1
|
Tian S, Asano Y, Banerjee TD, Wee JLQ, Lamb A, Wang Y, Murugesan SN, Ui-Tei K, Wittkopp PJ, Monteiro A. A micro-RNA is the effector gene of a classic evolutionary hotspot locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579741. [PMID: 38659873 PMCID: PMC11042203 DOI: 10.1101/2024.02.09.579741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In Lepidoptera (butterflies and moths), the genomic region around the gene cortex is a 'hotspot' locus, repeatedly used to generate intraspecific melanic wing color polymorphisms across 100-million-years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. Here, we show that none of the four candidate protein-coding genes within this locus, including cortex, serve as major effectors. Instead, a micro-RNA (miRNA), mir-193, serves as the major effector across three deeply diverged lineages of butterflies, and its function is conserved in Drosophila. In Lepidoptera, mir-193 is derived from a gigantic long non-coding RNA, ivory, and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.
Collapse
Affiliation(s)
- Shen Tian
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Yoshimasa Asano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo; Tokyo, 113-0033, Japan
| | - Tirtha Das Banerjee
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Jocelyn Liang Qi Wee
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Abigail Lamb
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
| | - Yehan Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo; Tokyo, 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo; Chiba, 277-8561, Japan
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
- Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
| | - Antónia Monteiro
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| |
Collapse
|
2
|
Wang S, Girardello M, Zhang W. Potential and progress of studying mountain biodiversity by means of butterfly genetics and genomics. J Genet Genomics 2024; 51:292-301. [PMID: 37302475 DOI: 10.1016/j.jgg.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Mountains are rich in biodiversity, and butterflies are species-rich and have a good ecological and evolutionary research foundation. This review addresses the potential and progress of studying mountain biodiversity using butterflies as a model. We discuss the uniqueness of mountain ecosystems, factors influencing the distribution of mountain butterflies, representative genetic and evolutionary models in butterfly research, and evolutionary studies of mountain biodiversity involving butterfly genetics and genomics. Finally, we demonstrate the necessity of studying mountain butterflies and propose future perspectives. This review provides insights for studying the biodiversity of mountain butterflies as well as a summary of research methods for reference.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Marco Girardello
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Faculdade de Ciências Agrárias e do Ambiente, Universidade dos Açores, 9700-042 Angra do Heroísmo, Terceira, Portugal
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Teng D, Zhang W. The diversification of butterfly wing patterns: progress and prospects. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101137. [PMID: 37922984 DOI: 10.1016/j.cois.2023.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Butterfly wings display rich phenotypic diversity and are associated with complex biological functions, thus serving as an important evolutionary system to address the genetic basis and evolution of phenotypic diversification. We review recent butterfly studies that revealed complex functions underlying diversified wing patterns and describe the genetic and environmental factors involved in wing pattern determinations. These factors lead to inter-specific divergence, genetic polymorphism, and phenotypic plasticity, which in many cases are decided by several key genes. We also summarize the research advances on gene co-option as an important origin of functional complexity and evolutionary novelty. These findings reveal a pattern of evolutionary innovation within a constrained developmental framework during butterfly wing morphogenesis, but further research is required to gain a systematic and comprehensive understanding.
Collapse
Affiliation(s)
- Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Medog Biodiversity Observation and Research Station of Tibet Autonomous Region, Nyingchi 860711, China.
| |
Collapse
|
4
|
Hanly JJ, Loh LS, Mazo-Vargas A, Rivera-Miranda TS, Livraghi L, Tendolkar A, Day CR, Liutikaite N, Earls EA, Corning OBWH, D'Souza N, Hermina-Perez JJ, Mehta C, Ainsworth JA, Rossi M, Papa R, McMillan WO, Perry MW, Martin A. Frizzled2 receives WntA signaling during butterfly wing pattern formation. Development 2023; 150:dev201868. [PMID: 37602496 PMCID: PMC10560568 DOI: 10.1242/dev.201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Ling S. Loh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | - Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Amruta Tendolkar
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Christopher R. Day
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27708, USA
| | - Neringa Liutikaite
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Emily A. Earls
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Olaf B. W. H. Corning
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Natalie D'Souza
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - José J. Hermina-Perez
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Caroline Mehta
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Julia A. Ainsworth
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Matteo Rossi
- Division of Evolutionary Biology, Ludwig Maximilian University, Munich 80539, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan 00931, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan 00931, Puerto Rico
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parma 43121, Italy
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Michael W. Perry
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
5
|
de Araujo Miles M, Johnson MJ, Stuckert AMM, Summers K. A histological analysis of coloration in the Peruvian mimic poison frog ( Ranitomeya imitator). PeerJ 2023; 11:e15533. [PMID: 37404476 PMCID: PMC10317021 DOI: 10.7717/peerj.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
Aposematism continues to be a phenomenon of central interest in evolutionary biology. The life history of the mimic poison frog, Ranitomeya imitator, relies heavily on aposematism. In order for aposematic signals to be effective, predators must be able to learn to avoid the associated phenotype. However, in R. imitator, aposematism is associated with four different color phenotypes that mimic a complex of congeneric species occurring across the mimic frog's geographic range. Investigations of the underlying mechanics of color production in these frogs can provide insights into how and why these different morphs evolved. We used histological samples to examine divergence in the color production mechanisms used by R. imitator to produce effective aposematic signals across its geographic range. We measured the coverage of melanophores and xanthophores (the area covered by chromatophores divided by total area of the skin section) in each color morph. We find that morphs that produce orange skin exhibit a higher coverage of xanthophores and lower coverage of melanophores than those that produce yellow skin. In turn, morphs that produce yellow skin exhibit a higher coverage of xanthophores and lower coverage of melanophores than those that produce green skin. Generally, across the morphs, a high ratio of xanthophores to melanophores is associated with colors of brighter spectral reflectance. Together, our results contribute to the understanding of color production in amphibians and document divergence in the histology of a species that is subject to divergent selection associated with aposematism.
Collapse
Affiliation(s)
| | | | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, United States
| |
Collapse
|
6
|
Galbraith JD, Hayward A. The influence of transposable elements on animal colouration. Trends Genet 2023:S0168-9525(23)00091-4. [PMID: 37183153 DOI: 10.1016/j.tig.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.
Collapse
Affiliation(s)
- James D Galbraith
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Alexander Hayward
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
7
|
Widespread chromosomal rearrangements preceded genetic divergence in a monitor lizard, Varanus acanthurus (Varanidae). Chromosome Res 2023; 31:9. [PMID: 36745262 PMCID: PMC9902428 DOI: 10.1007/s10577-023-09715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 02/07/2023]
Abstract
Chromosomal rearrangements are often associated with local adaptation and speciation because they suppress recombination, and as a result, rearrangements have been implicated in disrupting gene flow. Although there is strong evidence to suggest that chromosome rearrangements are a factor in genetic isolation of divergent populations, the underlying mechanism remains elusive. Here, we applied an integrative cytogenetics and genomics approach testing whether chromosomal rearrangements are the initial process, or a consequence, of population divergence in the dwarf goanna, Varanus acanthurus. Specifically, we tested whether chromosome rearrangements are indicators of genetic barriers that can be used to identify divergent populations by looking at gene flow within and between populations with rearrangements. We found that gene flow was present between individuals with chromosome rearrangements within populations, but there was no gene flow between populations that had similar chromosome rearrangements. Moreover, we identified a correlation between reduced genetic variation in populations with a higher frequency of homozygous submetacentric individuals. These findings suggest that chromosomal rearrangements were widespread prior to divergence, and because we found populations with higher frequencies of submetacentric chromosomes were associated with lower genetic diversity, this could indicate that polymorphisms within populations are early indicators of genetic drift.
