1
|
Yin G, Liu L, Yu T, Yu L, Feng M, Zhou C, Wang X, Teng G, Ma Z, Zhou W, Ye C, Zhang J, Ji C, Zhao L, Zhou P, Guo Y, Meng X, Fu Q, Zhang Q, Li L, Zhou F, Zheng C, Xiang Y, Guo M, Wang Y, Wang F, Huang S, Yu Z. Genomic and transcriptomic analysis of breast cancer identifies novel signatures associated with response to neoadjuvant chemotherapy. Genome Med 2024; 16:11. [PMID: 38217005 PMCID: PMC10787499 DOI: 10.1186/s13073-024-01286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) has become a standard treatment strategy for breast cancer (BC). However, owing to the high heterogeneity of these tumors, it is unclear which patient population most likely benefit from NAC. Multi-omics offer an improved approach to uncovering genomic and transcriptomic changes before and after NAC in BC and to identifying molecular features associated with NAC sensitivity. METHODS We performed whole-exome and RNA sequencing on 233 samples (including matched pre- and post-treatment tumors) from 50 BC patients with rigorously defined responses to NAC and analyzed changes in the multi-omics landscape. Molecular features associated with NAC response were identified and validated in a larger internal, and two external validation cohorts, as well as in vitro experiments. RESULTS The most frequently altered genes were TP53, TTN, and MUC16 in both pre- and post-treatment tumors. In comparison with pre-treatment tumors, there was a significant decrease in C > A transversion mutations in post-treatment tumors (P = 0.020). NAC significantly decreased the mutation rate (P = 0.006) of the DNA repair pathway and gene expression levels (FDR = 0.007) in this pathway. NAC also significantly changed the expression level of immune checkpoint genes and the abundance of tumor-infiltrating immune and stroma cells, including B cells, activated dendritic cells, γδT cells, M2 macrophages and endothelial cells. Furthermore, there was a higher rate of C > T substitutions in NAC nonresponsive tumors than responsive ones, especially when the substitution site was flanked by C and G. Importantly, there was a unique amplified region at 8p11.23 (containing ADGRA2 and ADRB3) and a deleted region at 3p13 (harboring FOXP1) in NAC nonresponsive and responsive tumors, respectively. Particularly, the CDKAL1 missense variant P409L (p.Pro409Leu, c.1226C > T) decreased BC cell sensitivity to docetaxel, and ADGRA2 or ADRB3 gene amplifications were associated with worse NAC response and poor prognosis in BC patients. CONCLUSIONS Our study has revealed genomic and transcriptomic landscape changes following NAC in BC, and identified novel biomarkers (CDKAL1P409L, ADGRA2 and ADRB3) underlying chemotherapy resistance and poor prognosis, which could guide the development of personalized treatments for BC.
Collapse
Affiliation(s)
- Gengshen Yin
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Ting Yu
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Man Feng
- Department of Pathology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, 250031, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Guoxin Teng
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Jialin Zhang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Changhua Ji
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Linfeng Zhao
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Peng Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yaxun Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xingchen Meng
- Department of Breast Surgery, Weifang People's Hospital, Weifang, 261041, China
| | - Qinye Fu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Qiang Zhang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Liang Li
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Mingming Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Yongjiu Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China.
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China.
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China.
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China.
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China.
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China.
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China.
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China.
- Shandong Provincial Engineering Laboratory of Translational Research On Prevention and Treatment of Breast Disease, Jinan, 250033, China.
| |
Collapse
|
2
|
Singh V, Katiyar A, Malik P, Kumar S, Mohan A, Singh H, Jain D. Identification of molecular biomarkers associated with non-small-cell lung carcinoma (NSCLC) using whole-exome sequencing. Cancer Biomark 2023:CBM220211. [PMID: 37694353 DOI: 10.3233/cbm-220211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
OBJECTIVES Significant progress has been made in the treatment of patients with pulmonary adenocarcinoma (ADCA) based on molecular profiling. However, no such molecular target exists for squamous cell carcinoma (SQCC). An exome sequence may provide new markers for personalized medicine for lung cancer patients of all subtypes. The current study aims to discover new genetic markers that can be used as universal biomarkers for non-small cell lung cancer (NSCLC). METHODS WES of 19 advanced NSCLC patients (10 ADCA and 9 SQCC) was performed using Illumina HiSeq 2000. Variant calling was performed using GATK HaplotypeCaller and then the impacts of variants on protein structure or function were predicted using SnpEff and ANNOVAR. The clinical impact of somatic variants in cancer was assessed using cancer archives. Somatic variants were further prioritized using a knowledge-driven variant interpretation approach. Sanger sequencing was used to validate functionally important variants. RESULTS We identified 24 rare single-nucleotide variants (SNVs) including 17 non-synonymous SNVs, and 7 INDELs in 18 genes possibly linked to lung carcinoma. Variants were classified as known somatic (n= 10), deleterious (n= 8), and variant of uncertain significance (n= 6). We found TBP and MPRIP genes exclusively associated with ADCA subtypes, FBOX6 with SQCC subtypes and GPRIN2, KCNJ18 and TEKT4 genes mutated in all the patients. The Sanger sequencing of 10 high-confidence somatic SNVs showed 100% concordance in 7 genes, and 80% concordance in the remaining 3 genes. CONCLUSIONS Our bioinformatics analysis identified KCNJ18, GPRIN2, TEKT4, HRNR, FOLR3, ESSRA, CTBP2, MPRIP, TBP, and FBXO6 may contribute to progression in NSCLC and could be used as new biomarkers for the treatment. The mechanism by which GPRIN2, KCNJ12, and TEKT4 contribute to tumorigenesis is unclear, but our results suggest they may play an important role in NSCLC and it is worth investigating in future.