1
|
Lopez Martinez D, Svejstrup JQ. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. J Mol Biol 2025; 437:168735. [PMID: 39098594 DOI: 10.1016/j.jmb.2024.168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of a diverse set of RNA molecules, including protein-coding messenger RNAs (mRNAs) and many short non-coding RNAs (ncRNAs). For this purpose, RNAPII relies on a multitude of factors that regulate the transcription cycle, from initiation and promoter-proximal pausing, through elongation and finally termination. RNAPII transcription termination at the end of genes ensures the release of RNAPII from the DNA template and its efficient recycling for further rounds of transcription. Termination of RNAPII is tightly coupled to 3'-end mRNA processing, which constitutes an important trigger for the subsequent transcription termination event. In this review, we discuss the current understanding of RNAPII termination mechanisms, focusing on 'canonical' termination at the 3'-end of genes. We also integrate the allosteric and 'torpedo' models into a unified model of termination, and describe the different termination factors that have been identified to date, paying special attention to the human factors and their mechanism of action at the molecular level. Indeed, in recent years the development of novel approaches in structural biology, biochemistry and cell biology have together led to a more detailed comprehension of the different mechanisms of RNAPII termination, and a better understanding of their importance in regulating gene expression, especially under cellular stress and pathological situations.
Collapse
Affiliation(s)
- David Lopez Martinez
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Q Svejstrup
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Estell C, West S. ZC3H4/Restrictor Exerts a Stranglehold on Pervasive Transcription. J Mol Biol 2025; 437:168707. [PMID: 39002716 DOI: 10.1016/j.jmb.2024.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The regulation of transcription by RNA polymerase II (RNAPII) underpins all cellular processes and is perturbed in thousands of diseases. In humans, RNAPII transcribes ∼20000 protein-coding genes and engages in apparently futile non-coding transcription at thousands of other sites. Despite being so ubiquitous, this transcription is usually attenuated soon after initiation and the resulting products are immediately degraded by the nuclear exosome. We and others have recently described a new complex, "Restrictor", which appears to control such unproductive transcription. Underpinned by the RNA binding protein, ZC3H4, Restrictor curtails unproductive/pervasive transcription genome-wide. Here, we discuss these recent discoveries and speculate on some of the many unknowns regarding Restrictor function and mechanism.
Collapse
Affiliation(s)
- Chris Estell
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Steven West
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
Bentley DL. Multiple Forms and Functions of Premature Termination by RNA Polymerase II. J Mol Biol 2025; 437:168743. [PMID: 39127140 PMCID: PMC11649484 DOI: 10.1016/j.jmb.2024.168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed "premature" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are "not wanted" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.
Collapse
Affiliation(s)
- David L Bentley
- Dept. Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Diao AJ, Su BG, Vos SM. Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond. J Mol Biol 2025; 437:168779. [PMID: 39241983 DOI: 10.1016/j.jmb.2024.168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.
Collapse
Affiliation(s)
- Annette J Diao
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
5
|
Davidson L, Rouvière JO, Sousa-Luís R, Nojima T, Proudfoot NJ, Jensen TH, West S. DNA-directed termination of mammalian RNA polymerase II. Genes Dev 2024; 38:998-1019. [PMID: 39496457 DOI: 10.1101/gad.351978.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
The best-studied mechanism of eukaryotic RNA polymerase II (RNAPII) transcriptional termination involves polyadenylation site-directed cleavage of the nascent RNA. The RNAPII-associated cleavage product is then degraded by XRN2, dislodging RNAPII from the DNA template. In contrast, prokaryotic RNAP and eukaryotic RNAPIII often terminate directly at T-tracts in the coding DNA strand. Here, we demonstrate a similar and omnipresent capability for mammalian RNAPII. Importantly, this termination mechanism does not require upstream RNA cleavage. Accordingly, T-tract-dependent termination can take place when XRN2 cannot be engaged. We show that T-tracts can terminate snRNA transcription independently of RNA cleavage by the Integrator complex. Importantly, we found genome-wide termination at T-tracts in promoter-proximal regions but not within protein-coding gene bodies. XRN2-dependent termination dominates downstream from protein-coding genes, but the T-tract process is sometimes used. Overall, we demonstrate global DNA-directed attrition of RNAPII transcription, suggesting that RNAPs retain the potential to terminate over T-rich sequences throughout evolution.
Collapse
Affiliation(s)
- Lee Davidson
- The Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Jérôme O Rouvière
- Department of Molecular Biology and Genetics, Aarhus University, 8000C Aarhus, Denmark
| | - Rui Sousa-Luís
- Sir William Dunn School of Pathology, Oxford OX1 3RE, United Kingdom
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, Oxford OX1 3RE, United Kingdom
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000C Aarhus, Denmark;
| | - Steven West
- The Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom;
| |
Collapse
|
6
|
Manzo SG, Mazouzi A, Leemans C, van Schaik T, Neyazi N, van Ruiten MS, Rowland BD, Brummelkamp TR, van Steensel B. Chromatin protein complexes involved in gene repression in lamina-associated domains. EMBO J 2024; 43:5260-5287. [PMID: 39322756 PMCID: PMC11535540 DOI: 10.1038/s44318-024-00214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Lamina-associated domains (LADs) are large chromatin regions that are associated with the nuclear lamina (NL) and form a repressive environment for transcription. The molecular players that mediate gene repression in LADs are currently unknown. Here, we performed FACS-based whole-genome genetic screens in human cells using LAD-integrated fluorescent reporters to identify such regulators. Surprisingly, the screen identified very few NL proteins, but revealed roles for dozens of known chromatin regulators. Among these are the negative elongation factor (NELF) complex and interacting factors involved in RNA polymerase pausing, suggesting that regulation of transcription elongation is a mechanism to repress transcription in LADs. Furthermore, the chromatin remodeler complex BAF and the activation complex Mediator can work both as activators and repressors in LADs, depending on the local context and possibly by rewiring heterochromatin. Our data indicate that the fundamental regulators of transcription and chromatin remodeling, rather than interaction with NL proteins, play a major role in transcription regulation within LADs.
