1
|
Zubkov FI, Kouznetsov VV. Traveling across Life Sciences with Acetophenone-A Simple Ketone That Has Special Multipurpose Missions. Molecules 2023; 28:370. [PMID: 36615564 PMCID: PMC9823374 DOI: 10.3390/molecules28010370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Each metabolite, regardless of its molecular simplicity or complexity, has a mission or function in the organism biosynthesizing it. In this review, the biological, allelochemical, and chemical properties of acetophenone, as a metabolite involved in multiple interactions with various (mi-cro)organisms, are discussed. Further, the details of its biogenesis and chemical synthesis are provided, and the possibility of its application in different areas of life sciences, i.e., the status quo of acetophenone and its simple substituted analogs, is examined. In particular, natural and synthetic simple acetophenone derivatives are analyzed as promising agrochemicals and useful scaffolds for drug research and development.
Collapse
Affiliation(s)
- Fedor I. Zubkov
- Department of Organic Chemistry, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Cl. 9 # Cra 27, A.A., Bucaramanga 680006, Colombia
| |
Collapse
|
2
|
Charalambous A, Grivogiannis E, Dieronitou I, Michael C, Rahme L, Apidianakis Y. Proteobacteria and Firmicutes Secreted Factors Exert Distinct Effects on Pseudomonas aeruginosa Infection under Normoxia or Mild Hypoxia. Metabolites 2022; 12:449. [PMID: 35629953 PMCID: PMC9146490 DOI: 10.3390/metabo12050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Microbiota may alter a pathogen's virulence potential at polymicrobial infection sites. Here, we developed a multi-modal Drosophila assay, amenable to the assessment of human bacterial interactions using fly survival or midgut regeneration as a readout, under normoxia or mild hypoxia. Deploying a matrix of 12 by 33 one-to-one Drosophila co-infections via feeding, we classified bacterial interactions as neutral, synergistic, or antagonistic, based on fly survival. Twenty six percent of these interactions were antagonistic, mainly occurring between Proteobacteria. Specifically, Pseudomonas aeruginosa infection was antagonized by various Klebsiella strains, Acinetobacter baumannii, and Escherichia coli. We validated these interactions in a second screen of 7 by 34 one-to-one Drosophila co-infections based on assessments of midgut regeneration, and in bacterial co-culture test tube assays, where antagonistic interactions depended on secreted factors produced upon high sugar availability. Moreover, Enterococci interacted synergistically with P. aeruginosa in flies and in test tubes, enhancing the virulence and pyocyanin production by P. aeruginosa. However, neither lactic acid bacteria nor their severely hypoxic culture supernatants provided a survival benefit upon P. aeruginosa infection of flies or mice, respectively. We propose that at normoxic or mildly hypoxic sites, Firmicutes may exacerbate, whereas Proteobacteria secreted factors may ameliorate, P. aeruginosa infections.
Collapse
Affiliation(s)
- Anna Charalambous
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Evangelos Grivogiannis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Irene Dieronitou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Christina Michael
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| |
Collapse
|
3
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
4
|
Johnson SD, Sivechurran J, Doarsamy S, Shuttleworth A. Dung mimicry: the function of volatile emissions and corolla patterning in fly-pollinated Wurmbea flowers. THE NEW PHYTOLOGIST 2020; 228:1662-1673. [PMID: 33460187 DOI: 10.1111/nph.16791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 06/12/2023]
Abstract
It has been suggested that flowers of some angiosperms mimic vertebrate faeces (dung) in order to exploit insect pollinators that utilize faeces as a source of food and/or oviposition sites. We investigated a potential case of mimicry in Wurmbea elatior (Colchicaceae), a lily that exhibits a faecal odour and pattern of dark spots on the corolla. We found that W. elatior is pollinated by a broad assemblage of coprophagous flies and is dependent on pollinator visits for seed production. The flowers emit volatiles that are characteristic of vertebrate faeces, and three of these compounds - skatole, indole, and an unidentified compound - elicited electrophysiological antennal responses from flies. Artificial flowers laced with indole and skatole or skatole alone attracted the same assemblage of flies as was recorded on flowers of W. elatior. Spotted artificial flowers attracted twice as many flies as did those lacking spots. Experimental addition of indole and skatole to flowers of Wurmbea kraussii, a congener with unscented flowers pollinated by hoverflies, induced a shift to an insect visitor assemblage dominated by coprophagous flies. This study clarifies the roles of volatile emissions (particularly skatole) and visual signals in floral dung mimicry.