Collapse
|
8
|
Espeland M, Podsiadlowski L. How butterfly wings got their pattern. Science 2022; 378:249-250. [PMID: 36264812 DOI: 10.1126/science.ade5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gene regulatory elements play a crucial role in the pattern formation of butterfly wings.
Collapse
Affiliation(s)
- Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
9
|
Mazo-Vargas A, Langmüller AM, Wilder A, van der Burg KRL, Lewis JJ, Messer PW, Zhang L, Martin A, Reed RD. Deep cis-regulatory homology of the butterfly wing pattern ground plan. Science 2022; 378:304-308. [PMID: 36264807 DOI: 10.1126/science.abi9407] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Butterfly wing patterns derive from a deeply conserved developmental ground plan yet are diverse and evolve rapidly. It is poorly understood how gene regulatory architectures can accommodate both deep homology and adaptive change. To address this, we characterized the cis-regulatory evolution of the color pattern gene WntA in nymphalid butterflies. Comparative assay for transposase-accessible chromatin using sequencing (ATAC-seq) and in vivo deletions spanning 46 cis-regulatory elements across five species revealed deep homology of ground plan-determining sequences, except in monarch butterflies. Furthermore, noncoding deletions displayed both positive and negative regulatory effects that were often broad in nature. Our results provide little support for models predicting rapid enhancer turnover and suggest that deeply ancestral, multifunctional noncoding elements can underlie rapidly evolving trait systems.
Collapse
Affiliation(s)
- Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Anna M Langmüller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Alexis Wilder
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | | - James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Linlin Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Abstract
Aposematism and mimicry are complex phenomena which have been studied extensively; however, much of our knowledge comes from just a few focal groups, especially butterflies. Aposematic species combine a warning signal with a secondary defense that reduces their profitability as prey. Aculeate hymenopterans are an extremely diverse lineage defined by the modification of the ovipositor into a stinger which represents a potent defense against predators. Aculeates are often brightly colored and broadly mimicked by members of other arthropod groups including Diptera, Lepidoptera, Coleoptera, and Araneae. However, aculeates are surprisingly understudied as aposematic and mimetic model organisms. Recent studies have described novel pigments contributing to warning coloration in insects and identified changes in cis-regulatory elements as potential drivers of color pattern evolution. Many biotic and abiotic factors contribute to the evolution and maintenance of conspicuous color patterns. Predator distribution and diversity seem to influence the phenotypic diversity of aposematic velvet ants while studies on bumble bees underscore the importance of intermediate mimetic phenotypes in transition zones between putative mimicry rings. Aculeate hymenopterans are attractive models for studying sex-based intraspecific mimicry as male aculeates lack the defense conferred by the females’ stinger. In some species, evolution of male and female color patterns appears to be decoupled. Future studies on aposematic aculeates and their associated mimics hold great promise for unraveling outstanding questions about the evolution of conspicuous color patterns and the factors which determine the composition and distribution of mimetic communities.
Collapse
|
11
|
O’Connor TK, Sandoval MC, Wang J, Hans JC, Takenaka R, Child M, Whiteman NK. Ecological basis and genetic architecture of crypsis polymorphism in the desert clicker grasshopper (Ligurotettix coquilletti). Evolution 2021; 75:2441-2459. [PMID: 34370317 PMCID: PMC8932956 DOI: 10.1111/evo.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Color polymorphic species can offer exceptional insight into the ecology and genetics of adaptation. Although the genetic architecture of animal coloration is diverse, many color polymorphisms are associated with large structural variants and maintained by biotic interactions. Grasshoppers are notably polymorphic in both color and karyotype, which makes them excellent models for understanding the ecological drivers and genetic underpinnings of color variation. Banded and uniform morphs of the desert clicker grasshopper (Ligurotettix coquilletti) are found across the western deserts of North America. To address the hypothesis that predation maintains local color polymorphism and shapes regional crypsis variation, we surveyed morph frequencies and tested for covariation with two predation environments. Morphs coexisted at intermediate frequencies at most sites, consistent with local balancing selection. Morph frequencies covaried with the appearance of desert substrate-an environment used only by females-suggesting that ground-foraging predators are major agents of selection on crypsis. We next addressed the hypothesized link between morph variation and genome structure. To do so, we designed an approach for detecting inversions and indels using only RADseq data. The banded morph was perfectly correlated with a large putative indel. Remarkably, indel dominance differed among populations, a rare example of dominance evolution in nature.
Collapse
Affiliation(s)
- Timothy K. O’Connor
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Current address: Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| | - Marissa C. Sandoval
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Jiarui Wang
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Jacob C. Hans
- Department of Entomology, University of California, Riverside, CA 92521
| | - Risa Takenaka
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Myron Child
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
12
|
Hill RI. Convergent flight morphology among Müllerian mimic mutualists. Evolution 2021; 75:2460-2479. [PMID: 34431522 DOI: 10.1111/evo.14331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Müllerian mimicry involves a signal mutualism between prey species, shaped by visually hunting predators, and recent work has emphasized the importance of color pattern. Predators respond to more than color pattern, however, and other traits are much less studied. This article examines the hypothesis of convergent evolution in flight-related morphology among eight mimicry complexes composed of 51 butterfly species (Nymphalidae, Danainae, Ithomiini) from a single community in Ecuador. Phylogenetic comparative analyses of 14 variables indicated strong morphological differences between mimicry complexes belonging to three clusters of morphological space ("large yellow transparent," "tiger," and "transparent"), not the eight predicted based on color pattern alone. Analyses found convergence within mimicry complexes, convergence between mimicry complexes within morphospace clusters, and divergence between mimicry complexes from different morphospace clusters. These three clusters differed in size, and body and wing shape, predicting that flight biomechanics also converge (i.e., locomotor mimicry). Potential constraints on evolution of morphological mimicry related to predator discrimination, and evolutionary rates, likely e xplain why flight-related morphology differences were limited to three clusters of morphological space. Finally, the added complexity that flight-related morphology brings to signals between predator and prey indicates that evolutionary switches in color pattern are not all equally likely, potentially limiting the evolution of color patterns if they do not match morphology.