Collapse
Affiliation(s)
- Stefano G Manzo
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Abdelghani Mazouzi
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christ Leemans
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Tom van Schaik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Nadia Neyazi
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Marjon S van Ruiten
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Li T, Zeng F, Li Y, Li H, Wu J. The Integrator complex: an emerging complex structure involved in the regulation of gene expression by targeting RNA polymerase II. Funct Integr Genomics 2024; 24:192. [PMID: 39424688 DOI: 10.1007/s10142-024-01479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The Integrator complex is a multisubunit complex that participates in the processing of small nuclear RNA molecules in eukaryotic cells by cleaving the 3' end. In protein-coding genes, Integrator is a key regulator of promoter-proximal pausing, release, and recruitment of RNA polymerase II. Research on Integrator has revealed its critical role in the regulation of gene expression and RNA processing. Dysregulation of the Integrator complex has been implicated in a variety of human diseases including cancer and developmental disorders. Therefore, understanding the structure and function of the Integrator complex is critical to uncovering the mechanisms of gene expression and developing potential therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Tingyue Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fulei Zeng
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yang Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Hu Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jiayuan Wu
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
8
|
Porozhan Y, Carstensen M, Thouroude S, Costallat M, Rachez C, Batsché E, Petersen T, Christensen T, Muchardt C. Defective Integrator activity shapes the transcriptome of patients with multiple sclerosis. Life Sci Alliance 2024; 7:e202402586. [PMID: 39029934 PMCID: PMC11259605 DOI: 10.26508/lsa.202402586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.
Collapse
Affiliation(s)
- Yevheniia Porozhan
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Mikkel Carstensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Forum, Aarhus, Denmark
| | - Sandrine Thouroude
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Mickael Costallat
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Christophe Rachez
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Eric Batsché
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Thor Petersen
- Department of Neurology, Hospital of Southern Jutland and Research Unit in Neurology, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Christian Muchardt
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Sabath K, Qiu C, Jonas S. Assembly mechanism of Integrator's RNA cleavage module. Mol Cell 2024; 84:2882-2899.e10. [PMID: 39032489 DOI: 10.1016/j.molcel.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
The modular Integrator complex is a transcription regulator that is essential for embryonic development. It attenuates coding gene expression via premature transcription termination and performs 3'-processing of non-coding RNAs. For both activities, Integrator requires endonuclease activity that is harbored by an RNA cleavage module consisting of INTS4-9-11. How correct assembly of Integrator modules is achieved remains unknown. Here, we show that BRAT1 and WDR73 are critical biogenesis factors for the human cleavage module. They maintain INTS9-11 inactive during maturation by physically blocking the endonuclease active site and prevent premature INTS4 association. Furthermore, BRAT1 facilitates import of INTS9-11 into the nucleus, where it is joined by INTS4. Final BRAT1 release requires locking of the mature cleavage module conformation by inositol hexaphosphate (IP6). Our data explain several neurodevelopmental disorders caused by BRAT1, WDR73, and INTS11 mutations as Integrator assembly defects and reveal that IP6 is an essential co-factor for cleavage module maturation.
Collapse
Affiliation(s)
- Kevin Sabath
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Chunhong Qiu
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Razew M, Fraudeau A, Pfleiderer MM, Linares R, Galej WP. Structural basis of the Integrator complex assembly and association with transcription factors. Mol Cell 2024; 84:2542-2552.e5. [PMID: 38823386 DOI: 10.1016/j.molcel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Integrator is a multi-subunit protein complex responsible for premature transcription termination of coding and non-coding RNAs. This is achieved via two enzymatic activities, RNA endonuclease and protein phosphatase, acting on the promoter-proximally paused RNA polymerase Ⅱ (RNAPⅡ). Yet, it remains unclear how Integrator assembly and recruitment are regulated and what the functions of many of its core subunits are. Here, we report the structures of two human Integrator sub-complexes: INTS10/13/14/15 and INTS5/8/10/15, and an integrative model of the fully assembled Integrator bound to the RNAPⅡ paused elongating complex (PEC). An in silico protein-protein interaction screen of over 1,500 human transcription factors (TFs) identified ZNF655 as a direct interacting partner of INTS13 within the fully assembled Integrator. We propose a model wherein INTS13 acts as a platform for the recruitment of TFs that could modulate the stability of the Integrator's association at specific loci and regulate transcription attenuation of the target genes.
Collapse
Affiliation(s)
- Michal Razew
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Angelique Fraudeau
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Moritz M Pfleiderer
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Romain Linares
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
11
|
Sabath K, Nabih A, Arnold C, Moussa R, Domjan D, Zaugg JB, Jonas S. Basis of gene-specific transcription regulation by the Integrator complex. Mol Cell 2024; 84:2525-2541.e12. [PMID: 38906142 DOI: 10.1016/j.molcel.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
The Integrator complex attenuates gene expression via the premature termination of RNA polymerase II (RNAP2) at promoter-proximal pausing sites. It is required for stimulus response, cell differentiation, and neurodevelopment, but how gene-specific and adaptive regulation by Integrator is achieved remains unclear. Here, we identify two sites on human Integrator subunits 13/14 that serve as binding hubs for sequence-specific transcription factors (TFs) and other transcription effector complexes. When Integrator is attached to paused RNAP2, these hubs are positioned upstream of the transcription bubble, consistent with simultaneous TF-promoter tethering. The TFs co-localize with Integrator genome-wide, increase Integrator abundance on target genes, and co-regulate responsive transcriptional programs. For instance, sensory cilia formation induced by glucose starvation depends on Integrator-TF contacts. Our data suggest TF-mediated promoter recruitment of Integrator as a widespread mechanism for targeted transcription regulation.
Collapse
Affiliation(s)
- Kevin Sabath
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Amena Nabih
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Rim Moussa
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - David Domjan
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Stefanie Jonas
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Fianu I, Ochmann M, Walshe JL, Dybkov O, Cruz JN, Urlaub H, Cramer P. Structural basis of Integrator-dependent RNA polymerase II termination. Nature 2024; 629:219-227. [PMID: 38570683 PMCID: PMC11062913 DOI: 10.1038/s41586-024-07269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.
Collapse
Affiliation(s)
- Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Moritz Ochmann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - James L Walshe
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Joseph Neos Cruz
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
13
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Zheng H, Jin Q, Wang X, Qi Y, Liu W, Ren Y, Zhao D, Xavier Chen F, Cheng J, Chen X, Xu Y. Structural basis of INTAC-regulated transcription. Protein Cell 2023; 14:698-702. [PMID: 36869814 PMCID: PMC10501182 DOI: 10.1093/procel/pwad010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Affiliation(s)
- Hai Zheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qianwei Jin
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jingdong Cheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Hu S, Peng L, Song A, Ji YX, Cheng J, Wang M, Chen FX. INTAC endonuclease and phosphatase modules differentially regulate transcription by RNA polymerase II. Mol Cell 2023; 83:1588-1604.e5. [PMID: 37080207 DOI: 10.1016/j.molcel.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023]
Abstract
Gene expression in metazoans is controlled by promoter-proximal pausing of RNA polymerase II, which can undergo productive elongation or promoter-proximal termination. Integrator-PP2A (INTAC) plays a crucial role in determining the fate of paused polymerases, but the underlying mechanisms remain unclear. Here, we establish a rapid degradation system to dissect the functions of INTAC RNA endonuclease and phosphatase modules. We find that both catalytic modules function at most if not all active promoters and enhancers, yet differentially affect polymerase fate. The endonuclease module induces promoter-proximal termination, with its disruption leading to accumulation of elongation-incompetent polymerases and downregulation of highly expressed genes, while elongation-competent polymerases accumulate at lowly expressed genes and non-coding elements, leading to their upregulation. The phosphatase module primarily prevents the release of paused polymerases and limits transcriptional activation, especially for highly paused genes. Thus, both INTAC catalytic modules have unexpectedly general yet distinct roles in dynamic transcriptional control.