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prabhat Malik
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, Ansari Nagar, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Center, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
3
|
Liu Z, Meng D, Wang J, Cao H, Feng P, Wu S, Wang N, Dang C, Hou P, Xia P. GASP1 enhances malignant phenotypes of breast cancer cells and decreases their response to paclitaxel by forming a vicious cycle with IGF1/IGF1R signaling pathway. Cell Death Dis 2022; 13:751. [PMID: 36042202 PMCID: PMC9427794 DOI: 10.1038/s41419-022-05198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
There is a potential correlation between G-protein-coupled receptor-associated sorting protein 1 (GASP1) and breast tumorigenesis. However, its biological function and underlying molecular mechanism in breast cancer have not been clearly delineated. Here, we demonstrated that GASP1 was highly expressed in breast cancers, and patients harboring altered GASP1 showed a worse prognosis than those with wild-type GASP1. Functional studies showed that GASP1 knockout significantly suppressed malignant properties of breast cancer cells, such as inhibition of cell proliferation, colony formation, migration, invasion and xenograft tumor growth in nude mice as well as induction of G1-phase cell cycle arrest, and vice versa. Mechanistically, GASP1 inhibited proteasomal degradation of insulin-like growth factor 1 receptor (IGF1R) by competitively binding to IGF1R with ubiquitin E3 ligase MDM2, thereby activating its downstream signaling pathways such as NF-κB, PI3K/AKT, and MAPK/ERK pathways given their critical roles in breast tumorigenesis and progression. IGF1, in turn, stimulated GASP1 expression by activating the PI3K/AKT pathway, forming a vicious cycle propelling the malignant progression of breast cancer. Besides, we found that GASP1 knockout obviously improved the response of breast cancer cells to paclitaxel. Collectively, this study demonstrates that GASP1 enhances malignant behaviors of breast cancer cells and decreases their cellular response to paclitaxel by interacting with and stabilizing IGF1R, and suggests that it may serve as a valuable prognostic factor and potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Zhao Liu
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China ,grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Du Meng
- grid.452438.c0000 0004 1760 8119Department of Radio Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Jianling Wang
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Hongxin Cao
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Peng Feng
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Siyu Wu
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Na Wang
- grid.478124.c0000 0004 1773 123XDepartment of Endocrinology, Xi’an Central Hospital, 710003 Xi’an, People’s Republic of China
| | - Chengxue Dang
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Peng Hou
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Peng Xia
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| |
Collapse
|
4
|
Paclitaxel Resistance Modulated by the Interaction between TRPS1 and AF178030.2 in Triple-Negative Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6019975. [PMID: 35399640 PMCID: PMC8986375 DOI: 10.1155/2022/6019975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
Paclitaxel is a chemotherapeutic agent that acts as an inhibitor of cellular mitosis and has been widely used in the treatment of triple-negative breast cancer (TNBC). However, paclitaxel resistance is one of the major reasons that contribute to the high failure rates of chemotherapy and the relapse of TNBC. Accumulating studies have demonstrated that long noncoding RNA (lncRNA) plays a role in the paclitaxel resistance and positively correlated with progression and metastasis of breast cancers. In the present study, microarray expression profile analysis of lncRNA was performed between paclitaxel-resistant TNBC cell line MDA-MB-231 and their parental cells. After verification with quantitative PCR, we identified that AF178030.2, an orphan lncRNA, was significantly upregulated in paclitaxel-resistant TNBC cells. Overexpression of AF178030.2 greatly attenuated the sensitivity of TNBC to paclitaxel, whereas knockdown of AF178030.2 enhanced the sensitivity of TNBC cells to paclitaxel. Furthermore, bioinformatic analysis and RNA binding protein immunoprecipitation assay reveal that AF178030.2 can directly bind with trichorhinophalangeal syndrome-1 (TRPS1), an oncogene in breast cancer, and downregulate its expression in paclitaxel-resistant TNBC cells. TRPS1 overexpression effectively increased the sensitivity of paclitaxel-resistant TNBC cells to paclitaxel. Taking together, high AF178030.2 expression contributed to paclitaxel resistance in TNBC through TRPS1 and poor clinical outcomes, which may provide a new treatment strategy for paclitaxel-resistant TNBC patients.