Collapse
Affiliation(s)
- Ryan I Hill
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720.,Current Address: Department of Biological Sciences, University of the Pacific, Stockton, California, 95211
| |
Collapse
|
13
|
Waters JM, McCulloch GA. Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Mol Ecol 2021; 30:4162-4172. [PMID: 34133810 DOI: 10.1111/mec.16018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Biologists have long been intrigued by apparently predictable and repetitive evolutionary trajectories inferred across a variety of lineages and systems. In recent years, high-throughput sequencing analyses have started to transform our understanding of such repetitive shifts. While researchers have traditionally categorized such shifts as either "convergent" or "parallel," based on relatedness of the lineages involved, emerging genomic insights provide an opportunity to better describe the actual evolutionary mechanisms at play. A synthesis of recent genomic analyses confirms that convergence is the predominant driver of repetitive evolution among species, whereas repeated sorting of standing variation is the major driver of repeated shifts within species. However, emerging data reveal numerous notable exceptions to these expectations, with recent examples of de novo mutations underpinning convergent shifts among even very closely related lineages, while repetitive sorting processes have occurred among even deeply divergent taxa, sometimes via introgression. A number of very recent analyses have found evidence for both processes occurring on different scales within taxa. We suggest that the relative importance of convergent versus sorting processes depends on the interplay between gene flow among populations, and phylogenetic relatedness of the lineages involved.
Collapse
|
14
|
Hanly JJ, Robertson ECN, Corning OBWH, Martin A. Porcupine/Wntless-dependent trafficking of the conserved WntA ligand in butterflies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:470-481. [PMID: 34010515 DOI: 10.1002/jez.b.23046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Wnt ligands are key signaling molecules in animals, but little is known about the evolutionary dynamics and mode of action of the WntA orthologs, which are not present in the vertebrates or in Drosophila. Here we show that the WntA subfamily evolved at the base of the Bilateria + Cnidaria clade, and conserved the thumb region and Ser209 acylation site present in most other Wnts, suggesting WntA requires the core Wnt secretory pathway. WntA proteins are distinguishable from other Wnts by a synapomorphic Iso/Val/Ala216 amino-acid residue that replaces the otherwise ubiquitous Thr216 position. WntA embryonic expression is conserved between beetles and butterflies, suggesting functionality, but the WntA gene was lost three times within arthropods, in podoplean copepods, in the cyclorrhaphan fly radiation, and in ensiferan crickets and katydids. Finally, CRISPR mosaic knockouts (KOs) of porcupine and wntless phenocopied the pattern-specific effects of WntA KOs in the wings of Vanessa cardui butterflies. These results highlight the molecular conservation of the WntA protein across invertebrates, and imply it functions as a typical Wnt ligand that is acylated and secreted through the Porcupine/Wntless secretory pathway.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Erica C N Robertson
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Olaf B W H Corning
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
15
|
Mullen SP, VanKuren NW, Zhang W, Nallu S, Kristiansen EB, Wuyun Q, Liu K, Hill RI, Briscoe AD, Kronforst MR. Disentangling Population History and Character Evolution among Hybridizing Lineages. Mol Biol Evol 2021; 37:1295-1305. [PMID: 31930401 DOI: 10.1093/molbev/msaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Understanding the origin and maintenance of adaptive phenotypic novelty is a central goal of evolutionary biology. However, both hybridization and incomplete lineage sorting can lead to genealogical discordance between the regions of the genome underlying adaptive traits and the remainder of the genome, decoupling inferences about character evolution from population history. Here, to disentangle these effects, we investigated the evolutionary origins and maintenance of Batesian mimicry between North American admiral butterflies (Limenitis arthemis) and their chemically defended model (Battus philenor) using a combination of de novo genome sequencing, whole-genome resequencing, and statistical introgression mapping. Our results suggest that balancing selection, arising from geographic variation in the presence or absence of the unpalatable model, has maintained two deeply divergent color patterning haplotypes that have been repeatedly sieved among distinct mimetic and nonmimetic lineages of Limenitis via introgressive hybridization.
Collapse
Affiliation(s)
- Sean P Mullen
- Department of Biology, Boston University, Boston, MA
| | | | - Wei Zhang
- School of Life Sciences, Peking University, Beijing, P.R. China
| | - Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | | | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Kevin Liu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA
| | | |
Collapse
|
16
|
Ruttenberg DM, VanKuren NW, Nallu S, Yen SH, Peggie D, Lohman DJ, Kronforst MR. The evolution and genetics of sexually dimorphic 'dual' mimicry in the butterfly Elymnias hypermnestra. Proc Biol Sci 2021; 288:20202192. [PMID: 33434461 DOI: 10.1098/rspb.2020.2192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sexual dimorphism is a major component of morphological variation across the tree of life, but the mechanisms underlying phenotypic differences between sexes of a single species are poorly understood. We examined the population genomics and biogeography of the common palmfly Elymnias hypermnestra, a dual mimic in which female wing colour patterns are either dark brown (melanic) or bright orange, mimicking toxic Euploea and Danaus species, respectively. As males always have a melanic wing colour pattern, this makes E. hypermnestra a fascinating model organism in which populations vary in sexual dimorphism. Population structure analysis revealed that there were three genetically distinct E. hypermnestra populations, which we further validated by creating a phylogenomic species tree and inferring historical barriers to gene flow. This species tree demonstrated that multiple lineages with orange females do not form a monophyletic group, and the same is true of clades with melanic females. We identified two single nucleotide polymorphisms (SNPs) near the colour patterning gene WntA that were significantly associated with the female colour pattern polymorphism, suggesting that this gene affects sexual dimorphism. Given WntA's role in colour patterning across Nymphalidae, E. hypermnestra females demonstrate the repeatability of the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Dee M Ruttenberg
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Nicholas W VanKuren
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Sumitha Nallu
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Shen-Horn Yen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Djunijanti Peggie
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong-Bogor 16911, Indonesia
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA.,PhD Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA.,Entomology Section, National Museum of Natural History, Manila 1000, Philippines
| | - Marcus R Kronforst
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Morris J, Hanly JJ, Martin SH, Van Belleghem SM, Salazar C, Jiggins CD, Dasmahapatra KK. Deep Convergence, Shared Ancestry, and Evolutionary Novelty in the Genetic Architecture of Heliconius Mimicry. Genetics 2020; 216:765-780. [PMID: 32883703 PMCID: PMC7648585 DOI: 10.1534/genetics.120.303611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/25/2020] [Indexed: 01/31/2023] Open
Abstract
Convergent evolution can occur through different genetic mechanisms in different species. It is now clear that convergence at the genetic level is also widespread, and can be caused by either (i) parallel genetic evolution, where independently evolved convergent mutations arise in different populations or species, or (ii) collateral evolution in which shared ancestry results from either ancestral polymorphism or introgression among taxa. The adaptive radiation of Heliconius butterflies shows color pattern variation within species, as well as mimetic convergence between species. Using comparisons from across multiple hybrid zones, we use signals of shared ancestry to identify and refine multiple putative regulatory elements in Heliconius melpomene and its comimics, Heliconius elevatus and Heliconius besckei, around three known major color patterning genes: optix, WntA, and cortex While we find that convergence between H. melpomene and H. elevatus is caused by a complex history of collateral evolution via introgression in the Amazon, convergence between these species in the Guianas appears to have evolved independently. Thus, we find adaptive convergent genetic evolution to be a key driver of regulatory changes that lead to rapid phenotypic changes. Furthermore, we uncover evidence of parallel genetic evolution at some loci around optix and WntA in H. melpomene and its distant comimic Heliconius erato Ultimately, we show that all three of convergence, conservation, and novelty underlie the modular architecture of Heliconius color pattern mimicry.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington YO10 5DD, United Kingdom
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Simon H Martin
- Institute of Evolutionary Biology, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, United Kingdom
| | - Steven M Van Belleghem
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
18
|
McMillan WO, Livraghi L, Concha C, Hanly JJ. From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
Van Belleghem SM, Alicea Roman PA, Carbia Gutierrez H, Counterman BA, Papa R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc Biol Sci 2020; 287:20201267. [PMID: 32693728 PMCID: PMC7423669 DOI: 10.1098/rspb.2020.1267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Müllerian mimicry strongly exemplifies the power of natural selection. However, the exact measure of such adaptive phenotypic convergence and the possible causes of its imperfection often remain unidentified. Here, we first quantify wing colour pattern differences in the forewing region of 14 co-mimetic colour pattern morphs of the butterfly species Heliconius erato and Heliconius melpomene and measure the extent to which mimicking colour pattern morphs are not perfectly identical. Next, using gene-editing CRISPR/Cas9 KO experiments of the gene WntA, which has been mapped to colour pattern diversity in these butterflies, we explore the exact areas of the wings in which WntA affects colour pattern formation differently in H. erato and H. melpomene. We find that, while the relative size of the forewing pattern is generally nearly identical between co-mimics, the CRISPR/Cas9 KO results highlight divergent boundaries in the wing that prevent the co-mimics from achieving perfect mimicry. We suggest that this mismatch may be explained by divergence in the gene regulatory network that defines wing colour patterning in both species, thus constraining morphological evolution even between closely related species.
