1
|
Dutta A, Schacherer J. The dynamics of loss of heterozygosity events in genomes. EMBO Rep 2025; 26:602-612. [PMID: 39747660 PMCID: PMC11811284 DOI: 10.1038/s44319-024-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Genomic instability is a hallmark of tumorigenesis, yet it also plays an essential role in evolution. Large-scale population genomics studies have highlighted the importance of loss of heterozygosity (LOH) events, which have long been overlooked in the context of genetic diversity and instability. Among various types of genomic mutations, LOH events are the most common and affect a larger portion of the genome. They typically arise from recombination-mediated repair of double-strand breaks (DSBs) or from lesions that are processed into DSBs. LOH events are critical drivers of genetic diversity, enabling rapid phenotypic variation and contributing to tumorigenesis. Understanding the accumulation of LOH, along with its underlying mechanisms, distribution, and phenotypic consequences, is therefore crucial. In this review, we explore the spectrum of LOH events, their mechanisms, and their impact on fitness and phenotype, drawing insights from Saccharomyces cerevisiae to cancer. We also emphasize the role of LOH in genomic instability, disease, and genome evolution.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Bautista C, Gagnon-Arsenault I, Utrobina M, Fijarczyk A, Bendixsen DP, Stelkens R, Landry CR. Hybrid adaptation is hampered by Haldane's sieve. Nat Commun 2024; 15:10319. [PMID: 39609385 PMCID: PMC11604976 DOI: 10.1038/s41467-024-54105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Hybrids between species exhibit plastic genomic architectures that could foster or slow down their adaptation. When challenged to evolve in an environment containing a UV mimetic drug, yeast hybrids have reduced adaptation rates compared to parents. We find that hybrids and their parents converge onto similar molecular mechanisms of adaptation by mutations in pleiotropic transcription factors, but at a different pace. After 100 generations, mutations in these genes tend to be homozygous in the parents but heterozygous in the hybrids. We hypothesize that a lower rate of loss of heterozygosity (LOH) in hybrids could limit fitness gain. Using genome editing, we first demonstrate that mutations display incomplete dominance, requiring homozygosity to show full impact and to entirely circumvent Haldane's sieve, which favors the fixation of dominant mutations. Second, tracking mutations in earlier generations confirmed a different rate of LOH in hybrids. Together, these findings show that Haldane's sieve slows down adaptation in hybrids, revealing an intrinsic constraint of hybrid genomic architecture that can limit the role of hybridization in adaptive evolution.
Collapse
Affiliation(s)
- Carla Bautista
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Mariia Utrobina
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Anna Fijarczyk
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
| |
Collapse
|
3
|
McDonough Y, Ruzicka F, Connallon T. Reconciling theories of dominance with the relative rates of adaptive substitution on sex chromosomes and autosomes. Proc Natl Acad Sci U S A 2024; 121:e2406335121. [PMID: 39436652 PMCID: PMC11536091 DOI: 10.1073/pnas.2406335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
The dominance of beneficial mutations is a key evolutionary parameter affecting the rate and genetic basis of adaptation, yet it is notoriously difficult to estimate. A leading method to infer it is to compare the relative rates of adaptive substitution for X-linked and autosomal genes, which-according to a classic model by Charlesworth et al. (1987)-is a simple function of the dominance of new beneficial mutations. Recent evidence that rates of adaptive substitution are faster for X-linked genes implies, accordingly, that beneficial mutations are usually recessive. However, this conclusion is incompatible with leading theories of dominance, which predict that beneficial mutations tend to be dominant or overdominant with respect to fitness. To address this incompatibility, we use Fisher's geometric model to predict the distribution of fitness effects of new mutations and the relative rates of positively selected substitution on the X and autosomes. Previous predictions of faster-X theory emerge as a special case of our model in which the phenotypic effects of mutations are small relative to the distance to the phenotypic optimum. But as mutational effects become large relative to the optimum, we observe an elevated tempo of positively selected substitutions on the X relative to the autosomes across a broader range of dominance conditions, including those predicted by theories of dominance. Our results imply that, contrary to previous models, dominant and overdominant beneficial mutations can plausibly generate patterns of faster-X adaptation. We discuss resulting implications for genomic studies of adaptation and inferences of dominance.
Collapse
Affiliation(s)
- Yasmine McDonough
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
| | - Filip Ruzicka
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
| |
Collapse
|
4
|
Ono J, Kuzmin A, Miller L, Otto SP. The limit to evolutionary rescue depends on ploidy in yeast exposed to nystatin. Can J Microbiol 2024; 70:394-404. [PMID: 38875715 DOI: 10.1139/cjm-2023-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The number of copies of each chromosome, or ploidy, of an organism is a major genomic factor affecting adaptation. We set out to determine how ploidy can impact the outcome of evolution, as well as the likelihood of evolutionary rescue, using short-term experiments with yeast (Saccharomyces cerevisiae) in a high concentration of the fungicide nystatin. In similar experiments using haploid yeast, the genetic changes underlying evolutionary rescue were highly repeatable, with all rescued lines containing a single mutation in the ergosterol biosynthetic pathway. All of these beneficial mutations were recessive, which led to the expectation that diploids would find alternative genetic routes to adaptation. To test this, we repeated the experiment using both haploid and diploid strains and found that diploid populations did not evolve resistance. Although diploids are able to adapt at the same rate as haploids to a lower, not fully inhibitory, concentration of nystatin, the present study suggests that diploids are limited in their ability to adapt to an inhibitory concentration of nystatin, while haploids may undergo evolutionary rescue. These results demonstrate that ploidy can tip the balance between adaptation and extinction when organisms face an extreme environmental change.
Collapse
Affiliation(s)
- Jasmine Ono
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Ecology and Evolution & Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Anastasia Kuzmin
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lesley Miller
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Vande Zande P, Gautier C, Kawar N, Maufrais C, Metzner K, Wash E, Beach AK, Bracken R, Maciel EI, Pereira de Sá N, Fernandes CM, Solis NV, Del Poeta M, Filler SG, Berman J, Ene IV, Selmecki A. Step-wise evolution of azole resistance through copy number variation followed by KSR1 loss of heterozygosity in Candida albicans. PLoS Pathog 2024; 20:e1012497. [PMID: 39213436 PMCID: PMC11392398 DOI: 10.1371/journal.ppat.1012497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial drug resistance poses a global health threat, requiring a deeper understanding of the evolutionary processes that lead to its emergence in pathogens. Complex evolutionary dynamics involve multiple mutations that can result in cooperative or competitive (clonal interference) effects. Candida albicans, a major fungal pathogen, displays high rates of copy number variation (CNV) and loss of heterozygosity (LOH). CNV and LOH events involve large numbers of genes and could synergize during evolutionary adaptation. Understanding the contributions of CNV and LOH to antifungal drug adaptation is challenging, especially in the context of whole-population genome sequencing. Here, we document the sequential evolution of fluconazole tolerance and then resistance in a C. albicans isolate involving an initial CNV on chromosome 4, followed by an LOH on chromosome R that involves KSR1. Similar LOH events involving KSR1, which encodes a reductase in the sphingolipid biosynthesis pathway, were also detected in independently evolved fluconazole resistant isolates. We dissect the specific KSR1 codons that affect fluconazole resistance and tolerance. The combination of the chromosome 4 CNV and KSR1 LOH results in a >500-fold decrease in azole susceptibility relative to the progenitor, illustrating a compelling example of rapid, yet step-wise, interplay between CNV and LOH in drug resistance evolution.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cécile Gautier
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Nora Kawar
- Shmunis School of Biotechnology and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
- Institut Pasteur Bioinformatic Hub, Université Paris Cité, Paris, France
| | - Katura Metzner
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elizabeth Wash
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Annette K. Beach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryan Bracken
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eli Isael Maciel
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Nívea Pereira de Sá
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Judith Berman
- Shmunis School of Biotechnology and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
6
|
Grieshop K, Ho EKH, Kasimatis KR. Dominance reversals: the resolution of genetic conflict and maintenance of genetic variation. Proc Biol Sci 2024; 291:20232816. [PMID: 38471544 DOI: 10.1098/rspb.2023.2816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Beneficial reversals of dominance reduce the costs of genetic trade-offs and can enable selection to maintain genetic variation for fitness. Beneficial dominance reversals are characterized by the beneficial allele for a given context (e.g. habitat, developmental stage, trait or sex) being dominant in that context but recessive where deleterious. This context dependence at least partially mitigates the fitness consequence of heterozygotes carrying one non-beneficial allele for their context and can result in balancing selection that maintains alternative alleles. Dominance reversals are theoretically plausible and are supported by mounting empirical evidence. Here, we highlight the importance of beneficial dominance reversals as a mechanism for the mitigation of genetic conflict and review the theory and empirical evidence for them. We identify some areas in need of further research and development and outline three methods that could facilitate the identification of antagonistic genetic variation (dominance ordination, allele-specific expression and allele-specific ATAC-Seq (assay for transposase-accessible chromatin with sequencing)). There is ample scope for the development of new empirical methods as well as reanalysis of existing data through the lens of dominance reversals. A greater focus on this topic will expand our understanding of the mechanisms that resolve genetic conflict and whether they maintain genetic variation.
