1
|
Tan Z, de Rojas J, Martins S, Lopeandia A, Quintana A, Cialone M, Herrero-Martín J, Meersschaut J, Vantomme A, Costa-Krämer JL, Sort J, Menéndez E. Frequency-dependent stimulated and post-stimulated voltage control of magnetism in transition metal nitrides: towards brain-inspired magneto-ionics. MATERIALS HORIZONS 2023; 10:88-96. [PMID: 36305823 PMCID: PMC9810105 DOI: 10.1039/d2mh01087a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Magneto-ionics, which deals with the change of magnetic properties through voltage-driven ion migration, is expected to be one of the emerging technologies to develop energy-efficient spintronics. While a precise modulation of magnetism is achieved when voltage is applied, much more uncontrolled is the spontaneous evolution of magneto-ionic systems upon removing the electric stimuli (i.e., post-stimulated behavior). Here, we demonstrate a voltage-controllable N ion accumulation effect at the outer surface of CoN films adjacent to a liquid electrolyte, which allows for the control of magneto-ionic properties both during and after voltage pulse actuation (i.e., stimulated and post-stimulated behavior, respectively). This effect, which takes place when the CoN film thickness is below 50 nm and the voltage pulse frequency is at least 100 Hz, is based on the trade-off between generation (voltage ON) and partial depletion (voltage OFF) of ferromagnetism in CoN by magneto-ionics. This novel effect may open opportunities for new neuromorphic computing functions, such as post-stimulated neural learning under deep sleep.
Collapse
Affiliation(s)
- Zhengwei Tan
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Julius de Rojas
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Sofia Martins
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Aitor Lopeandia
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Cerdanyola del Vallès, E-08193 Barcelona, Spain
| | - Alberto Quintana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, E-08193 Barcelona, Spain
| | - Matteo Cialone
- CNR-SPIN Genova, Corso F. M. Perrone 24, 16152 Genova, Italy
| | | | | | - André Vantomme
- Quantum Solid State Physics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - José L Costa-Krämer
- IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid, Spain
| | - Jordi Sort
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, E-08010 Barcelona, Spain
| | - Enric Menéndez
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Joly L, Scheurer F, Ohresser P, Kengni-Zanguim B, Dayen JF, Seneor P, Dlubak B, Godel F, Halley D. X-ray magnetic dichroism and tunnel magneto-resistance study of the magnetic phase in epitaxial CrVO xnanoclusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:175801. [PMID: 35084366 DOI: 10.1088/1361-648x/ac4f5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Epitaxial clusters of chromium and chromium-vanadium oxides are studied by tunnel magneto-resistivity measurements, x-ray absorption spectrometry and circular magnetic circular dichroism. They turn out to carry a small magnetic moment that follows a super-paramagnetic behavior. The chromium ion contribution to this magnetization is mainly due to an original magnetic Cr2O3-like phase, whereas usual Cr2O3is known to be anti-ferromagnetic in the bulk. For mixed clusters, vanadium ions also contribute to the total magnetization and they are coupled to the chromium ion spins. By measuring the dichroic signal at different temperatures, we get insight into the possible spin configurations of vanadium and chromium ions: we propose that the magnetic dipoles observed in the clusters assembly could be related to ionic spins that couple at a very short range, as for instance in short one-dimensional spins chains.
Collapse
Affiliation(s)
- Loïc Joly
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| | - Fabrice Scheurer
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| | - Philippe Ohresser
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| | - Brice Kengni-Zanguim
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Jean-François Dayen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Pierre Seneor
- Unité Mixte de Physique CNRS Thales, Université Paris-Saclay Palaiseau, France
| | - Bruno Dlubak
- Unité Mixte de Physique CNRS Thales, Université Paris-Saclay Palaiseau, France
| | - Florian Godel
- Unité Mixte de Physique CNRS Thales, Université Paris-Saclay Palaiseau, France
| | - David Halley
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| |
Collapse
|
3
|
Kapoor A, Dey AB, Garg C, Bajpai A. Enhanced magnetism and time-stable remanence at the interface of hematite and carbon nanotubes. NANOTECHNOLOGY 2019; 30:385706. [PMID: 31174200 DOI: 10.1088/1361-6528/ab27ec] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interface of two dissimilar materials is well known for surprises in condensed matter, and provides avenues for rich physics as well as seeds for future technological advancements. We present some exciting magnetization (M) and remanence (μ) results, which conclusively arise at the interface of two highly functional materials, namely the graphitic shells of a carbon nanotube (CNT) and α-Fe2O3, a Dzyaloshinskii-Moriya interaction driven weak ferromagnet (WFM) and piezomagnet (PzM). We show that the encapsulation inside a CNT leads to a significant enhancement in M and correspondingly in μ, a time-stable part of the remanence, exclusive to the WFM phase. Up to 70% of in-field magnetization is retained in the form of μ at room temperature. The lattice parameter of the CNT around the Morin transition of the encapsulate exhibits a clear anomaly, confirming the novel interface effects. Control experiments on bare α-Fe2O3 nanowires bring into the fore that the weak ferromagnets such as α-Fe2O3 are not as weak, as far as their remanence and its stability with time is concerned, and encapsulation inside a CNT leads to a substantial enhancement in these functionalities.