Collapse
Affiliation(s)
- Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Post Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Jadine Sivechurran
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Post Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Sachin Doarsamy
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Post Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Adam Shuttleworth
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Post Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
5
|
Giesey R, Kamel J, Delost G, Lloyd J. DERMS DO 5: A Proposed Curriculum for Dermatologic Training in 5 Osteopathic Competencies. J Osteopath Med 2020; 120:740-748. [DOI: 10.7556/jaoa.2020.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Dermatology programs seeking osteopathic recognition under the new single graduate medical education (GME) accreditation system are required to demonstrate osteopathic competencies within their teaching curriculum. Although the Accreditation Council for Graduate Medical Education has put forth guidelines to obtain osteopathic recognition, ambiguity lingers regarding specialty-specific content that would fulfill these requirements. To date, there are no set curriculum guidelines addressing osteopathic principles within the field of dermatology. In this article, we review the existing literature surrounding key competencies and propose a dermatology-focused educational model, “DERMS (Direct, Empathy, Restore, Mobilize, Senses) DO 5,” to encourage the teaching of osteopathic competencies within GME training programs. Our proposed curriculum model addresses the 5 osteopathic care models and applications of osteopathic manipulative treatment within the realistic realm of dermatology.
Collapse
|
6
|
Lukas K, Dötterl S, Ayasse M, Burger H. Olfactory and Visual Floral Signals of Hedera helix and Heracleum sphondylium Involved in Host Finding by Nectar-Foraging Social Wasps. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.571454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Yanagawa A, Huang W, Yamamoto A, Wada-Katsumata A, Schal C, Mackay TFC. Genetic Basis of Natural Variation in Spontaneous Grooming in Drosophila melanogaster. G3 (BETHESDA, MD.) 2020; 10:3453-3460. [PMID: 32727922 PMCID: PMC7467001 DOI: 10.1534/g3.120.401360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
Abstract
Spontaneous grooming behavior is a component of insect fitness. We quantified spontaneous grooming behavior in 201 sequenced lines of the Drosophila melanogaster Genetic Reference Panel and observed significant genetic variation in spontaneous grooming, with broad-sense heritabilities of 0.25 and 0.24 in females and males, respectively. Although grooming behavior is highly correlated between males and females, we observed significant sex by genotype interactions, indicating that the genetic basis of spontaneous grooming is partially distinct in the two sexes. We performed genome-wide association analyses of grooming behavior, and mapped 107 molecular polymorphisms associated with spontaneous grooming behavior, of which 73 were in or near 70 genes and 34 were over 1 kilobase from the nearest gene. The candidate genes were associated with a wide variety of gene ontology terms, and several of the candidate genes were significantly enriched in a genetic interaction network. We performed functional assessments of 29 candidate genes using RNA interference, and found that 11 affected spontaneous grooming behavior. The genes associated with natural variation in Drosophila grooming are involved with glutamate metabolism (Gdh) and transport (Eaat); interact genetically with (CCKLR-17D1) or are in the same gene family as (PGRP-LA) genes previously implicated in grooming behavior; are involved in the development of the nervous system and other tissues; or regulate the Notch and Epidermal growth factor receptor signaling pathways. Several DGRP lines exhibited extreme grooming behavior. Excessive grooming behavior can serve as a model for repetitive behaviors diagnostic of several human neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aya Yanagawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Akihiko Yamamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - Ayako Wada-Katsumata
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646
| |
Collapse
|
8
|
Panayidou S, Georgiades K, Christofi T, Tamana S, Promponas VJ, Apidianakis Y. Pseudomonas aeruginosa core metabolism exerts a widespread growth-independent control on virulence. Sci Rep 2020; 10:9505. [PMID: 32528034 PMCID: PMC7289854 DOI: 10.1038/s41598-020-66194-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 02/04/2023] Open
Abstract
To assess the role of core metabolism genes in bacterial virulence - independently of their effect on growth - we correlated the genome, the transcriptome and the pathogenicity in flies and mice of 30 fully sequenced Pseudomonas strains. Gene presence correlates robustly with pathogenicity differences among all Pseudomonas species, but not among the P. aeruginosa strains. However, gene expression differences are evident between highly and lowly pathogenic P. aeruginosa strains in multiple virulence factors and a few metabolism genes. Moreover, 16.5%, a noticeable fraction of the core metabolism genes of P. aeruginosa strain PA14 (compared to 8.5% of the non-metabolic genes tested), appear necessary for full virulence when mutated. Most of these virulence-defective core metabolism mutants are compromised in at least one key virulence mechanism independently of auxotrophy. A pathway level analysis of PA14 core metabolism, uncovers beta-oxidation and the biosynthesis of amino-acids, succinate, citramalate, and chorismate to be important for full virulence. Strikingly, the relative expression among P. aeruginosa strains of genes belonging in these metabolic pathways is indicative of their pathogenicity. Thus, P. aeruginosa strain-to-strain virulence variation, remains largely obscure at the genome level, but can be dissected at the pathway level via functional transcriptomics of core metabolism.