Collapse
Affiliation(s)
- Karl Grieshop
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 1A1
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Eddie K H Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Katja R Kasimatis
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 1A1
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
7
|
Sandell L, König SG, Otto SP. Schrödinger's yeast: the challenge of using transformation to compare fitness among Saccharomyces cerevisiae that differ in ploidy or zygosity. PeerJ 2023; 11:e16547. [PMID: 38077443 PMCID: PMC10704993 DOI: 10.7717/peerj.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
How the number of genome copies modifies the effect of random mutations remains poorly known. In yeast, researchers have investigated these effects for knock-out or other large-effect mutations, but have not accounted for differences at the mating-type locus. We set out to compare fitness differences among strains that differ in ploidy and/or zygosity using a panel of spontaneously arising mutations acquired in haploid yeast from a previous study. To ensure no genetic differences, even at the mating-type locus, we embarked on a series of transformations, which first sterilized and then temporarily introduced plasmid-borne mating types. Despite these attempts to equalize the haplotypes, fitness variation introduced during transformation swamped the differences among the original mutation-accumulation lines. While colony size looked normal, we observed a bi-modality in the maximum growth rate of our transformed yeast and determined that many of the slow growing lines were respiratory deficient ("petite"). Not previously reported, we found that yeast that were TID1/RDH54 knockouts were less likely to become petite. Even for lines with the same petite status, however, we found no correlation in fitness between the two replicate transformations performed. These results pose a challenge for any study using transformation to measure the fitness effect of genetic differences among strains. By attempting to hold haplotypes constant, we introduced more mutations that overwhelmed our ability to measure fitness differences between the genetic states. In this study, we transformed over one hundred different lines of yeast, using two independent transformations, and found that this common laboratory procedure can cause large changes to the microbe studied. Our study provides a cautionary tale of the need to use multiple transformants in fitness assays.
Collapse
Affiliation(s)
- Linnea Sandell
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| | - Stephan G. König
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
- Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P. Otto
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Crandall JG, Fisher KJ, Sato TK, Hittinger CT. Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism. PLoS Biol 2023; 21:e3001909. [PMID: 37943740 PMCID: PMC10635434 DOI: 10.1371/journal.pbio.3001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.
Collapse
Affiliation(s)
- Johnathan G. Crandall
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kaitlin J. Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Martínez AA, Lang GI. Identifying Targets of Selection in Laboratory Evolution Experiments. J Mol Evol 2023; 91:345-355. [PMID: 36810618 PMCID: PMC11197053 DOI: 10.1007/s00239-023-10096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Adaptive evolution navigates a balance between chance and determinism. The stochastic processes of mutation and drift generate phenotypic variation; however, once mutations reach an appreciable frequency in the population, their fate is governed by the deterministic action of selection, enriching for favorable genotypes and purging the less-favorable ones. The net result is that replicate populations will traverse similar-but not identical-pathways to higher fitness. This parallelism in evolutionary outcomes can be leveraged to identify the genes and pathways under selection. However, distinguishing between beneficial and neutral mutations is challenging because many beneficial mutations will be lost due to drift and clonal interference, and many neutral (and even deleterious) mutations will fix by hitchhiking. Here, we review the best practices that our laboratory uses to identify genetic targets of selection from next-generation sequencing data of evolved yeast populations. The general principles for identifying the mutations driving adaptation will apply more broadly.
Collapse
Affiliation(s)
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
11
|
Linder RA, Zabanavar B, Majumder A, Hoang HCS, Delgado VG, Tran R, La VT, Leemans SW, Long AD. Adaptation in Outbred Sexual Yeast is Repeatable, Polygenic and Favors Rare Haplotypes. Mol Biol Evol 2022; 39:msac248. [PMID: 36366952 PMCID: PMC9728589 DOI: 10.1093/molbev/msac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We carried out a 200 generation Evolve and Resequence (E&R) experiment initiated from an outbred diploid recombined 18-way synthetic base population. Replicate populations were evolved at large effective population sizes (>105 individuals), exposed to several different chemical challenges over 12 weeks of evolution, and whole-genome resequenced. Weekly forced outcrossing resulted in an average between adjacent-gene per cell division recombination rate of ∼0.0008. Despite attempts to force weekly sex, roughly half of our populations evolved cheaters and appear to be evolving asexually. Focusing on seven chemical stressors and 55 total evolved populations that remained sexual we observed large fitness gains and highly repeatable patterns of genome-wide haplotype change within chemical challenges, with limited levels of repeatability across chemical treatments. Adaptation appears highly polygenic with almost the entire genome showing significant and consistent patterns of haplotype change with little evidence for long-range linkage disequilibrium in a subset of populations for which we sequenced haploid clones. That is, almost the entire genome is under selection or drafting with selected sites. At any given locus adaptation was almost always dominated by one of the 18 founder's alleles, with that allele varying spatially and between treatments, suggesting that selection acts primarily on rare variants private to a founder or haplotype blocks harboring multiple mutations.
Collapse
Affiliation(s)
- Robert A Linder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Behzad Zabanavar
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Arundhati Majumder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Hannah Chiao-Shyan Hoang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vanessa Genesaret Delgado
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Ryan Tran
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vy Thoai La
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Simon William Leemans
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| |
Collapse
|
12
|
Multiple Stochastic Parameters Influence Genome Dynamics in a Heterozygous Diploid Eukaryotic Model. J Fungi (Basel) 2022; 8:jof8070650. [PMID: 35887406 PMCID: PMC9323731 DOI: 10.3390/jof8070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
The heterozygous diploid genome of Candida albicans displays frequent genomic rearrangements, in particular loss-of-heterozygosity (LOH) events, which can be seen on all eight chromosomes and affect both laboratory and clinical strains. LOHs, which are often the consequence of DNA damage repair, can be observed upon stresses reminiscent of the host environment, and result in homozygous regions of various sizes depending on the molecular mechanisms at their origins. Recent studies have shed light on the biological importance of these frequent and ubiquitous LOH events in C. albicans. In diploid Saccharomyces cerevisiae, LOH facilitates the passage of recessive beneficial mutations through Haldane’s sieve, allowing rapid evolutionary adaptation. This also appears to be true in C. albicans, where the full potential of an adaptive mutation is often only observed upon LOH, as illustrated in the case of antifungal resistance and niche adaptation. To understand the genome-wide dynamics of LOH events in C. albicans, we constructed a collection of 15 strains, each one carrying a LOH reporter system on a different chromosome arm. This system involves the insertion of two fluorescent marker genes in a neutral genomic region on both homologs, allowing spontaneous LOH events to be detected by monitoring the loss of one of the fluorescent markers using flow cytometry. Using this collection, we observed significant LOH frequency differences between genomic loci in standard laboratory growth conditions; however, we further demonstrated that comparable heterogeneity was also observed for a given genomic locus between independent strains. Additionally, upon exposure to stress, three outcomes could be observed in C. albicans, where individual strains displayed increases, decreases, or no effect of stress in terms of LOH frequency. Our results argue against a general stress response triggering overall genome instability. Indeed, we showed that the heterogeneity of LOH frequency in C. albicans is present at various levels, inter-strain, intra-strain, and inter-chromosomes, suggesting that LOH events may occur stochastically within a cell, though the genetic background potentially impacts genome stability in terms of LOH throughout the genome in both basal and stress conditions. This heterogeneity in terms of genome stability may serve as an important adaptive strategy for the predominantly clonal human opportunistic pathogen C. albicans, by quickly generating a wide spectrum of genetic variation combinations potentially permitting subsistence in a rapidly evolving environment.
Collapse
|
13
|
Baselga-Cervera B, Gettle N, Travisano M. Loss-of-heterozygosity facilitates a fitness valley crossing in experimentally evolved multicellular yeast. Proc Biol Sci 2022; 289:20212722. [PMID: 36547392 PMCID: PMC9185828 DOI: 10.1098/rspb.2021.2722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some of the simplest evolutionary landscapes arise from underdominance at a single locus where the fitness valley consists of only one less-fit genotype. Despite their potential for rapid evolutionary change, few such examples have been investigated. We capitalized on an experimental system in which a significant evolutionary shift, the transition from uni-to-multicellularity, was observed in asexual diploid populations of Saccharomyces cerevisiae experimentally selected for increased settling rates. The multicellular phenotype results from recessive single-locus mutations that undergo loss-of-heterozygosity (LOH) events. By reconstructing the necessary heterozygous intermediate steps, we found that the evolution of multicellularity involves a decrease in size during the first steps. Heterozygous genotypes are 20% smaller in size than genotypes with functional alleles. Nevertheless, populations of heterozygotes give rise to multicellular genotypes more readily than unicellular genotypes with two functional alleles, by rapid LOH events. LOH drives adaptation that may enable rapid evolution in diploid yeast. Together these results show discordance between the phenotypic and genotypic multicellular transition. The evolutionary path to multicellularity, and the adaptive benefits of increased size, requires initial size reductions.