Collapse
|
5
|
Exploring the Mechanism of Baicalin Intervention in Breast Cancer Based on MicroRNA Microarrays and Bioinformatics Strategies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7624415. [PMID: 34966436 PMCID: PMC8712139 DOI: 10.1155/2021/7624415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
Objective To explore the mechanism of baicalin intervention in breast cancer based on microRNA microarrays. Methods The inhibitory rate of baicalin intervention in MCF-7 breast cancer cells was determined by MTT. Then, the miRNA microarrays were used to validate the key microRNAs. After that, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to validate microRNA, hsa-miR-15a, hsa-miR-100, hsa-miR-16, and hsa-miR-7t. Finally, the potential targets of these key microRNAs are predicted by miRWalk, and DAVID was utilized for gene ontology (GO) enrichment analysis and pathway enrichment analysis. Results Baicalin may inhibit the proliferation of MCF-7 cells in a dose-dependent and time-dependent manner. The concentration of baicalin 150 μmol/L was determined for the subsequent miRNA chip research. A total of 92 upregulated microRNAs and 35 downregulated microRNAs were obtained. The upregulated miRNAs include hsa-miR-6799-5p, hsa-miR-6126, hsa-miR-4792, hsa-miR-6848-5p, hsa-miR-3197, hsa-miR-6779-5p, and hsa-miR -654-5p. The downregulated miRNAs include hsa-miR-3911, hsa-miR-504-5p, hsa-miR-30a-3p, hsa-miR-193b-3p, and hsa-miR-181b-5p. Then, differentially expressed miRNA was verified by qRT-PCR. The results showed that the expression of hsa-miR-15a, hsa-miR-100, hsa-miR-16, and hsa-let-7c was upregulated (P < 0.05), which was consistent with the results of the miRNA microarray. The enrichment analysis showed that baicalin might regulate the DNA-templated proliferation, DNA-templated transcription, p53 signaling pathway, etc., of MCF-7 breast cancer cells through miRNA. Conclusion Baicalin inhibits the proliferation of breast cancer cells. It may achieve antitumor effects through regulating microRNAs so as to affect the DNA replication (such as cellular response to DNA damage stimulus and DNA binding), RNA transcription (such as regulation of transcription, DNA-templated, transcription from RNA polymerase II promoter, and transcription factor binding), protein synthesis (such as mRNA binding, Golgi apparatus, and protein complex), endocytosis, pathways in cancer, p53 signaling pathway, and so on.
Collapse
|
6
|
Tian X, Wang X, Cui Z, Liu J, Huang X, Shi C, Zhang M, Liu T, Du X, Li R, Huang L, Gong D, Tian R, Cao C, Jin P, Zeng Z, Pan G, Xia M, Zhang H, Luo B, Xie Y, Li X, Li T, Wu J, Zhang Q, Chen G, Hu Z. A Fifteen-Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001978. [PMID: 34026427 PMCID: PMC8132153 DOI: 10.1002/advs.202001978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/01/2021] [Indexed: 05/09/2023]
Abstract
Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15-34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB-IIB cervical cancer are included in 2 research centers from the discovery cohort. Patient-specific somatic mutations led to NACT non-responsiveness are identified by whole-exome sequencing. Next, CRISPR/Cas9-based library screenings are performed based on these genes to confirm their biological contribution to drug resistance. A 15-gene classifier is developed by generalized linear regression analysis combined with the logistic regression model. In an independent validation cohort of 102 patients, the classifier showed good predictive ability with an area under the curve of 0.80 (95% confidence interval (CI), 0.69-0.91). Furthermore, the 15-gene classifier is significantly associated with patient responsiveness to NACT in both univariate (odds ratio, 10.8; 95% CI, 3.55-32.86; p = 2.8 × 10-5) and multivariate analysis (odds ratio, 17.34; 95% CI, 4.04-74.40; p = 1.23 × 10-4) in the validation set. In conclusion, the 15-gene classifier can accurately predict the clinical response to NACT before treatment, representing a promising approach for guiding the selection of appropriate treatment strategies for locally advanced cervical cancer.
Collapse
Affiliation(s)
- Xun Tian
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xin Wang
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zifeng Cui
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| | - Jia Liu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xiaoyuan Huang
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Caixia Shi
- Department of Gynecological and OncologyHunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityJiefang Avenue 1095#WuhanHubei430030China
| | - Min Zhang
- NGS Research CenterNovogene Co, LtdBuilding 301, Zone A10 JiuxianqiaoBeijing100015China
| | - Ting Liu
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xiaofang Du
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Rui Li
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Lei Huang
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Danni Gong
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Rui Tian
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| | - Chen Cao
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Ping Jin
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zhen Zeng
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Guangxin Pan
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Meng Xia
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Hongfeng Zhang
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Bo Luo
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Yonghui Xie
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Xiaoming Li
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Tianye Li
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Jun Wu
- NGS Research CenterNovogene Co, LtdBuilding 301, Zone A10 JiuxianqiaoBeijing100015China
| | - Qinghua Zhang
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Gang Chen
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zheng Hu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| |
Collapse
|
7
|
Ge LP, Jin X, Yang YS, Liu XY, Shao ZM, Di GH, Jiang YZ. Tektin4 loss promotes triple-negative breast cancer metastasis through HDAC6-mediated tubulin deacetylation and increases sensitivity to HDAC6 inhibitor. Oncogene 2021; 40:2323-2334. [PMID: 33654196 DOI: 10.1038/s41388-021-01655-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/11/2020] [Accepted: 01/13/2021] [Indexed: 02/03/2023]
Abstract
Progression of triple-negative breast cancer (TNBC) constitutes a major unresolved clinical challenge, and effective targeted therapies are lacking. Because microtubule dynamics play pivotal roles in breast cancer metastasis, we performed RNA sequencing on 245 samples from TNBC patients to characterize the landscape of microtubule-associated proteins (MAPs). Here, our transcriptome analyses revealed that low expression of one MAP, tektin4, indicated poor patient outcomes. Tektin4 loss led to a marked increase in TNBC migration, invasion, and metastasis and a decrease in microtubule stability. Mechanistically, we identified a novel microtubule-associated complex containing tektin4 and histone deacetylase 6 (HDAC6). Tektin4 loss increased the interaction between HDAC6 and α-tubulin, thus decreasing microtubule stability through HDAC6-mediated tubulin deacetylation. Significantly, we found that tektin4 loss sensitized TNBC cells, xenograft models, and patient-derived organoid models to the HDAC6-selective inhibitor ACY1215. Furthermore, tektin4 expression levels were positively correlated with microtubule stability levels in clinical samples. Together, our findings uncover a metastasis suppressor function of tektin4 and support clinical development of HDAC6 inhibition as a new therapeutic strategy for tektin4-deficient TNBC patients.
