1
|
Sayed IM, Vo DT, Alcantara J, Inouye KM, Pranadinata RF, Luo L, Boland CR, Goyal NP, Kuo DJ, Huang SC, Sahoo D, Ghosh P, Das S. Molecular Signatures for Microbe-Associated Colorectal Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595902. [PMID: 38853996 PMCID: PMC11160670 DOI: 10.1101/2024.05.26.595902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Genetic factors and microbial imbalances play crucial roles in colorectal cancers (CRCs), yet the impact of infections on cancer initiation remains poorly understood. While bioinformatic approaches offer valuable insights, the rising incidence of CRCs creates a pressing need to precisely identify early CRC events. We constructed a network model to identify continuum states during CRC initiation spanning normal colonic tissue to pre-cancer lesions (adenomatous polyps) and examined the influence of microbes and host genetics. Methods A Boolean network was built using a publicly available transcriptomic dataset from healthy and adenoma affected patients to identify an invariant Microbe-Associated Colorectal Cancer Signature (MACS). We focused on Fusobacterium nucleatum ( Fn ), a CRC-associated microbe, as a model bacterium. MACS-associated genes and proteins were validated by RT-qPCR, RNA seq, ELISA, IF and IHCs in tissues and colon-derived organoids from genetically predisposed mice ( CPC-APC Min+/- ) and patients (FAP, Lynch Syndrome, PJS, and JPS). Results The MACS that is upregulated in adenomas consists of four core genes/proteins: CLDN2/Claudin-2 (leakiness), LGR5/leucine-rich repeat-containing receptor (stemness), CEMIP/cell migration-inducing and hyaluronan-binding protein (epithelial-mesenchymal transition) and IL8/Interleukin-8 (inflammation). MACS was induced upon Fn infection, but not in response to infection with other enteric bacteria or probiotics. MACS induction upon Fn infection was higher in CPC-APC Min+/- organoids compared to WT controls. The degree of MACS expression in the patient-derived organoids (PDOs) generally corresponded with the known lifetime risk of CRCs. Conclusions Computational prediction followed by validation in the organoid-based disease model identified the early events in CRC initiation. MACS reveals that the CRC-associated microbes induce a greater risk in the genetically predisposed hosts, suggesting its potential use for risk prediction and targeted cancer prevention.
Collapse
|
2
|
Zhang C, Cai Z, Zhou Z, Li M, Hong W, Zhou W, Yu D, Wei P, He J, Wang Y, Huang C, Wang X, Wu J. CASMART, a one-step CRISPR Cas12a-mediated isothermal amplification for rapid and high-resolution digital detection of rare mutant alleles. Biosens Bioelectron 2023; 222:114956. [PMID: 36525708 DOI: 10.1016/j.bios.2022.114956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Convenient, ultrasensitive, and accurate detection of rare variants is essential for early cancer diagnosis and precision medicine, however, despite years of efforts, tools that have all these qualities remain elusive. Here, we developed a one-step CRISPR/Cas12a-based digital diagnostic platform for accurately quantifying mutant alleles, referred to as the CRISPR ASsoaciated Mutation Allele Rapid Test (CASMART). The platform accurately quantifies the variant allele frequency of EGFR L858R within 1 h at 42 °C and can detect mutant targets as low as 0.3 copies/μL (0.498 aM) in mock multiplex cfDNA samples. We further investigated the applicability of CASMART using human genomic samples with confirmed EGFR L858R mutations previously measured variant allele frequency by next-generation sequencing. Comparison across platforms revealed equivalent detection performance (Pearson's correlation coefficient, R2 = 0.9208) and high quantification accuracy for mutation allele frequency (intraclass correlation coefficient = 0.959). Our one-step approach enables easy and accurate variant allele frequency measurement of rare mutant alleles without PCR instrumentation, while the assay time was reduced by approximately half compared to the digital PCR with the shortest turnaround. The CASMART is an alternative to conventional single nucleotide polymorphism detection methods with great potential as a next-generation biosensor for rapidly quantifying the variant allele fraction, especially in resource-limited settings.
Collapse
Affiliation(s)
- Chanqiong Zhang
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhengyi Cai
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zihao Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Mei Li
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weilong Hong
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dianjun Yu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Panpan Wei
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jialin He
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yujuan Wang
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
3
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Agnihotri SN, Ugolini GS, Sullivan MR, Yang Y, De Ganzó A, Lim JW, Konry T. Droplet microfluidics for functional temporal analysis and cell recovery on demand using microvalves: application in immunotherapies for cancer. LAB ON A CHIP 2022; 22:3258-3267. [PMID: 35904070 PMCID: PMC9535857 DOI: 10.1039/d2lc00435f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most common methods of cellular analysis employ the top-down approach (investigating proteomics or genomics directly), thereby destroying the cell, which does not allow the possibility of using the same cell to correlate genomics with functional assays. Herein we describe an approach for single-cell tools that serve as a bottom-up approach. Our technology allows functional phenotyping to be conducted by observing the cytotoxicity of cells and then probe the underlying biology. We have developed a droplet microfluidic device capable of trapping droplets in the array and releasing the droplet of interest selectively using microvalves. Each droplet in the array encapsulates natural killer cells (NK cells) and tumour cells for real-time monitoring of burst kinetics and spatial coordination during killing by single NK cells. Finally, we use the microvalve actuation to selectively release droplets with the desired functional phenotype such as for fast and serial killing of target tumour cells by NK cells. From this perspective, our device allows for investigating first interactions and real-time monitoring of kinetics and later cell recovery on demand for single-cell omic analysis such as single-cell RNA sequencing (scRNA), which to date, is primarily based on in-depth analyses of the entire transcriptome of a relatively low number of cells.