Collapse
Affiliation(s)
- Beatriz Baselga-Cervera
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA,Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Noah Gettle
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Michael Travisano
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA,The BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA,Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Aggeli D, Marad DA, Liu X, Buskirk SW, Levy SF, Lang GI. Overdominant and partially dominant mutations drive clonal adaptation in diploid Saccharomyces cerevisiae. Genetics 2022; 221:6569837. [PMID: 35435209 PMCID: PMC9157133 DOI: 10.1093/genetics/iyac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
Identification of adaptive targets in experimental evolution typically relies on extensive replication and genetic reconstruction. An alternative approach is to directly assay all mutations in an evolved clone by generating pools of segregants that contain random combinations of evolved mutations. Here, we apply this method to six Saccharomyces cerevisiae clones isolated from four diploid populations that were clonally evolved for 2,000 generations in rich glucose medium. Each clone contains 17-26 mutations relative to the ancestor. We derived intermediate genotypes between the founder and the evolved clones by bulk mating sporulated cultures of the evolved clones to a barcoded haploid version of the ancestor. We competed the resulting barcoded diploids en masse and quantified fitness in the experimental and alternative environments by barcode sequencing. We estimated average fitness effects of evolved mutations using barcode-based fitness assays and whole genome sequencing for a subset of segregants. In contrast to our previous work with haploid evolved clones, we find that diploids carry fewer beneficial mutations, with modest fitness effects (up to 5.4%) in the environment in which they arose. In agreement with theoretical expectations, reconstruction experiments show that all mutations with a detectable fitness effect manifest some degree of dominance over the ancestral allele, and most are overdominant. Genotypes with lower fitness effects in alternative environments allowed us to identify conditions that drive adaptation in our system.
Collapse
Affiliation(s)
- Dimitra Aggeli
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| | - Daniel A Marad
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| | - Xianan Liu
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA94025, USA
| | - Sean W Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA.,Department of Biology, West Chester University, West Chester, PA19383, USA
| | - Sasha F Levy
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA94025, USA
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| |
Collapse
|
15
|
Stovicek V, Dato L, Almqvist H, Schöpping M, Chekina K, Pedersen LE, Koza A, Figueira D, Tjosås F, Ferreira BS, Forster J, Lidén G, Borodina I. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:22. [PMID: 35219341 PMCID: PMC8882276 DOI: 10.1186/s13068-022-02121-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Laura Dato
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,River Stone Biotech ApS, Fruebjergvej 3, 2100, Copenhagen, Denmark
| | - Henrik Almqvist
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Marie Schöpping
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark.,Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ksenia Chekina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark
| | - Diogo Figueira
- Biotrend S.A., Biocant Park Núcleo 04, Lote 2, 3060-197, Cantanhede, Portugal
| | - Freddy Tjosås
- Borregaard ApS, Hjalmar Wessels vei 6, 1721, Sarpsborg, Norway
| | | | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Bai FY, Han DY, Duan SF, Wang QM. The Ecology and Evolution of the Baker's Yeast Saccharomyces cerevisiae. Genes (Basel) 2022; 13:230. [PMID: 35205274 PMCID: PMC8871604 DOI: 10.3390/genes13020230] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
The baker's yeast Saccharomyces cerevisiae has become a powerful model in ecology and evolutionary biology. A global effort on field survey and population genetics and genomics of S. cerevisiae in past decades has shown that the yeast distributes ubiquitously in nature with clearly structured populations. The global genetic diversity of S. cerevisiae is mainly contributed by strains from Far East Asia, and the ancient basal lineages of the species have been found only in China, supporting an 'out-of-China' origin hypothesis. The wild and domesticated populations are clearly separated in phylogeny and exhibit hallmark differences in sexuality, heterozygosity, gene copy number variation (CNV), horizontal gene transfer (HGT) and introgression events, and maltose utilization ability. The domesticated strains from different niches generally form distinct lineages and harbor lineage-specific CNVs, HGTs and introgressions, which contribute to their adaptations to specific fermentation environments. However, whether the domesticated lineages originated from a single, or multiple domestication events is still hotly debated and the mechanism causing the diversification of the wild lineages remains to be illuminated. Further worldwide investigations on both wild and domesticated S. cerevisiae, especially in Africa and West Asia, will be helpful for a better understanding of the natural and domestication histories and evolution of S. cerevisiae.
Collapse
Affiliation(s)
- Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
- College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China;
| |
Collapse
|
17
|
Fisher KJ, Vignogna RC, Lang GI. Overdominant Mutations Restrict Adaptive Loss of Heterozygosity at Linked Loci. Genome Biol Evol 2021; 13:6345346. [PMID: 34363476 PMCID: PMC8382679 DOI: 10.1093/gbe/evab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 12/29/2022] Open
Abstract
Loss of heterozygosity is a common mode of adaptation in asexual diploid populations. Because mitotic recombination frequently extends the full length of a chromosome arm, the selective benefit of loss of heterozygosity may be constrained by linked heterozygous mutations. In a previous laboratory evolution experiment with diploid yeast, we frequently observed homozygous mutations in the WHI2 gene on the right arm of Chromosome XV. However, when heterozygous mutations arose in the STE4 gene, another common target on Chromosome XV, loss of heterozygosity at WHI2 was not observed. Here, we show that mutations at WHI2 are partially dominant and that mutations at STE4 are overdominant. We test whether beneficial heterozygous mutations at these two loci interfere with one another by measuring loss of heterozygosity at WHI2 over 1,000 generations for ∼300 populations that differed initially only at STE4 and WHI2. We show that the presence of an overdominant mutation in STE4 reduces, but does not eliminate, loss of heterozygosity at WHI2. By sequencing 40 evolved clones, we show that populations with linked overdominant and partially dominant mutations show less parallelism at the gene level, more varied evolutionary outcomes, and increased rates of aneuploidy. Our results show that the degree of dominance and the phasing of heterozygous beneficial mutations can constrain loss of heterozygosity along a chromosome arm, and that conflicts between partially dominant and overdominant mutations can affect evolutionary outcomes.
Collapse
Affiliation(s)
- Kaitlin J Fisher
- Department of Biological Sciences, Lehigh University, USA.,Laboratory of Genetics, University of Wisconsin-Madison, USA
| | | | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, USA
| |
Collapse
|
18
|
Genetic and Phenotypic Diversities in Experimental Populations of Diploid Inter-Lineage Hybrids in the Human Pathogenic Cryptococcus. Microorganisms 2021; 9:microorganisms9081579. [PMID: 34442658 PMCID: PMC8398696 DOI: 10.3390/microorganisms9081579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
To better understand the potential factors contributing to genome instability and phenotypic diversity, we conducted mutation accumulation (MA) experiments for 120 days for 7 diploid cryptococcal hybrids under fluconazole (10 MA lines each) and non-fluconazole conditions (10 MA lines each). The genomic DNA content, loss of heterozygosity (LOH) rate, growth ability, and fluconazole susceptibility were determined for all 140 evolved cultures. Compared to that of their ancestral clones, the evolved clones showed: (i) genomic DNA content changes ranging from ~22% less to ~27% more, and (ii) reduced, similar, and increased phenotypic values for each tested trait, with most evolved clones displaying increased growth at 40 °C and increased fluconazole resistance. Aside from the ancestral multi-locus genotypes (MLGs) and heterozygosity patterns (MHPs), 77 unique MLGs and 70 unique MPHs were identified among the 140 evolved cultures at day 120. The average LOH rates of the MA lines in the absence and presence of fluconazole were similar at 1.27 × 10−4 and 1.38 × 10−4 LOH events per MA line per mitotic division, respectively. While LOH rates varied among MA lines from different ancestors, there was no apparent correlation between the genetic divergence of the parental haploid genomes within ancestral clones and LOH rates. Together, our results suggest that hybrids between diverse lineages of the human pathogenic Cryptococcus can generate significant genotypic and phenotypic diversities during asexual reproduction.