Collapse
Affiliation(s)
| | - Paola A Alicea Roman
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Department of Biology, University of Puerto Rico, Humacao, Puerto Rico
| | - Heriberto Carbia Gutierrez
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Department of Mathematics, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Brian A Counterman
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Smithsonian Tropical Research Institution, Panama, Republic of Panama.,Molecular Sciences and Research Center, University of Puerto Rico, Puerto Rico
| |
Collapse
|
20
|
Fenner J, Benson C, Rodriguez-Caro L, Ren A, Papa R, Martin A, Hoffmann F, Range R, Counterman BA. Wnt Genes in Wing Pattern Development of Coliadinae Butterflies. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Garg KM, Sam K, Chattopadhyay B, Sadanandan KR, Koane B, Ericson PGP, Rheindt FE. Gene Flow in the Müllerian Mimicry Ring of a Poisonous Papuan Songbird Clade (Pitohui; Aves). Genome Biol Evol 2020; 11:2332-2343. [PMID: 31418795 PMCID: PMC6735254 DOI: 10.1093/gbe/evz168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
Müllerian mimicry rings are remarkable symbiotic species assemblages in which multiple members share a similar phenotype. However, their evolutionary origin remains poorly understood. Although gene flow among species has been shown to generate mimetic patterns in some Heliconius butterflies, mimicry is believed to be due to true convergence without gene flow in many other cases. We investigated the evolutionary history of multiple members of a passerine mimicry ring in the poisonous Papuan pitohuis. Previous phylogenetic evidence indicates that the aposematic coloration shared by many, but not all, members of this genus is ancestral and has only been retained by members of the mimicry ring. Using a newly assembled genome and thousands of genomic DNA markers, we demonstrate gene flow from the hooded pitohui (Pitohui dichrous) into the southern variable pitohui (Pitohui uropygialis), consistent with shared patterns of aposematic coloration. The vicinity of putatively introgressed loci is significantly enriched for genes that are important in melanin pigment expression and toxin resistance, suggesting that gene flow may have been instrumental in the sharing of plumage patterns and toxicity. These results indicate that interspecies gene flow may be a more general mechanism in generating mimicry rings than hitherto appreciated.
Collapse
Affiliation(s)
- Kritika M Garg
- Department of Biological Sciences, National University of Singapore
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | - Bonny Koane
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Per G P Ericson
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore
| |
Collapse
|
22
|
VanKuren NW, Massardo D, Nallu S, Kronforst MR. Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations. Mol Biol Evol 2020; 36:2842-2853. [PMID: 31504750 DOI: 10.1093/molbev/msz194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.
Collapse
Affiliation(s)
| | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| | - Sumitha Nallu
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| | - Marcus R Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| |
Collapse
|
23
|
Abstract
Neuroscience has a long, rich history in embracing unusual animals for research. Over the past several decades, there has been a technology-driven bottleneck in the species used for neuroscience research. However, an oncoming wave of technologies applicable to many animals hold promise for enabling researchers to address challenging scientific questions that cannot be solved using traditional laboratory animals. Here, we discuss how leveraging the convergent evolution of physiological or behavioral phenotypes can empower research mapping genotype to phenotype interactions. We present two case studies using electric fish and poison frogs and discuss how comparative work can teach us about evolutionary constraint and flexibility at various levels of biological organization. We also offer advice on the potential and pitfalls of establishing novel model systems in neuroscience research. Finally, we end with a discussion on the use of charismatic animals in neuroscience research and their utility in public outreach. Overall, we argue that convergent evolution frameworks can help identify generalizable principles of neuroscience.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
24
|
Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Curr Biol 2019; 29:3996-4009.e4. [DOI: 10.1016/j.cub.2019.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 11/20/2022]
|
25
|
Ding X, Liu J, Tong X, Wu S, Li C, Song J, Hu H, Tan D, Dai F. Comparative analysis of integument transcriptomes identifies genes that participate in marking pattern formation in three allelic mutants of silkworm, Bombyx mori. Funct Integr Genomics 2019; 20:223-235. [PMID: 31478115 PMCID: PMC7018788 DOI: 10.1007/s10142-019-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 11/26/2022]
Abstract
The diversity markings and pigment patterns in insects are outcomes of adaptive evolution. The elucidation of the molecular mechanism underlying variations in pigment patterns may improve our understanding of the origin and evolution of these spectacular diverse phenotypes. Melanin, ommochrome, and pteridine are the three main types of insect pigments, and the genes that directly participate in pigment biosynthesis have been extensively studied. However, available information on gene interactions and the whole pigment regulatory network is limited. In this study, we performed integument transcriptome sequencing to analyze three larval marking allelic mutants, namely, multi lunar (L), LC, and LCa, which have similar twin-spot markings on the dorsal side of multiple segments. Further analysis identified 336 differentially expressed genes (DEGs) between L and Dazao (wild type which exhibits normal markings), 68 DEGs between LC/+ and +LC/+LC, and 188 DEGs between LCa/+ and +LCa/+LCa. Gene Ontology (GO) analysis indicated a significant DEG enrichment of the functional terms catalytic activity, binding, metabolic process, and cellular process. Furthermore, three mutants share six common enriched KEGG pathways. We finally identified eight common DEGs among three pairwise comparisons, including Krueppel-like factor, TATA-binding protein, protein patched, UDP-glycosyltransferase, an unknown secreted protein, and three cuticular proteins. Microarray-based gene expression analysis revealed that the eight genes are upregulated during molting, which coincides with marking formation, and are significantly differentially expressed between marking and non-marking regions. The results suggest that the eight common genes are involved in the construction of the multiple twin-spot marking patterns in the three mutants.