Collapse
Affiliation(s)
- Sagar N Agnihotri
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Giovanni Stefano Ugolini
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Matthew Ryan Sullivan
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Yichao Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Agustin De Ganzó
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Ji Won Lim
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Tania Konry
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Si H, Du D, Li W, Li Q, Li J, Zhao D, Li L, Tang B. Sputum-Based Tumor Fluid Biopsy: Isolation and High-Throughput Single-Cell Analysis of Exfoliated Tumor Cells for Lung Cancer Diagnosis. Anal Chem 2021; 93:10477-10486. [PMID: 34292723 DOI: 10.1021/acs.analchem.1c00833] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Timely and effective diagnosis is of great significance for improving the survival rate of lung cancer patients. Although histopathology is the main diagnostic tool among the existing methods for lung cancer diagnosis, it is not suitable for high-risk groups, early lung cancer patients, patients with advanced-stage disease, and other situations wherein tumor tissues cannot be obtained. In view of this, we proposed an innovative lung cancer diagnosis method employing for the first time a microfluidic technology for high-efficiency isolation and high-throughput single-cell analysis of exfoliated tumor cells (ETCs) in sputum. This method fully combines the advantages of traditional sputum cytology and microfluidic technology and realizes the diagnosis of lung cancer by using a small amount of repeatable ETCs instead of the tumor tissue. This method is expected to provide a practical strategy for the non-invasive detection of lung cancer patients and lung cancer screening for high-risk groups.
Collapse
Affiliation(s)
- Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wenbo Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Dongbo Zhao
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
6
|
Kathrada AI, Wei SC, Xu Y, Cheow, LF, Chen CH. Microfluidic compartmentalization to identify gene biomarkers of infection. BIOMICROFLUIDICS 2020; 14:061502. [PMID: 33312326 PMCID: PMC7717927 DOI: 10.1063/5.0032849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 05/20/2023]
Abstract
Infectious diseases caused by pathogens, such as SARS-COV, H7N9, severe fever with thrombocytopenia syndrome virus, and human immunodeficiency virus, have fatal outcomes with common features of severe fever and subsequent bacterial invasion progressing to multiorgan failure. Gene biomarkers are promising to distinguish specific infections from others with similar presenting symptoms for the prescription of correct therapeutics, preventing pandemics. While routine laboratory methods based on polymerase chain reaction (PCR) to measure gene biomarkers have provided highly sensitive and specific viral detection techniques over the years, they are still hampered by their precision and resource intensity precluding their point-of-care use. Recently, there has been growing interest in employing microfluidic technologies to advance current methods for infectious disease determination via gene biomarker measurements. Here, based on the requirement of infection detection, we will review three microfluidic approaches to compartmentalize gene biomarkers: (1) microwell-based PCR platforms; (2) droplet-based PCR; and (3) point-of-care devices including centrifugal chip, SlipChip, and self-powered integrated microfluidic point-of-care low-cost enabling chip. By capturing target genes in microwells with a small sample volume (∼μl), sensitivity can be enhanced. Additionally, with the advance of significant sample volume minimization (∼pl) using droplet technology, gene quantification is possible. These improvements in cost, automation, usability, and portability have thereby allowed point-of-care applications to decentralize testing platforms from laboratory-based settings to field use against infections.
Collapse
Affiliation(s)
- Ahmad Ismat Kathrada
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block 4, #04-08, Singapore 117583
| | | | - Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, Room Y6700, 6/F, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Hong Kong, China
| | | | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Room Y6700, 6/F, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Hong Kong, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
Yoon WH, Lee HR, Kim S, Kim E, Ku JH, Shin K, Jung S. Use of inkjet-printed single cells to quantify intratumoral heterogeneity. Biofabrication 2020; 12:035030. [PMID: 32428886 DOI: 10.1088/1758-5090/ab9491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Quantification of intratumoral heterogeneity is essential for designing effective therapeutic strategies in the age of personalized medicine. In this study, we used a piezoelectric inkjet printer to enable analysis of intratumoral heterogeneity in a bladder cancer for the first time. Patient-derived tumor organoids were dissociated into single cell suspension and used as a bioink. The individual cells were precisely allocated into a microwell plate by drop-on-demand inkjet printing without any additive or treatment, followed by culturing into organoids for further analysis. The sizes and morphologies of the organoids were observed, so as the expression of proliferation and apoptotic markers. The tumor organoids also showed heterogeneous responses against chemotherapeutic agent. Further, we quantified mRNA expression levels of representative luminal and basal genes in both type of tumor organoids. These results verify the heterogeneous expression of various genes among individual organoids. This study demonstrates that the fully automated inkjet printing technique can be used as an effective tool to sort cells for evaluating intratumoral heterogeneity.