Collapse
Affiliation(s)
- Shibin Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Linna Peng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aixia Song
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu-Xin Ji
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingdong Cheng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mengyun Wang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Suzuki H, Furugori K, Abe R, Ogawa S, Ito S, Akiyama T, Horiuchi K, Takahashi H. MED26-containing Mediator may orchestrate multiple transcription processes through organization of nuclear bodies. Bioessays 2023; 45:e2200178. [PMID: 36852638 DOI: 10.1002/bies.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
Mediator is a coregulatory complex that plays essential roles in multiple processes of transcription regulation. One of the human Mediator subunits, MED26, has a role in recruitment of the super elongation complex (SEC) to polyadenylated genes and little elongation complex (LEC) to non-polyadenylated genes, including small nuclear RNAs (snRNAs) and replication-dependent histone (RDH) genes. MED26-containing Mediator plays a role in 3' Pol II pausing at the proximal region of transcript end sites in RDH genes through recruitment of Cajal bodies (CBs) to histone locus bodies (HLBs). This finding suggests that Mediator is involved in the association of CBs with HLBs to facilitate 3' Pol II pausing and subsequent 3'-end processing by supplying 3'-end processing factors from CBs. Thus, we argue the possibility that Mediator is involved in the organization of nuclear bodies to orchestrate multiple processes of gene transcription.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Kazuki Furugori
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Shintaro Ogawa
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Sayaka Ito
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Tomohiko Akiyama
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Keiko Horiuchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
17
|
Xu J, Liu X, Wu S, Zhang D, Liu X, Xia P, Ling J, Zheng K, Xu M, Shen Y, Zhang J, Yu P. RNA-binding proteins in metabolic-associated fatty liver disease (MAFLD): From mechanism to therapy. Biosci Trends 2023; 17:21-37. [PMID: 36682800 DOI: 10.5582/bst.2022.01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease globally and seriously increases the public health burden, affecting approximately one quarter of the world population. Recently, RNA binding proteins (RBPs)-related pathogenesis of MAFLD has received increasing attention. RBPs, vividly called the gate keepers of MAFLD, play an important role in the development of MAFLD through transcription regulation, alternative splicing, alternative polyadenylation, stability and subcellular localization. In this review, we describe the mechanisms of different RBPs in the occurrence and development of MAFLD, as well as list some drugs that can improve MAFLD by targeting RBPs. Considering the important role of RBPs in the development of MAFLD, elucidating the RNA regulatory networks involved in RBPs will facilitate the design of new drugs and biomarkers discovery.
Collapse
Affiliation(s)
- Jiawei Xu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuqin Wu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai Zheng
- Medical Care Strategic Customer Department, China Merchants Bank Shenzhen Branch, Shenzhen, Guangdong, Guangdong, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
19
|
Almentina Ramos Shidi F, Cologne A, Delous M, Besson A, Putoux A, Leutenegger AL, Lacroix V, Edery P, Mazoyer S, Bordonné R. Mutations in the non-coding RNU4ATAC gene affect the homeostasis and function of the Integrator complex. Nucleic Acids Res 2023; 51:712-727. [PMID: 36537210 PMCID: PMC9881141 DOI: 10.1093/nar/gkac1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Various genetic diseases associated with microcephaly and developmental defects are due to pathogenic variants in the U4atac small nuclear RNA (snRNA), a component of the minor spliceosome essential for the removal of U12-type introns from eukaryotic mRNAs. While it has been shown that a few RNU4ATAC mutations result in impaired binding of essential protein components, the molecular defects of the vast majority of variants are still unknown. Here, we used lymphoblastoid cells derived from RNU4ATAC compound heterozygous (g.108_126del;g.111G>A) twin patients with MOPD1 phenotypes to analyze the molecular consequences of the mutations on small nuclear ribonucleoproteins (snRNPs) formation and on splicing. We found that the U4atac108_126del mutant is unstable and that the U4atac111G>A mutant as well as the minor di- and tri-snRNPs are present at reduced levels. Our results also reveal the existence of 3'-extended snRNA transcripts in patients' cells. Moreover, we show that the mutant cells have alterations in splicing of INTS7 and INTS10 minor introns, contain lower levels of the INTS7 and INTS10 proteins and display changes in the assembly of Integrator subunits. Altogether, our results show that compound heterozygous g.108_126del;g.111G>A mutations induce splicing defects and affect the homeostasis and function of the Integrator complex.
Collapse
Affiliation(s)
- Fatimat Almentina Ramos Shidi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| | - Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | | | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| |
Collapse
|
20
|
Sabath K, Jonas S. Take a break: Transcription regulation and RNA processing by the Integrator complex. Curr Opin Struct Biol 2022; 77:102443. [PMID: 36088798 DOI: 10.1016/j.sbi.2022.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
The metazoan-specific Integrator complex is a >1.5 MDa machinery that interacts with RNA polymerase II (RNAP2) to attenuate coding gene transcription by early termination close to transcription start sites. Using a highly related mechanism, Integrator also performs the initial 3'-end processing step for many non-coding RNAs. Its transcription regulation functions are essential for cell differentiation and response to external stimuli. Recent studies revealed that the complex incorporates phosphatase PP2A to counteract phosphorylation reactions that are required for transcription elongation. Structures of Integrator bound to RNAP2 explain the basis for its recruitment to promoter proximal RNAP2 by recognition of its paused state. Furthermore, several studies indicate that Integrator's cleavage activity is regulated at multiple levels through activators, modifications, and small molecules.
