1
|
Yi W, Huang H, Lai C, He T, Wang Z, Dai X, Shi Y, Cheng X. Optical Forces on Chiral Particles: Science and Applications. MICROMACHINES 2024; 15:1267. [PMID: 39459141 PMCID: PMC11509618 DOI: 10.3390/mi15101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chiral particles have attracted considerable attention due to their distinctive interactions with light, which enable a variety of cutting-edge applications. This review presents a comprehensive analysis of the optical forces acting on chiral particles, categorizing them into gradient force, radiation pressure, optical lateral force, pulling force, and optical force on coupled chiral particles. We thoroughly overview the fundamental physical mechanisms underlying these forces, supported by theoretical models and experimental evidence. Additionally, we discuss the practical implications of these optical forces, highlighting their potential applications in optical manipulation, particle sorting, chiral sensing, and detection. This review aims to offer a thorough understanding of the intricate interplay between chiral particles and optical forces, laying the groundwork for future advancements in nanotechnology and photonics.
Collapse
Affiliation(s)
- Weicheng Yi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Haiyang Huang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Chengxing Lai
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| |
Collapse
|
2
|
Lininger A, Palermo G, Guglielmelli A, Nicoletta G, Goel M, Hinczewski M, Strangi G. Chirality in Light-Matter Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107325. [PMID: 35532188 DOI: 10.1002/adma.202107325] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Giuseppe Nicoletta
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| |
Collapse
|
3
|
Lin S, Tang Y, Kang W, Bisoyi HK, Guo J, Li Q. Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption. Nat Commun 2023; 14:3005. [PMID: 37231049 DOI: 10.1038/s41467-023-38801-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Materials with phototunable full-color circularly polarized luminescence (CPL) have a large storage density, high-security level, and enormous prospects in the field of information encryption and decryption. In this work, device-friendly solid films with color tunability are prepared by constructing Förster resonance energy transfer (FRET) platforms with chiral donors and achiral molecular switches in liquid crystal photonic capsules (LCPCs). These LCPCs exhibit photoswitchable CPL from initial blue emission to RGB trichromatic signals under UV irradiation due to the synergistic effect of energy and chirality transfer and show strong time dependence because of the different FRET efficiencies at each time node. Based on these phototunable CPL and time response characteristics, the concept of multilevel data encryption by using LCPC films is demonstrated.
Collapse
Affiliation(s)
- Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wenxin Kang
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
4
|
Magazzù A, Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:963. [PMID: 36985857 PMCID: PMC10053849 DOI: 10.3390/nano13060963] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young's modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems.
Collapse
Affiliation(s)
- Alessandro Magazzù
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, 98158 Mesina, Italy
- NLHT-Lab, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
5
|
Saito K, Kimura Y. Optically driven liquid crystal droplet rotator. Sci Rep 2022; 12:16623. [PMID: 36198748 PMCID: PMC9534986 DOI: 10.1038/s41598-022-21146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, the rotation of liquid crystal droplets induced by elliptically polarized laser light was investigated using optical tweezers. The rotation mechanism was analyzed based on the arrangement of liquid crystal molecules within the droplets. The change in the rotation behavior of nematic liquid crystal (NLC) droplets was evaluated by varying the droplet size. The experimental results were analyzed based on the waveplate effect and light-scattering process. The rotation behavior of cholesteric liquid crystal droplets was examined by varying the droplet size and helical pitch, which was controlled by the chiral dopant concentration. The results are discussed in terms of the selective reflection of the incident beam by the helical structure. The dependence of the rotation frequency on the ellipticity of the incident beam was also studied. The main contribution to the rotation gradually changes from light transmission to reflection with increasing chirality of the droplet. An NLC rotator system was constructed using holographic optical tweezers. Such an optically controllable rotator is a typical micro-optomechanical device. Complex flow fields, including multiple vortex and localized shear fields, were realized at the micron scale.
Collapse
Affiliation(s)
- Keita Saito
- Department of Physics, School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yasuyuki Kimura
- Department of Physics, School of Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
Mur U, Ravnik M. Numerical modeling of optical modes in topological soft matter. OPTICS EXPRESS 2022; 30:14393-14407. [PMID: 35473183 DOI: 10.1364/oe.454980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Vector and vortex laser beams are desired in many applications and are usually created by manipulating the laser output or by inserting optical components in the laser cavity. Distinctly, inserting liquid crystals into the laser cavity allows for extensive control over the emitted light due to their high susceptibility to external fields and birefringent nature. In this work we demonstrate diverse optical modes for lasing as enabled and stablised by topological birefringent soft matter structures using numerical modelling. We show diverse structuring of light-with different 3D intensity and polarization profiles-as realised by topological soft matter structures in radial nematic droplet, in 2D nematic cavities of different geometry and including topological defects with different charges and winding numbers, in arbitrary varying birefringence fields with topological defects and in pixelated birefringent profiles. We use custom written FDFD code to calculate emergent electromagnetic eigenmodes. Control over lasing is of a particular interest aiming towards the creation of general intensity, polarization and topologically shaped laser beams.