Collapse
Affiliation(s)
- Stavria Panayidou
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Kaliopi Georgiades
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.,Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Theodoulakis Christofi
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Stella Tamana
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| | - Yiorgos Apidianakis
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
9
|
Tracking Bacterial Spoilage in Cosmetics by a New Bioanalytical Approach: API-SPME-GC-MS to Monitor MVOCs. COSMETICS 2020. [DOI: 10.3390/cosmetics7020038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The main goal of this work was the use of the powerful solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) technique to unequivocally identify microbial volatile organic compounds (MVOCs) derived from the enzymatic activity produced during metabolic processes using analytical profile index (API) biochemical tests. Three bacteria were selected for this study: Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa. They were inoculated and incubated to both API components and real cosmetics, as well as to a mixture of them. Specific MVOCs were successfully identified as biomarkers for each one of the studied microorganisms: Indole and 2-nitrophenol as Escherichia coli markers, 2-undecanone and phenylethyl alcohol as Proteus mirabilis-specific markers, and 1-undecene and 2′-aminoacetophenone as Pseudomonas aeruginosa ones. In addition, a high number of MVOCs were identified as general markers of bacterial presence. The results revealed that the MVOCs’ formation is highly subtract dependent. Therefore, the ultimate and most challenging objective is to establish a relationship between the identified MVOCs and the original compound present in the substrate. This work establishes the design and development of this original approach, and its practical application to the control of microbial contamination in real cosmetic samples.
Collapse
|
10
|
Charroux B, Daian F, Royet J. Drosophila Aversive Behavior toward Erwinia carotovora carotovora Is Mediated by Bitter Neurons and Leukokinin. iScience 2020; 23:101152. [PMID: 32450516 PMCID: PMC7251953 DOI: 10.1016/j.isci.2020.101152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/02/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
The phytopathogen Erwinia carotovora carotovora (Ecc) has been used successfully to decipher some of the mechanisms that regulate the interactions between Drosophila melanogaster and bacteria, mostly following forced association between the two species. How do Drosophila normally perceive and respond to the presence of Ecc is unknown. Using a fly feeding two-choice assay and video tracking, we show that Drosophila are first attracted but then repulsed by an Ecc-contaminated solution. The initial attractive phase is dependent on the olfactory Gr63a and Gαq proteins, whereas the second repulsive phase requires a functional gustatory system. Genetic manipulations and calcium imaging indicate that bitter neurons and gustatory receptors Gr66a and Gr33a are needed for the aversive phase and that the neuropeptide leukokinin is also involved. We also demonstrate that these behaviors are independent of the NF-κB cascade that controls some of the immune, metabolic, and behavioral responses to bacteria.