Collapse
Affiliation(s)
- Kevin Sabath
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Switzerland.
| |
Collapse
|
21
|
Bragado L, Magalnik M, Mammi P, Romero A, Gaioli N, Pozzi B, Srebrow A. SUMO conjugation regulates the activity of the Integrator complex. Nucleic Acids Res 2022; 50:12444-12461. [PMID: 36454007 PMCID: PMC9757034 DOI: 10.1093/nar/gkac1055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
RNA polymerase II (RNAPII) transcribes small nuclear RNA (snRNA) genes in close proximity to Cajal bodies, subnuclear compartments that depend on the SUMO isopeptidase USPL1 for their assembly. We show here that overexpression of USPL1 as well as of another nuclear SUMO isopeptidase, SENP6, alters snRNA 3'-end cleavage, a process carried out by the Integrator complex. Beyond its role in snRNA biogenesis, this complex is responsible for regulating the expression of different RNAPII transcripts. While several subunits of the complex are SUMO conjugation substrates, we found that the SUMOylation of the INTS11 subunit is regulated by USPL1 and SENP6. We defined Lys381, Lys462 and Lys475 as bona fide SUMO attachment sites on INTS11 and observed that SUMOylation of this protein modulates its subcellular localization and is required for Integrator activity. Moreover, while an INTS11 SUMOylation-deficient mutant is still capable of interacting with INTS4 and INTS9, its interaction with other subunits of the complex is affected. These findings point to a regulatory role for SUMO conjugation on Integrator activity and suggest the involvement of INTS11 SUMOylation in the assembly of the complex. Furthermore, this work adds Integrator-dependent RNA processing to the growing list of cellular processes regulated by SUMO conjugation.
Collapse
Affiliation(s)
- Laureano Bragado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Melina Magalnik
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Pablo Mammi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Agustín Romero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Nicolás Gaioli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | |
Collapse
|
22
|
Aoi Y, Shah AP, Ganesan S, Soliman SHA, Cho BK, Goo YA, Kelleher NL, Shilatifard A. SPT6 functions in transcriptional pause/release via PAF1C recruitment. Mol Cell 2022; 82:3412-3423.e5. [PMID: 35973425 PMCID: PMC9714687 DOI: 10.1016/j.molcel.2022.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 01/24/2023]
Abstract
It is unclear how various factors functioning in the transcriptional elongation by RNA polymerase II (RNA Pol II) cooperatively regulate pause/release and productive elongation in living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in the release of paused RNA Pol II into gene bodies through an impaired recruitment of PAF1C. Short genes demonstrate a release with increased mature transcripts, whereas long genes are released but fail to yield mature transcripts, due to a reduced processivity resulting from both SPT6 and PAF1C loss. Unexpectedly, SPT6 depletion causes an association of NELF with the elongating RNA Pol II on gene bodies, without any observed functional significance on transcriptional elongation pattern, arguing against a role for NELF in keeping RNA Pol II in the paused state. Furthermore, SPT6 depletion impairs heat-shock-induced pausing, pointing to a role for SPT6 in regulating RNA Pol II pause/release through PAF1C recruitment.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sheetal Ganesan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shimaa H A Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Byoung-Kyu Cho
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Young Ah Goo
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Neil L Kelleher
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
23
|
Bozukova M, Nikopoulou C, Kleinenkuhnen N, Grbavac D, Goetsch K, Tessarz P. Aging is associated with increased chromatin accessibility and reduced polymerase pausing in liver. Mol Syst Biol 2022; 18:e11002. [PMID: 36082605 PMCID: PMC9459415 DOI: 10.15252/msb.202211002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Regulation of gene expression is linked to the organization of the genome. With age, chromatin alterations occur on all levels of genome organization, accompanied by changes in the gene expression profile. However, little is known about the changes in the level of transcriptional regulation. Here, we used a multi-omics approach and integrated ATAC-, RNA- and NET-seq to identify age-related changes in the chromatin landscape of murine liver and to investigate how these are linked to transcriptional regulation. We provide the first systematic inventory of the connection between aging, chromatin accessibility, and transcriptional regulation in a whole tissue. Aging in murine liver is characterized by an increase in chromatin accessibility at promoter regions, but not in an increase in transcriptional output. Instead, aging is accompanied by a decrease in promoter-proximal pausing of RNA polymerase II (Pol II), while initiation of transcription is not decreased as assessed by RNA polymerase mapping using CUT&RUN. Based on the data reported, we propose that these age-related changes in transcriptional regulation are due to a reduced stability of the pausing complex.
Collapse
Affiliation(s)
- Mihaela Bozukova
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
| | - Chrysa Nikopoulou
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
| | - Niklas Kleinenkuhnen
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
- Faculty of Medicine, Institute of Medical Statistics and Computational BiologyUniversity of CologneCologneGermany
| | - Dora Grbavac
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
- Present address:
Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Katrin Goetsch
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
| | - Peter Tessarz
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
- Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
24
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Song A, Chen FX. The pleiotropic roles of SPT5 in transcription. Transcription 2022; 13:53-69. [PMID: 35876486 PMCID: PMC9467590 DOI: 10.1080/21541264.2022.2103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Initially discovered by genetic screens in budding yeast, SPT5 and its partner SPT4 form a stable complex known as DSIF in metazoa, which plays pleiotropic roles in multiple steps of transcription. SPT5 is the most conserved transcription elongation factor, being found in all three domains of life; however, its structure has evolved to include new domains and associated posttranslational modifications. These gained features have expanded transcriptional functions of SPT5, likely to meet the demand for increasingly complex regulation of transcription in higher organisms. This review discusses the pleiotropic roles of SPT5 in transcription, including RNA polymerase II (Pol II) stabilization, enhancer activation, Pol II pausing and its release, elongation, and termination, with a focus on the most recent progress of SPT5 functions in regulating metazoan transcription.
Collapse
Affiliation(s)
- Aixia Song
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| |
Collapse
|
26
|
Pakhomova T, Moshareva M, Vasilkova D, Zatsepin T, Dontsova O, Rubtsova M. Role of RNA Biogenesis Factors in the Processing and Transport of Human Telomerase RNA. Biomedicines 2022; 10:biomedicines10061275. [PMID: 35740297 PMCID: PMC9219725 DOI: 10.3390/biomedicines10061275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Telomerase RNA has long been considered to be a noncoding component of telomerase. However, the expression of the telomerase RNA gene is not always associated with telomerase activity. The existence of distinct TERC gene expression products possessing different functions were demonstrated recently. During biogenesis, hTR is processed by distinct pathways and localized in different cell compartments, depending on whether it functions as a telomerase complex component or facilitates antistress activities as a noncoding RNA, in which case it is either processed in the mitochondria or translated. In order to identify the factors responsible for the appearance and localization of the exact isoform of hTR, we investigated the roles of the factors regulating transcription DSIF (Spt5) and NELF-E; exosome-attracting factors ZCCHC7, ZCCHC8, and ZFC3H1; ARS2, which attracts processing and transport factors; and transport factor PHAX during the biogenesis of hTR. The data obtained revealed that ZFC3H1 participates in hTR biogenesis via pathways related to the polyadenylated RNA degradation mechanism. The data revealed essential differences that are important for understanding hTR biogenesis and that are interesting for further investigations of new, therapeutically significant targets.