Collapse
Affiliation(s)
- Woong Hee Yoon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
He Y, Yin J, Wu W, Liang H, Zhu F, Mu Y, Fan H, Zhang T. Rapid In Situ Photoimmobilization of a Planar Droplet Array for Digital PCR. Anal Chem 2020; 92:8530-8535. [PMID: 32412739 DOI: 10.1021/acs.analchem.0c01304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Digital PCR (dPCR) is a powerful technique capable of absolute quantification of nucleic acids with good accuracy. Droplet-based dPCR (ddPCR), among others, is one of the most important dPCR techniques. However, the surface tension-controlled droplets may suffer from fusion/fission due to the vigorous temperature change in PCR thermal cycling. Besides, the free movement of droplets makes them unsuitable for real-time fluorescence monitoring. In this paper, we first developed a photoimmobilized planar droplet array (PIPDA) by using a photocurable polyurethane as the continuous oil phase. It is found that uniform water-in-oil droplets of various sizes can be readily generated, and more importantly, the oil phase can be rapidly solidified in just a few seconds upon exposure to UV irradiation. This process will leave the droplets immobilized in the accommodation chamber as a stable planar array and, thus, effectively prevent the movement, coalescence, and breakup of droplets. In addition, a novel multilayered chip design has been proposed, which can thoroughly overcome the evaporation issue that commonly exists in polydimethylsiloxane (PDMS)-based dPCR chips. With these two innovations, the ddPCR experiment could be performed in a robust manner, and shows a promising potential in the development of real-time ddPCR technique. These features may therefore enable the wide application of PIPDA-based ddPCR in various fields.
Collapse
Affiliation(s)
- Yu He
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Juxin Yin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Wenshuai Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hongxiao Liang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Futianchun Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.,College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hongliang Fan
- Department of Environmental Medicine, Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Tao Zhang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Barraclough JY, Joglekar MV, Januszewski AS, Martínez G, Celermajer DS, Keech AC, Hardikar AA, Patel S. A MicroRNA Signature in Acute Coronary Syndrome Patients and Modulation by Colchicine. J Cardiovasc Pharmacol Ther 2020; 25:444-455. [PMID: 32356454 DOI: 10.1177/1074248420922793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) may play a pathogenic role in acute coronary syndromes (ACS). It is not yet known if miRNAs dysregulated in ACS are modulated by colchicine. We profiled miRNAs in plasma samples simultaneously collected from the aorta, coronary sinus, and right atrium in patients with ACS. METHODS A total of 396 of 754 miRNAs were detected by TaqMan real-time polymerase chain reaction from EDTA-plasma in a discovery cohort of 15 patients (n = 3 controls, n = 6 ACS standard therapy, n = 6 ACS standard therapy plus colchicine). Fifty-one significantly different miRNAs were then measured in a verification cohort of 92 patients (n = 13 controls, n = 40 ACS standard therapy, n = 39 ACS standard therapy plus colchicine). Samples were simultaneously obtained from the coronary sinus, aortic root, and right atrium. RESULTS Circulating levels of 30 of 51 measured miRNAs were higher in ACS standard therapy patients compared to controls. In patients with ACS, levels of 12 miRNAs (miR-17, -106b-3p, -191, -106a, -146a, -130a, -223, -484, -889, -425-3p, -629, -142-5p) were lower with colchicine treatment. Levels of 7 of these 12 miRNA were higher in ACS standard therapy patients compared to controls and returned to levels seen in control individuals after colchicine treatment. Three miRNAs suppressed by colchicine (miR-146a, miR-17, miR-130a) were identified as regulators of inflammatory pathways. MicroRNAs were comparable across sampling sites with select differences in the transcoronary gradient of 4 miRNA. CONCLUSION The levels of specific miRNAs elevated in ACS returned to levels similar to control individuals following colchicine. These miRNAs may mediate ACS (via inflammatory pathways) or increase post-ACS risk, and could be potentially used as biomarkers of treatment efficacy.
Collapse
Affiliation(s)
- Jennifer Y Barraclough
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.,Sydney Medical School, The University of Sydney, Australia.,Heart Research Institute Sydney, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Andrzej S Januszewski
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Gonzalo Martínez
- Heart Research Institute Sydney, Australia.,Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David S Celermajer
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.,Sydney Medical School, The University of Sydney, Australia.,Heart Research Institute Sydney, Australia
| | - Anthony C Keech
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.,NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Sanjay Patel
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.,Sydney Medical School, The University of Sydney, Australia.,Heart Research Institute Sydney, Australia
| |
Collapse
|
10
|
Wang C, Ren L, Liu W, Wei Q, Tan M, Yu Y. Fluorescence quantification of intracellular materials at the single-cell level by an integrated dual-well array microfluidic device. Analyst 2019; 144:2811-2819. [PMID: 30882810 DOI: 10.1039/c9an00153k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an integrated microfluidic device for quantifying intracellular materials at the single-cell level. This device combines a dual-well structure and a microfluidic control system. The dual-well structure includes capture wells (20 μm in diameter) for trapping a single cell and reaction wells (200 μm in diameter) for confining reagents. The control system enables a programmable procedure for single-cell analysis. This device achieves highly efficient trapping of single cells, overcoming the Poisson distribution, while affording sufficient biochemical reagents for each isolated reactor. We successfully utilized the presented device to monitor the catalytic interaction between intracellular alkaline phosphatase enzyme and a fluorogenic substrate and to quantify the intracellular glucose concentration of a single K562 cell based on an external standard method. The results demonstrate the feasibility and convenience of our dual-well array microfluidic device as a practical single-cell research tool.