Collapse
Affiliation(s)
- Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Junxia Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Chunlin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
26
|
Suzuki TK, Koshikawa S, Kobayashi I, Uchino K, Sezutsu H. Modular cis-regulatory logic of yellow gene expression in silkmoth larvae. INSECT MOLECULAR BIOLOGY 2019; 28:568-577. [PMID: 30737958 PMCID: PMC6849593 DOI: 10.1111/imb.12574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colour patterns in butterflies and moths are crucial traits for adaptation. Previous investigations have highlighted genes responsible for pigmentation (ie yellow and ebony). However, the mechanisms by which these genes are regulated in lepidopteran insects remain poorly understood. To elucidate this, molecular studies involving dipterans have largely analysed the cis-regulatory regions of pigmentation genes and have revealed cis-regulatory modularity. Here, we used well-developed transgenic techniques in Bombyx mori and demonstrated that cis-regulatory modularity controls tissue-specific expression of the yellow gene. We first identified which body parts are regulated by the yellow gene via black pigmentation. We then isolated three discrete regulatory elements driving tissue-specific gene expression in three regions of B. mori larvae. Finally, we found that there is no apparent sequence conservation of cis-regulatory regions between B. mori and Drosophila melanogaster, and no expression driven by the regulatory regions of one species when introduced into the other species. Therefore, the trans-regulatory landscapes of the yellow gene differ significantly between the two taxa. The results of this study confirm that lepidopteran species use cis-regulatory modules to control gene expression related to pigmentation, and represent a powerful cadre of transgenic tools for studying evolutionary developmental mechanisms.
Collapse
Affiliation(s)
- T. K. Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - S. Koshikawa
- Faculty of Environmental Earth ScienceHokkaido UniversitySapporo060‐0810Japan
| | - I. Kobayashi
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - K. Uchino
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - H. Sezutsu
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| |
Collapse
|
27
|
Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, Dasmahapatra KK. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity (Edinb) 2019; 123:138-152. [PMID: 30670842 PMCID: PMC6781118 DOI: 10.1038/s41437-018-0180-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Unravelling the genetic basis of adaptive traits is a major challenge in evolutionary biology. Doing so informs our understanding of evolution towards an adaptive optimum, the distribution of locus effect sizes, and the influence of genetic architecture on the evolvability of a trait. In the Müllerian co-mimics Heliconius melpomene and Heliconius erato some Mendelian loci affecting mimicry shifts are well known. However, several phenotypes in H. melpomene remain to be mapped, and the quantitative genetics of colour pattern variation has rarely been analysed. Here we use quantitative trait loci (QTL) analyses of crosses between H. melpomene races from Peru and Suriname to map, for the first time, the control of the broken band phenotype to WntA and identify a ~100 kb region controlling this variation. Additionally, we map variation in basal forewing red-orange pigmentation to a locus centred around the gene ventral veins lacking (vvl). The locus also appears to affect medial band shape variation as it was previously known to do in H. erato. This adds to the list of homologous regions controlling convergent phenotypes between these two species. Finally we show that Heliconius wing-patterning genes are strikingly pleiotropic among wing pattern traits. Our results demonstrate how genetic architecture can shape, aid and constrain adaptive evolution.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington, YO10 5DD, UK.
| | - Nicolas Navarro
- EPHE, PSL University, 21000, Dijon, France
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren D Rawlins
- Department of Environment and Geography, University of York, Heslington, YO10 5DD, UK
| | - Joshua Sammy
- Department of Biology, University of York, Heslington, YO10 5DD, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
28
|
Hanly JJ, Wallbank RWR, McMillan WO, Jiggins CD. Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings. EvoDevo 2019; 10:15. [PMID: 31341608 PMCID: PMC6631869 DOI: 10.1186/s13227-019-0127-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many traits evolve by cis-regulatory modification, by which changes to noncoding sequences affect the binding affinity for available transcription factors and thus modify the expression profile of genes. Multiple examples of cis-regulatory evolution have been described at pattern switch genes responsible for butterfly wing pattern polymorphism, including in the diverse neotropical genus Heliconius, but the identities of the factors that can regulate these switch genes have not been identified. RESULTS We investigated the spatial transcriptomic landscape across the wings of three closely related butterfly species, two of which have a convergently evolved co-mimetic pattern and the other having a divergent pattern. We identified candidate factors for regulating the expression of wing patterning genes, including transcription factors with a conserved expression profile in all three species, and others, including both transcription factors and Wnt pathway genes, with markedly different profiles in each of the three species. We verified the conserved expression profile of the transcription factor homothorax by immunofluorescence and showed that its expression profile strongly correlates with that of the selector gene optix in butterflies with the Amazonian forewing pattern element 'dennis.' CONCLUSION Here we show that, in addition to factors with conserved expression profiles like homothorax, there are also a variety of transcription factors and signaling pathway components that appear to vary in their expression profiles between closely related butterfly species, highlighting the importance of genome-wide regulatory evolution between species.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- Biological Sciences, The George Washington University, Washington, DC 20052 USA
| | - Richard W. R. Wallbank
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
29
|
Iijima T, Yoda S, Fujiwara H. The mimetic wing pattern of Papilio polytes butterflies is regulated by a doublesex-orchestrated gene network. Commun Biol 2019; 2:257. [PMID: 31312726 PMCID: PMC6620351 DOI: 10.1038/s42003-019-0510-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
The swallowtail butterfly Papilio polytes is sexually dimorphic and exhibits female-limited Batesian mimicry. This species also has two female forms, a non-mimetic form with male-like wing patterns, and a mimetic form resembling an unpalatable model, Pachliopta aristolochiae. The mimicry locus H constitutes a dimorphic Mendelian 'supergene', including a transcription factor gene doublesex (dsx). However, how the mimetic-type dsx (dsx-H) orchestrates the downstream gene network and causes the mimetic traits remains unclear. Here we performed RNA-seq-based gene screening and found that Wnt1 and Wnt6 are up-regulated by dsx-H during the early pupal stage and are involved in the red/white pigmentation and patterning of mimetic female wings. In contrast, a homeobox gene abdominal-A is repressed by dsx-H and involved in the non-mimetic colouration pattern. These findings suggest that dual regulation by dsx-H, induction of mimetic gene networks and repression of non-mimetic gene networks, is essential for the switch from non-mimetic to mimetic pattern in mimetic female wings.
Collapse
Affiliation(s)
- Takuro Iijima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| | - Shinichi Yoda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| |
Collapse
|
30
|
Tian L, Rahman SR, Ezray BD, Franzini L, Strange JP, Lhomme P, Hines HM. A homeotic shift late in development drives mimetic color variation in a bumble bee. Proc Natl Acad Sci U S A 2019; 116:11857-11865. [PMID: 31043564 PMCID: PMC6575597 DOI: 10.1073/pnas.1900365116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural phenotypic radiations, with their high diversity and convergence, are well-suited for informing how genomic changes translate to natural phenotypic variation. New genomic tools enable discovery in such traditionally nonmodel systems. Here, we characterize the genomic basis of color pattern variation in bumble bees (Hymenoptera, Apidae, Bombus), a group that has undergone extensive convergence of setal color patterns as a result of Müllerian mimicry. In western North America, multiple species converge on local mimicry patterns through parallel shifts of midabdominal segments from red to black. Using genome-wide association, we establish that a cis-regulatory locus between the abdominal fate-determining Hox genes, abd-A and Abd-B, controls the red-black color switch in a western species, Bombus melanopygus Gene expression analysis reveals distinct shifts in Abd-B aligned with the duration of setal pigmentation at the pupal-adult transition. This results in atypical anterior Abd-B expression, a late developmental homeotic shift. Changing expression of Hox genes can have widespread effects, given their important role across segmental phenotypes; however, the late timing reduces this pleiotropy, making Hox genes suitable targets. Analysis of this locus across mimics and relatives reveals that other species follow independent genetic routes to obtain the same phenotypes.