Collapse
|
7
|
Fang L, Wang J. Optical Trapping Separation of Chiral Nanoparticles by Subwavelength Slot Waveguides. PHYSICAL REVIEW LETTERS 2021; 127:233902. [PMID: 34936799 DOI: 10.1103/physrevlett.127.233902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Enantiomer separation opens great opportunities to develop the technologies of pharmaceutics, chemicals, and biomedicine, but faces daunting challenges. Here, we discover a considerable chiral-dependent trapping force to separate nanometer-scale enantiomers in a new silicon-based waveguide platform. The electromagnetic chirality gradient of strongly confined evanescent fields can be largely enhanced by the counterpropagating slot waveguides so that the resulting chiral gradient forces can shift the trapping equilibrium positions of dielectric gradient forces. Especially, there exists a transitional width for the slot waveguides to exchange the trapping equilibrium positions between two opposite enantiomers. Our thoroughly numerical investigations demonstrate that the chiral-separable slot waveguides here can offer high efficiency and feasibility of separating chiral nanoparticles, and may pave a route toward new on-chip chiral optical tweezers or optofluidic transport systems for large-scale chiral separation.
Collapse
Affiliation(s)
- Liang Fang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
8
|
Horai T, Eguchi H, Iida T, Ishihara H. Formulation of resonant optical force based on the microscopic structure of chiral molecules. OPTICS EXPRESS 2021; 29:38824-38840. [PMID: 34808926 DOI: 10.1364/oe.440352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Optical manipulation, exemplified by Ashkin's optical tweezers, is a promising technique in the fields of bioscience and chemistry, as it enables the non-destructive and non-contact selective transport or manipulation of small particles. To realize the separation of chiral molecules, several researchers have reported on the use of light and discussed feasibility of selection. Although the separation of micrometer-sized chiral molecules has been experimentally demonstrated, the separation of nanometer-sized chiral molecules, which are considerably smaller than the wavelength of light, remains challenging. Therefore, we formulated an optical force under electronic resonance to enhance the optical force and enable selective manipulation. In particular, we incorporated the microscopic structures of molecular dipoles into the nonlocal optical response theory. The analytical expression of optical force could clarify the mechanism of selection exertion of the resonant optical force on chiral molecules. Furthermore, we quantitatively evaluated the light intensity and light exposure time required to separate a single molecule in a solvent. The results can facilitate the design of future schemes for the selective optical manipulation of chiral molecules.
Collapse
|
9
|
Liu X, Debije MG, Heuts JPA, Schenning APHJ. Liquid-Crystalline Polymer Particles Prepared by Classical Polymerization Techniques. Chemistry 2021; 27:14168-14178. [PMID: 34320258 PMCID: PMC8596811 DOI: 10.1002/chem.202102224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/06/2022]
Abstract
Liquid-crystalline polymer particles prepared by classical polymerization techniques are receiving increased attention as promising candidates for use in a variety of applications including micro-actuators, structurally colored objects, and absorbents. These particles have anisotropic molecular order and liquid-crystalline phases that distinguish them from conventional polymer particles. In this minireview, the preparation of liquid-crystalline polymer particles from classical suspension, (mini-)emulsion, dispersion, and precipitation polymerization reactions are discussed. The particle sizes, molecular orientations, and liquid-crystalline phases produced by each technique are summarized and compared. We conclude with a discussion of the challenges and prospects of the preparation of liquid-crystalline polymer particles by classical polymerization techniques.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
| | - Michael G. Debije
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
| | - Johan P. A. Heuts
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
| | - Albert P. H. J. Schenning
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
10
|
Kakkanattu A, Eerqing N, Ghamari S, Vollmer F. Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. OPTICS EXPRESS 2021; 29:12543-12579. [PMID: 33985011 DOI: 10.1364/oe.421839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Chiral molecules are ubiquitous in nature; many important synthetic chemicals and drugs are chiral. Detecting chiral molecules and separating the enantiomers is difficult because their physiochemical properties can be very similar. Here we review the optical approaches that are emerging for detecting and manipulating chiral molecules and chiral nanostructures. Our review focuses on the methods that have used plasmonics to enhance the chiroptical response. We also review the fabrication and assembly of (dynamic) chiral plasmonic nanosystems in this context.