Collapse
Affiliation(s)
- Chenyu Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
11
|
Wong WK, Jiang G, Sørensen AE, Chew YV, Lee-Maynard C, Liuwantara D, Williams L, O'Connell PJ, Dalgaard LT, Ma RC, Hawthorne WJ, Joglekar MV, Hardikar AA. The long noncoding RNA MALAT1 predicts human pancreatic islet isolation quality. JCI Insight 2019; 5:129299. [PMID: 31361602 DOI: 10.1172/jci.insight.129299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human islet isolation is a cost-/resource-intensive program generating islets for cell therapy in Type 1 diabetes. However, only a third of cadaveric pancreas get to clinical transplantation due to low quality/number of islets. There is a need to identify biomarker(s) that predict the quality of islets, prior to initiating their isolation. Here, we sequenced transcriptome from 18 human islet preparations stratified into three groups (Gr.1: Best quality/transplantable islets, Gr.2: Intermediary quality, Gr.3: Inferior quality/non-transplantable islets) based on routine measurements including islet purity/viability. Machine-learning algorithms involving penalized regression analyses identified 10 long-non-coding(lnc)RNAs significantly different across all group-wise comparisons (Gr1VsGr2, Gr2vsGr3, Gr1vsGr3). Two variants of Metastasis-Associated Lung Adenocarcinoma Transcript-1(MALAT1) lncRNA were common across all comparisons. We confirmed RNA-seq findings in a "validation set" of 75 human islet preparations. Finally, in 19 pancreas samples, we demonstrate that assessing the levels of MALAT1 variants alone (ROC curve AUC: 0.83) offers highest specificity in predicting post-isolation islet quality and improves the predictive potential for clinical islet transplantation when combined with Edmonton Donor Points/Body Mass Index(BMI)/North American Islet Donor Score(NAIDS). We present this resource of islet-quality-stratified lncRNA transcriptome data and identify MALAT1 as a biomarker that significantly enhances current selection methods for clinical (GMP)-grade islet isolation.
Collapse
Affiliation(s)
- Wilson Km Wong
- Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Cody Lee-Maynard
- Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - David Liuwantara
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Lindy Williams
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ronald C Ma
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
12
|
Gao W, Zhang X, Yuan H, Wang Y, Zhou H, Jin H, Jia C, Jin Q, Cong H, Zhao J. EGFR point mutation detection of single circulating tumor cells for lung cancer using a micro-well array. Biosens Bioelectron 2019; 139:111326. [PMID: 31129389 DOI: 10.1016/j.bios.2019.111326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
In view of their critical function in metastasis, characterization of single circulating tumor cells (CTCs) can provide important clinical information to monitor tumor progression and guide personal therapy. Single-cell genetic analysis methods based on microfluidics have some inherent shortcomings such as complicated operation, low throughput, and expensive equipment requirements. To overcome these barriers, we developed a simple and open micro-well array containing 26,208 units for either nuclear acids or single-cell genetic analysis. Through modification of the polydimethylsiloxane surface and optimization of chip packaging, we addressed protein adsorption and solution evaporation for PCR amplification on a chip. In the detection of epidermal growth factor receptor (EGFR) exon gene 21, this micro-well array demonstrated good linear correlation at a DNA concentration from 1 × 101 to 1 × 105 copies/μL (R2 = 0.9877). We then successfully integrated cell capture, lysis, PCR amplification, and signal read-out on the micro-well array, enabling the rapid and simple genetic analysis of single cells. This device was used to detect duplex EGFR mutation genes of lung cancer cell lines (H1975 and A549 cells) and normal leukocytes, demonstrating the ability to perform high-throughput, massively parallel duplex gene analysis at the single-cell level. Different types of point mutations (EGFR-L858R mutation or EGFR-T790M mutation) were detected in single H1975 cells, further validating the significance of single-cell level gene detection. In addition, this method showed a good performance in the heterogeneity detection of individual CTCs from lung cancer patients, required for micro-invasive cancer monitoring and treatment selection.
Collapse
Affiliation(s)
- Wanlei Gao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaofen Zhang
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Haojun Yuan
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yanmin Wang
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Zhou
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Han Jin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chunping Jia
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Qinghui Jin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hui Cong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China.