Collapse
Affiliation(s)
- Tatiana Pakhomova
- Department of Chemistry, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (T.P.); (M.M.); (D.V.); (O.D.)
| | - Maria Moshareva
- Department of Chemistry, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (T.P.); (M.M.); (D.V.); (O.D.)
| | - Daria Vasilkova
- Department of Chemistry, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (T.P.); (M.M.); (D.V.); (O.D.)
| | - Timofey Zatsepin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia;
| | - Olga Dontsova
- Department of Chemistry, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (T.P.); (M.M.); (D.V.); (O.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow 121205, Russia
| | - Maria Rubtsova
- Department of Chemistry, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (T.P.); (M.M.); (D.V.); (O.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia;
- Correspondence:
| |
Collapse
|
27
|
Suzuki H, Abe R, Shimada M, Hirose T, Hirose H, Noguchi K, Ike Y, Yasui N, Furugori K, Yamaguchi Y, Toyoda A, Suzuki Y, Yamamoto T, Saitoh N, Sato S, Tomomori-Sato C, Conaway RC, Conaway JW, Takahashi H. The 3' Pol II pausing at replication-dependent histone genes is regulated by Mediator through Cajal bodies' association with histone locus bodies. Nat Commun 2022; 13:2905. [PMID: 35614107 PMCID: PMC9133132 DOI: 10.1038/s41467-022-30632-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Non-polyadenylated mRNAs of replication-dependent histones (RDHs) are synthesized by RNA polymerase II (Pol II) at histone locus bodies (HLBs). HLBs frequently associate with Cajal bodies (CBs), in which 3'-end processing factors for RDH genes are enriched; however, this association's role in transcription termination of RDH genes remains unclear. Here, we show that Pol II pauses immediately upstream of transcript end sites of RDH genes and Mediator plays a role in this Pol II pausing through CBs' association with HLBs. Disruption of the Mediator docking site for Little elongation complex (LEC)-Cap binding complex (CBC)-Negative elongation factor (NELF), components of CBs, interferes with CBs' association with HLBs and 3' Pol II pausing, resulting in increased aberrant unprocessed RDH gene transcripts. Our findings suggest Mediator's involvement in CBs' association with HLBs to facilitate 3' Pol II pausing and subsequent 3'-end processing of RDH genes by supplying 3'-end processing factors.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Miho Shimada
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hiroko Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Keisuke Noguchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yoko Ike
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Nanami Yasui
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kazuki Furugori
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa, 226-8501, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Shigeo Sato
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Chieri Tomomori-Sato
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA.,Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA.,Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
28
|
Guiro J, Fagbemi M, Tellier M, Zaborowska J, Barker S, Fournier M, Murphy S. CAPTURE of the Human U2 snRNA Genes Expands the Repertoire of Associated Factors. Biomolecules 2022; 12:704. [PMID: 35625631 PMCID: PMC9138887 DOI: 10.3390/biom12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
In order to identify factors involved in transcription of human snRNA genes and 3' end processing of the transcripts, we have carried out CRISPR affinity purification in situ of regulatory elements (CAPTURE), which is deadCas9-mediated pull-down, of the tandemly repeated U2 snRNA genes in human cells. CAPTURE enriched many factors expected to be associated with these human snRNA genes including RNA polymerase II (pol II), Cyclin-Dependent Kinase 7 (CDK7), Negative Elongation Factor (NELF), Suppressor of Ty 5 (SPT5), Mediator 23 (MED23) and several subunits of the Integrator Complex. Suppressor of Ty 6 (SPT6); Cyclin K, the partner of Cyclin-Dependent Kinase 12 (CDK12) and Cyclin-Dependent Kinase 13 (CDK13); and SWI/SNF chromatin remodelling complex-associated SWI/SNF-related, Matrix-associated, Regulator of Chromatin (SMRC) factors were also enriched. Several polyadenylation factors, including Cleavage and Polyadenylation Specificity Factor 1 (CPSF1), Cleavage Stimulation Factors 1 and 2 (CSTF1,and CSTF2) were enriched by U2 gene CAPTURE. We have already shown by chromatin immunoprecipitation (ChIP) that CSTF2-and Pcf11 and Ssu72, which are also polyadenylation factors-are associated with the human U1 and U2 genes. ChIP-seq and ChIP-qPCR confirm the association of SPT6, Cyclin K, and CDK12 with the U2 genes. In addition, knockdown of SPT6 causes loss of subunit 3 of the Integrator Complex (INTS3) from the U2 genes, indicating a functional role in snRNA gene expression. CAPTURE has therefore expanded the repertoire of transcription and RNA processing factors associated with these genes and helped to identify a functional role for SPT6.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Mathias Fagbemi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Stephanie Barker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Marjorie Fournier
- Advanced Proteomics Facility, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| |
Collapse
|
29
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
30
|
Liu X, Guo Z, Han J, Peng B, Zhang B, Li H, Hu X, David CJ, Chen M. The PAF1 complex promotes 3' processing of pervasive transcripts. Cell Rep 2022; 38:110519. [PMID: 35294889 DOI: 10.1016/j.celrep.2022.110519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/03/2022] Open
Abstract
The PAF1 complex (PAF1C) functions in multiple transcriptional processes involving RNA polymerase II (RNA Pol II). Enhancer RNAs (eRNAs) and promoter upstream transcripts (PROMPTs) are pervasive transcripts transcribed by RNA Pol II and degraded rapidly by the nuclear exosome complex after 3' endonucleolytic cleavage by the Integrator complex (Integrator). Here we show that PAF1C has a role in termination of eRNAs and PROMPTs that are cleaved 1-3 kb downstream of the transcription start site. Mechanistically, PAF1C facilitates recruitment of Integrator to sites of pervasive transcript cleavage, promoting timely cleavage and transcription termination. We also show that PAF1C recruits Integrator to coding genes, where PAF1C then dissociates from Integrator upon entry into processive elongation. Our results demonstrate a function of PAF1C in limiting the length and accumulation of pervasive transcripts that result from non-productive transcription.
Collapse
Affiliation(s)
- Xinhong Liu
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Ziwei Guo
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Jing Han
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Bo Peng
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Bin Zhang
- Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; Institute for Immunology, Tsinghua University School of Medicine, Beijing 100084, China
| | - Haitao Li
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Hu
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; Institute for Immunology, Tsinghua University School of Medicine, Beijing 100084, China
| | - Charles J David
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China
| | - Mo Chen
- Tsinghua University School of Medicine, Beijing 100084, China.
| |
Collapse
|
31
|
Control of non-productive RNA polymerase II transcription via its early termination in metazoans. Biochem Soc Trans 2022; 50:283-295. [PMID: 35166324 DOI: 10.1042/bst20201140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
Transcription establishes the universal first step of gene expression where RNA is produced by a DNA-dependent RNA polymerase. The most versatile of eukaryotic RNA polymerases, RNA polymerase II (Pol II), transcribes a broad range of DNA including protein-coding and a variety of non-coding transcription units. Although Pol II can be configured as a durable enzyme capable of transcribing hundreds of kilobases, there is reliable evidence of widespread abortive Pol II transcription termination shortly after initiation, which is often followed by rapid degradation of the associated RNA. The molecular details underlying this phenomenon are still vague but likely reflect the action of quality control mechanisms on the early Pol II complex. Here, we summarize current knowledge of how and when such promoter-proximal quality control is asserted on metazoan Pol II.