Collapse
Affiliation(s)
- Li Tian
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | | | - Briana D Ezray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Luca Franzini
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - James P Strange
- United States Department of Agriculture-Agricultural Research Service Pollinating Insects Research Unit, Utah State University, Logan, UT 84322
| | - Patrick Lhomme
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Biodiversity and Crop Improvement Program, International Center of Agricultural Research in the Dry Areas, 10112 Rabat, Morocco
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, PA 16802;
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
31
|
Ando T, Niimi T. Development and evolution of color patterns in ladybird beetles: A case study in Harmonia axyridis. Dev Growth Differ 2019; 61:73-84. [PMID: 30644547 DOI: 10.1111/dgd.12592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Abstract
Many organisms show various geometric color patterns on their bodies, and the developmental, evolutionary, genetic, and ecological bases of these patterns have been intensely studied in various organisms. Ladybird beetles display highly diverse patterns of wing (elytral) color and are one of the most attractive model organisms for studying these characteristics. In this study, we reviewed the genetic history of elytral color patterns in the Asian multicolored ladybird beetle Harmonia axyridis from the classical genetic studies led by the pupils of Thomas Hunt Morgan and Theodosius Dobzhansky to recent genomic studies that revealed that a single GATA transcription factor gene, pannier, regulates the highly diverse elytral color patterns in this species. We also reviewed and discussed the developmental and evolutionary mechanisms driven by the pannier locus in H. axyridis. In the development sections, we focused on the following two topics: (a) how the red (carotenoid) and black (melanin) pigmentation of elytra is regulated by the pannier and pigmentation genes and (b) how the diverse color patterns are formed by integrating regulatory inputs from other genes involved in wing development. In the evolution section, we subsequently focused on the highly diversified DNA sequences within the first intron of pannier that are 56-76 kb long and that were generated through recurrent multiple inversions. Furthermore, we discussed how these recurrent inversions have driven the diversification of color patterns throughout evolution.
Collapse
Affiliation(s)
- Toshiya Ando
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
32
|
Iwata M, Otaki JM. Insights into eyespot color-pattern formation mechanisms from color gradients, boundary scales, and rudimentary eyespots in butterfly wings. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:68-82. [PMID: 30797779 DOI: 10.1016/j.jinsphys.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Butterfly eyespot color patterns are traditionally explained by the gradient model, where positional information is stably provided by a morphogen gradient from a single organizer and its output is a set of non-graded (or graded) colors based on pre-determined threshold levels. An alternative model is the induction model, in which the outer black ring and the inner black core disk of an eyespot are specified by graded signals from the primary and secondary organizers that also involve lateral induction. To examine the feasibility of these models, we analyzed eyespot color gradients, boundary scales, and rudimentary eyespots in various nymphalid butterflies. Most parts of eyespots showed color gradients with gradual or fluctuating changes with sharp boundaries in many species, but some species had eyespots that were composed of a constant color within a given part. Thus, a plausible model should be flexible enough to incorporate this diversity. Some boundary scales appeared to have two kinds of pigments, and others had "misplaced" colors, suggesting an overlapping of two signals and a difficulty in assuming sharp threshold boundaries. Rudimentary eyespots of three Junonia species revealed that the outer black ring is likely determined first and the inner yellow or red ring is laterally induced. This outside-to-inside determination together with the lateral induction may favor the induction model, in which dynamic signal interactions play a major role. The implications of these results for the ploidy hypothesis and color-pattern rules are discussed.
Collapse
Affiliation(s)
- Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan; Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
33
|
Sanger TJ, Rajakumar R. How a growing organismal perspective is adding new depth to integrative studies of morphological evolution. Biol Rev Camb Philos Soc 2019; 94:184-198. [PMID: 30009397 DOI: 10.1111/brv.12442] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023]
Abstract
Over the past half century, the field of Evolutionary Developmental Biology, or Evo-devo, has integrated diverse fields of biology into a more synthetic understanding of morphological diversity. This has resulted in numerous insights into how development can evolve and reciprocally influence morphological evolution, as well as generated several novel theoretical areas. Although comparative by default, there remains a great gap in our understanding of adaptive morphological diversification and how developmental mechanisms influence the shape and pattern of phenotypic variation. Herein we highlight areas of research that are in the process of filling this void, and areas, if investigated more fully, that will add new insights into the diversification of morphology. At the centre of our discussion is an explicit awareness of organismal biology. Here we discuss an organismal framework that is supported by three distinct pillars. First, there is a need for Evo-devo to adopt a high-resolution phylogenetic approach in the study of morphological variation and its developmental underpinnings. Secondly, we propose that to understand the dynamic nature of morphological evolution, investigators need to give more explicit attention to the processes that generate evolutionarily relevant variation at the population level. Finally, we emphasize the need to address more thoroughly the processes that structure variation at micro- and macroevolutionary scales including modularity, morphological integration, constraint, and plasticity. We illustrate the power of these three pillars using numerous examples from both invertebrates and vertebrates to emphasize that many of these approaches are already present within the field, but have yet to be formally integrated into many research programs. We feel that the most exciting new insights will come where the traditional experimental approaches to Evo-devo are integrated more thoroughly with the principles of this organismal framework.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, U.S.A
| | | |
Collapse
|
34
|
Westerman EL, VanKuren NW, Massardo D, Tenger-Trolander A, Zhang W, Hill RI, Perry M, Bayala E, Barr K, Chamberlain N, Douglas TE, Buerkle N, Palmer SE, Kronforst MR. Aristaless Controls Butterfly Wing Color Variation Used in Mimicry and Mate Choice. Curr Biol 2018; 28:3469-3474.e4. [PMID: 30415702 PMCID: PMC6234856 DOI: 10.1016/j.cub.2018.08.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Neotropical Heliconius butterflies display a diversity of warningly colored wing patterns, which serve roles in both Müllerian mimicry and mate choice behavior. Wing pattern diversity in Heliconius is controlled by a small number of unlinked, Mendelian "switch" loci [1]. One of these, termed the K locus, switches between yellow and white color patterns, important mimicry signals as well as mating cues [2-4]. Furthermore, mate preference behavior is tightly linked to this locus [4]. K controls the distribution of white versus yellow scales on the wing, with a dominant white allele and a recessive yellow allele. Here, we combine fine-scale genetic mapping, genome-wide association studies, gene expression analyses, population and comparative genomics, and genome editing with CRISPR/Cas9 to characterize the molecular basis of the K locus in Heliconius and to infer its evolutionary history. We show that white versus yellow color variation in Heliconius cydno is due to alternate haplotypes at a putative cis-regulatory element (CRE) downstream of a tandem duplication of the homeodomain transcription factor aristaless. Aristaless1 (al1) and aristaless2 (al2) are differentially regulated between white and yellow wings throughout development with elevated expression of al1 in developing white wings, suggesting a role in repressing pigmentation. Consistent with this, knockout of al1 causes white wings to become yellow. The evolution of wing color in this group has been marked by retention of the ancestral yellow color in many lineages, a single origin of white coloration in H. cydno, and subsequent introgression of white color from H. cydno into H. melpomene.