| | - Jianlong Zhao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
13
|
Liu W, Li Z, Liu Y, Wei Q, Liu Y, Ren L, Wang C, Yu Y. One step DNA amplification of mammalian cells in picoliter microwell arrays. RSC Adv 2019; 9:2865-2869. [PMID: 35520517 PMCID: PMC9059946 DOI: 10.1039/c8ra06717a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022] Open
Abstract
One-step PCR of a single cell in a picoliter microwell array was developed and applied to detect a target with the sensitivity of a single copy.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhao Li
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Yuanjie Liu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Qingquan Wei
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Yong Liu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Lufeng Ren
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Chenyu Wang
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Yude Yu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
14
|
Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen NT. Digital polymerase chain reaction technology - recent advances and future perspectives. LAB ON A CHIP 2018; 18:3717-3732. [PMID: 30402632 DOI: 10.1039/c8lc00990b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has remained a "hot topic" in the last two decades due to its potential applications in cell biology, genetic engineering, and medical diagnostics. Various advanced techniques have been reported on sample dispersion, thermal cycling and output monitoring of digital PCR. However, a fully automated, low-cost and handheld digital PCR platform has not been reported in the literature. This paper attempts to critically evaluate the recent developments in techniques for sample dispersion, thermal cycling and output evaluation for dPCR. The techniques are discussed in terms of hardware simplicity, portability, cost-effectiveness and suitability for automation. The present paper also discusses the research gaps observed in each step of dPCR and concludes with possible improvements toward portable, low-cost and automatic digital PCR systems.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | | | | | | | | |
Collapse
|
15
|
Hicks SD, Rajan AT, Wagner KE, Barns S, Carpenter RL, Middleton FA. Validation of a Salivary RNA Test for Childhood Autism Spectrum Disorder. Front Genet 2018; 9:534. [PMID: 30473705 PMCID: PMC6237842 DOI: 10.3389/fgene.2018.00534] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/22/2018] [Indexed: 11/25/2022] Open
Abstract
Background: The diagnosis of autism spectrum disorder (ASD) relies on behavioral assessment. Efforts to define biomarkers of ASD have not resulted in an objective, reliable test. Studies of RNA levels in ASD have demonstrated potential utility, but have been limited by a focus on single RNA types, small sample sizes, and lack of developmental delay controls. We hypothesized that a saliva-based poly-“omic” RNA panel could objectively distinguish children with ASD from their neurotypical peers and children with non-ASD developmental delay. Methods: This multi-center cross-sectional study included 456 children, ages 19–83 months. Children were either neurotypical (n = 134) or had a diagnosis of ASD (n = 238), or non-ASD developmental delay (n = 84). Comprehensive human and microbial RNA abundance was measured in the saliva of all participants using unbiased next generation sequencing. Prior to analysis, the sample was randomly divided into a training set (82% of subjects) and an independent validation test set (18% of subjects). The training set was used to develop an RNA-based algorithm that distinguished ASD and non-ASD children. The validation set was not used in model development (feature selection or training) but served only to validate empirical accuracy. Results: In the training set (n = 372; mean age 51 months; 75% male; 51% ASD), a set of 32 RNA features (controlled for demographic and medical characteristics), identified ASD status with a cross-validated area under the curve (AUC) of 0.87 (95% CI: 0.86–0.88). In the completely separate validation test set (n = 84; mean age 50 months; 85% male; 60% ASD), the algorithm maintained an AUC of 0.88 (82% sensitivity and 88% specificity). Notably, the RNA features were implicated in physiologic processes related to ASD (axon guidance, neurotrophic signaling). Conclusion: Salivary poly-omic RNA measurement represents a novel, non-invasive approach that can accurately identify children with ASD. This technology could improve the specificity of referrals for ASD evaluation or provide objective support for ASD diagnoses.
Collapse
Affiliation(s)
- Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | | | - Kayla E Wagner
- Quadrant Biosciences, Inc., Syracuse, NY, United States.,Departments of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Departments of Psychiatry, Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sarah Barns
- Quadrant Biosciences, Inc., Syracuse, NY, United States.,Departments of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Departments of Psychiatry, Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, United States
| | | | - Frank A Middleton
- Departments of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Departments of Psychiatry, Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
16
|
Quan PL, Sauzade M, Brouzes E. dPCR: A Technology Review. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1271. [PMID: 29677144 PMCID: PMC5948698 DOI: 10.3390/s18041271] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Digital Polymerase Chain Reaction (dPCR) is a novel method for the absolute quantification of target nucleic acids. Quantification by dPCR hinges on the fact that the random distribution of molecules in many partitions follows a Poisson distribution. Each partition acts as an individual PCR microreactor and partitions containing amplified target sequences are detected by fluorescence. The proportion of PCR-positive partitions suffices to determine the concentration of the target sequence without a need for calibration. Advances in microfluidics enabled the current revolution of digital quantification by providing efficient partitioning methods. In this review, we compare the fundamental concepts behind the quantification of nucleic acids by dPCR and quantitative real-time PCR (qPCR). We detail the underlying statistics of dPCR and explain how it defines its precision and performance metrics. We review the different microfluidic digital PCR formats, present their underlying physical principles, and analyze the technological evolution of dPCR platforms. We present the novel multiplexing strategies enabled by dPCR and examine how isothermal amplification could be an alternative to PCR in digital assays. Finally, we determine whether the theoretical advantages of dPCR over qPCR hold true by perusing studies that directly compare assays implemented with both methods.
Collapse
Affiliation(s)
- Phenix-Lan Quan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Martin Sauzade
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
17
|
Acevedo JP, Angelopoulos I, van Noort D, Khoury M. Microtechnology applied to stem cells research and development. Regen Med 2018; 13:233-248. [PMID: 29557299 DOI: 10.2217/rme-2017-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microfabrication and microfluidics contribute to the research of cellular functions of cells and their interaction with their environment. Previously, it has been shown that microfluidics can contribute to the isolation, selection, characterization and migration of cells. This review aims to provide stem cell researchers with a toolkit of microtechnology (mT) instruments for elucidating complex stem cells functions which are challenging to decipher with traditional assays and animal models. These microdevices are able to investigate about the differentiation and niche interaction, stem cells transcriptomics, therapeutic functions and the capture of their secreted microvesicles. In conclusion, microtechnology will allow a more realistic assessment of stem cells properties, driving and accelerating the translation of regenerative medicine approaches to the clinic.