Collapse
Affiliation(s)
- Aakanksha Kapoor
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | | | | | | |
Collapse
|
4
|
Foerster M, Macià F, Statuto N, Finizio S, Hernández-Mínguez A, Lendínez S, Santos PV, Fontcuberta J, Hernàndez JM, Kläui M, Aballe L. Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves. Nat Commun 2017; 8:407. [PMID: 28864819 PMCID: PMC5581333 DOI: 10.1038/s41467-017-00456-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/30/2017] [Indexed: 11/24/2022] Open
Abstract
The magnetoelastic effect—the change of magnetic properties caused by the elastic deformation of a magnetic material—has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magnetization dynamics of nanostructures at the picosecond time scale and found that magnetization modes have a delayed response to the strain modes, adjustable by the magnetic domain configuration. Our results provide fundamental insight into magnetoelastic coupling in nanostructures and have implications for the design of strain-controlled magnetostrictive nano-devices. Understanding the effects of local dynamic strain on magnetization may help the development of magnetic devices. Foerster et al. demonstrate stroboscopic imaging that allows the observation of both strain and magnetization dynamics in nickel when surface acoustic waves are driven in the substrate.
Collapse
Affiliation(s)
- Michael Foerster
- ALBA Synchrotron Light Source, 08290, Cerdanyola del Valles, Spain
| | - Ferran Macià
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain. .,Dept. of Condensed Matter Physics, University of Barcelona, 08028, Barcelona, Spain.
| | - Nahuel Statuto
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain.,Dept. of Condensed Matter Physics, University of Barcelona, 08028, Barcelona, Spain
| | - Simone Finizio
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099, Mainz, Germany.,Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | | | - Sergi Lendínez
- Dept. of Condensed Matter Physics, University of Barcelona, 08028, Barcelona, Spain
| | - Paulo V Santos
- Paul-Drude-Institut fur Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Josep Fontcuberta
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Joan Manel Hernàndez
- Dept. of Condensed Matter Physics, University of Barcelona, 08028, Barcelona, Spain
| | - Mathias Kläui
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099, Mainz, Germany
| | - Lucia Aballe
- ALBA Synchrotron Light Source, 08290, Cerdanyola del Valles, Spain
| |
Collapse
|
5
|
Hamieh M, Dorkenoo KD, Taupier G, Henry Y, Halley D. Evidence of a permanent electric polarisation in highly strained Cr 2O 3 clusters measured by a second harmonic generation technique. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:205301. [PMID: 28338475 DOI: 10.1088/1361-648x/aa68f8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the second harmonic generation (SHG) signal in strained Cr2O3 clusters. We show that the SHG signal generated by nanometric Cr2O3 clusters embedded in MgO varies under an applied electric field, at room temperature. The variation of the intensity follows a Langevin law as a function of the electric field, which is consistent with a super-paraelectric clusters assembly. This reveals the presence of a weak spontaneous electric dipole in Cr2O3 when in the shape of highly strained epitaxial clusters, whereas this material does not posses any permanent electric dipole in the bulk phase. These results indicate that the multiferroic state recently observed at low temperature in those clusters, which was associated to a giant magneto-electric effect, might still exist at room temperature: this opens the way to new applications based on chromium oxide strained nanoparticles.
Collapse
Affiliation(s)
- M Hamieh
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR, 7504, CNRS, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | | | | | | | | |
Collapse
|
6
|
Purely antiferromagnetic magnetoelectric random access memory. Nat Commun 2017; 8:13985. [PMID: 28045029 PMCID: PMC5216083 DOI: 10.1038/ncomms13985] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022] Open
Abstract
Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics. Magnetoelectric coupling allows switching of magnetic states via gate voltage pulses. Here the authors propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory based on Cr2O3, reporting 50-fold reduction of writing threshold compared to ferromagnetic counterparts.