Collapse
Affiliation(s)
- Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Human Phenome Institute, Fudan University, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Yun-Song Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Xi-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Human Phenome Institute, Fudan University, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| |
Collapse
|
8
|
Yu KD, Ye FG, He M, Fan L, Ma D, Mo M, Wu J, Liu GY, Di GH, Zeng XH, He PQ, Wu KJ, Hou YF, Wang J, Wang C, Zhuang ZG, Song CG, Lin XY, Toss A, Ricci F, Shen ZZ, Shao ZM. Effect of Adjuvant Paclitaxel and Carboplatin on Survival in Women With Triple-Negative Breast Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol 2021; 6:1390-1396. [PMID: 32789480 PMCID: PMC7426881 DOI: 10.1001/jamaoncol.2020.2965] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Question Does a paclitaxel-plus-carboplatin (PCb) as adjuvant treatment in women with operable triple-negative breast cancer offer superior benefit compared with a standard-dose CEF-T regimen (cyclophosphamide, epirubicin, and fluorouracil followed by docetaxel)? Findings In this randomized phase 3 clinical trial conducted at 9 cancer centers and hospitals in China and including 647 patients, after a median follow-up of 62 months, 5-year disease-free survival rate was statistically significantly higher in the PCb group compared with the CEF-T group. Meaning Results of this study suggest that a paclitaxel-plus-carboplatin regimen may be an alternative adjuvant chemotherapy choice for patients with operable triple-negative breast cancer. Importance The value of platinum-based adjuvant chemotherapy in patients with triple-negative breast cancer (TNBC) remains controversial, as does whether BRCA1 and BRCA2 (BRCA1/2) germline variants are associated with platinum treatment sensitivity. Objective To compare 6 cycles of paclitaxel plus carboplatin (PCb) with a standard-dose regimen of 3 cycles of cyclophosphamide, epirubicin, and fluorouracil followed by 3 cycles of docetaxel (CEF-T). Design, Setting, and Participants This phase 3 randomized clinical trial was conducted at 9 cancer centers and hospitals in China. Between July 1, 2011, and April 30, 2016, women aged 18 to 70 years with operable TNBC after definitive surgery (having pathologically confirmed regional node-positive disease or node-negative disease with tumor diameter >10 mm) were screened and enrolled. Exclusion criteria included having metastatic or locally advanced disease, having non-TNBC, or receiving preoperative anticancer therapy. Data were analyzed from December 1, 2019, to January 31, 2020, from the intent-to-treat population as prespecified in the protocol. Interventions Participants were randomized to receive PCb (paclitaxel 80 mg/m2 and carboplatin [area under the curve = 2] on days 1, 8, and 15 every 28 days for 6 cycles) or CEF-T (cyclophosphamide 500 mg/m2, epirubicin 100 mg/m2, and fluorouracil 500 mg/m2 every 3 weeks for 3 cycles followed by docetaxel 100 mg/m2 every 3 weeks for 3 cycles). Main Outcomes and Measures The primary end point was disease-free survival (DFS). Secondary end points included overall survival, distant DFS, relapse-free survival, DFS in patients with germline variants in BRCA1/2 or homologous recombination repair (HRR)–related genes, and toxicity. Results A total of 647 patients (mean [SD] age, 51 [44-57] years) with operable TNBC were randomized to receive CEF-T (n = 322) or PCb (n = 325). At a median follow-up of 62 months, DFS time was longer in those assigned to PCb compared with CEF-T (5-year DFS, 86.5% vs 80.3%, hazard ratio [HR] = 0.65; 95% CI, 0.44-0.96; P = .03). Similar outcomes were observed for distant DFS and relapse-free survival. There was no statistically significant difference in overall survival between the groups (HR = 0.71; 95% CI, 0.42-1.22, P = .22). In the exploratory and hypothesis-generating subgroup analyses of PCb vs CEF-T, the HR for DFS was 0.44 (95% CI, 0.15-1.31; P = .14) in patients with the BRCA1/2 variant and 0.39 (95% CI, 0.15-0.99; P = .04) in those with the HRR variant. Safety data were consistent with the known safety profiles of relevant drugs. Conclusions and Relevance These findings suggest that a paclitaxel-plus-carboplatin regimen is an effective alternative adjuvant chemotherapy choice for patients with operable TNBC. In the era of molecular classification, subsets of TNBC sensitive to PCb should be further investigated. Trial Registration ClinicalTrials.gov Identifier: NCT01216111
Collapse
Affiliation(s)
- Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fu-Gui Ye
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Min He
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lei Fan
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Miao Mo
- Department of Cancer Prevention & Clinical Statistics Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guang-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Hua Zeng
- Breast Center, Chongqing Cancer Hospital, Chongqing University, Chongqing, China
| | - Ping-Qing He
- Department of Breast Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ke-Jin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yi-Feng Hou
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jie Wang
- Department of Breast Surgery, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Wang
- Department of Breast Surgery, Shanghai Ninth People's Hospital Huangpu Branch, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhuang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University, Shanghai, China
| | - Chuan-Gui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiao-Yan Lin
- Department of Breast Surgery, Tongji University School of Medicine Yangpu Hospital, Shanghai, China