Collapse
Affiliation(s)
- Juan Pablo Acevedo
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Ioannis Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Danny van Noort
- Facultad de Ingeniería y Ciencias Aplicadas Universidad de los Andes, Santiago, Chile.,Biotechnology, IFM, Linköping University, Sweden
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Santiago, Chile
| |
Collapse
|
18
|
Ven K, Vanspauwen B, Pérez-Ruiz E, Leirs K, Decrop D, Gerstmans H, Spasic D, Lammertyn J. Target Confinement in Small Reaction Volumes Using Microfluidic Technologies: A Smart Approach for Single-Entity Detection and Analysis. ACS Sens 2018; 3:264-284. [PMID: 29363316 DOI: 10.1021/acssensors.7b00873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last decades, the study of cells, nucleic acid molecules, and proteins has evolved from ensemble measurements to so-called single-entity studies. The latter offers huge benefits, not only as biological research tools to examine heterogeneities among individual entities within a population, but also as biosensing tools for medical diagnostics, which can reach the ultimate sensitivity by detecting single targets. Whereas various techniques for single-entity detection have been reported, this review focuses on microfluidic systems that physically confine single targets in small reaction volumes. We categorize these techniques as droplet-, microchamber-, and nanostructure-based and provide an overview of their implementation for studying single cells, nucleic acids, and proteins. We furthermore reflect on the advantages and limitations of these techniques and highlight future opportunities in the field.
Collapse
Affiliation(s)
- Karen Ven
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Vanspauwen
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Elena Pérez-Ruiz
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Karen Leirs
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Deborah Decrop
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans Gerstmans
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Department
of Applied biosciences, Ghent University, Valentyn Vaerwyckweg 1 - building
C, 9000 Gent, Belgium
- Department
of Biosystems, KU Leuven - University of Leuven, Kasteelpark Arenberg
21, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
19
|
Messner JJ, Glenn HL, Meldrum DR. Laser-fabricated cell patterning stencil for single cell analysis. BMC Biotechnol 2017; 17:89. [PMID: 29258486 PMCID: PMC5735507 DOI: 10.1186/s12896-017-0408-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge to implement. Here, we demonstrate a rapid, simple, indiscriminate, and minimally perturbing cell patterning method using a laser fabricated polymer stencil. The stencil fabrication process requires no stencil-substrate alignment, and is readily adaptable to various substrate geometries and experiments.
Collapse
Affiliation(s)
| | - Honor L Glenn
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., P.O. Box 877101, Tempe, AZ, 85287-7101, USA.
| |
Collapse
|
20
|
Capture and Genetic Analysis of Circulating Tumor Cells Using a Magnetic Separation Device (Magnetic Sifter). Methods Mol Biol 2017. [PMID: 28819848 DOI: 10.1007/978-1-4939-7144-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Circulating tumor cells (CTCs) are currently widely studied for their potential application as part of a liquid biopsy. These cells are shed from the primary tumor into the circulation, and are postulated to provide insight into the molecular makeup of the actual tumor in a minimally invasive manner. However, they are extremely rare in blood, with typical concentrations of 1-100 in a milliliter of blood; hence, a need exists for a rapid and high-purity method for isolating CTCs from whole blood. Here, we describe the application of a microfabricated magnetic sifter toward isolation of CTCs from whole blood at volumetric flow rates of 10 mL/h, along with the use of a PDMS-based nanowell system for single-cell gene expression profiling. This method allows rapid isolation of CTCs and subsequent integration with downstream genetic profiling methods for clinical applications such as targeted therapy, therapy monitoring, or further biological studies.
Collapse
|
21
|
Park SM, Wong DJ, Ooi CC, Nesvet JC, Nair VS, Wang SX, Gambhir SS. Multigene profiling of single circulating tumor cells. Mol Cell Oncol 2017; 4:e1289295. [PMID: 28401190 DOI: 10.1080/23723556.2017.1289295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Numerous techniques for isolating circulating tumor cells (CTCs) have been developed. Concurrently, single-cell techniques that can reveal molecular components of CTCs have become widely available. We discuss how the combination of isolation and multigene profiling of single CTCs in our platform can facilitate eventual translation to the clinic.
Collapse
Affiliation(s)
- Seung-Min Park
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Dawson J Wong
- Department of Electrical Engineering, Stanford University , Stanford, CA, USA
| | - Chin Chun Ooi
- Department of Chemical Engineering, Stanford University , Stanford, CA, USA
| | - Jared C Nesvet
- Department of Chemistry, Stanford University , Stanford, CA, USA
| | - Viswam S Nair
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
22
|
Molecular profiling of single circulating tumor cells from lung cancer patients. Proc Natl Acad Sci U S A 2016; 113:E8379-E8386. [PMID: 27956614 DOI: 10.1073/pnas.1608461113] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circulating tumor cells (CTCs) are established cancer biomarkers for the "liquid biopsy" of tumors. Molecular analysis of single CTCs, which recapitulate primary and metastatic tumor biology, remains challenging because current platforms have limited throughput, are expensive, and are not easily translatable to the clinic. Here, we report a massively parallel, multigene-profiling nanoplatform to compartmentalize and analyze hundreds of single CTCs. After high-efficiency magnetic collection of CTC from blood, a single-cell nanowell array performs CTC mutation profiling using modular gene panels. Using this approach, we demonstrated multigene expression profiling of individual CTCs from non-small-cell lung cancer (NSCLC) patients with remarkable sensitivity. Thus, we report a high-throughput, multiplexed strategy for single-cell mutation profiling of individual lung cancer CTCs toward minimally invasive cancer therapy prediction and disease monitoring.