Collapse
|
11
|
Chen HQ, Wang XY, Bisoyi HK, Chen LJ, Li Q. Liquid Crystals in Curved Confined Geometries: Microfluidics Bring New Capabilities for Photonic Applications and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3789-3807. [PMID: 33775094 DOI: 10.1021/acs.langmuir.1c00256] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The quest for interesting properties and phenomena in liquid crystals toward their employment in nondisplay application is an intense and vibrant endeavor. Remarkable progress has recently been achieved with regard to liquid crystals in curved confined geometries, typically represented as enclosed spherical geometries and cylindrical geometries with an infinitely extended axial-symmetrical space. Liquid-crystal emulsion droplets and fibers are intriguing examples from these fields and have attracted considerable attention. It is especially noteworthy that the rapid development of microfluidics brings about new capabilities to generate complex soft microstructures composed of both thermotropic and lyotropic liquid crystals. This review attempts to outline the recent developments related to the liquid crystals in curved confined geometries by focusing on microfluidics-mediated approaches. We highlight a wealth of novel photonic applications and beyond and also offer perspectives on the challenges, opportunities, and new directions for future development in this emerging research area.
Collapse
Affiliation(s)
- Han-Qing Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Xi-Yuan Wang
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
12
|
Zhang S, Zhou H, Kong N, Wang Z, Fu H, Zhang Y, Xiao Y, Yang W, Yan F. l-cysteine-modified chiral gold nanoparticles promote periodontal tissue regeneration. Bioact Mater 2021; 6:3288-3299. [PMID: 33778205 PMCID: PMC7970259 DOI: 10.1016/j.bioactmat.2021.02.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Gold nanoparticles (AuNPs) with surface-anchored molecules present tremendous potential in tissue regeneration. However, little is known about chiral-modified AuNPs. In this study, we successfully prepared L/D-cysteine-anchored AuNPs (L/D-Cys-AuNPs) and studied the effects of chiral-modified AuNPs on osteogenic differentiation and autophagy of human periodontal ligament cells (hPDLCs) and periodontal tissue regeneration. In vitro, more L-Cys-AuNPs than D-Cys-AuNPs tend to internalize in hPDLCs. L-Cys-AuNPs also significantly increased the expression of alkaline phosphatase, collagen type 1, osteocalcin, runt-related transcription factor 2, and microtubule-associated protein light chain 3 II and decreased the expression of sequestosome 1 in hPDLCs compared to the expression levels in the hPDLCs treated by D-Cys-AuNPs. In vivo tests in a rat periodontal-defect model showed that L-Cys-AuNPs had the greatest effect on periodontal-tissue regeneration. The activation of autophagy in L-Cys-AuNP-treated hPDLCs may be responsible for the cell differentiation and tissue regeneration. Therefore, compared to D-Cys-AuNPs, L-Cys-AuNPs show a better performance in cellular internalization, regulation of autophagy, cell osteogenic differentiation, and periodontal tissue regeneration. This demonstrates the immense potential of L-Cys-AuNPs for periodontal regeneration and provides a new insight into chirally modified bioactive nanomaterials. L/D-Cys-AuNPs exert a chirality-dependent effect on hPDLCs. L-Cys-AuNPs efficiently induced osteogenic differentiation in hPDLCs. L-Cys-AuNPs significantly improved periodontal tissue regeneration.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Na Kong
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huangmei Fu
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Australia
| |
Collapse
|
13
|
Hernández RJ, Sevilla FJ, Mazzulla A, Pagliusi P, Pellizzi N, Cipparrone G. Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam. SOFT MATTER 2020; 16:7704-7714. [PMID: 32734983 DOI: 10.1039/c9sm02404b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate the emergence of circular collective motion in a system of spherical light-propelled Brownian particles. Light-propulsion occurs as consequence of the coupling between the chirality of polymeric particles - left (L)- or right (R)-type - and the circularly-polarized light that irradiates them. Irradiation with light that has the same helicity as the particle material leads to a circular cooperative vortical motion between the chiral Brownian particles. In contrast, opposite circular-polarization does not induce such coupling among the particles but only affects their Brownian motion. The mean angular momentum of each particle has a value and sign that distinguishes between chiral activity dynamics and typical Brownian motion. These outcomes have relevant implications for chiral separation technologies and provide new strategies for optical torque tunability in mesoscopic optical array systems, micro- and nanofabrication of light-activated engines with selective control and collective motion.