Collapse
|
19
|
Jia X, Zhang Q, Jiang M, Huang J, Yu L, Traw MB, Tian D, Hurst LD, Yang S. Mitotic gene conversion can be as important as meiotic conversion in driving genetic variability in plants and other species without early germline segregation. PLoS Biol 2021; 19:e3001164. [PMID: 33750968 PMCID: PMC8016264 DOI: 10.1371/journal.pbio.3001164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 04/01/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
In contrast to common meiotic gene conversion, mitotic gene conversion, because it is so rare, is often ignored as a process influencing allelic diversity. We show that if there is a large enough number of premeiotic cell divisions, as seen in many organisms without early germline sequestration, such as plants, this is an unsafe position. From examination of 1.1 million rice plants, we determined that the rate of mitotic gene conversion events, per mitosis, is 2 orders of magnitude lower than the meiotic rate. However, owing to the large number of mitoses between zygote and gamete and because of long mitotic tract lengths, meiotic and mitotic gene conversion can be of approximately equivalent importance in terms of numbers of markers converted from zygote to gamete. This holds even if we assume a low number of premeiotic cell divisions (approximately 40) as witnessed in Arabidopsis. A low mitotic rate associated with long tracts is also seen in yeast, suggesting generality of results. For species with many mitoses between each meiotic event, mitotic gene conversion should not be overlooked. Gene conversion associated with meiosis has long been a focus of attention in population genomics, but mitotic conversion has been relatively overlooked as it was thought to be rare. Analysis in plants suggests that this could be a mistake; long tract lengths and multiple mitoses in species lacking germline sequestration suggest that mitotic conversion, although rare per mitosis, should not be ignored.
Collapse
Affiliation(s)
- Xianqing Jia
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qijun Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ju Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Luyao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Milton Brian Traw
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sihai Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Gerstein AC, Sharp NP. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol Rev 2021; 45:6121427. [PMID: 33503232 DOI: 10.1093/femsre/fuab006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in ploidy are a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Dept. of Microbiology, Dept. of Statistics, University of Manitoba Canada
| | | |
Collapse
|
21
|
Johnson MS, Gopalakrishnan S, Goyal J, Dillingham ME, Bakerlee CW, Humphrey PT, Jagdish T, Jerison ER, Kosheleva K, Lawrence KR, Min J, Moulana A, Phillips AM, Piper JC, Purkanti R, Rego-Costa A, McDonald MJ, Nguyen Ba AN, Desai MM. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations. eLife 2021; 10:e63910. [PMID: 33464204 PMCID: PMC7815316 DOI: 10.7554/elife.63910] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/12/2020] [Indexed: 01/25/2023] Open
Abstract
Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions.
Collapse
Affiliation(s)
- Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
| | - Shreyas Gopalakrishnan
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Juhee Goyal
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Megan E Dillingham
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- Graduate Program in Systems, Synthetic, and Quantitative Biology, Harvard UniversityCambridgeUnited States
| | - Christopher W Bakerlee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Parris T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
| | - Tanush Jagdish
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Graduate Program in Systems, Synthetic, and Quantitative Biology, Harvard UniversityCambridgeUnited States
| | - Elizabeth R Jerison
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - Katya Kosheleva
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Katherine R Lawrence
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jiseon Min
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Julia C Piper
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- AeroLabs, Aeronaut Brewing CoSomervilleUnited States
| | - Ramya Purkanti
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- The Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Artur Rego-Costa
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Michael J McDonald
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- School of Biological Sciences, Monash UniversityVictoria, MonashAustralia
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| |
Collapse
|
22
|
Loss of Heterozygosity and Base Mutation Rates Vary Among Saccharomyces cerevisiae Hybrid Strains. G3-GENES GENOMES GENETICS 2020; 10:3309-3319. [PMID: 32727920 PMCID: PMC7466981 DOI: 10.1534/g3.120.401551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A growing body of evidence suggests that mutation rates exhibit intra-species specific variation. We estimated genome-wide loss of heterozygosity (LOH), gross chromosomal changes, and single nucleotide mutation rates to determine intra-species specific differences in hybrid and homozygous strains of Saccharomyces cerevisiae. The mutation accumulation lines of the S. cerevisiae hybrid backgrounds - S288c/YJM789 (S/Y) and S288c/RM11-1a (S/R) were analyzed along with the homozygous diploids RM11, S288c, and YJM145. LOH was extensive in both S/Y and S/R hybrid backgrounds. The S/Y background also showed longer LOH tracts, gross chromosomal changes, and aneuploidy. Short copy number aberrations were observed in the S/R background. LOH data from the S/Y and S/R hybrids were used to construct a LOH map for S288c to identify hotspots. Further, we observe up to a sixfold difference in single nucleotide mutation rates among the S. cerevisiae S/Y and S/R genetic backgrounds. Our results demonstrate LOH is common during mitotic divisions in S. cerevisiae hybrids and also highlight genome-wide differences in LOH patterns and rates of single nucleotide mutations between commonly used S. cerevisiae hybrid genetic backgrounds.
Collapse
|
23
|
de Witt RN, Kroukamp H, Van Zyl WH, Paulsen IT, Volschenk H. QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance. FEMS Yeast Res 2020; 19:5528620. [PMID: 31276593 DOI: 10.1093/femsyr/foz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Decoding the genetic basis of lignocellulosic inhibitor tolerance in Saccharomyces cerevisiae is crucial for rational engineering of bioethanol strains with enhanced robustness. The genetic diversity of natural strains present an invaluable resource for the exploration of complex traits of industrial importance from a pan-genomic perspective to complement the limited range of specialised, tolerant industrial strains. Natural S. cerevisiae isolates have lately garnered interest as a promising toolbox for engineering novel, genetically encoded tolerance phenotypes into commercial strains. To this end, we investigated the genetic basis for lignocellulosic inhibitor tolerance of natural S. cerevisiae isolates. A total of 12 quantitative trait loci underpinning tolerance were identified by next-generation sequencing linked bulk-segregant analysis of superior interbred pools. Our findings corroborate the current perspective of lignocellulosic inhibitor tolerance as a multigenic, complex trait. Apart from a core set of genetic variants required for inhibitor tolerance, an additional genetic background-specific response was observed. Functional analyses of the identified genetic loci revealed the uncharacterised ORF, YGL176C and the bud-site selection XRN1/BUD13 as potentially beneficial alleles contributing to tolerance to a complex lignocellulosic inhibitor mixture. We present evidence for the consideration of both regulatory and coding sequence variants for strain improvement.
Collapse
Affiliation(s)
- R N de Witt
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - H Kroukamp
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - W H Van Zyl
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - I T Paulsen
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - H Volschenk
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| |
Collapse
|
24
|
Evolutionary Rescue and Drug Resistance on Multicopy Plasmids. Genetics 2020; 215:847-868. [PMID: 32461266 DOI: 10.1534/genetics.119.303012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/15/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteria often carry "extra DNA" in the form of plasmids in addition to their chromosome. Many plasmids have a copy number greater than one such that the genes encoded on these plasmids are present in multiple copies per cell. This has evolutionary consequences by increasing the mutational target size, by prompting the (transitory) co-occurrence of mutant and wild-type alleles within the same cell, and by allowing for gene dosage effects. We develop and analyze a mathematical model for bacterial adaptation to harsh environmental change if adaptation is driven by beneficial alleles on multicopy plasmids. Successful adaptation depends on the availability of advantageous alleles and on their establishment probability. The establishment process involves the segregation of mutant and wild-type plasmids to the two daughter cells, allowing for the emergence of mutant homozygous cells over the course of several generations. To model this process, we use the theory of multitype branching processes, where a type is defined by the genetic composition of the cell. Both factors-the availability of advantageous alleles and their establishment probability-depend on the plasmid copy number, and they often do so antagonistically. We find that in the interplay of various effects, a lower or higher copy number may maximize the probability of evolutionary rescue. The decisive factor is the dominance relationship between mutant and wild-type plasmids and potential gene dosage effects. Results from a simple model of antibiotic degradation indicate that the optimal plasmid copy number may depend on the specific environment encountered by the population.
Collapse
|
25
|
Tattini L, Tellini N, Mozzachiodi S, D'Angiolo M, Loeillet S, Nicolas A, Liti G. Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes. Mol Biol Evol 2020; 36:2861-2877. [PMID: 31397846 PMCID: PMC6878955 DOI: 10.1093/molbev/msz177] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations, recombinations, and genome duplications may promote genetic diversity and trigger evolutionary processes. However, quantifying these events in diploid hybrid genomes is challenging. Here, we present an integrated experimental and computational workflow to accurately track the mutational landscape of yeast diploid hybrids (MuLoYDH) in terms of single-nucleotide variants, small insertions/deletions, copy-number variants, aneuploidies, and loss-of-heterozygosity. Pairs of haploid Saccharomyces parents were combined to generate ancestor hybrids with phased genomes and varying levels of heterozygosity. These diploids were evolved under different laboratory protocols, in particular mutation accumulation experiments. Variant simulations enabled the efficient integration of competitive and standard mapping of short reads, depending on local levels of heterozygosity. Experimental validations proved the high accuracy and resolution of our computational approach. Finally, applying MuLoYDH to four different diploids revealed striking genetic background effects. Homozygous Saccharomyces cerevisiae showed a ∼4-fold higher mutation rate compared with its closely related species S. paradoxus. Intraspecies hybrids unveiled that a substantial fraction of the genome (∼250 bp per generation) was shaped by loss-of-heterozygosity, a process strongly inhibited in interspecies hybrids by high levels of sequence divergence between homologous chromosomes. In contrast, interspecies hybrids exhibited higher single-nucleotide mutation rates compared with intraspecies hybrids. MuLoYDH provided an unprecedented quantitative insight into the evolutionary processes that mold diploid yeast genomes and can be generalized to other genetic systems.