Collapse
|
23
|
Park SM, Lee JY, Hong S, Lee SH, Dimov IK, Lee H, Suh S, Pan Q, Li K, Wu AM, Mumenthaler SM, Mallick P, Lee LP. Dual transcript and protein quantification in a massive single cell array. LAB ON A CHIP 2016; 16:3682-8. [PMID: 27546183 PMCID: PMC5221609 DOI: 10.1039/c6lc00762g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recently, single-cell molecular analysis has been leveraged to achieve unprecedented levels of biological investigation. However, a lack of simple, high-throughput single-cell methods has hindered in-depth population-wide studies with single-cell resolution. We report a microwell-based cytometric method for simultaneous measurements of gene and protein expression dynamics in thousands of single cells. We quantified the regulatory effects of transcriptional and translational inhibitors on cMET mRNA and cMET protein in cell populations. We studied the dynamic responses of individual cells to drug treatments, by measuring cMET overexpression levels in individual non-small cell lung cancer (NSCLC) cells with induced drug resistance. Across NSCLC cell lines with a given protein expression, distinct patterns of transcript-protein correlation emerged. We believe this platform is applicable for interrogating the dynamics of gene expression, protein expression, and translational kinetics at the single-cell level - a paradigm shift in life science and medicine toward discovering vital cell regulatory mechanisms.
Collapse
Affiliation(s)
- Seung-Min Park
- Department of Bioengineering, University of California, Berkeley, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, Lin M, Ying Hui L, Xu F. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron 2016; 90:459-474. [PMID: 27818047 DOI: 10.1016/j.bios.2016.09.082] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/18/2022]
Abstract
Since the invention of polymerase chain reaction (PCR) in 1985, PCR has played a significant role in molecular diagnostics for genetic diseases, pathogens, oncogenes and forensic identification. In the past three decades, PCR has evolved from end-point PCR, through real-time PCR, to its current version, which is the absolute quantitive digital PCR (dPCR). In this review, we first discuss the principles of all key steps of dPCR, i.e., sample dispersion, amplification, and quantification, covering commercialized apparatuses and other devices still under lab development. We highlight the advantages and disadvantages of different technologies based on these steps, and discuss the emerging biomedical applications of dPCR. Finally, we provide a glimpse of the existing challenges and future perspectives for dPCR.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xingye Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jane Ru Choi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Li Ying Hui
- Foundation of State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
25
|
Kim SH, Fujii T. Efficient analysis of a small number of cancer cells at the single-cell level using an electroactive double-well array. LAB ON A CHIP 2016; 16:2440-9. [PMID: 27189335 DOI: 10.1039/c6lc00241b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Analysis of the intracellular materials of a small number of cancer cells at the single-cell level is important to improve our understanding of cellular heterogeneity in rare cells. To analyze an extremely small number of cancer cells (less than hundreds of cells), an efficient system is required in order to analyze target cells with minimal sample loss. Here, we present a novel approach utilizing an advanced electroactive double-well array (EdWA) for on-chip analysis of a small number of cancer cells at the single-cell level with minimal loss of target cells. The EdWA consisted of cell-sized trap-wells for deterministic single-cell trapping using dielectrophoresis and high aspect ratio reaction-wells for confining the cell lysates extracted by lysing trapped single cells via electroporation. We demonstrated a highly efficient single-cell arraying (a cell capture efficiency of 96 ± 3%) by trapping diluted human prostate cancer cells (PC3 cells). On-chip single-cell analysis was performed by measuring the intracellular β-galactosidase (β-gal) activity after lysing the trapped single cells inside a tightly enclosed EdWA in the presence of a fluorogenic enzyme substrate. The PC3 cells showed large cell-to-cell variations in β-gal activity although they were cultured under the same conditions in a culture dish. This simple and effective system has great potential for high throughput single-cell analysis of rare cells.
Collapse
Affiliation(s)
- Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, Japan.
| | | |
Collapse
|
26
|
Dimov IK, Boiko AD. Profiling Melanoma Heterogeneity Using Microwell RNA Cytometry. Methods Mol Biol 2016. [PMID: 27083169 DOI: 10.1007/7651_2016_351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Unraveling heterogeneity of melanoma to discover new subpopulations of cells within the tumor has been fundamental to many advances in cancer biology, including identification of tumor initiating subsets and cells resisting immune-therapeutic approaches (Boiko et al., Nature 466:133-137, 2010; Civenni et al., Cancer Res 71:3098-3109, 2011; Schatton et al., Nature 451:345-349, 2008; Landsberg et al., Nature 490:412-416, 2012; Fang et al., Cancer Res 65:9328-9337, 2005). Traditionally, these discoveries were made possible due to the existence of well-characterized antibodies that enabled identification of cells homogeneous for the expression of specific cell surface antigen. However, further unwinding of heterogeneous cell populations into homogenous subsets in order to more precisely define their functional profile is limited by the availability of highly specific antibodies. Here we describe a technique capable of identifying homogeneous cell populations in heterogeneous sample based on the transcriptome profile. This approach enables semiquantitative measurement of gene expressions in hundreds to thousands of single cells in one step, paving the way to identify homogenous subpopulations of melanoma cells based on gene transcripts, independent of the availability of antibodies.