Collapse
Affiliation(s)
| | - Fabrice Daian
- Aix-Marseille Université, CNRS, IBDM, Marseille, France
| | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
11
|
Metabolic output defines Escherichia coli as a health-promoting microbe against intestinal Pseudomonas aeruginosa. Sci Rep 2019; 9:14463. [PMID: 31595010 PMCID: PMC6783455 DOI: 10.1038/s41598-019-51058-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota acts as a barrier against intestinal pathogens, but species-specific protection of the host from infection remains relatively unexplored. Although lactobacilli and bifidobacteria produce beneficial lactic and short-chain fatty acids in the mammalian gut, the significance of intestinal Escherichia coli producing these acids is debatable. Taking a Koch’s postulates approach in reverse, we define Escherichia coli as health-promoting for naturally colonizing the gut of healthy mice and protecting them against intestinal colonization and concomitant mortality by Pseudomonas aeruginosa. Reintroduction of faecal bacteria and E. coli in antibiotic-treated mice establishes a high titre of E. coli in the host intestine and increases defence against P. aeruginosa colonization and mortality. Strikingly, high sugar concentration favours E. coli fermentation to lactic and acetic acid and inhibits P. aeruginosa growth and virulence in aerobic cultures and in a model of aerobic metabolism in flies, while dietary vegetable fats - not carbohydrates or proteins - favour E. coli fermentation and protect the host in the anaerobic mouse gut. Thus E. coli metabolic output is an important indicator of resistance to infection. Our work may also suggest that the lack of antimicrobial bacterial metabolites in mammalian lungs and wounds allows P. aeruginosa to be a formidable microbe at these sites.
Collapse
|
12
|
Yanagawa A, Chabaud MA, Imai T, Marion-Poll F. Olfactory cues play a significant role in removing fungus from the body surface of Drosophila melanogaster. J Invertebr Pathol 2017; 151:144-150. [PMID: 29175531 DOI: 10.1016/j.jip.2017.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Many insects and Dipterans in particular are known to spend considerable time grooming, but whether these behaviors actually are able to remove pathogenic fungal conidia is less clear. In this study, we examined whether grooming serves to protect flies by reducing the risk of fungal infection in Drosophila melanogaster. First, we confirmed that fungi were removed by grooming. Entomopathogenic, opportunistic, and plant pathogenic fungi were applied on the body surface of the flies. To estimate grooming efficiency, the number of removal conidia through grooming was quantified and we successfully demonstrated that flies remove fungal conidia from their body surfaces via grooming behavior. Second, the roles of gustatory and olfactory signals in fungus removal were examined. The wildtype fly Canton-S, the taste deficiency mutant poxn 70, and the olfactory deficiency mutant orco1 were used in the tests. Comparisons between Canton-S and poxn 70 flies indicated that gustatory signals do not have a significant role in fungal removal via grooming behavior in D. melanogaster. In contrast, the efficiency of conidia removal in orco1 flies was drastically decreased. Consequently, this study indicated that flies rely on mechanical stimulus for the induction of grooming and olfaction for more detailed removal.
Collapse
Affiliation(s)
- Aya Yanagawa
- RISH, Kyoto University, Uji City 611-0011, Japan.
| | - Marie-Ange Chabaud
- UMR Physiologie de l'Insecte: Signalisation et Communication, INRA Centre de Versailles, F-78026 Versailles Cedex, France
| | - Tomoya Imai
- RISH, Kyoto University, Uji City 611-0011, Japan
| | - Frédéric Marion-Poll
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France; AgroParisTech, F-75005 Paris, France
| |
Collapse
|
13
|
Yanagawa A, Neyen C, Lemaitre B, Marion-Poll F. The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila. PLoS One 2017; 12:e0185370. [PMID: 29121087 PMCID: PMC5679552 DOI: 10.1371/journal.pone.0185370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/12/2017] [Indexed: 01/02/2023] Open
Abstract
Behavioral resistance protects insects from microbial infection. However, signals inducing insect hygiene behavior are still relatively unexplored. Our previous study demonstrated that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals even induce the behavior. In this paper, we postulated a cross-talk between behavioral resistance and innate immunity. To examine this hypothesis, we employed a previously validated behavioral test to examine the function of taste signals in inducing a grooming reflex in decapitated flies. Microbes, which activate different pattern recognition systems upstream of immune pathways, were applied to see if there was any correlation between microbial perception and grooming reflex. To narrow down candidate elicitors, the grooming induction tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC.