Collapse
Affiliation(s)
- Lorenzo Tattini
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Nicolò Tellini
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | | | - Sophie Loeillet
- CNRS UMR3244, Institut Curie, PSL Research University, Paris, France
| | - Alain Nicolas
- CNRS UMR3244, Institut Curie, PSL Research University, Paris, France
| | - Gianni Liti
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| |
Collapse
|
26
|
Abstract
Considering the role of theory in ecology and evolution, we argue that scientific theorizing involves an interplay between narratives and models in which narratives play a key creative and organizing role. Specifically, as scientists, we reason through the use of narratives that explain biological phenomena by envisaging, or mentally simulating, causal paths leading from a plausible initial state to an outcome of interest. Within these narratives, some parts may appear clear, while others may appear puzzling. It is at these tenuous junctions-junctions where reasoning is made challenging by conflicting possible outcomes-that we often build mathematical models to support and extend, or reject and revise, our narratives. Accordingly, models, both analytical and computational, are framed by and interpreted within a narrative. We illustrate these points using case studies from population genetics. This perspective on scientific theorizing helps to clarify the nature of theoretical debates, which often arise from the narratives in which math is embedded, not from the math itself. Finally, this perspective helps place appropriate creative weight on the importance of developing, revising, and challenging narratives in the scientific enterprise.
Collapse
|
27
|
Genetic Changes in Experimental Populations of a Hybrid in the Cryptococcus neoformans Species Complex. Pathogens 2019; 9:pathogens9010003. [PMID: 31861437 PMCID: PMC7168662 DOI: 10.3390/pathogens9010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023] Open
Abstract
Hybrids between Cryptococcus neoformans and Cryptococcus deneoformans are commonly found in patients and the environment. However, the genetic stability of these hybrids remains largely unknown. Here, we established mutation accumulation lines of a diploid C. neoformans × C. deneoformans laboratory hybrid and analyzed the genotypes at 33 markers distributed across all 14 chromosomes. Our analyses found that under standard culture conditions, heterozygosity at most loci was maintained over 800 mitotic generations, with an estimated 6.44 × 10−5 loss-of-heterozygosity (LoH) event per mitotic division. However, under fluconazole stress, the observed LoH frequency increased by > 50 folds for the two markers on Chromosome 1, all due to the loss of the fluconazole susceptible allele on this chromosome. Flow cytometry analyses showed that after the 40th transfer (120 days), 19 of the 20 lines maintained the original ploidy level (2N), while one line was between 2N and 3N. The combined flow cytometry, genotyping at 33 markers, and quantitative PCR analyses showed the allelic loss was compensated for by amplification of the resistant ERG11 allele in eight of the ten fluconazole-stress lines. Our results suggest that hybrids in C. neoformans species complex are generally stable but that they can undergo rapid adaptation to environmental stresses through LoH and gene duplication.
Collapse
|
28
|
James TY, Michelotti LA, Glasco AD, Clemons RA, Powers RA, James ES, Simmons DR, Bai F, Ge S. Adaptation by Loss of Heterozygosity in Saccharomyces cerevisiae Clones Under Divergent Selection. Genetics 2019; 213:665-683. [PMID: 31371407 PMCID: PMC6781901 DOI: 10.1534/genetics.119.302411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Loss of heterozygosity (LOH) is observed during vegetative growth and reproduction of diploid genotypes through mitotic crossovers, aneuploidy caused by nondisjunction, and gene conversion. We aimed to test the role that LOH plays during adaptation of two highly heterozygous Saccharomyces cerevisiae genotypes to multiple environments over a short time span in the laboratory. We hypothesized that adaptation would be observed through parallel LOH events across replicate populations. Using genome resequencing of 70 clones, we found that LOH was widespread with 5.2 LOH events per clone after ∼500 generations. The most common mode of LOH was gene conversion (51%) followed by crossing over consistent with either break-induced replication or double Holliday junction resolution. There was no evidence that LOH involved nondisjunction of whole chromosomes. We observed parallel LOH in both an environment-specific and environment-independent manner. LOH largely involved recombining existing variation between the parental genotypes, but also was observed after de novo, presumably beneficial, mutations occurred in the presence of canavanine, a toxic analog of arginine. One highly parallel LOH event involved the ENA salt efflux pump locus on chromosome IV, which showed repeated LOH to the allele from the European parent, an allele originally derived by introgression from S. paradoxus Using CRISPR-engineered LOH we showed that the fitness advantage provided by this single LOH event was 27%. Overall, we found extensive evidence that LOH could be adaptive and is likely to be a greater source of initial variation than de novo mutation for rapid evolution of diploid genotypes.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lucas A Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Alexander D Glasco
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Rebecca A Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Robert A Powers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ellen S James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - D Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fengyan Bai
- Institute of Microbiology, Chinese Academy of Sciences, State Key Laboratory of Mycology, Chaoyang District, Beijing 100101, China
| | - Shuhua Ge
- Technology Development and Transfer Center, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100029, China
| |
Collapse
|
29
|
Wang Z, Qi Q, Lin Y, Guo Y, Liu Y, Wang Q. QTL analysis reveals genomic variants linked to high-temperature fermentation performance in the industrial yeast. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:59. [PMID: 30923567 PMCID: PMC6423876 DOI: 10.1186/s13068-019-1398-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/08/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND High-temperature fermentation is desirable for the industrial production of ethanol, which requires thermotolerant yeast strains. However, yeast thermotolerance is a complicated quantitative trait. The understanding of genetic basis behind high-temperature fermentation performance is still limited. Quantitative trait locus (QTL) mapping by pooled-segregant whole genome sequencing has been proved to be a powerful and reliable approach to identify the loci, genes and single nucleotide polymorphism (SNP) variants linked to quantitative traits of yeast. RESULTS One superior thermotolerant industrial strain and one inferior thermosensitive natural strain with distinct high-temperature fermentation performances were screened from 124 Saccharomyces cerevisiae strains as parent strains for crossing and segregant isolation. Based on QTL mapping by pooled-segregant whole genome sequencing as well as the subsequent reciprocal hemizygosity analysis (RHA) and allele replacement analysis, we identified and validated total eight causative genes in four QTLs that linked to high-temperature fermentation of yeast. Interestingly, loss of heterozygosity in five of the eight causative genes including RXT2, ECM24, CSC1, IRA2 and AVO1 exhibited positive effects on high-temperature fermentation. Principal component analysis (PCA) of high-temperature fermentation data from all the RHA and allele replacement strains of those eight genes distinguished three superior parent alleles including VPS34, VID24 and DAP1 to be greatly beneficial to high-temperature fermentation in contrast to their inferior parent alleles. Strikingly, physiological impacts of the superior parent alleles of VPS34, VID24 and DAP1 converged on cell membrane by increasing trehalose accumulation or reducing membrane fluidity. CONCLUSIONS This work revealed eight novel causative genes and SNP variants closely associated with high-temperature fermentation performance. Among these genes, VPS34 and DAP1 would be good targets for improving high-temperature fermentation of the industrial yeast. It also showed that loss of heterozygosity of causative genes could contribute to the improvement of high-temperature fermentation capacities. Our findings would provide guides to develop more robust and thermotolerant strains for the industrial production of ethanol.