| | - Angela Toss
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Francesco Ricci
- Department of Drug Development and Innovation, Institute Curie, Paris & Saint-Cloud, France
| | - Zhen-Zhou Shen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
| |
Collapse
|
9
|
Influence of paclitaxel therapy on expression of ßIII-Tubulin and Carbonic anhydrase IX proteins in chemically-induced rat mammary tumors. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Jiang YZ, Ge LP, Jin X, Fan L, He M, Liu Y, Chen L, Zuo WJ, Wu J, Liu GY, Di GH, Wang ZH, Yu KD, Shao ZM. Randomized phase II clinical trial and biomarker analysis of paclitaxel plus epirubicin versus vinorelbine plus epirubicin as neoadjuvant chemotherapy in locally advanced HER2-negative breast cancer with TEKT4 variations. Breast Cancer Res Treat 2020; 185:371-380. [PMID: 32975708 DOI: 10.1007/s10549-020-05940-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Resistance to paclitaxel remains a major challenge in treating breast cancer. Our preclinical study suggested that TEKT4 germline variations in breast cancer are associated with paclitaxel resistance and increase vinorelbine sensitivity. This clinical trial compared the efficacy of paclitaxel and vinorelbine in breast cancer neoadjuvant chemotherapy. METHODS In this open-label, single-center, phase II trial, female patients with human epidermal growth factor receptor 2 (HER2)-negative, stage IIB-IIIC breast cancer harboring TEKT4 germline variations were randomly assigned to the paclitaxel plus epirubicin (PE) or vinorelbine plus epirubicin (NE). The primary endpoint was the pathologic complete response (pCR) rate, and the secondary endpoints were the objective response rate (ORR) and safety. Targeted sequencing of a panel comprising 484 breast-related genes was performed to identify pCR-associated somatic mutations in each group. RESULTS 91 Patients were assigned to PE (46 patients) or NE (45 patients). NE numerically increased the pCR rate (22.2% versus 8.7%, P = 0.074). The ORRs for NE and PE were 82.2% and 76.1%, respectively. Interestingly, NE (15.4%) showed a significantly higher pCR rate than PE (0%) in the hormone receptor (HR)-positive subgroup (P = 0.044). Both regimens were well tolerated, with grade 3 and 4 toxicities reported at the expected levels. The biomarker analysis showed that UNC13D mutation predicted the pCR rate in NE (P = 0.011). CONCLUSIONS Although the primary endpoint was not met, NE might bring clinical benefit to HR-positive patients or patients simultaneously carrying UNC13D mutations.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Lei Fan
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Min He
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Yin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Li Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Wen-Jia Zuo
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Guang-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Zhong-Hua Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
11
|
Leal-Gutiérrez JD, Rezende FM, Reecy JM, Kramer LM, Peñagaricano F, Mateescu RG. Whole Genome Sequence Data Provides Novel Insights Into the Genetic Architecture of Meat Quality Traits in Beef. Front Genet 2020; 11:538640. [PMID: 33101375 PMCID: PMC7500205 DOI: 10.3389/fgene.2020.538640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Tenderness is a major quality attribute for fresh beef steaks in the United States, and meat quality traits in general are suitable candidates for genomic research. The objectives of the present analysis were to (1) perform genome-wide association (GWA) analysis for marbling, Warner-Bratzler shear force (WBSF), tenderness, and connective tissue using whole-genome data in an Angus population, (2) identify enriched pathways in each GWA analysis; (3) construct a protein-protein interaction network using the associated genes and (4) perform a μ-calpain proteolysis assessment for associated structural proteins. An Angus-sired population of 2,285 individuals was assessed. Animals were transported to a commercial packing plant and harvested at an average age of 457 ± 46 days. After 48 h postmortem, marbling was recorded by graders' visual appraisal. Two 2.54-cm steaks were sampled from each muscle for recording of WBSF, and tenderness, and connective tissue by a sensory panel. The relevance of additive effects on marbling, WBSF, tenderness, and connective tissue was evaluated on a genome-wide scale using a two-step mixed model-based approach in single-trait analysis. A tissue-restricted gene enrichment was performed for each GWA where all polymorphisms with an association p-value lower than 1 × 10-3 were included. The genes identified as associated were included in a protein-protein interaction network and a candidate structural protein assessment of proteolysis analyses. A total of 1,867, 3,181, 3,926, and 3,678 polymorphisms were significantly associated with marbling, WBSF, tenderness, and connective tissue, respectively. The associate region on BTA29 (36,432,655-44,313,046 bp) harbors 13 highly significant markers for meat quality traits. Enrichment for the GO term GO:0005634 (Nucleus), which includes transcription factors, was evident. The final protein-protein network included 431 interations between 349 genes. The 42 most important genes based on significance that encode structural proteins were included in a proteolysis analysis, and 81% of these proteins were potential μ-Calpain substrates. Overall, this comprehensive study unraveled genetic variants, genes and mechanisms of action responsible for the variation in meat quality traits. Our findings can provide opportunities for improving meat quality in beef cattle via marker-assisted selection.