Collapse
Affiliation(s)
- Raúl Josué Hernández
- Cátedra CONACYT Consejo Nacional de Ciencia y Tecnología - Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, 04510 Cd. de México, Mexico.
| | | | | | | | | | | |
Collapse
|
14
|
Zheng H, Li X, Ng J, Chen H, Lin Z. Tailoring the gradient and scattering forces for longitudinal sorting of generic-size chiral particles. OPTICS LETTERS 2020; 45:4515-4518. [PMID: 32796997 DOI: 10.1364/ol.398216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Based on the concepts of conservative and non-conservative optical forces (COF and NCOF), we analyze the physical mechanism of longitudinal chirality sorting along the direction of light propagation in some simple optical fields. It is demonstrated, both numerically and analytically for particle of arbitrary size, that the sorting relies solely on the NCOF, which switches its direction when particle chirality is reversed. For particles larger than half of the optical wavelength λ, the NCOF far surpasses its counterpart COF, enabling the longitudinal chirality sorting. When the particle is much smaller than λ, however, the COF outweighs the NCOF, destroying the sorting mechanism. A scenario is thus proposed that totally eliminates the COF while leaving the sorting NCOF unchanged, extending the applicability of longitudinal chirality sorting to small particles.
Collapse
|
15
|
Shi Y, Zhu T, Zhang T, Mazzulla A, Tsai DP, Ding W, Liu AQ, Cipparrone G, Sáenz JJ, Qiu CW. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. LIGHT, SCIENCE & APPLICATIONS 2020; 9:62. [PMID: 32337026 PMCID: PMC7160209 DOI: 10.1038/s41377-020-0293-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Lateral optical forces induced by linearly polarized laser beams have been predicted to deflect dipolar particles with opposite chiralities toward opposite transversal directions. These "chirality-dependent" forces can offer new possibilities for passive all-optical enantioselective sorting of chiral particles, which is essential to the nanoscience and drug industries. However, previous chiral sorting experiments focused on large particles with diameters in the geometrical-optics regime. Here, we demonstrate, for the first time, the robust sorting of Mie (size ~ wavelength) chiral particles with different handedness at an air-water interface using optical lateral forces induced by a single linearly polarized laser beam. The nontrivial physical interactions underlying these chirality-dependent forces distinctly differ from those predicted for dipolar or geometrical-optics particles. The lateral forces emerge from a complex interplay between the light polarization, lateral momentum enhancement, and out-of-plane light refraction at the particle-water interface. The sign of the lateral force could be reversed by changing the particle size, incident angle, and polarization of the obliquely incident light.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Tongtong Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024 China
- School of Physics, Harbin Institute of Technology, Harbin, 150001 China
| | - Tianhang Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| | - Alfredo Mazzulla
- CNR-NANOTEC, LiCryL and Centre of Excellence CEMIF. CAL, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - Din Ping Tsai
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin, 150001 China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Gabriella Cipparrone
- CNR-NANOTEC, LiCryL and Centre of Excellence CEMIF. CAL, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
- Department of Physics, University of Calabria, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - Juan José Sáenz
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| |
Collapse
|
16
|
Ali R, Pinheiro FA, Dutra RS, Rosa FSS, Maia Neto PA. Enantioselective manipulation of single chiral nanoparticles using optical tweezers. NANOSCALE 2020; 12:5031-5037. [PMID: 32067004 DOI: 10.1039/c9nr09736h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We put forward an enantioselective method for chiral nanoparticles using optical tweezers. We demonstrate that the optical trapping force in a typical, realistic optical tweezing setup with circularly-polarized trapping beams is sensitive to the chirality of core-shell nanoparticles, allowing for efficient enantioselection. It turns out that the handedness of the trapped particles can be selected by choosing the appropriate circular polarization of the trapping beam. The chirality of each individual trapped nanoparticle can be characterized by measuring the rotation of the equilibrium position under the effect of a transverse Stokes drag force. We show that the chirality of the shell gives rise to an additional twist, leading to a strong enhancement of the optical torque driving the rotation. Both methods are shown to be robust against variations of size and material parameters, demonstrating that they are particularly useful in (but not restricted to) several situations of practical interest in chiral plasmonics, where enantioselection and characterization of single chiral nanoparticles, each and every one with its unique handedness and optical properties, are in order. In particular, our method could be employed to unveil the chiral response arising from disorder in individual plasmonic raspberries, synthesized by close-packing a large number of metallic nanospheres around a dielectric core.