Collapse
Affiliation(s)
- Zhen Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi Qi
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yufeng Guo
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yanfang Liu
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
30
|
Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact. mSphere 2019; 4:4/1/e00709-18. [PMID: 30760617 PMCID: PMC6374597 DOI: 10.1128/msphere.00709-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterozygous diploid genome of Candida albicans is highly plastic, with frequent loss of heterozygosity (LOH) events. In the SC5314 laboratory strain, while LOH events are ubiquitous, a chromosome homozygosis bias is observed for certain chromosomes, whereby only one of the two homologs can occur in the homozygous state. This suggests the occurrence of recessive lethal allele(s) (RLA) preventing large-scale LOH events on these chromosomes from being stably maintained. To verify the presence of an RLA on chromosome 7 (Chr7), we utilized a system that allows (i) DNA double-strand break (DSB) induction on Chr7 by the I-SceI endonuclease and (ii) detection of the resulting long-range homozygosis. I-SceI successfully induced a DNA DSB on both Chr7 homologs, generally repaired by gene conversion. Notably, cells homozygous for the right arm of Chr7B were not recovered, confirming the presence of RLA(s) in this region. Genome data mining for RLA candidates identified a premature nonsense-generating single nucleotide polymorphism (SNP) within the HapB allele of C7_03400c whose Saccharomyces cerevisiae ortholog encodes the essential Mtr4 RNA helicase. Complementation with a wild-type copy of MTR4 rescued cells homozygous for the right arm of Chr7B, demonstrating that the mtr4K880* RLA is responsible for the Chr7 homozygosis bias in strain SC5314. Furthermore, we observed that the major repeat sequences (MRS) on Chr7 acted as hot spots for interhomolog recombination. Such recombination events provide C. albicans with increased opportunities to survive DNA DSBs whose repair can lead to homozygosis of recessive lethal or deleterious alleles. This might explain the maintenance of MRS in this species.IMPORTANCE Candida albicans is a major fungal pathogen, whose mode of reproduction is mainly clonal. Its genome is highly tolerant to rearrangements, in particular loss of heterozygosity events, known to unmask recessive lethal and deleterious alleles in heterozygous diploid organisms such as C. albicans By combining a site-specific DSB-inducing system and mining genome sequencing data of 182 C. albicans isolates, we were able to ascribe the chromosome 7 homozygosis bias of the C. albicans laboratory strain SC5314 to an heterozygous SNP introducing a premature STOP codon in the MTR4 gene. We have also proposed genome-wide candidates for new recessive lethal alleles. We additionally observed that the major repeat sequences (MRS) on chromosome 7 acted as hot spots for interhomolog recombination. Maintaining MRS in C. albicans could favor haplotype exchange, of vital importance to LOH events, leading to homozygosis of recessive lethal or deleterious alleles that inevitably accumulate upon clonality.
Collapse
|
31
|
Vázquez-García I, Salinas F, Li J, Fischer A, Barré B, Hallin J, Bergström A, Alonso-Perez E, Warringer J, Mustonen V, Liti G. Clonal Heterogeneity Influences the Fate of New Adaptive Mutations. Cell Rep 2018; 21:732-744. [PMID: 29045840 PMCID: PMC5656752 DOI: 10.1016/j.celrep.2017.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/25/2017] [Accepted: 09/14/2017] [Indexed: 11/03/2022] Open
Abstract
The joint contribution of pre-existing and de novo genetic variation to clonal adaptation is poorly understood but essential to designing successful antimicrobial or cancer therapies. To address this, we evolve genetically diverse populations of budding yeast, S. cerevisiae, consisting of diploid cells with unique haplotype combinations. We study the asexual evolution of these populations under selective inhibition with chemotherapeutic drugs by time-resolved whole-genome sequencing and phenotyping. All populations undergo clonal expansions driven by de novo mutations but remain genetically and phenotypically diverse. The clones exhibit widespread genomic instability, rendering recessive de novo mutations homozygous and refining pre-existing variation. Finally, we decompose the fitness contributions of pre-existing and de novo mutations by creating a large recombinant library of adaptive mutations in an ensemble of genetic backgrounds. Both pre-existing and de novo mutations substantially contribute to fitness, and the relative fitness of pre-existing variants sets a selective threshold for new adaptive mutations.
Collapse
Affiliation(s)
- Ignacio Vázquez-García
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| | | | - Jing Li
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Andrej Fischer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Benjamin Barré
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Johan Hallin
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Elisa Alonso-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ville Mustonen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Gianni Liti
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France.
| |
Collapse
|
32
|
Fisher KJ, Buskirk SW, Vignogna RC, Marad DA, Lang GI. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae. PLoS Genet 2018; 14:e1007396. [PMID: 29799840 PMCID: PMC5991770 DOI: 10.1371/journal.pgen.1007396] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/07/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
Genome duplications are important evolutionary events that impact the rate and spectrum of beneficial mutations and thus the rate of adaptation. Laboratory evolution experiments initiated with haploid Saccharomyces cerevisiae cultures repeatedly experience whole-genome duplication (WGD). We report recurrent genome duplication in 46 haploid yeast populations evolved for 4,000 generations. We find that WGD confers a fitness advantage, and this immediate fitness gain is accompanied by a shift in genomic and phenotypic evolution. The presence of ploidy-enriched targets of selection and structural variants reveals that autodiploids utilize adaptive paths inaccessible to haploids. We find that autodiploids accumulate recessive deleterious mutations, indicating an increased susceptibility for nonadaptive evolution. Finally, we report that WGD results in a reduced adaptation rate, indicating a trade-off between immediate fitness gains and long-term adaptability. Whole genome duplications—the simultaneous doubling of each chromosome—can have a profound influence on evolution. Evidence of ancient whole genome duplications can be seen in most modern genomes. Experimental evolution, the long-term propagation of organisms under well-controlled laboratory conditions, yields valuable insight into the processes of adaptation and genome evolution. One interesting, and common, outcome of laboratory evolution experiments that start with haploid yeast populations is the emergence of diploid lineages via whole genome duplication. We show that, under our laboratory conditions, whole genome duplication provides a direct fitness benefit, and we identify several consequences of whole genome duplication on adaptation. Following whole-genome duplication, the rate of adaptation slows, the biological targets of selection change, and aneuploidies, copy-number variants and recessive lethal mutations accumulate. By studying the effect of whole genome duplication on adaptation, we can better understand how selection acts on ploidy, a fundamental biological parameter that varies considerably across life.
Collapse
Affiliation(s)
- Kaitlin J. Fisher
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Sean W. Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Ryan C. Vignogna
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Daniel A. Marad
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Gregory I. Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
- * E-mail:
| |
Collapse
|
33
|
Marad DA, Buskirk SW, Lang GI. Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids. Nat Ecol Evol 2018; 2:882-889. [PMID: 29581586 DOI: 10.1038/s41559-018-0503-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/14/2018] [Indexed: 01/10/2023]
Abstract
Ploidy varies considerably in nature. However, our understanding of the impact of ploidy on adaptation is incomplete. Many microbial evolution experiments characterize adaptation in haploid organisms, but few focus on diploid organisms. Here, we perform a 4,000-generation evolution experiment using diploid strains of the yeast Saccharomyces cerevisiae. We show that the rate of adaptation and spectrum of beneficial mutations are influenced by ploidy. Haldane's sieve effectively alters access to recessive beneficial mutations in diploid populations, leading to a slower rate of adaptation and a spectrum of beneficial mutations that is shifted towards dominant mutations. Genomic position also has an important role, as the prevalence of homozygous mutations is largely dependent on their proximity to a recombination hotspot. Our results demonstrate key aspects of diploid adaptation that have previously been understudied and provide support for several proposed theories.
Collapse
Affiliation(s)
- Daniel A Marad
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Sean W Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
34
|
Connallon T, Hall MD. Genetic constraints on adaptation: a theoretical primer for the genomics era. Ann N Y Acad Sci 2018; 1422:65-87. [PMID: 29363779 DOI: 10.1111/nyas.13536] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Genetic constraints are features of inheritance systems that slow or prohibit adaptation. Several population genetic mechanisms of constraint have received sustained attention within the field since they were first articulated in the early 20th century. This attention is now reflected in a rich, and still growing, theoretical literature on the genetic limits to adaptive change. In turn, empirical research on constraints has seen a rapid expansion over the last two decades in response to changing interests of evolutionary biologists, along with new technologies, expanding data sets, and creative analytical approaches that blend mathematical modeling with genomics. Indeed, one of the most notable and exciting features of recent progress in genetic constraints is the close connection between theoretical and empirical research. In this review, we discuss five major population genetic contexts of genetic constraint: genetic dominance, pleiotropy, fitness trade-offs between types of individuals of a population, sign epistasis, and genetic linkage between loci. For each, we outline historical antecedents of the theory, specific contexts where constraints manifest, and their quantitative consequences for adaptation. From each of these theoretical foundations, we discuss recent empirical approaches for identifying and characterizing genetic constraints, each grounded and motivated by this theory, and outline promising areas for future work.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
35
|
Genome Dynamics of Hybrid Saccharomyces cerevisiae During Vegetative and Meiotic Divisions. G3-GENES GENOMES GENETICS 2017; 7:3669-3679. [PMID: 28916648 PMCID: PMC5677154 DOI: 10.1534/g3.117.1135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutation and recombination are the major sources of genetic diversity in all organisms. In the baker’s yeast, all mutation rate estimates are in homozygous background. We determined the extent of genetic change through mutation and loss of heterozygosity (LOH) in a heterozygous Saccharomyces cerevisiae genome during successive vegetative and meiotic divisions. We measured genome-wide LOH and base mutation rates during vegetative and meiotic divisions in a hybrid (S288c/YJM789) S. cerevisiae strain. The S288c/YJM789 hybrid showed nearly complete reduction in heterozygosity within 31 generations of meioses and improved spore viability. LOH in the meiotic lines was driven primarily by the mating of spores within the tetrad. The S288c/YJM789 hybrid lines propagated vegetatively for the same duration as the meiotic lines, showed variable LOH (from 2 to 3% and up to 35%). Two of the vegetative lines with extensive LOH showed frequent and large internal LOH tracts that suggest a high frequency of recombination repair. These results suggest significant LOH can occur in the S288c/YJM789 hybrid during vegetative propagation presumably due to return to growth events. The average base substitution rates for the vegetative lines (1.82 × 10−10 per base per division) and the meiotic lines (1.22 × 10−10 per base per division) are the first genome-wide mutation rate estimates for a hybrid yeast. This study therefore provides a novel context for the analysis of mutation rates (especially in the context of detecting LOH during vegetative divisions), compared to previous mutation accumulation studies in yeast that used homozygous backgrounds.