Collapse
Affiliation(s)
| | - Fernanda M. Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Luke M. Kramer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Liu XY, Jiang W, Ma D, Ge LP, Yang YS, Gou ZC, Xu XE, Shao ZM, Jiang YZ. SYTL4 downregulates microtubule stability and confers paclitaxel resistance in triple-negative breast cancer. Am J Cancer Res 2020; 10:10940-10956. [PMID: 33042263 PMCID: PMC7532662 DOI: 10.7150/thno.45207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Taxanes are frontline chemotherapeutic drugs for patients with triple-negative breast cancer (TNBC); however, chemoresistance reduces their effectiveness. We hypothesized that the molecular profiling of tumor samples before and after neoadjuvant chemotherapy (NAC) would help identify genes associated with drug resistance. Methods: We sequenced 10 samples by RNA-seq from 8 NAC patients with TNBC: 3 patients with a pathologic complete response (pCR) and the other 5 with non-pCR. Differentially expressed genes that predicted chemotherapy response were selected for in vitro functional screening via a small-scale siRNAs pool. The clinical and functional significance of the gene of interest in TNBC was further investigated in vitro and in vivo, and biochemical assays and imaging analysis were applied to study the mechanisms. Results: Synaptotagmin-like 4 (SYTL4), a Rab effector in vesicle transport, was identified as a leading functional candidate. High SYTL4 expression indicated a poor prognosis in multiple TNBC cohorts, specifically in taxane-treated TNBCs. SYTL4 was identified as a novel chemoresistant gene as validated in TNBC cells, a mouse model and patient-derived organoids. Mechanistically, downregulating SYTL4 stabilized the microtubule network and slowed down microtubule growth rate. Furthermore, SYTL4 colocalized with microtubules and interacted with microtubules through its middle region containing the linker and C2A domain. Finally, we found that SYTL4 was able to bind microtubules and inhibit the in vitro microtubule polymerization. Conclusion: SYTL4 is a novel chemoresistant gene in TNBC and its upregulation indicates poor prognosis in taxane-treated TNBC. Further, SYTL4 directly binds microtubules and decreases microtubule stability.
Collapse
|
13
|
Han Y, Wang C, Dong Q, Chen T, Yang F, Liu Y, Chen B, Zhao Z, Qi L, Zhao W, Liang H, Guo Z, Gu Y. Genetic Interaction-Based Biomarkers Identification for Drug Resistance and Sensitivity in Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:688-700. [PMID: 31400611 PMCID: PMC6700431 DOI: 10.1016/j.omtn.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
Cancer cells generally harbor hundreds of alterations in the cancer genomes and act as crucial factors in the development and progression of cancer. Gene alterations in the cancer genome form genetic interactions, which affect the response of patients to drugs. We developed an algorithm that mines copy number alteration and whole-exome mutation profiles from The Cancer Genome Atlas (TCGA), as well as functional screen data generated to identify potential genetic interactions for specific cancer types. As a result, 4,529 synthetic viability (SV) interactions and 10,637 synthetic lethality (SL) interactions were detected. The pharmacogenomic datasets revealed that SV interactions induced drug resistance in cancer cells and that SL interactions mediated drug sensitivity in cancer cells. Deletions of HDAC1 and DVL1, both of which participate in the Notch signaling pathway, had an SV effect in cancer cells, and deletion of DVL1 induced resistance to HDAC1 inhibitors in cancer cells. In addition, patients with low expression of both HDAC1 and DVL1 had poor prognosis. Finally, by integrating current reported genetic interactions from other studies, the Cancer Genetic Interaction database (CGIdb) (http://www.medsysbio.org/CGIdb) was constructed, providing a convenient retrieval for genetic interactions in cancer.
Collapse
Affiliation(s)
- Yue Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Chengyu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Fan Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Yaoyao Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Zhangxiang Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Haihai Liang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zheng Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
14
|
Su L, Liu G, Wang J, Xu D. A rectified factor network based biclustering method for detecting cancer-related coding genes and miRNAs, and their interactions. Methods 2019; 166:22-30. [PMID: 31121299 PMCID: PMC6708461 DOI: 10.1016/j.ymeth.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/14/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein-protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis.