Collapse
Affiliation(s)
- Rfaqat Ali
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.
| | - Felipe A Pinheiro
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.
| | - Rafael S Dutra
- LISComp-IFRJ, Instituto Federal de Educação, Ciência e Tecnologia, Rua Sebastião de Lacerda, Paracambi, RJ 26600-000, Brazil
| | - Felipe S S Rosa
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.
| | - Paulo A Maia Neto
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.
| |
Collapse
|
17
|
Yue B, Yin L, Zhao W, Jia X, Zhu M, Wu B, Wu S, Zhu L. Chirality Transfer in Coassembled Organogels Enabling Wide-Range Naked-Eye Enantiodifferentiation. ACS NANO 2019; 13:12438-12444. [PMID: 31560190 DOI: 10.1021/acsnano.9b06250] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enantiodifferentiation is crucial in organic chemistry, pharmacochemistry, material chemistry, and life science. However, it remains tremendously challenging to achieve a broad enantioselectivity to different types of chiral substrates via a single-material design. Here, we report a coassembled organogel strategy with chirality transfer to make an enantioselective generality possible. This coassembly contains two components: a chiral rigid molecular linker and an achiral block copolymer. Different from routine helically packed chiral self-assemblies, chirality transfer from the linker to the copolymer directed the coassembly to form a phase-segregated twisted nanofiber, in cooperation with H-bonding and microphase segregation. An organogel was accordingly formed by the further cross-linking in ethanol, where the rigid chiral linker served as the scaffold. On this basis, the system becomes highly sensitive, enabling a naked-eye sensing toward the single enantiomer of a diverse series of chiral species (including axial, point, planar, and polymeric chirality) via gel-to-micelle transformation, due to the asymmetric interaction hampering the chirality transfer in the coassembly and destroying the hierarchical structure. Such a strategy, based on a significant amplification of the stereoselective interactions, facilitates a simple and straightforward way to distinguish a broad optical activity independent of devices.
Collapse
Affiliation(s)
- Bingbing Yue
- Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Max-Planck-Institut für Polymerforschung , Ackermannweg 10 , Mainz 55128 , Germany
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Liyuan Yin
- Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Wandong Zhao
- Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaoyong Jia
- Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Henan Key Laboratory of Photovoltaic Materials , Henan University , Kaifeng 475004 , China
| | - Mingjie Zhu
- Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Bin Wu
- Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Si Wu
- Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Max-Planck-Institut für Polymerforschung , Ackermannweg 10 , Mainz 55128 , Germany
| | - Liangliang Zhu
- Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
18
|
Che KJ, Yang YJ, Lin YL, Shan YW, Ge YH, Li SS, Chen LJ, Yang CJ. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing. LAB ON A CHIP 2019; 19:3116-3122. [PMID: 31429847 DOI: 10.1039/c9lc00655a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The integration of one more gain media in droplet microlasers with morphology-dependent modes, which can be employed in optofluidic systems as multi-wavelength lasing sources, is highly attractive and demands new cavity design and fabrication approaches. Here, cholesteric liquid crystal (CLC) droplets with an integrative triple-emulsion cavity are fabricated via glass-capillary-based microfluidic technologies and dual-gain lasing with variable modes, flexibly configured by the combination and incorporation of gain dyes and CLCs into both the core and shell. The distributed feedback (DFB) mode, formed by the feedback from the self-assembled helix periodic structure of CLCs, the whispering gallery (WG) mode, and the hybrid, is selectively excited by controlling the spatial coupling between the pump beam and the droplet with gain. With the merits of dual-gain and controllable lasing, a prototype dual-wavelength-ratiometric thermometer with self-calibration capability is expected to be developed. Furthermore, the anisotropic CLC core is substituted with an isotropic fluid and the gain from the CLC shell is additionally removed, DFB lasings in both shell and core are absent, and only Bragg-shell reflection-based hybrid modes are excited for lasing. The CLC droplet microlasers with an integrative cavity are expected to provide a new route to future lab-on-chip (LOC) applications.
Collapse
Affiliation(s)
- Kai-Jun Che
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Marichez V, Tassoni A, Cameron RP, Barnett SM, Eichhorn R, Genet C, Hermans TM. Mechanical chiral resolution. SOFT MATTER 2019; 15:4593-4608. [PMID: 31147662 DOI: 10.1039/c9sm00778d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanical interactions of chiral objects with their environment are well-established at the macroscale, like a propeller on a plane or a rudder on a boat. At the colloidal scale and smaller, however, such interactions are often not considered or deemed irrelevant due to Brownian motion. As we will show in this tutorial review, mechanical interactions do have significant effects on chiral objects at all scales, and can be induced using shearing surfaces, collisions with walls or repetitive microstructures, fluid flows, or by applying electrical or optical forces. Achieving chiral resolution by mechanical means is very promising in the field of soft matter and to industry, but has not received much attention so far.