Collapse
|
36
|
Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, Gladieux P. Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0057-2016. [PMID: 28936945 PMCID: PMC11687547 DOI: 10.1128/microbiolspec.funk-0057-2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
The first eukaryotic genome to be sequenced was fungal, and there continue to be more sequenced genomes in the kingdom Fungi than in any other eukaryotic kingdom. Comparison of these genomes reveals many sources of genetic variation, from single nucleotide polymorphisms to horizontal gene transfer and on to changes in the arrangement and number of chromosomes, not to mention endofungal bacteria and viruses. Population genomics shows that all sources generate variation all the time and implicate natural selection as the force maintaining genome stability. Variation in wild populations is a rich resource for associating genetic variation with phenotypic variation, whether through quantitative trait locus mapping, genome-wide association studies, or reverse ecology. Subjects of studies associating genetic and phenotypic variation include model fungi, e.g., Saccharomyces and Neurospora, but pioneering studies have also been made with fungi pathogenic to plants, e.g., Pyricularia (= Magnaporthe), Zymoseptoria, and Fusarium, and to humans, e.g., Coccidioides, Cryptococcus, and Candida.
Collapse
Affiliation(s)
- John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102
| | - Sara Branco
- Département Génétique et Ecologie Evolutives Laboratoire Ecologie, Systématique et Evolution, CNRS-UPS-AgroParisTech, Université de Paris-Sud, 91405 Orsay, France, and Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717
| | - Cheng Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Chris Hann-Soden
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Iman Sylvain
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Pierre Gladieux
- INRA, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
37
|
Bui DT, Friedrich A, Al-Sweel N, Liti G, Schacherer J, Aquadro CF, Alani E. Mismatch Repair Incompatibilities in Diverse Yeast Populations. Genetics 2017; 205:1459-1471. [PMID: 28193730 PMCID: PMC5378106 DOI: 10.1534/genetics.116.199513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
An elevated mutation rate can provide cells with a source of mutations to adapt to changing environments. We identified a negative epistatic interaction involving naturally occurring variants in the MLH1 and PMS1 mismatch repair (MMR) genes of Saccharomyces cerevisiae We hypothesized that this MMR incompatibility, created through mating between divergent S. cerevisiae, yields mutator progeny that can rapidly but transiently adapt to an environmental stress. Here we analyzed the MLH1 and PMS1 genes across 1010 S. cerevisiae natural isolates spanning a wide range of ecological sources (tree exudates, Drosophila, fruits, and various fermentation and clinical isolates) and geographical sources (Europe, America, Africa, and Asia). We identified one homozygous clinical isolate and 18 heterozygous isolates containing the incompatible MMR genotype. The MLH1-PMS1 gene combination isolated from the homozygous clinical isolate conferred a mutator phenotype when expressed in the S288c laboratory background. Using a novel reporter to measure mutation rates, we showed that the overall mutation rate in the homozygous incompatible background was similar to that seen in compatible strains, indicating the presence of suppressor mutations in the clinical isolate that lowered its mutation rate. This observation and the identification of 18 heterozygous isolates, which can lead to MMR incompatible genotypes in the offspring, are consistent with an elevated mutation rate rapidly but transiently facilitating adaptation. To avoid long-term fitness costs, the incompatibility is apparently buffered by mating or by acquiring suppressors. These observations highlight effective strategies in eukaryotes to avoid long-term fitness costs associated with elevated mutation rates.
Collapse
Affiliation(s)
- Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice, 06107 Nice, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
38
|
Uecker H. Evolutionary rescue in randomly mating, selfing, and clonal populations. Evolution 2017; 71:845-858. [DOI: 10.1111/evo.13191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/24/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Hildegard Uecker
- IST Austria, Am Campus 1; 3400 Klosterneuburg Austria
- Institute of Integrative Biology; ETH Zurich, Universitätstrasse 16; 8092 Zurich Switzerland
| |
Collapse
|
39
|
Ono J, Gerstein AC, Otto SP. Widespread Genetic Incompatibilities between First-Step Mutations during Parallel Adaptation of Saccharomyces cerevisiae to a Common Environment. PLoS Biol 2017; 15:e1002591. [PMID: 28114370 PMCID: PMC5256870 DOI: 10.1371/journal.pbio.1002591] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022] Open
Abstract
Independently evolving populations may adapt to similar selection pressures via different genetic changes. The interactions between such changes, such as in a hybrid individual, can inform us about what course adaptation may follow and allow us to determine whether gene flow would be facilitated or hampered following secondary contact. We used Saccharomyces cerevisiae to measure the genetic interactions between first-step mutations that independently evolved in the same biosynthetic pathway following exposure to the fungicide nystatin. We found that genetic interactions are prevalent and predominantly negative, with the majority of mutations causing lower growth when combined in a double mutant than when alone as a single mutant (sign epistasis). The prevalence of sign epistasis is surprising given the small number of mutations tested and runs counter to expectations for mutations arising in a single biosynthetic pathway in the face of a simple selective pressure. Furthermore, in one third of pairwise interactions, the double mutant grew less well than either single mutant (reciprocal sign epistasis). The observation of reciprocal sign epistasis among these first adaptive mutations arising in the same genetic background indicates that partial postzygotic reproductive isolation could evolve rapidly between populations under similar selective pressures, even with only a single genetic change in each. The nature of the epistatic relationships was sensitive, however, to the level of drug stress in the assay conditions, as many double mutants became fitter than the single mutants at higher concentrations of nystatin. We discuss the implications of these results both for our understanding of epistatic interactions among beneficial mutations in the same biochemical pathway and for speciation.
Collapse
Affiliation(s)
- Jasmine Ono
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aleeza C. Gerstein
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P. Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Payen C, Sunshine AB, Ong GT, Pogachar JL, Zhao W, Dunham MJ. High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations. PLoS Genet 2016; 12:e1006339. [PMID: 27727276 PMCID: PMC5065121 DOI: 10.1371/journal.pgen.1006339] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
High-throughput sequencing has enabled genetic screens that can rapidly identify mutations that occur during experimental evolution. The presence of a mutation in an evolved lineage does not, however, constitute proof that the mutation is adaptive, given the well-known and widespread phenomenon of genetic hitchhiking, in which a non-adaptive or even detrimental mutation can co-occur in a genome with a beneficial mutation and the combined genotype is carried to high frequency by selection. We approximated the spectrum of possible beneficial mutations in Saccharomyces cerevisiae using sets of single-gene deletions and amplifications of almost all the genes in the S. cerevisiae genome. We determined the fitness effects of each mutation in three different nutrient-limited conditions using pooled competitions followed by barcode sequencing. Although most of the mutations were neutral or deleterious, ~500 of them increased fitness. We then compared those results to the mutations that actually occurred during experimental evolution in the same three nutrient-limited conditions. On average, ~35% of the mutations that occurred during experimental evolution were predicted by the systematic screen to be beneficial. We found that the distribution of fitness effects depended on the selective conditions. In the phosphate-limited and glucose-limited conditions, a large number of beneficial mutations of nearly equivalent, small effects drove the fitness increases. In the sulfate-limited condition, one type of mutation, the amplification of the high-affinity sulfate transporter, dominated. In the absence of that mutation, evolution in the sulfate-limited condition involved mutations in other genes that were not observed previously—but were predicted by the systematic screen. Thus, gross functional screens have the potential to predict and identify adaptive mutations that occur during experimental evolution. Experimental evolution allows us to observe evolution in real time. New advances in genome sequencing make it trivial to discover the mutations that have arisen in evolved cultures; however, linking those mutations to particular adaptive traits remains difficult. We evaluated the fitness impacts of thousands of single-gene losses and amplifications in yeast. We discovered that only a fraction of the hundreds of possible beneficial mutations were actually detected in evolution experiments performed previously. Our results provide evidence that 35% of the mutations identified in experimentally evolved populations are advantageous and that the distribution of beneficial fitness effects depends on the genetic background and the selective conditions. Furthermore, we show that it is possible to select for alternative mutations that improve fitness by blocking particularly high-fitness routes to adaptation.