Collapse
Affiliation(s)
- Lingtao Su
- Department of Computer Science and Technology, Jilin University, Changchun 130012, China; Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Guixia Liu
- Department of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Juexin Wang
- Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
15
|
Shen M, Jiang YZ, Wei Y, Ell B, Sheng X, Esposito M, Kang J, Hang X, Zheng H, Rowicki M, Zhang L, Shih WJ, Celià-Terrassa T, Liu Y, Cristea II, Shao ZM, Kang Y. Tinagl1 Suppresses Triple-Negative Breast Cancer Progression and Metastasis by Simultaneously Inhibiting Integrin/FAK and EGFR Signaling. Cancer Cell 2019; 35:64-80.e7. [PMID: 30612941 DOI: 10.1016/j.ccell.2018.11.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancer (TNBC) patients have the worst prognosis and distant metastasis-free survival among all major subtypes of breast cancer. The poor clinical outlook is further exacerbated by a lack of effective targeted therapies for TNBC. Here we show that ectopic expression and therapeutic delivery of the secreted protein Tubulointerstitial nephritis antigen-like 1 (Tinagl1) suppresses TNBC progression and metastasis through direct binding to integrin α5β1, αvβ1, and epidermal growth factor receptor (EGFR), and subsequent simultaneous inhibition of focal adhesion kinase (FAK) and EGFR signaling pathways. Moreover, Tinagl1 protein level is associated with good prognosis and reversely correlates with FAK and EGFR activation status in TNBC. Our results suggest Tinagl1 as a candidate therapeutic agent for TNBC by dual inhibition of integrin/FAK and EGFR signaling pathways.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Brian Ell
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Mark Esposito
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Jooeun Kang
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Hanqiu Zheng
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Michelle Rowicki
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Weichung J Shih
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, 683 Hoes Lane West, Piscataway, NJ 08854, USA; Division of Biometrics, Rutgers Cancer Institute of New Jersey Rutgers, New Brunswick, NJ 08901, USA
| | - Toni Celià-Terrassa
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Yirong Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - IIeana Cristea
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ 08544, USA; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
16
|
Chen Y, Wang L, Liu H, Song F, Xu C, Zhang K, Chen Q, Wu S, Zhu Y, Dong Y, Zhou M, Zhang H, Tian M. PET Imaging on Dynamic Metabolic Changes after Combination Therapy of Paclitaxel and the Traditional Chinese Medicine in Breast Cancer-Bearing Mice. Mol Imaging Biol 2019; 20:309-317. [PMID: 28795272 DOI: 10.1007/s11307-017-1108-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of the study was to non-invasively evaluate the anticancer activity of a traditional Chinese medicine-Huaier, combined with paclitaxel (PTX) in breast cancer bearing mice by detecting dynamic metabolic changes with positron emission tomography (PET). PROCEDURES Balb/c nude mice were randomly divided into one of the four groups: Huaier, PTX, PTX + Huaier, or the control. PET imaging with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) was performed to monitor the metabolic changes in BT474 (luminal B) and MDA-MB-231 (triple-negative) breast cancer xenografts. Immunohistochemistry (IHC) study was performed immediately after the final PET scan to assess the expressions of phosphatidylinositol 3-kinase (PI3K), phospho-AKT (p-AKT), caspase-3, and vascular endothelial growth factor (VEGF). RESULTS Compared to the control group, [18F]FDG accumulation demonstrated a significant decrease in PTX + Huaier (p < 0.01) or Huaier group (p < 0.05), which was consistent to the decreased expression of PI3K (p < 0.05) and p-AKT (p < 0.05) in the breast cancer xenografts. CONCLUSION The therapeutic effect of Huaier combined with PTX was superior than the PTX alone in BT474 and MDA-MB-231 breast cancer-bearing mice. [18F]FDG PET imaging could be a potential non-invasive approach to assess the metabolic changes after chemotherapy combined with traditional Chinese medicine in the breast cancer.
Collapse
Affiliation(s)
- Yao Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Ling Wang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hao Liu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Fahuan Song
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Caiyun Xu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Kai Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qing Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Yunqi Zhu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Ying Dong
- Department of Oncology, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhou
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China. .,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China. .,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
17
|
Zheng Z, Zhou X, Cai Y, Chen E, Zhang X, Wang O, Wang Q, Liu H. TEKT4 Promotes Papillary Thyroid Cancer Cell Proliferation, Colony Formation, and Metastasis through Activating PI3K/Akt Pathway. Endocr Pathol 2018; 29:310-316. [PMID: 30251060 DOI: 10.1007/s12022-018-9549-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid carcinoma is the most common malignancy of the endocrine system worldwide, but its molecular mechanisms remain unclear. Some diseases are associated with TEKT4 gene. However, its role in thyroid carcinoma has yet to be fully examined. This study was designed to investigate the function of TEKT4 in papillary thyroid cancer (PTC). The effect of TEKT4 on aggressive behavior of PTC cell lines, namely, TPC1 and BCPAP, transfected with small interfering RNA was identified through cell proliferation, colony formation, migration, and invasion. Our previous study revealed that TEKT4 may be vital in PTC. In in vitro experiments, TEKT4 downregulation suppressed cell proliferation, colony formation, cell migration, and invasion. Our data also indicated that tumor-suppressing role of TEKT4 knockdown in PTC cell lines was associated with the silence of the PI3K/Akt pathway. Our study revealed that TEKT4 shows important biological implications and is worthy of further study.