Collapse
Affiliation(s)
- Vincent Marichez
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kravets N, Aleksanyan A, Brasselet E. Chiral Optical Stern-Gerlach Newtonian Experiment. PHYSICAL REVIEW LETTERS 2019; 122:024301. [PMID: 30720309 DOI: 10.1103/physrevlett.122.024301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/06/2018] [Indexed: 05/14/2023]
Abstract
We report on a chiral optical Stern-Gerlach experiment where chiral liquid crystal microspheres are selectively displaced by means of optical forces arising from optical helicity gradients. The present Newtonian experimental demonstration of an effect predicted at molecular scale [New J. Phys. 16, 013020 (2014)NJOPFM1367-263010.1088/1367-2630/16/1/013020] is a first instrumental step in an area restricted so far to theoretical discussions. Extending the Stern-Gerlach experiment legacy to chiral light-matter interactions should foster further studies, for instance towards the elaboration of chirality-enabled quantum technologies or spin-based optoelectronics.
Collapse
Affiliation(s)
- Nina Kravets
- Université de Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine, F-33400 Talence, France
| | - Artur Aleksanyan
- Université de Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine, F-33400 Talence, France
| | - Etienne Brasselet
- Université de Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine, F-33400 Talence, France
| |
Collapse
|
21
|
Chiral optical tweezers for optically active particles in the T-matrix formalism. Sci Rep 2019; 9:29. [PMID: 30631081 PMCID: PMC6328542 DOI: 10.1038/s41598-018-36434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022] Open
Abstract
Modeling optical tweezers in the T-matrix formalism has been of key importance for accurate and efficient calculations of optical forces and their comparison with experiments. Here we extend this formalism to the modeling of chiral optomechanics and optical tweezers where chiral light is used for optical manipulation and trapping of optically active particles. We first use the Bohren decomposition to deal with the light scattering of chiral light on optically active particles. Thus, we show analytically that all the observables (cross sections, asymmetry parameters) are split into a helicity dependent and independent part and study a practical example of a complex resin particle with inner copper-coated stainless steel helices. Then, we apply this chiral T-matrix framework to optical tweezers where a tightly focused chiral field is used to trap an optically active spherical particle, calculate the chiral behaviour of optical trapping stiffnesses and their size scaling, and extend calculations to chiral nanowires and clusters of astrophysical interest. Such general light scattering framework opens perspectives for modeling optical forces on biological materials where optically active amino acids and carbohydrates are present.
Collapse
|
22
|
Suzuki T, Li Y, Gevorkian A, Kumacheva E. Compound droplets derived from a cholesteric suspension of cellulose nanocrystals. SOFT MATTER 2018; 14:9713-9719. [PMID: 30468445 DOI: 10.1039/c8sm01716f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study reports microfluidic generation of Janus droplets that consist of a liquid crystal component (a cholesteric aqueous suspension of cellulose nanocrystals, Ch-CNC) and a mineral oil (MO) component. The composition of the droplets was controlled by varying the relative flow rates of MO and Ch-CNC suspension. The shape of the Ch-CNC component of the droplets was changed from a truncated sphere to a hemisphere to a crescent moon. For these three Ch-CNC phase shapes, the Ch packing of the CNC pseudolayers was preserved, however the Ch pitch reduced, which was ascribed to the change in CNC orientation at the Ch-CNC/MO interface from perpendicular to parallel. The shape of the compound droplets was tuned from a dumbbell to a sphere by reducing interfacial tension between the Ch-CNC suspension and MO phases. Photopolymerization of the monomer mixture introduced in the Ch-CNC phase of the droplets and the removal of the sacrificial MO phase enabled the generation of Ch microgels. The results of this work can be used for exploring new applications of Janus colloids and the fabrication of programmable active soft matter.
Collapse
Affiliation(s)
- Toyoko Suzuki
- Department of Chemistry, University of Toronto, 80 Saint George Street, ON M5S3H6, Canada.
| | | | | | | |
Collapse
|
23
|
Han CY, Du CY, Chen DF. Evaluation of structural and molecular variation of starch granules during the gelatinization process by using the rapid Mueller matrix imaging polarimetry system. OPTICS EXPRESS 2018; 26:15851-15866. [PMID: 30114840 DOI: 10.1364/oe.26.015851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Starch is an essential and widely distributed natural material, but its detailed conformation and thermal transition properties are not yet well understood. We present a rapid Mueller matrix imaging system to explore the structural characteristics of starch granules by using 16 measurements with different incoming and outgoing polarizations. Due to the minimum rotation of the optical elements and the self-calibration ability of this system, the full Mueller matrix images can be accurately obtained within ten-odd seconds. Both structural and molecular features of the starch granule were investigated in the static state and gelatinization process by means of multiple optical characteristics deduced from the Mueller matrix. The experimental results for the structural changes during the gelatinization were close to other nonlinear optical approaches; moreover, the crystallinity and optical rotation of the starch granule are also determined through the use of this approach.