Collapse
Affiliation(s)
- Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Anna B. Sunshine
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giang T. Ong
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jamie L. Pogachar
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Wei Zhao
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
41
|
Fraïsse C, Gunnarsson PA, Roze D, Bierne N, Welch JJ. The genetics of speciation: Insights from Fisher's geometric model. Evolution 2016; 70:1450-64. [PMID: 27252049 DOI: 10.1111/evo.12968] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/22/2016] [Indexed: 12/13/2022]
Abstract
Research in speciation genetics has uncovered many robust patterns in intrinsic reproductive isolation, and fitness landscape models have been useful in interpreting these patterns. Here, we examine fitness landscapes based on Fisher's geometric model. Such landscapes are analogous to models of optimizing selection acting on quantitative traits, and have been widely used to study adaptation and the distribution of mutational effects. We show that, with a few modifications, Fisher's model can generate all of the major findings of introgression studies (including "speciation genes" with strong deleterious effects, complex epistasis and asymmetry), and the major patterns in overall hybrid fitnesses (including Haldane's Rule, the speciation clock, heterosis, hybrid breakdown, and male-female asymmetry in the F1). We compare our approach to alternative modeling frameworks that assign fitnesses to genotypes by identifying combinations of incompatible alleles. In some cases, the predictions are importantly different. For example, Fisher's model can explain conflicting empirical results about the rate at which incompatibilities accumulate with genetic divergence. In other cases, the predictions are identical. For example, the quality of reproductive isolation is little affected by the manner in which populations diverge.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Université Montpellier, Institut des Sciences de l'Évolution, UMR 5554, Montpellier Cedex 05, France.,CNRS, Institut des Sciences de l'Évolution, UMR 5554, OREME Station Marine, Sète, France.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - P Alexander Gunnarsson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Denis Roze
- CNRS, UMI 3614, Evolutionary Biology and Ecology of Algae, Roscoff, France.,Sorbonne Universités, UPMC University Paris VI, Roscoff, France
| | - Nicolas Bierne
- Université Montpellier, Institut des Sciences de l'Évolution, UMR 5554, Montpellier Cedex 05, France.,CNRS, Institut des Sciences de l'Évolution, UMR 5554, OREME Station Marine, Sète, France
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| |
Collapse
|
42
|
Kasuga T, Bui M, Bernhardt E, Swiecki T, Aram K, Cano LM, Webber J, Brasier C, Press C, Grünwald NJ, Rizzo DM, Garbelotto M. Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum. BMC Genomics 2016; 17:385. [PMID: 27206972 PMCID: PMC4875591 DOI: 10.1186/s12864-016-2717-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environments conducive to the generation of aneuploids, the underlying genetic mechanisms, and the contribution of aneuploidy to invasiveness are underexplored. We studied phenotypic diversification and associated genome changes in Phytophthora ramorum, a highly destructive oomycete pathogen with a wide host-range that causes Sudden Oak Death in western North America and Sudden Larch Death in the UK. Introduced populations of the pathogen are exclusively clonal. In California, oak (Quercus spp.) isolates obtained from trunk cankers frequently exhibit host-dependent, atypical phenotypes called non-wild type (nwt), apparently without any host-associated population differentiation. Based on a large survey of genotypes from different hosts, we previously hypothesized that the environment in oak cankers may be responsible for the observed phenotypic diversification in P. ramorum. RESULTS We show that both normal wild type (wt) and nwt phenotypes were obtained when wt P. ramorum isolates from the foliar host California bay (Umbellularia californica) were re-isolated from cankers of artificially-inoculated canyon live oak (Q. chrysolepis). We also found comparable nwt phenotypes in P. ramorum isolates from a bark canker of Lawson cypress (Chamaecyparis lawsoniana) in the UK; previously nwt was not known to occur in this pathogen population. High-throughput sequencing-based analyses identified major genomic alterations including partial aneuploidy and copy-neutral loss of heterozygosity predominantly in nwt isolates. Chromosomal breakpoints were located at or near transposons. CONCLUSION This work demonstrates that major genome alterations of a pathogen can be induced by its host species. This is an undocumented type of plant-microbe interaction, and its contribution to pathogen evolution is yet to be investigated, but one of the potential collateral effects of nwt phenotypes may be host survival.
Collapse
Affiliation(s)
- Takao Kasuga
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, California, 95616, USA
| | - Mai Bui
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, California, 95616, USA
| | | | | | - Kamyar Aram
- Department of Plant Pathology, University of California, Davis, California, 95616, USA
| | - Liliana M Cano
- Department of Plant Pathology, University of Florida, IFAS, Indian River Research and Education Center, Fort Pierce, Florida, 34945, USA
| | - Joan Webber
- Forest Research, Farnham, Surrey, GU10 4LH, UK
| | | | - Caroline Press
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, 97330, USA
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, 97330, USA
| | - David M Rizzo
- Department of Plant Pathology, University of California, Davis, California, 95616, USA
| | - Matteo Garbelotto
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 947020, USA.
| |
Collapse
|
43
|
Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae. Genetics 2016; 203:1401-13. [PMID: 27194750 DOI: 10.1534/genetics.115.185165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/15/2016] [Indexed: 12/31/2022] Open
Abstract
Adaptation in diploids is predicted to proceed via mutations that are at least partially dominant in fitness. Recently, we argued that many adaptive mutations might also be commonly overdominant in fitness. Natural (directional) selection acting on overdominant mutations should drive them into the population but then, instead of bringing them to fixation, should maintain them as balanced polymorphisms via heterozygote advantage. If true, this would make adaptive evolution in sexual diploids differ drastically from that of haploids. The validity of this prediction has not yet been tested experimentally. Here, we performed four replicate evolutionary experiments with diploid yeast populations (Saccharomyces cerevisiae) growing in glucose-limited continuous cultures. We sequenced 24 evolved clones and identified initial adaptive mutations in all four chemostats. The first adaptive mutations in all four chemostats were three copy number variations, all of which proved to be overdominant in fitness. The fact that fitness overdominant mutations were always the first step in independent adaptive walks supports the prediction that heterozygote advantage can arise as a common outcome of directional selection in diploids and demonstrates that overdominance of de novo adaptive mutations in diploids is not rare.
Collapse
|
44
|
Gerstein AC, Berman J. Shift and adapt: the costs and benefits of karyotype variations. Curr Opin Microbiol 2015; 26:130-6. [PMID: 26321163 PMCID: PMC4577464 DOI: 10.1016/j.mib.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/06/2023]
Abstract
Variation is the spice of life or, in the case of evolution, variation is the necessary material on which selection can act to enable adaptation. Karyotypic variation in ploidy (the number of homologous chromosome sets) and aneuploidy (imbalance in the number of chromosomes) are fundamentally different than other types of genomic variants. Karyotypic variation emerges through different molecular mechanisms than other mutational events, and unlike mutations that alter the genome at the base pair level, rapid reversion to the wild type chromosome number is often possible. Although karyotypic variation has long been noted and discussed by biologists, interest in the importance of karyotypic variants in evolutionary processes has spiked in recent years, and much remains to be discovered about how karyotypic variants are produced and subsequently selected.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; Department of Molecular, Cellular, Developmental Biology and Genetics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; Department of Molecular, Cellular, Developmental Biology and Genetics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
45
|
Abstract
Copper is a micronutrient essential for growth due to its role as a cofactor in enzymes involved in respiration, defense against oxidative damage, and iron uptake. Yet too much of a good thing can be lethal, and yeast cells typically do not have tolerance to copper levels much beyond the concentration in their ancestral environment. Here, we report a short-term evolutionary study of Saccharomyces cerevisiae exposed to levels of copper sulfate that are inhibitory to the initial strain. We isolated and identified adaptive mutations soon after they arose, reducing the number of neutral mutations, to determine the first genetic steps that yeast take when adapting to copper. We analyzed 34 such strains through whole-genome sequencing and by assaying fitness within different environments; we also isolated a subset of mutations through tetrad analysis of four lines. We identified a multilayered evolutionary response. In total, 57 single base-pair mutations were identified across the 34 lines. In addition, gene amplification of the copper metallothionein protein, CUP1-1, was rampant, as was chromosomal aneuploidy. Four other genes received multiple, independent mutations in different lines (the vacuolar transporter genes VTC1 and VTC4; the plasma membrane H+-ATPase PMA1; and MAM3, a protein required for normal mitochondrial morphology). Analyses indicated that mutations in all four genes, as well as CUP1-1 copy number, contributed significantly to explaining variation in copper tolerance. Our study thus finds that evolution takes both common and less trodden pathways toward evolving tolerance to an essential, but highly toxic, micronutrient.
Collapse
|