Collapse
Affiliation(s)
- Zhouci Zheng
- Departments of Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofen Zhou
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yefeng Cai
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Endong Chen
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohua Zhang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ouchen Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingxuan Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Haiguang Liu
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
18
|
Zuo WJ, Jiang YZ, Wang YJ, Xu XE, Hu X, Liu GY, Wu J, Di GH, Yu KD, Shao ZM. Dual Characteristics of Novel HER2 Kinase Domain Mutations in Response to HER2-Targeted Therapies in Human Breast Cancer. Clin Cancer Res 2016; 22:4859-4869. [DOI: 10.1158/1078-0432.ccr-15-3036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
|
19
|
|
20
|
Jin X, Jiang YZ, Chen S, Yu KD, Ma D, Sun W, Shao ZM, Di GH. A nomogram for predicting pathological complete response in patients with human epidermal growth factor receptor 2 negative breast cancer. BMC Cancer 2016; 16:606. [PMID: 27495967 PMCID: PMC4974800 DOI: 10.1186/s12885-016-2652-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023] Open
Abstract
Background The response to neoadjuvant chemotherapy has been proven to predict long-term clinical benefits for patients. Our research is to construct a nomogram to predict pathological complete response of human epidermal growth factor receptor 2 negative breast cancer patients. Methods We enrolled 815 patients who received neoadjuvant chemotherapy from 2003 to 2015 and divided them into a training set and a validation set. Univariate logistic regression was performed to screen for predictors and construct the nomogram; multivariate logistic regression was performed to identify independent predictors. Results After performing the univariate logistic regression analysis in the training set, tumor size, hormone receptor status, regimens of neoadjuvant chemotherapy and cycles of neoadjuvant chemotherapy were the final predictors for the construction of the nomogram. The multivariate logistic regression analysis demonstrated that T4 status, hormone receptor status and receiving regimen of paclitaxel and carboplatin were independent predictors of pathological complete response. The area under the receiver operating characteristic curve of the training set and the validation set was 0.779 and 0.701, respectively. Conclusions We constructed and validated a nomogram to predict pathological complete response in human epidermal growth factor receptor 2 negative breast cancer patients. We also identified tumor size, hormone receptor status and paclitaxel and carboplatin regimen as independent predictors of pathological complete response. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2652-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Sheng Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Sun
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, Shao ZM. Transcriptome Analysis of Triple-Negative Breast Cancer Reveals an Integrated mRNA-lncRNA Signature with Predictive and Prognostic Value. Cancer Res 2016; 76:2105-14. [PMID: 26921339 DOI: 10.1158/0008-5472.can-15-3284] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
While recognized as a generally aggressive disease, triple-negative breast cancer (TNBC) is highly diverse in different patients with variable outcomes. In this prospective observational study, we aimed to develop an RNA signature of TNBC patients to improve risk stratification and optimize the choice of adjuvant therapy. Transcriptome microarrays for 33 paired TNBC and adjacent normal breast tissue revealed tumor-specific mRNAs and long noncoding RNAs (lncRNA) that were associated with recurrence-free survival. Using the Cox regression model, we developed an integrated mRNA-lncRNA signature based on the mRNA species for FCGR1A, RSAD2, CHRDL1, and the lncRNA species for HIF1A-AS2 and AK124454 The prognostic and predictive accuracy of this signature was evaluated in a training set of 137 TNBC patients and then validated in a second independent set of 138 TNBC patients. In addition, we enrolled 82 TNBC patients who underwent taxane-based neoadjuvant chemotherapy (NCT) to further verify the predictive value of the signature. In both the training and validation sets, the integrated signature had better prognostic value than clinicopathologic parameters. We also confirmed the interaction between the administration of taxane-based NCT and different risk groups. In the NCT cohort, patients in the low-risk group were more likely to achieve pathologic complete remission after taxane-based NCT (P = 0.014). Functionally, we showed that HIF1A-AS2 and AK124454 promoted cell proliferation and invasion in TNBC cells and contributed there to paclitaxel resistance. Overall, our results established an integrated mRNA-lncRNA signature as a reliable tool to predict tumor recurrence and the benefit of taxane chemotherapy in TNBC, warranting further investigation in larger populations to help frame individualized treatments for TNBC patients. Cancer Res; 76(8); 2105-14. ©2016 AACR.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-En Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Liu YR, Jiang YZ, Xu XE, Hu X, Yu KD, Shao ZM. Comprehensive Transcriptome Profiling Reveals Multigene Signatures in Triple-Negative Breast Cancer. Clin Cancer Res 2016; 22:1653-62. [DOI: 10.1158/1078-0432.ccr-15-1555] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
|
23
|
Xiang F, Ni Z, Zhan Y, Kong Q, Xu J, Jiang J, Wu R, Kang X. Increased expression of MyD88 and association with paclitaxel resistance in breast cancer. Tumour Biol 2015; 37:6017-25. [DOI: 10.1007/s13277-015-4436-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/12/2015] [Indexed: 11/24/2022] Open
|
24
|
ERG induces taxane resistance in castration-resistant prostate cancer. Nat Commun 2014; 5:5548. [PMID: 25420520 PMCID: PMC4244604 DOI: 10.1038/ncomms6548] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022] Open
Abstract
Taxanes are the only chemotherapies used to treat patients with metastatic castration-resistant prostate cancer (CRPC). Despite the initial efficacy of taxanes in treating CRPC, all patients ultimately fail due to the development of drug resistance. In this study, we show that ERG overexpression in in vitro and in vivo models of CRPC is associated with decreased sensitivity to taxanes. ERG affects several parameters of microtubule dynamics and inhibits effective drug-target engagement of docetaxel or cabazitaxel with tubulin. Finally, analysis of a cohort of 34 men with metastatic CRPC treated with docetaxel chemotherapy reveals that ERG-overexpressing prostate cancers have twice the chance of docetaxel resistance than ERG-negative cancers. Our data suggest that ERG plays a role beyond regulating gene expression and functions outside the nucleus to cooperate with tubulin towards taxane insensitivity. Determining ERG rearrangement status may aid in patient selection for docetaxel or cabazitaxel therapy and/or influence co-targeting approaches. Metastatic castration-resistant prostate cancer is treated with the microtubule-stabilizing drugs taxanes, but resistance ultimately develops. Here Galletti et al. show that ERG, a transcription factor commonly overexpressed in prostate cancers, confers taxane resistance by binding to soluble tubulin.
Collapse
|
25
|
Jiang YZ, Yu KD, Bao J, Peng WT, Shao ZM. Favorable Prognostic Impact in Loss of TP53 and PIK3CA Mutations after Neoadjuvant Chemotherapy in Breast Cancer. Cancer Res 2014; 74:3399-407. [DOI: 10.1158/0008-5472.can-14-0092] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|