Collapse
|
7
|
Iurchuk V, Schick D, Bran J, Colson D, Forget A, Halley D, Koc A, Reinhardt M, Kwamen C, Morley NA, Bargheer M, Viret M, Gumeniuk R, Schmerber G, Doudin B, Kundys B. Optical Writing of Magnetic Properties by Remanent Photostriction. PHYSICAL REVIEW LETTERS 2016; 117:107403. [PMID: 27636494 DOI: 10.1103/physrevlett.117.107403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Indexed: 06/06/2023]
Abstract
We present an optically induced remanent photostriction in BiFeO_{3}, resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO_{3}/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO_{3}. Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications.
Collapse
Affiliation(s)
- V Iurchuk
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-UdS 23 rue du Loess, 67034 Cedex 2, Strasbourg, France
| | - D Schick
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - J Bran
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-UdS 23 rue du Loess, 67034 Cedex 2, Strasbourg, France
| | - D Colson
- SPEC, CEA, CNRS, Université Paris, Saclay, CEA Saclay, 91191 Gif sur Yvette, France
| | - A Forget
- SPEC, CEA, CNRS, Université Paris, Saclay, CEA Saclay, 91191 Gif sur Yvette, France
| | - D Halley
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-UdS 23 rue du Loess, 67034 Cedex 2, Strasbourg, France
| | - A Koc
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Institut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam/Golm, Germany
| | - M Reinhardt
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Institut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam/Golm, Germany
| | - C Kwamen
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Institut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam/Golm, Germany
| | - N A Morley
- University of Sheffield, Department of Materials Science and Engineering, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - M Bargheer
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Institut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam/Golm, Germany
| | - M Viret
- SPEC, CEA, CNRS, Université Paris, Saclay, CEA Saclay, 91191 Gif sur Yvette, France
| | - R Gumeniuk
- Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg, Germany
| | - G Schmerber
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-UdS 23 rue du Loess, 67034 Cedex 2, Strasbourg, France
| | - B Doudin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-UdS 23 rue du Loess, 67034 Cedex 2, Strasbourg, France
| | - B Kundys
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-UdS 23 rue du Loess, 67034 Cedex 2, Strasbourg, France
| |
Collapse
|
8
|
Torruella P, Arenal R, de la Peña F, Saghi Z, Yedra L, Eljarrat A, López-Conesa L, Estrader M, López-Ortega A, Salazar-Alvarez G, Nogués J, Ducati C, Midgley PA, Peiró F, Estradé S. 3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography. NANO LETTERS 2016; 16:5068-73. [PMID: 27383904 DOI: 10.1021/acs.nanolett.6b01922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.
Collapse
Affiliation(s)
- Pau Torruella
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Raúl Arenal
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza , 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
| | - Francisco de la Peña
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Zineb Saghi
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Lluís Yedra
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Alberto Eljarrat
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Lluís López-Conesa
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Marta Estrader
- Laboratoire de Physique et Chimie des Nano-objects , 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Alberto López-Ortega
- INSTM and Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze , Via della Lastruccia 3, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Germán Salazar-Alvarez
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden
| | - Josep Nogués
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats , Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Caterina Ducati
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Paul A Midgley
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Francesca Peiró
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Sonia Estradé
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| |
Collapse
|
9
|
Halley D, Najjari N, Godel F, Hamieh M, Doudin B, Henry Y. Voltage-dependent magnetic phase transition in magneto-electric epitaxial Cr2O3 nanoclusters. NANOTECHNOLOGY 2016; 27:245706. [PMID: 27159190 DOI: 10.1088/0957-4484/27/24/245706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We observe, as a function of temperature, a second order magnetic phase transition in nanometric Cr2O3 clusters that are epitaxially embedded in an insulating MgO matrix. They are investigated through their tunnel magneto-resistance signature, the MgO layer being used as a tunnel barrier. We infer the small magnetic dipoles carried by the Cr2O3 clusters and provide evidence of a magnetic phase transition at low temperature in those clusters: they evolve from an anti ferromagnetic state, with zero net moment close to 0 K, to a weak ferromagnetic state that saturates above about 10 K. The influence of magneto-electric effects on the weak ferromagnetic phase is also striking: the second order transition temperature turns out to be linearly dependent on the applied electric field.
Collapse
Affiliation(s)
- David Halley
- IPCMS, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | | | | | | | | | | |
Collapse
|