Collapse
|
24
|
Brzobohatý O, Hernández RJ, Simpson S, Mazzulla A, Cipparrone G, Zemánek P. Chiral particles in the dual-beam optical trap. OPTICS EXPRESS 2016; 24:26382-26391. [PMID: 27857373 DOI: 10.1364/oe.24.026382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the dynamics of chiral microparticles in a dual-beam optical trap. The chiral particles have the structure of spherical chiral microresonators, with a reflectance deriving from the supramolecular helicoidal arrangement. Due to the strong asymmetric response of the particles to light with a specific helicity and wavelength, their trapping position and rotational frequency can be controlled by proper combination of the polarization state of the two light beams. Here symmetric and asymmetric polarization configurations of dual- interfering beam traps have been investigated. Based on the polarization controlled asymmetric transmission of the chiral particles, a tunable wash-board potential is created enabling the control of the trapping position along the beams axis. Asymmetric configurations display polarization controlled rotation of the trapped particles. Optical binding of rotating particles exhibits a complex dynamics.
Collapse
|
25
|
Rukhlenko ID, Tepliakov NV, Baimuratov AS, Andronaki SA, Gun’ko YK, Baranov AV, Fedorov AV. Completely Chiral Optical Force for Enantioseparation. Sci Rep 2016; 6:36884. [PMID: 27827437 PMCID: PMC5101807 DOI: 10.1038/srep36884] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
Fast and reliable separation of enantiomers of chiral nanoparticles requires elimination of all the forces that are independent of the nanoparticle handedness and creation of a sufficiently strong force that either pushes different enantiomers in opposite directions or delays the diffusion of one of them with respect to the other. Here we show how to construct such a completely chiral optical force using two counterpropagating circularly polarized plane waves of opposite helicities. We then explore capabilities of the related enantioseparation method by analytically solving the problem of the force-induced diffusion of chiral nanoparticles in a confined region, and reveal that it results in exponential spatial dependencies of the quantities measuring the purity of chiral substances. The proposed concept of a completely chiral optical force can potentially advance enantioseparation and enantiopurification techniques for all kinds of chiral nanoparticles that strongly interact with light.
Collapse
Affiliation(s)
- Ivan D. Rukhlenko
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
- Monash University, Clayton Campus, Victoria 3800, Australia
| | - Nikita V. Tepliakov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Anvar S. Baimuratov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Semen A. Andronaki
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Yurii K. Gun’ko
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
- School of Chemistry and CRANN Institute, Trinity College, Dublin, Ireland
| | - Alexander V. Baranov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Anatoly V. Fedorov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
26
|
Donato MG, Mazzulla A, Pagliusi P, Magazzù A, Hernandez RJ, Provenzano C, Gucciardi PG, Maragò OM, Cipparrone G. Light-induced rotations of chiral birefringent microparticles in optical tweezers. Sci Rep 2016; 6:31977. [PMID: 27601200 PMCID: PMC5013277 DOI: 10.1038/srep31977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022] Open
Abstract
We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles.
Collapse
Affiliation(s)
- M G Donato
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D'Alcontres 37, 98158 Messina, Italy
| | - A Mazzulla
- CNR- Nanotec, UOS Cosenza, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - P Pagliusi
- CNR- Nanotec, UOS Cosenza, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy.,Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - A Magazzù
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D'Alcontres 37, 98158 Messina, Italy
| | - R J Hernandez
- CNR- Nanotec, UOS Cosenza, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - C Provenzano
- Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - P G Gucciardi
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D'Alcontres 37, 98158 Messina, Italy
| | - O M Maragò
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D'Alcontres 37, 98158 Messina, Italy
| | - G Cipparrone
- CNR- Nanotec, UOS Cosenza, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy.,Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| |
Collapse
|
27
|
Colloidal cholesteric liquid crystal in spherical confinement. Nat Commun 2016; 7:12520. [PMID: 27561545 PMCID: PMC5007446 DOI: 10.1038/ncomms12520] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.
Collapse
|
28
|
Humar M, Araoka F, Takezoe H, Muševič I. Lasing properties of polymerized chiral nematic Bragg onion microlasers. OPTICS EXPRESS 2016; 24:19237-44. [PMID: 27557203 DOI: 10.1364/oe.24.019237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dye doped photocurable cholesteric liquid crystal was used to produce solid Bragg onion omnidirectional lasers. The lasers were produced by dispersing and polymerizing chiral nematic LC with parallel surface anchoring of LC molecules at the interface, extracted and transferred into another medium. Lasing characteristics were studied in carrier medium with different refractive index. The lasing in spherical cholesteric liquid crystal was attributed to two mechanisms, photonic bandedge lasing and lasing of whispering-gallery modes. The latter can be suppressed by using a higher index carrier fluid to prevent total internal reflection on the interface of the spheres. Pulse-to-pulse stability and threshold characteristics were also studied and compared to non-polymerized lasers. The polymerization process greatly increases the lasing stability.