Collapse
|
32
|
Yamazaki T, Liu L, Manley JL. Oxidative stress induces Ser 2 dephosphorylation of the RNA polymerase II CTD and premature transcription termination. Transcription 2021; 12:277-293. [PMID: 34874799 DOI: 10.1080/21541264.2021.2009421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of YSPTSPS heptapeptide repeats, and the phosphorylation status of the repeats controls multiple transcriptional steps and co-transcriptional events. However, how CTD phosphorylation status responds to distinct environmental stresses is not fully understood. In this study, we found that a drastic reduction in phosphorylation of a subset of Ser2 residues occurs rapidly but transiently following exposure to H2O2. ChIP analysis indicated that Ser2-P, and to a lesser extent Tyr1-P was reduced only at the gene 3' end. Significantly, the levels of polyadenylation factor CstF77, as well as Pol II, were also reduced. However, no increase in uncleaved or readthrough RNA products was observed, suggesting transcribing Pol II prematurely terminates at the gene end in response to H2O2. Further analysis found that the reduction of Ser2-P is, at least in part, regulated by CK2 but independent of FCP1 and other known Ser2 phosphatases. Finally, the H2O2 treatment also affected snRNA 3' processing although surprisingly the U2 processing was not impaired. Together, our data suggest that H2O2 exposure creates a unique CTD phosphorylation state that rapidly alters transcription to deal with acute oxidative stress, perhaps creating a novel "emergency brake" mechanism to transiently dampen gene expression.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY USA
| |
Collapse
|
33
|
Fianu I, Chen Y, Dienemann C, Dybkov O, Linden A, Urlaub H, Cramer P. Structural basis of Integrator-mediated transcription regulation. Science 2021; 374:883-887. [PMID: 34762484 DOI: 10.1126/science.abk0154] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ying Chen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
34
|
Li X, Yao Y, Qian J, Jin G, Zeng G, Zhao H. Overexpression and diagnostic significance of INTS7 in lung adenocarcinoma and its effects on tumor microenvironment. Int Immunopharmacol 2021; 101:108346. [PMID: 34781123 DOI: 10.1016/j.intimp.2021.108346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of death worldwide, and lung adenocarcinoma (LUAD) is the most common histological subtype. INTS7, one of the subunits of the integrator complex, is upregulated in several tumors. Thus, we aimed to investigate the expression profile and clinical significance of INTS7 in LUAD. METHODS The expression profile of INTS7 was tested in TCGA database and clinical specimens. ROC curve was used to detect the diagnostic value of INTS7, CEA and INTS7 combined with CEA. Kaplan-Meier analysis was used to analyze the prognostic value of INTS7. Differentially expressed genes (DEGs) related to INTS7 were analyzed, and functional enrichment analysis was used to explore the potential mechanisms related to DEGs. The correlations between INTS7 and tumor-infiltrating immune cells, immune scores, stromal scores, and immune checkpoints were explored. Finally, the relationship between INTS7 expression and sensitivity to molecular-targeted therapy was examined. RESULTS Data from TCGA database showed that INTS7 mRNA expression was substantially upregulated in LUAD, the AUC values of INTS7 for diagnosing LUAD were >0.8, combined detection of INTS7 and CEA could improve the diagnostic efficiency and early stage patients with high expression of INTS7 showed shorter overall survival. IHC analysis of clinical samples further verified the overexpression of INTS7 protein and confirmed the diagnostic value of INTS7 in LUAD, especially for patients at advanced stages with the AUC >0.8. A total of 192 DEGs were identified and DEGs were primarily involved in cell cycle, inflammatory response, and immune response. Moreover, INTS7 expression was negatively correlated with memory B cells, regulatory T cells (Treg), monocytes, resting myeloid dentritic cells and activated mast cells infiltration, and positively correlated with naive B cells, T follicular helper cells (Tfh), activated myeloid dentritic cells and neutrophils infiltration. In addition, patients with high expression of INTS7 showed less expression of immune checkpoints and exhibited less sensitivity to molecular-targeted drugs. CONCLUSION INTS7 is a potential diagnostic biomarker for LUAD. And its expression level may correlate with tumor microenvireoment, immunotherapy responsiveness, and molecular-targeted therapy responsiveness in LUAD.
Collapse
Affiliation(s)
- Xiang Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, PR China
| | - Yiyong Yao
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, PR China
| | - Jinxian Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, PR China
| | - Guomin Jin
- Department of Internal Medicine, Guli Hospital of Changshu, 166 Tieqin North Street, Guli Town, Changshu County, Suzhou, Jiangsu 215500, PR China
| | - Gang Zeng
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, PR China.
| | - Hongmei Zhao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100000, PR China.
| |
Collapse
|
35
|
Covelo-Molares H, Obrdlik A, Poštulková I, Dohnálková M, Gregorová P, Ganji R, Potěšil D, Gawriyski L, Varjosalo M, Vaňáčová Š. The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Res 2021; 49:10895-10910. [PMID: 34634806 PMCID: PMC8565353 DOI: 10.1093/nar/gkab900] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
N6-methyladenosine (m6A) and N6,2′-O-dimethyladenosine (m6Am) are two abundant modifications found in mRNAs and ncRNAs that can regulate multiple aspects of RNA biology. They function mainly by regulating interactions with specific RNA-binding proteins. Both modifications are linked to development, disease and stress response. To date, three methyltransferases and two demethylases have been identified that modify adenosines in mammalian mRNAs. Here, we present a comprehensive analysis of the interactomes of these enzymes. PCIF1 protein network comprises mostly factors involved in nascent RNA synthesis by RNA polymerase II, whereas ALKBH5 is closely linked with most aspects of pre-mRNA processing and mRNA export to the cytoplasm. METTL16 resides in subcellular compartments co-inhabited by several other RNA modifiers and processing factors. FTO interactome positions this demethylase at a crossroad between RNA transcription, RNA processing and DNA replication and repair. Altogether, these enzymes share limited spatial interactomes, pointing to specific molecular mechanisms of their regulation.