Collapse
Affiliation(s)
- Aya Yanagawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Claudine Neyen
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Frédéric Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- AgroParisTech, Département Sciences de la Vie et Santé, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Ooi FK, Prahlad V. Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans. Sci Signal 2017; 10:10/501/eaan4893. [PMID: 29042483 DOI: 10.1126/scisignal.aan4893] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Learning, a process by which animals modify their behavior as a result of experience, enables organisms to synthesize information from their surroundings to acquire resources and avoid danger. We showed that a previous encounter with only the odor of pathogenic bacteria prepared Caenorhabditis elegans to survive exposure to the pathogen by increasing the heat shock factor 1 (HSF-1)-dependent expression of genes encoding molecular chaperones. Experience-mediated enhancement of chaperone gene expression required serotonin, which primed HSF-1 to enhance the expression of molecular chaperone genes by promoting its localization to RNA polymerase II-enriched nuclear loci, even before transcription occurred. However, HSF-1-dependent chaperone gene expression was stimulated only if and when animals encountered the pathogen. Thus, learning equips C. elegans to better survive environmental dangers by preemptively and specifically initiating transcriptional mechanisms throughout the whole organism that prepare the animal to respond rapidly to proteotoxic agents. These studies provide one plausible basis for the protective role of environmental enrichment in disease.
Collapse
Affiliation(s)
- Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Cicconardi F, Di Marino D, Olimpieri PP, Arthofer W, Schlick-Steiner BC, Steiner FM. Chemosensory adaptations of the mountain fly Drosophila nigrosparsa (Insecta: Diptera) through genomics' and structural biology's lenses. Sci Rep 2017; 7:43770. [PMID: 28256589 PMCID: PMC5335605 DOI: 10.1038/srep43770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023] Open
Abstract
Chemoreception is essential for survival. Some chemicals signal the presence of nutrients or toxins, others the proximity of mating partners, competitors, or predators. Chemical signal transduction has therefore been studied in multiple organisms. In Drosophila species, a number of odorant receptor genes and various other types of chemoreceptors were found. Three main gene families encode for membrane receptors and one for globular proteins that shuttle compounds with different degrees of affinity and specificity towards receptors. By sequencing the genome of Drosophila nigrosparsa, a habitat specialist restricted to montane/alpine environment, and combining genomics and structural biology techniques, we characterised odorant, gustatory, ionotropic receptors and odorant binding proteins, annotating 189 loci and modelling the protein structure of two ionotropic receptors and one odorant binding protein. We hypothesise that the D. nigrosparsa genome experienced gene loss and various evolutionary pressures (diversifying positive selection, relaxation, and pseudogenisation), as well as structural modification in the geometry and electrostatic potential of the two ionotropic receptor binding sites. We discuss possible trajectories in chemosensory adaptation processes, possibly enhancing compound affinity and mediating the evolution of more specialized food, and a fine-tuned mechanism of adaptation.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Animals
- Drosophila/genetics
- Drosophila Proteins/classification
- Drosophila Proteins/genetics
- Genomic Library
- Genomics/methods
- Models, Molecular
- Multigene Family/genetics
- Phylogeny
- Protein Conformation
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/genetics
- Receptors, Ionotropic Glutamate/chemistry
- Receptors, Ionotropic Glutamate/classification
- Receptors, Ionotropic Glutamate/genetics
- Receptors, Odorant/chemistry
- Receptors, Odorant/classification
- Receptors, Odorant/genetics
- Sequence Analysis, DNA/methods
Collapse
Affiliation(s)
- Francesco Cicconardi
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Daniele Di Marino
- Department of Informatics, Institute of Computational Science, University of Italian Switzerland, Lugano, Switzerland
| | | | - Wolfgang Arthofer
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | | | - Florian M. Steiner
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Capo F, Charroux B, Royet J. Bacteria sensing mechanisms in Drosophila gut: Local and systemic consequences. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:11-21. [PMID: 26778296 DOI: 10.1016/j.dci.2016.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
All insects are colonized by microorganisms on their exoskeleton, their gut and even in some cases within their own somatic and germ line cells. This microbiota that can represent up to a few percent of the insect biomass may have a pervasive impact on many aspects of insect biology including physiology, nutrient acquisition, ageing, behaviour and resistance to infection. Mainly through ingestion of contaminated food, the mouth-gut axis represents the first and principal access of external bacteria to the host. Soon after ingestion, the feeding insect needs to rapidly and accurately identify the ingested microbes and decide whether to preserve them if beneficial or neutral, or to eliminate them if potentially harmful. We will review here the recent data acquired in Drosophila on the mechanisms that invertebrate enterocytes rely on to detect the presence of bacteria in the gut. We will compare these modes of bacteria sensing to those in other immune competent tissues and try to rationalize differences that may exist. We will also analyse the physiological consequences of bacteria detection not only locally for the gut itself but also for remote tissues. Finally, we will describe the physiological disorders that can occur due to inaccurate bacteria identification by the gut epithelium.