Collapse
|
29
|
Rafayelyan M, Tkachenko G, Brasselet E. Reflective Spin-Orbit Geometric Phase from Chiral Anisotropic Optical Media. PHYSICAL REVIEW LETTERS 2016; 116:253902. [PMID: 27391723 DOI: 10.1103/physrevlett.116.253902] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 05/09/2023]
Abstract
We report on highly reflective spin-orbit geometric phase optical elements based on a helicity-preserving circular Bragg-reflection phenomenon. First, we present a dynamical geometric phase experiment using a flat chiral Bragg mirror. Then, we show that shaping such a geometric phase allows the efficient spin-orbit tailoring of light fields without the need to fulfill any condition on birefringent phase retardation, in contrast to the case of transmission spin-orbit optical elements. This is illustrated by optical vortex generation from chiral liquid crystal droplets in the Bragg regime that unveils spin-orbit consequences of the droplet's curvature. Our results thus introduce a novel class of geometric phase elements-"Bragg-Berry" optical elements.
Collapse
Affiliation(s)
- Mushegh Rafayelyan
- Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France
- CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Georgiy Tkachenko
- Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France
- CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Etienne Brasselet
- Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France
- CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
30
|
High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication. Sci Rep 2016; 6:26840. [PMID: 27230944 PMCID: PMC4882534 DOI: 10.1038/srep26840] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/09/2016] [Indexed: 11/08/2022] Open
Abstract
Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These patterns, uniquely defined by the particular sphere arrangement, could render cholesteric microspheres very useful in countless security applications, as tags to identify and authenticate their carriers, mainly physical objects or persons. However, the optical quality of the cholesteric droplets studied so far is unsatisfactory, especially after polymerisation, a step required for obtaining durable samples that can be used for object identification. We show that a transition from droplets to shells solves all key problems, giving rise to sharp patterns and excellent optical quality even after polymerisation, the polymerised shells sustaining considerable mechanical deformation. Moreover, we demonstrate that, counter to prior expectation, cross communication takes place even between non-identical shells. This opens additional communication channels that add significantly to the complexity and unique character of the generated patterns.
Collapse
|
31
|
Emile O, Emile J. Rotation of millimeter-sized objects using ordinary light. OPTICS LETTERS 2016; 41:211-214. [PMID: 26766676 DOI: 10.1364/ol.41.000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to optically rotate bodies offers new degrees of control of micro-objects with applications in various domains, including microelectromechanical systems (MEMS), biomanipulations, or optofluidics. Here we demonstrate the optically-induced rotation of simple asymmetric two-dimensional objects using plane waves originating either from ordinary laser sources or from black body radiation. The objects are floating on an air/water interface. We observe a steady-state rotation depending on the light intensity and on the asymmetry of the object. We interpret this rotation in terms of light diffraction by the edges of the object. Such systems could be easily implemented in optofluidic devices to induce liquid flow without the need for special light sources.
Collapse
|
32
|
Chiral resolution of spin angular momentum in linearly polarized and unpolarized light. Sci Rep 2015; 5:16926. [PMID: 26585284 PMCID: PMC4653716 DOI: 10.1038/srep16926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/21/2015] [Indexed: 11/24/2022] Open
Abstract
Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices.
Collapse
|
33
|
|
34
|
Messina E, Donato MG, Zimbone M, Saija R, Iatì MA, Calcagno L, Fragalà ME, Compagnini G, D'Andrea C, Foti A, Gucciardi PG, Maragò OM. Optical trapping of silver nanoplatelets. OPTICS EXPRESS 2015; 23:8720-8730. [PMID: 25968710 DOI: 10.1364/oe.23.008720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Optical trapping of silver nanoplatelets obtained with a simple room temperature chemical synthesis technique is reported. Trap spring constants are measured for platelets with different diameters to investigate the size-scaling behaviour. Experimental data are compared with models of optical forces based on the dipole approximation and on electromagnetic scattering within a T-matrix framework. Finally, we discuss applications of these nanoplatelets for surface-enhanced Raman spectroscopy.
Collapse
|
35
|
Magazzú A, Spadaro D, Donato MG, Sayed R, Messina E, D’Andrea C, Foti A, Fazio B, Iatí MA, Irrera A, Saija R, Gucciardi PG, Maragó OM. Optical tweezers: a non-destructive tool for soft and biomaterial investigations. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2015. [DOI: 10.1007/s12210-015-0395-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat Commun 2014; 5:4491. [DOI: 10.1038/ncomms5491] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/24/2014] [Indexed: 11/08/2022] Open
|