uptake of metals. NtNRAMP3 was expressed in the leaves and to a lesser extent in the roots of tobacco plants. Its expression occurred mainly under control conditions and decreased very sharply in deficiency and excess of the tested metals. GUS-based analysis of the site-specific activity of the NtNRAMP3 promoter showed that it was primarily expressed in the xylem of leaf blades. Overall, our data indicate that the main function of NtNRAMP3 is to maintain cross homeostasis of Fe, Mn, Co, Cu, and Ni (also Cd) in leaves under control conditions by controlling xylem unloading.
Collapse
Affiliation(s)
| | | | | | | | - Danuta Maria Antosiewicz
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Wang F, Qiao K, Wang H, Wang H, Chai T. MTP8 from Triticum urartu Is Primarily Responsible for Manganese Tolerance. Int J Mol Sci 2022; 23:ijms23105683. [PMID: 35628492 PMCID: PMC9144917 DOI: 10.3390/ijms23105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Mineral nutrients, such as manganese (Mn) and iron (Fe), play essential roles in many biological processes in plants but their over-enrichment is harmful for the metabolism. Metal tolerance proteins (MTPs) are involved in cellular Mn and Fe homeostasis. However, the transporter responsible for the transport of Mn in wheat is unknown. In our study, TuMTP8, a Mn-CDF transporter from diploid wheat (Triticum urartu), was identified. Expression of TuMTP8 in yeast strains of Δccc1 and Δsmf1 and Arabidopsis conferred tolerance to elevated Mn and Fe, but not to other metals (zinc, cobalt, copper, nickel, or cadmium). Compared with TuVIT1 (vacuole Fe transporter), TuMTP8 shows a significantly higher proportion in Mn transport and a smaller proportion in Fe transport. The transient analysis in tobacco epidermal cells revealed that TuMTP8 localizes to vacuolar membrane. The highest transcript levels of TuMTP8 were in the sheath of the oldest leaf and the awn, suggesting that TuMTP8 sequesters excess Mn into the vacuole in these organs, away from more sensitive tissues. These findings indicate that TuMTP8, a tonoplast-localized Mn/Fe transporter, functions as a primary balancer to regulate Mn distribution in T. urartu under elevated Mn conditions and participates in the intracellular transport and storage of excess Mn as a detoxification mechanism, thereby conferring Mn tolerance.
Collapse
Affiliation(s)
- Fanhong Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Huanhuan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Hong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- Correspondence: (H.W.); (T.C.); Tel./Fax: +86-10-88256343 (T.C.)
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.W.); (T.C.); Tel./Fax: +86-10-88256343 (T.C.)
| |
Collapse
|
46
|
Chu C, Huang R, Liu L, Tang G, Xiao J, Yoo H, Yuan M. The rice heavy-metal transporter OsNRAMP1 regulates disease resistance by modulating ROS homoeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:1109-1126. [PMID: 35040151 DOI: 10.1111/pce.14263] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Crop diseases threaten food security and sustainable agriculture. Consumption of crops containing nonessential toxic metals leads to health risks for humans. Therefore, cultivation of disease-resistant and toxic metal-safe crops is a double-gain strategy that can contribute to food security. Here, we show that rice heavy-metal transporter OsNRAMP1 plays an important role in plant immunity by modulating metal ion and reactive oxygen species (ROS) homoeostasis. OsNRAMP1 expression was induced after pathogenic bacteria and fungi infections. The osnramp1 mutants had an increased content of H2 O2 and activity of superoxide dismutase, but decreased activity of catalase, showing enhanced broad-spectrum resistance against bacterial and fungal pathogens. RNA-seq analysis identified a number of differentially expressed genes that were involved in metal ion and ROS homoeostasis. Altered expression of metal ion-dependent ROS-scavenging enzymes genes and lower accumulation of cations such as Mn together induced compromised metal ion-dependent enzyme-catalysing activity and modulated ROS homoeostasis, which together contributed towards disease resistance in osnramp1 mutants. Furthermore, the osnramp1 mutants contained lower levels of toxic heavy metals Cd and Pb and micronutrients Ni and Mn in leaves and grains. Taken together, a proof of concept was achieved that broad-spectrum disease-resistant and toxic heavy-metal-safe rice was engineered by removal of the OsNRAMP1 gene.
Collapse
Affiliation(s)
- Chuanliang Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Renyan Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Liping Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guilin Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Heejin Yoo
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Ceballos-Laita L, Takahashi D, Uemura M, Abadía J, López-Millán AF, Rodríguez-Celma J. Effects of Fe and Mn Deficiencies on the Root Protein Profiles of Tomato ( Solanum lycopersicum) Using Two-Dimensional Electrophoresis and Label-Free Shotgun Analyses. Int J Mol Sci 2022; 23:ijms23073719. [PMID: 35409079 PMCID: PMC8998858 DOI: 10.3390/ijms23073719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/04/2022] Open
Abstract
Iron (Fe) and manganese (Mn) are two essential elements for plants that compete for the same uptake transporters and show conflicting interactions at the regulatory level. In order to understand the differential response to both metal deficiencies in plants, two proteomic techniques (two-dimensional gel electrophoresis and label-free shotgun) were used to study the proteome profiles of roots from tomato plants grown under Fe or Mn deficiency. A total of 119 proteins changing in relative abundance were confidently quantified and identified, including 35 and 91 in the cases of Fe deficiency and Mn deficiency, respectively, with 7 of them changing in both deficiencies. The identified proteins were categorized according to function, and GO-enrichment analysis was performed. Data showed that both deficiencies provoked a common and intense cell wall remodelling. However, the response observed for Fe and Mn deficiencies differed greatly in relation to oxidative stress, coumarin production, protein, nitrogen, and energy metabolism.