Collapse
Affiliation(s)
- Erica L Westerman
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nicholas W VanKuren
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Darli Massardo
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA
| | | | - Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Michael Perry
- Department of Biology, New York University, New York, NY 10003, USA
| | - Erick Bayala
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Kenneth Barr
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Nicola Chamberlain
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tracy E Douglas
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Nathan Buerkle
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Stephanie E Palmer
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
From pattern to process: studies at the interface of gene regulatory networks, morphogenesis, and evolution. Curr Opin Genet Dev 2018; 51:103-110. [PMID: 30278289 DOI: 10.1016/j.gde.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
The development of anatomical structures is complex, beginning with patterning of gene expression by multiple gene regulatory networks (GRNs). These networks ultimately regulate the activity of effector molecules, which in turn alter cellular behavior during development. Together these processes biomechanically produce the three-dimensional shape that the anatomical structure adopts over time. However, the interfaces between these processes are often overlooked and also include counter-intuitive feedback mechanisms. In this review, we examine each step in this extraordinarily complex process and explore how evolutionary developmental biology model systems, such as butterfly scales, vertebrate teeth, and the Drosophila dorsal appendage offer a complementary approach to expose the multifactorial integration of genetics and morphogenesis from an alternative perspective.
Collapse
|
36
|
San-Jose LM, Roulin A. Genomics of coloration in natural animal populations. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0337. [PMID: 28533454 DOI: 10.1098/rstb.2016.0337] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 12/28/2022] Open
Abstract
Animal coloration has traditionally been the target of genetic and evolutionary studies. However, until very recently, the study of the genetic basis of animal coloration has been mainly restricted to model species, whereas research on non-model species has been either neglected or mainly based on candidate approaches, and thereby limited by the knowledge obtained in model species. Recent high-throughput sequencing technologies allow us to overcome previous limitations, and open new avenues to study the genetic basis of animal coloration in a broader number of species and colour traits, and to address the general relevance of different genetic structures and their implications for the evolution of colour. In this review, we highlight aspects where genome-wide studies could be of major utility to fill in the gaps in our understanding of the biology and evolution of animal coloration. The new genomic approaches have been promptly adopted to study animal coloration although substantial work is still needed to consider a larger range of species and colour traits, such as those exhibiting continuous variation or based on reflective structures. We argue that a robust advancement in the study of animal coloration will also require large efforts to validate the functional role of the genes and variants discovered using genome-wide tools.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Building Le Biophore, 1015 Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Le Biophore, 1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Kazemi B, Gamberale-Stille G, Wåtz T, Wiklund C, Leimar O. Learning of salient prey traits explains Batesian mimicry evolution. Evolution 2018; 72:531-539. [PMID: 29315519 DOI: 10.1111/evo.13418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
Batesian mimicry evolution involves an initial major mutation that produces a rough resemblance to the model, followed by smaller improving changes. To examine the learning psychology of this process, we applied established ideas about mimicry in Papilio polyxenes asterius of the model Battus philenor. We performed experiments with wild birds as predators and butterfly wings as semiartificial prey. Wings of hybrids of P. p. asterius and Papilio machaon were used to approximate the first mutant, with melanism as the hypothesized first mimetic trait. Based on previous results about learning psychology and imperfect mimicry, we predicted that: melanism should have high salience (i.e., being noticeable and prominent), meaning that predators readily discriminate a melanistic mutant from appearances similar to P. machaon; the difference between the first mutant and the model should have intermediate salience to allow further improvement of mimicry; and the final difference in appearance between P. p. asterius and B. philenor should have very low salience, causing improvement to level off. Our results supported both the traditional hypothesis and all our predictions about relative salience. We conclude that there is good agreement between long-held ideas about how Batesian mimicry evolves and recent insights from learning psychology about the role of salience in mimicry evolution.
Collapse
Affiliation(s)
- Baharan Kazemi
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Therese Wåtz
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christer Wiklund
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Olof Leimar
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
38
|
Jiggins CD, Wallbank RWR, Hanly JJ. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns? Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0485. [PMID: 27994126 DOI: 10.1098/rstb.2015.0485] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard W R Wallbank
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
39
|
Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc Natl Acad Sci U S A 2017; 114:10701-10706. [PMID: 28923954 DOI: 10.1073/pnas.1708149114] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Butterfly wing patterns provide a rich comparative framework to study how morphological complexity develops and evolves. Here we used CRISPR/Cas9 somatic mutagenesis to test a patterning role for WntA, a signaling ligand gene previously identified as a hotspot of shape-tuning alleles involved in wing mimicry. We show that WntA loss-of-function causes multiple modifications of pattern elements in seven nymphalid butterfly species. In three butterflies with a conserved wing-pattern arrangement, WntA is necessary for the induction of stripe-like patterns known as symmetry systems and acquired a novel eyespot activator role specific to Vanessa forewings. In two Heliconius species, WntA specifies the boundaries between melanic fields and the light-color patterns that they contour. In the passionvine butterfly Agraulis, WntA removal shows opposite effects on adjacent pattern elements, revealing a dual role across the wing field. Finally, WntA acquired a divergent role in the patterning of interveinous patterns in the monarch, a basal nymphalid butterfly that lacks stripe-like symmetry systems. These results identify WntA as an instructive signal for the prepatterning of a biological system of exuberant diversity and illustrate how shifts in the deployment and effects of a single developmental gene underlie morphological change.
Collapse
|
40
|
Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28913870 DOI: 10.1002/wdev.291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
Abstract
Butterfly wing patterns are key adaptations that are controlled by remarkable developmental and genetic mechanisms that facilitate rapid evolutionary change. With swift advancements in the fields of genomics and genetic manipulations, identifying the regulators of wing development and mimetic wing patterns has become feasible even in nonmodel organisms such as butterflies. Recent mapping and gene expression studies have identified single switch loci of major effects such as transcription factors and supergenes as the main drivers of adaptive evolution of mimetic and polymorphic butterfly wing patterns. We highlight several of these examples, with emphasis on doublesex, optix, WntA and other dynamic, yet essential, master regulators that control critical color variation and sex-specific traits. Co-option emerges as a predominant theme, where typically embryonic and other early-stage developmental genes and networks have been rewired to regulate polymorphic and sex-limited mimetic wing patterns in iconic butterfly adaptations. Drawing comparisons from our knowledge of wing development in Drosophila, we illustrate the functional space of genes that have been recruited to regulate butterfly wing patterns. We also propose a developmental pathway that potentially results in dorsoventral mismatch in butterfly wing patterns. Such dorsoventrally mismatched color patterns modulate signal components of butterfly wings that are used in intra- and inter-specific communication. Recent advances-fuelled by RNAi-mediated knockdowns and CRISPR/Cas9-based genomic edits-in the developmental genetics of butterfly wing patterns, and the underlying biological diversity and complexity of wing coloration, are pushing butterflies as an emerging model system in ecological genetics and evolutionary developmental biology. WIREs Dev Biol 2018, 7:e291. doi: 10.1002/wdev.291 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties.