Collapse
Affiliation(s)
- Helena Covelo-Molares
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ales Obrdlik
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ivana Poštulková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Michaela Dohnálková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Pavlína Gregorová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ranjani Ganji
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - David Potěšil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Lisa Gawriyski
- Institute of Biotechnology & HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology & HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
36
|
Pfleiderer MM, Galej WP. Emerging insights into the function and structure of the Integrator complex. Transcription 2021; 12:251-265. [PMID: 35311473 PMCID: PMC9006982 DOI: 10.1080/21541264.2022.2047583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
The Integrator was originally discovered as a specialized 3'-end processing endonuclease complex required for maturation of RNA polymerase II (RNAPII)-dependent small nuclear RNAs (snRNAs). Since its discovery, Integrator's spectrum of substrates was significantly expanded to include non-polyadenylated long noncoding RNAs (lncRNA), enhancer RNAs (eRNAs), telomerase RNA (tertRNA), several Herpesvirus transcripts, and messenger RNAs (mRNAs). Recently emerging transcriptome-wide studies reveled an important role of the Integrator in protein-coding genes, where it contributes to gene expression regulation through promoter-proximal transcription attenuation. These new functional data are complemented by several structures of Integrator modules and higher-order complexes, providing mechanistic insights into Integrator-mediated processing events. In this work, we summarize recent progress in our understanding of the structure and function of the Integrator complex.
Collapse
|
37
|
Beckedorff F, Blumenthal E, daSilva LF, Aoi Y, Cingaram PR, Yue J, Zhang A, Dokaneheifard S, Valencia MG, Gaidosh G, Shilatifard A, Shiekhattar R. The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts. Cell Rep 2021; 32:107917. [PMID: 32697989 PMCID: PMC7427568 DOI: 10.1016/j.celrep.2020.107917] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/06/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023] Open
Abstract
Transcription by RNA polymerase II (RNAPII) is pervasive in the human genome. However, the mechanisms controlling transcription at promoters and enhancers remain enigmatic. Here, we demonstrate that Integrator subunit 11 (INTS11), the catalytic subunit of the Integrator complex, regulates transcription at these loci through its endonuclease activity. Promoters of genes require INTS11 to cleave nascent transcripts associated with paused RNAPII and induce their premature termination in the proximity of the +1 nucleosome. The turnover of RNAPII permits the subsequent recruitment of an elongation-competent RNAPII complex, leading to productive elongation. In contrast, enhancers require INTS11 catalysis not to evict paused RNAPII but rather to terminate enhancer RNA transcription beyond the +1 nucleosome. These findings are supported by the differential occupancy of negative elongation factor (NELF), SPT5, and tyrosine-1-phosphorylated RNAPII. This study elucidates the role of Integrator in mediating transcriptional elongation at human promoters through the endonucleolytic cleavage of nascent transcripts and the dynamic turnover of RNAPII. In this study, Beckedorff et al. demonstrate that the human Integrator complex associates with paused RNA polymerase II and mediates productive transcriptional elongation through its RNA endonuclease activity. This work supports the dynamic turnover model of paused RNA polymerase II complexes and is contrary to observations described in Drosophila.
Collapse
Affiliation(s)
- Felipe Beckedorff
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ezra Blumenthal
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA; Medical Scientist Training Program and Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucas Ferreira daSilva
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Yuki Aoi
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pradeep Reddy Cingaram
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Jingyin Yue
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Anda Zhang
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Sadat Dokaneheifard
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Monica Guiselle Valencia
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Gabriel Gaidosh
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ali Shilatifard
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
38
|
Pfleiderer MM, Galej WP. Structure of the catalytic core of the Integrator complex. Mol Cell 2021; 81:1246-1259.e8. [PMID: 33548203 PMCID: PMC7980224 DOI: 10.1016/j.molcel.2021.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/29/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
The Integrator is a specialized 3' end-processing complex involved in cleavage and transcription termination of a subset of nascent RNA polymerase II transcripts, including small nuclear RNAs (snRNAs). We provide evidence of the modular nature of the Integrator complex by biochemically characterizing its two subcomplexes, INTS5/8 and INTS10/13/14. Using cryoelectron microscopy (cryo-EM), we determined a 3.5-Å-resolution structure of the INTS4/9/11 ternary complex, which constitutes Integrator's catalytic core. Our structure reveals the spatial organization of the catalytic nuclease INTS11, bound to its catalytically impaired homolog INTS9 via several interdependent interfaces. INTS4, a helical repeat protein, plays a key role in stabilizing nuclease domains and other components. In this assembly, all three proteins form a composite electropositive groove, suggesting a putative RNA binding path within the complex. Comparison with other 3' end-processing machineries points to distinct features and a unique architecture of the Integrator's catalytic module.
Collapse
Affiliation(s)
- Moritz M Pfleiderer
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
39
|
Larke MSC, Schwessinger R, Nojima T, Telenius J, Beagrie RA, Downes DJ, Oudelaar AM, Truch J, Graham B, Bender MA, Proudfoot NJ, Higgs DR, Hughes JR. Enhancers predominantly regulate gene expression during differentiation via transcription initiation. Mol Cell 2021; 81:983-997.e7. [PMID: 33539786 PMCID: PMC7612206 DOI: 10.1016/j.molcel.2021.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/25/2020] [Accepted: 01/02/2021] [Indexed: 12/16/2022]
Abstract
Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II). A key question is how transcriptional enhancers influence these events to control gene expression. Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide. This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing. Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and β-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression. Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process.
Collapse
Affiliation(s)
- Martin S C Larke
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Julia Truch
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryony Graham
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M A Bender
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Douglas R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Noe Gonzalez M, Blears D, Svejstrup JQ. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol 2021; 22:3-21. [PMID: 33208928 DOI: 10.1038/s41580-020-00308-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Integrator is a genome-wide attenuator of non-productive transcription. Mol Cell 2020; 81:514-529.e6. [PMID: 33385327 DOI: 10.1016/j.molcel.2020.12.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/11/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Termination of RNA polymerase II (RNAPII) transcription in metazoans relies largely on the cleavage and polyadenylation (CPA) and integrator (INT) complexes originally found to act at the ends of protein-coding and small nuclear RNA (snRNA) genes, respectively. Here, we monitor CPA- and INT-dependent termination activities genome-wide, including at thousands of previously unannotated transcription units (TUs), producing unstable RNA. We verify the global activity of CPA occurring at pA sites indiscriminately of their positioning relative to the TU promoter. We also identify a global activity of INT, which is largely sequence-independent and restricted to a ~3-kb promoter-proximal region. Our analyses suggest two functions of genome-wide INT activity: it dampens transcriptional output from weak promoters, and it provides quality control of RNAPII complexes that are unfavorably configured for transcriptional elongation. We suggest that the function of INT in stable snRNA production is an exception from its general cellular role, the attenuation of non-productive transcription.