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (D.T.); (M.U.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (D.T.); (M.U.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Javier Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Ana Flor López-Millán
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Jorge Rodríguez-Celma
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
- Correspondence:
| |
Collapse
|
48
|
Nanoencapsulated Boron Foliar Supply Increased Expression of NIPs Aquaporins and BOR Transporters of In Vitro Ipomoea batatas Plants. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nanoencapsulation with proteoliposomes from natural membranes has been proposed as a carrier for the highly efficient delivery of mineral nutrients into plant tissues. Since Boron deficiency occurred frequently in crops, and is an element with low movement in tissues, in this work, nanoencapsulated B vs free B was applied to in vitro sweet potato plants to investigate the regulation of B transporters (aquaporins and specific transporters). Additionally, an metabolomic analysis was performed, and mineral nutrient and pigment concentrations were determined. The results showed high increases in B concentration in leaves when B was applied as encapsulated, but also Fe and Mn concentration increased. Likewise, the metabolomics study showed that single carbohydrates of these plants could be related to the energy need for increasing the expression of most NIP aquaporins (NIP1;2, NIP1;3; NIP4;1, NIP4;2, NIP5;1, NIP6;1, and NIP7) and boron transporters (BOR2, BOR4 and BOR7;1). Therefore, the results were associated with the higher mobility of encapsulated B into leaves and the stimulation of transport into cells, since after applying encapsulated B, the aforementioned NIPs and BORs increased in expression.
Collapse
|
49
|
Liu W, Huo C, He L, Ji X, Yu T, Yuan J, Zhou Z, Song L, Yu Q, Chen J, Chen N. The NtNRAMP1 transporter is involved in cadmium and iron transport in tobacco (Nicotiana tabacum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:59-67. [PMID: 35101795 DOI: 10.1016/j.plaphy.2022.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Plant natural resistance-associated macrophage protein (NRAMP) plays an important role in maintaining intracellular metal homeostasis and coping with environmental heavy metal stress. Until now, studies on NRAMP in tobacco have been limited. In this study, NtNRAMP1 was cloned from tobacco cultivar TN90, and the highest expression level was observed in the roots, which was strongly induced by Fe deficiency. Heterologously expressed NtNRAMP1 significantly increased the Cd sensitivity of the yeast Δycf1 mutant. Three overexpressed NtNRAMP1 lines were generated to reveal the biofunction of NtNRAMP1. In the soil pot experiments under natural conditions, the contents of Fe and total chlorophyll were increased in the leaves of transgenic tobacco compared with the WT. To reveal the characteristics of NtNRAMP1 in metal transport, transgenic plants were cultured in hydroponic solution with 50 μM Cd and 200 μM Fe. Compared with the WT, the Cd concentrations in transgenic plants increased by 1.26-2.02-fold in the roots. Interestingly, the Cd content in the shoots of transgenic plants was slightly reduced compared with that of the WT. Overexpression of NtNRAMP1 did not promote Fe uptake from the external environment into the roots but enhanced the transfer of Fe from the roots to shoots. Additionally, Fe overload in the leaves of transgenic tobacco resulted in increased levels of MDA and H2O2 while Fe toxicity may be relieved by POD. In conclusion, overexpression of NtNRAMP1 in tobacco could promote Cd uptake and Fe transport from the roots to shoots while disturbing Fe homeostasis in the leaves of transgenic tobacco.
Collapse
Affiliation(s)
- Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China; Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xue Ji
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ting Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jinwei Yuan
- College of Resources and Environment Science, Southwest University, Chongqing, 400715, China
| | - Ziyi Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Lingrong Song
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|
50
|
Mutation in OsFWL7 Affects Cadmium and Micronutrient Metal Accumulation in Rice. Int J Mol Sci 2021; 22:ijms222212583. [PMID: 34830475 PMCID: PMC8624461 DOI: 10.3390/ijms222212583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Micronutrient metals, such as Mn, Cu, Fe, and Zn, are essential heavy metals for plant growth and development, while Cd is a nonessential heavy metal that is highly toxic to both plants and humans. Our understanding of the molecular mechanisms underlying Cd and micronutrient metal accumulation in plants remains incomplete. Here, we show that OsFWL7, an FW2.2-like (FWL) family gene in Oryza sativa, is preferentially expressed in the root and encodes a protein localized to the cell membrane. The osfwl7 mutation reduces both the uptake and the root-to-shoot translocation of Cd in rice plants. Additionally, the accumulation of micronutrient metals, including Mn, Cu, and Fe, was lower in osfwl7 mutants than in the wildtype plants under normal growth conditions. Moreover, the osfwl7 mutation affects the expression of several heavy metal transporter genes. Protein interaction analyses reveal that rice FWL proteins interact with themselves and one another, and with several membrane microdomain marker proteins. Our results suggest that OsFWL7 is involved in Cd and micronutrient metal accumulation in rice. Additionally, rice FWL proteins may form oligomers and some of them may be located in membrane microdomains.
Collapse
|