Collapse
Affiliation(s)
- Florence Capo
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France
| | - Bernard Charroux
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France
| | - Julien Royet
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France.
| |
Collapse
|
17
|
Constructing personalized longitudinal holo'omes of colon cancer-prone humans and their modeling in flies and mice. Oncotarget 2015; 10:4224-4246. [PMID: 31289620 PMCID: PMC6609240 DOI: 10.18632/oncotarget.6463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
Specific host genes and intestinal microbes, dysbiosis, aberrant immune responses and lifestyle may contribute to intestinal inflammation and cancer, but each of these parameters does not suffice to explain why sporadic colon cancer develops at an old age and only in some of the people with the same profile. To improve our understanding, longitudinal multi-omic and personalized studies will help to pinpoint combinations of host genetic, epigenetic, microbiota and lifestyle-shaped factors, such as blood factors and metabolites that change as we age. The intestinal holo’ome – defined as the combination of host and microbiota genomes, transcriptomes, proteomes, and metabolomes – may be imbalanced and shift to disease when the wrong host gene expression profile meets the wrong microbiota composition. These imbalances can be triggered by the dietary- or lifestyle-shaped intestinal environment. Accordingly, personalized human intestinal holo’omes will differ significantly among individuals and between two critical points in time: long before and upon the onset of disease. Detrimental combinations of factors could therefore be pinpointed computationally and validated using animal models, such as mice and flies. Finally, treatment strategies that break these harmful combinations could be tested in clinical trials. Herein we provide an overview of the literature and a roadmap to this end.
Collapse
|
18
|
Hevia A, Bernardo D, Montalvillo E, Al-Hassi HO, Fernández-Salazar L, Garrote JA, Milani C, Ventura M, Arranz E, Knight SC, Margolles A, Sánchez B. Human colon-derived soluble factors modulate gut microbiota composition. Front Oncol 2015; 5:86. [PMID: 25918688 PMCID: PMC4394693 DOI: 10.3389/fonc.2015.00086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/23/2015] [Indexed: 12/28/2022] Open
Abstract
The commensal microbiota modulates immunological and metabolic aspects of the intestinal mucosa contributing to development of human gut diseases including inflammatory bowel disease. The host/microbiota interaction often referred to as a crosstalk, mainly focuses on the effect of the microbiota on the host neglecting effects that the host could elicit on the commensals. Colonic microenvironments from three human healthy controls (obtained from the proximal and distal colon, both in resting conditions and after immune – IL-15- and microbiota – LPS-in vitro challenges) were used to condition a stable fecal population. Subsequent 16S rRNA gene-based analyses were performed to study the effect induced by the host on the microbiota composition and function. Non-supervised principal component analysis (PCA) showed that all microbiotas, which had been conditioned with colonic microenvironments clustered together in terms of relative microbial composition, suggesting that soluble factors were modulating a stable fecal population independently from the treatment or the origin. Our findings confirmed that the host intestinal microenvironment has the capacity to modulate the gut microbiota composition via yet unidentified soluble factors. These findings indicate that an appropriate understanding of the factors of the host mucosal microenvironment affecting microbiota composition and function could improve therapeutic manipulation of the microbiota composition.
Collapse
Affiliation(s)
- Arancha Hevia
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC) , Villaviciosa , Spain
| | - David Bernardo
- Antigen Presentation Research Group, Imperial College London , Harrow , UK ; Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Enrique Montalvillo
- Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC , Valladolid , Spain
| | - Hafid O Al-Hassi
- Antigen Presentation Research Group, Imperial College London , Harrow , UK
| | - Luis Fernández-Salazar
- Gastroenterology Service, Hospital Clinico Universitario de Valladolid , Valladolid , Spain
| | - Jose A Garrote
- Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC , Valladolid , Spain ; Clinical Laboratory Service, Department of Genetics and Molecular Biology, Hospital Universitario Rio Hortega , Valladolid , Spain
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma , Parma , Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma , Parma , Italy
| | - Eduardo Arranz
- Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC , Valladolid , Spain
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London , Harrow , UK
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC) , Villaviciosa , Spain
| | - Borja Sánchez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo , Ourense , Spain
| |
Collapse
|