Collapse
Affiliation(s)
- Ivan K Dimov
- Stanford School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, CA, USA.
| | - Alexander D Boiko
- Department of Molecular Biology and Biochemistry, Sue & Bill Gross Stem Cell Research Center, CIRM Institute, University of California-Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
27
|
Fan HC, Fu GK, Fodor SPA. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 2015; 347:1258367. [PMID: 25657253 DOI: 10.1126/science.1258367] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a technically simple approach for gene expression cytometry combining next-generation sequencing with stochastic barcoding of single cells. A combinatorial library of beads bearing cell- and molecular-barcoding capture probes is used to uniquely label transcripts and reconstruct the digital gene expression profile of thousands of individual cells in a single experiment without the need for robotics or automation. We applied the technology to dissect the human hematopoietic system and to characterize heterogeneous response to in vitro stimulation. High sensitivity is demonstrated by detection of low-abundance transcripts and rare cells. Under current implementation, the technique can analyze a few thousand cells simultaneously and can readily scale to 10,000s or 100,000s of cells.
Collapse
Affiliation(s)
- H Christina Fan
- Cellular Research, Inc., 3183 Porter Drive, Palo Alto, CA 94304, USA
| | - Glenn K Fu
- Cellular Research, Inc., 3183 Porter Drive, Palo Alto, CA 94304, USA
| | - Stephen P A Fodor
- Cellular Research, Inc., 3183 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
28
|
Zhou H, Zhao L, Zhang X. In-Channel Printing-Device Opening Assay for Micropatterning Multiple Cells and Gene Analysis. Anal Chem 2015; 87:2048-53. [DOI: 10.1021/ac504823s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Zhou
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Liang Zhao
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| |
Collapse
|
29
|
Hudak CS, Gulyaeva O, Wang Y, Park SM, Lee L, Kang C, Sul HS. Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep 2014; 8:678-87. [PMID: 25088414 DOI: 10.1016/j.celrep.2014.06.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022] Open
Abstract
Pref-1 is an EGF-repeat-containing protein that inhibits adipocyte differentiation. To better understand the origin and development of white adipose tissue (WAT), we generated transgenic mouse models for transient or permanent fluorescent labeling of cells using the Pref-1 promoter, facilitating inducible ablation. We show that Pref-1-marked cells retain proliferative capacity and are very early adipose precursors, prior to expression of Zfp423 or PPARγ. In addition, the Pref-1-marked cells establish that adipose precursors are mesenchymal, but not endothelial or pericytal, in origin. During embryogenesis, Pref-1-marked cells first appear in the dorsal mesenteric region as early as embryonic day 10.5 (E10.5). These cells become lipid-laden adipocytes at E17.5 in the subcutaneous region, whereas visceral WAT develops after birth. Finally, ablation of Pref-1-marked cells prevents not only embryonic WAT development but also later adult adipose expansion upon high-fat feeding, demonstrating the requirement of Pref-1 cells for adipogenesis.
Collapse
Affiliation(s)
- Carolyn S Hudak
- Department of Nutritional Sciences & Toxicology, 119 Morgan Hall, University of California, Berkeley, CA 94720, USA
| | - Olga Gulyaeva
- Endocrinology Program, 299 LSA, University of California, Berkeley, CA 94720, USA
| | - Yuhui Wang
- Department of Nutritional Sciences & Toxicology, 119 Morgan Hall, University of California, Berkeley, CA 94720, USA
| | - Seung-Min Park
- Department of Bioengineering, 306 Stanley Hall, University of California, Berkeley, CA 94720 USA; Berkeley Sensor and Actuator Center, 403 Cory Hall, University of California, Berkeley, CA 94720, USA; Department of Radiology, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Luke Lee
- Department of Bioengineering, 306 Stanley Hall, University of California, Berkeley, CA 94720 USA
| | - Chulho Kang
- Department of Molecular & Cell Biology, 142 LSA, University of California, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences & Toxicology, 119 Morgan Hall, University of California, Berkeley, CA 94720, USA; Endocrinology Program, 299 LSA, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Adutler-Lieber S, Zaretsky I, Platzman I, Deeg J, Friedman N, Spatz JP, Geiger B. Engineering of synthetic cellular microenvironments: implications for immunity. J Autoimmun 2014; 54:100-11. [PMID: 24951031 DOI: 10.1016/j.jaut.2014.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
In this article, we discuss novel synthetic approaches for studying the interactions of cells with their microenvironment. Notably, critical cellular processes such as growth, differentiation, migration, and fate determination, are tightly regulated by interactions with neighboring cells, and the surrounding extracellular matrix. Given the huge complexity of natural cellular environments, and their rich molecular and physical diversity, the mission of understanding "environmental signaling" at a molecular-mechanistic level appears to be extremely challenging. To meet these challenges, attempts have been made in recent years to design synthetic matrices with defined chemical and physical properties, which, artificial though they may be, could reveal basic "design principles" underlying the physiological processes. Here, we summarize recent developments in the characterization of the chemical and physical properties of cell sensing and adhesion, as well as the design and use of engineered, micro- to nanoscale patterned and confined environments, for systematic, comprehensive modulation of the cells' environment. The power of these biomimetic surfaces to highlight environmental signaling events in cells, and in immune cells in particular, will be discussed.
Collapse
Affiliation(s)
- Shimrit Adutler-Lieber
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Irina Zaretsky
- Department of Immunology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Ilia Platzman
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Janosch Deeg
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Joachim P Spatz
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| |
Collapse
|