Collapse
|
42
|
Zheng H, Qi Y, Hu S, Cao X, Xu C, Yin Z, Chen X, Li Y, Liu W, Li J, Wang J, Wei G, Liang K, Chen FX, Xu Y. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science 2020; 370:370/6520/eabb5872. [DOI: 10.1126/science.abb5872] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hai Zheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Shibin Hu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuan Cao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Congling Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhinang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jie Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
43
|
Eaton JD, West S. Termination of Transcription by RNA Polymerase II: BOOM! Trends Genet 2020; 36:664-675. [DOI: 10.1016/j.tig.2020.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
|
44
|
Alternative splicing of DSP1 enhances snRNA accumulation by promoting transcription termination and recycle of the processing complex. Proc Natl Acad Sci U S A 2020; 117:20325-20333. [PMID: 32747542 DOI: 10.1073/pnas.2002115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1β. Unlike DSP1α, DSP1β is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.
Collapse
|
45
|
Mendoza-Figueroa MS, Tatomer DC, Wilusz JE. The Integrator Complex in Transcription and Development. Trends Biochem Sci 2020; 45:923-934. [PMID: 32800671 DOI: 10.1016/j.tibs.2020.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
The Integrator complex is conserved across metazoans and controls the fate of many nascent RNAs transcribed by RNA polymerase II (RNAPII). Among the 14 subunits of Integrator is an RNA endonuclease that is crucial for the biogenesis of small nuclear RNAs and enhancer RNAs. Integrator is further employed to trigger premature transcription termination at many protein-coding genes, thereby attenuating gene expression. Integrator thus helps to shape the transcriptome and ensure that genes can be robustly induced when needed. The molecular functions of Integrator subunits beyond the RNA endonuclease remain poorly understood, but some can act independently of the multisubunit complex. We highlight recent molecular insights into Integrator and propose how misregulation of this complex may lead to developmental defects and disease.
Collapse
Affiliation(s)
- María Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Sabath K, Stäubli ML, Marti S, Leitner A, Moes M, Jonas S. INTS10-INTS13-INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module. Nat Commun 2020; 11:3422. [PMID: 32647223 PMCID: PMC7347597 DOI: 10.1038/s41467-020-17232-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
The Integrator complex processes 3′-ends of spliceosomal small nuclear RNAs (snRNAs). Furthermore, it regulates transcription of protein coding genes by terminating transcription after unstable pausing. The molecular basis for Integrator’s functions remains obscure. Here, we show that INTS10, Asunder/INTS13 and INTS14 form a separable, functional Integrator module. The structure of INTS13-INTS14 reveals a strongly entwined complex with a unique chain interlink. Unexpected structural homology to the Ku70-Ku80 DNA repair complex suggests nucleic acid affinity. Indeed, the module displays affinity for DNA and RNA but prefers RNA hairpins. While the module plays an accessory role in snRNA maturation, it has a stronger influence on transcription termination after pausing. Asunder/INTS13 directly binds Integrator’s cleavage module via a conserved C-terminal motif that is involved in snRNA processing and required for spermatogenesis. Collectively, our data establish INTS10-INTS13-INTS14 as a nucleic acid-binding module and suggest that it brings cleavage module and target transcripts into proximity. The Integrator complex (INT) is responsible for the 3′-end processing of several classes of non-coding RNAs. Here the authors show that the INTS10-INTS13-INTS14 complex forms a distinct submodule of INT and suggest it facilitates RNA substrate targeting.
Collapse
Affiliation(s)
- Kevin Sabath
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Melanie L Stäubli
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Sabrina Marti
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Murielle Moes
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland.
| |
Collapse
|
47
|
Ibragimov AN, Bylino OV, Shidlovskii YV. Molecular Basis of the Function of Transcriptional Enhancers. Cells 2020; 9:E1620. [PMID: 32635644 PMCID: PMC7407508 DOI: 10.3390/cells9071620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription.
Collapse
Affiliation(s)
- Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
48
|
Aoi Y, Smith ER, Shah AP, Rendleman EJ, Marshall SA, Woodfin AR, Chen FX, Shiekhattar R, Shilatifard A. NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-Release. Mol Cell 2020; 78:261-274.e5. [PMID: 32155413 PMCID: PMC7402197 DOI: 10.1016/j.molcel.2020.02.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/17/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stacy A Marshall
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fei X Chen
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
49
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
50
|
Takahashi H, Ranjan A, Chen S, Suzuki H, Shibata M, Hirose T, Hirose H, Sasaki K, Abe R, Chen K, He Y, Zhang Y, Takigawa I, Tsukiyama T, Watanabe M, Fujii S, Iida M, Yamamoto J, Yamaguchi Y, Suzuki Y, Matsumoto M, Nakayama KI, Washburn MP, Saraf A, Florens L, Sato S, Tomomori-Sato C, Conaway RC, Conaway JW, Hatakeyama S. The role of Mediator and Little Elongation Complex in transcription termination. Nat Commun 2020; 11:1063. [PMID: 32102997 PMCID: PMC7044329 DOI: 10.1038/s41467-020-14849-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/08/2020] [Indexed: 12/22/2022] Open
Abstract
Mediator is a coregulatory complex that regulates transcription of Pol II-dependent genes. Previously, we showed that human Mediator subunit MED26 plays a role in the recruitment of Super Elongation Complex (SEC) or Little Elongation Complex (LEC) to regulate the expression of certain genes. MED26 plays a role in recruiting SEC to protein-coding genes including c-myc and LEC to small nuclear RNA (snRNA) genes. However, how MED26 engages SEC or LEC to regulate distinct genes is unclear. Here, we provide evidence that MED26 recruits LEC to modulate transcription termination of non-polyadenylated transcripts including snRNAs and mRNAs encoding replication-dependent histone (RDH) at Cajal bodies. Our findings indicate that LEC recruited by MED26 promotes efficient transcription termination by Pol II through interaction with CBC-ARS2 and NELF/DSIF, and promotes 3′ end processing by enhancing recruitment of Integrator or Heat Labile Factor to snRNA or RDH genes, respectively. Mediator subunit MED26 was shown to help recruit Super Elongation Complex (SEC) or Little Elongation Complex (LEC) to control the expression of certain genes. Here, the authors provide evidence that MED26 recruits LEC to regulate transcription termination of non-polyadenylated genes, including snRNA and replication-dependent histone (RDH) genes at Cajal bodies.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa, 216-0004, Japan.
| | - Amol Ranjan
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa, 216-0004, Japan
| | - Mio Shibata
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa, 216-0004, Japan
| | - Hiroko Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa, 216-0004, Japan
| | - Kazunori Sasaki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa, 216-0004, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa, 216-0004, Japan
| | - Kai Chen
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Yanfeng He
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Ichigaku Takigawa
- Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Junichi Yamamoto
- Department of Nanoparticle Translational Research Tokyo Medical University, 6-7-1, Nishi-Shinjuku, Tokyo, Shinjuku-ku, 160-0023, Japan
| | - Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.,Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.,Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Shigeo Sato
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Chieri Tomomori-Sato
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA. .,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|