Collapse
Affiliation(s)
| | - Saurav Baral
- National Centre for Biological Sciences, Bengaluru, India
| | - A Gandhimathi
- National Centre for Biological Sciences, Bengaluru, India
| | | | | |
Collapse
|
41
|
Neethiraj R, Hornett EA, Hill JA, Wheat CW. Investigating the genomic basis of discrete phenotypes using a Pool-Seq-only approach: New insights into the genetics underlying colour variation in diverse taxa. Mol Ecol 2017; 26:4990-5002. [PMID: 28614599 DOI: 10.1111/mec.14205] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
Abstract
While large-scale genomic approaches are increasingly revealing the genetic basis of polymorphic phenotypes such as colour morphs, such approaches are almost exclusively conducted in species with high-quality genomes and annotations. Here, we use Pool-Seq data for both genome assembly and SNP frequency estimation, followed by scanning for FST outliers to identify divergent genomic regions. Using paired-end, short-read sequencing data from two groups of individuals expressing divergent phenotypes, we generate a de novo rough-draft genome, identify SNPs and calculate genomewide FST differences between phenotypic groups. As genomes generated by Pool-Seq data are highly fragmented, we also present an approach for super-scaffolding contigs using existing protein-coding data sets. Using this approach, we reanalysed genomic data from two recent studies of birds and butterflies investigating colour pattern variation and replicated their core findings, demonstrating the accuracy and power of a Pool-Seq-only approach. Additionally, we discovered new regions of high divergence and new annotations that together suggest novel parallels between birds and butterflies in the origins of their colour pattern variation.
Collapse
Affiliation(s)
| | - Emily A Hornett
- Department of Biology, Pennsylvania State University, University Park, PA, USA.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jason A Hill
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
42
|
Maruyama M, Parker J. Deep-Time Convergence in Rove Beetle Symbionts of Army Ants. Curr Biol 2017; 27:920-926. [PMID: 28285995 DOI: 10.1016/j.cub.2017.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/29/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Recent adaptive radiations provide striking examples of convergence [1-4], but the predictability of evolution over much deeper timescales is controversial, with a scarcity of ancient clades exhibiting repetitive patterns of phenotypic evolution [5, 6]. Army ants are ecologically dominant arthropod predators of the world's tropics, with large nomadic colonies housing diverse communities of socially parasitic myrmecophiles [7]. Remarkable among these are many species of rove beetle (Staphylinidae) that exhibit ant-mimicking "myrmecoid" body forms and are behaviorally accepted into their aggressive hosts' societies: emigrating with colonies and inhabiting temporary nest bivouacs, grooming and feeding with workers, but also consuming the brood [8-11]. Here, we demonstrate that myrmecoid rove beetles are strongly polyphyletic, with this adaptive morphological and behavioral syndrome having evolved at least 12 times during the evolution of a single staphylinid subfamily, Aleocharinae. Each independent myrmecoid clade is restricted to one zoogeographic region and highly host specific on a single army ant genus. Dating estimates reveal that myrmecoid clades are separated by substantial phylogenetic distances-as much as 105 million years. All such groups arose in parallel during the Cenozoic, when army ants diversified into modern genera [12] and rose to ecological dominance [13, 14]. This work uncovers a rare example of an ancient system of complex morphological and behavioral convergence, with replicate beetle lineages following a predictable phenotypic trajectory during their parasitic adaptation to host colonies.
Collapse
Affiliation(s)
- Munetoshi Maruyama
- The Kyushu University Museum, Hakozaki 6-10-1, Fukuoka-shi, Fukuoka 812-8581, Japan
| | - Joseph Parker
- Department of Genetics and Development, Columbia University, 701 West 168(th) Street, New York, NY 10032, USA; Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
| |
Collapse
|
43
|
Earl C, Guralnick RP, Kawahara AY. Digest: Imperfect convergence in butterfly wing patterns. Evolution 2017; 71:1118-1119. [PMID: 28240773 DOI: 10.1111/evo.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Chandra Earl
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, Florida, 32611.,Genetics Institute, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| | - Robert P Guralnick
- Genetics Institute, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| | - Akito Y Kawahara
- Genetics Institute, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
44
|
Abstract
Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. In Heliconius butterflies, a small number of genes control the development of diverse wing color patterns. Here, we used full genome sequencing of individuals across the Heliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around color pattern genes is highly modular, with narrow genomic intervals associated with specific differences in color and pattern. This modular architecture explains the diversity of color patterns and provides a flexible mechanism for rapid morphological diversification.
Collapse
|
45
|
Nadeau NJ. Genes controlling mimetic colour pattern variation in butterflies. CURRENT OPINION IN INSECT SCIENCE 2016; 17:24-31. [PMID: 27720070 DOI: 10.1016/j.cois.2016.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Butterfly wing patterns are made up of arrays of coloured scales. There are two genera in which within-species variation in wing patterning is common and has been investigated at the molecular level, Heliconius and Papilio. Both of these species have mimetic relationships with other butterfly species that increase their protection from predators. Heliconius have a 'tool-kit' of five genetic loci that control colour pattern, three of which have been identified at the gene level, and which have been repeatedly used to modify colour pattern by different species in the genus. By contrast, the three Papilio species that have been investigated each have different genetic mechanisms controlling their polymorphic wing patterns.
Collapse
Affiliation(s)
- Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
46
|
Woronik A, Wheat CW. Advances in finding Alba: the locus affecting life history and color polymorphism in a Colias butterfly. J Evol Biol 2016; 30:26-39. [PMID: 27541292 DOI: 10.1111/jeb.12967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/22/2016] [Accepted: 08/14/2016] [Indexed: 11/30/2022]
Abstract
Although alternative life-history strategies exist within many populations, very little is known about their genetic basis and mechanistic insight into these traits could greatly advance the understanding of eco-evolutionary dynamics. Many species of butterfly within the genus Colias exhibit a sex-limited wing colour polymorphism, called Alba, which is correlated with an alternative life-history strategy. Here, we have taken the first steps in localizing the region carrying Alba in Colias croceus, a species with no genomic resources, by generating whole genome sequence of a single Alba mother and two sequencing pools, one for her Alba and another for her orange, offspring. These data were used in a bulk-segregant analysis wherein SNPs fulfilling the Mendelian inheritance expectations of Alba were identified. Then, using the conserved synteny in Lepidoptera, the Alba locus was assigned to chromosome 15 in Bombyx mori. We then identified candidate regions within the chromosome by investigating the distribution of Alba SNPs along the chromosome and the difference in nucleotide diversity in exons between the two pools. A region spanning ~ 5.7 Mbp at the 5' end of the chromosome was identified as likely to contain the Alba locus. These insights set the stage for more detailed genomic scans and mapping of the Alba phenotype, and demonstrate an efficient use of genomic resources in a novel species.
Collapse
Affiliation(s)
- A Woronik
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - C W Wheat
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
47
|
Sharma AI, Yanes KO, Jin L, Garvey SL, Taha SM, Suzuki Y. The phenotypic plasticity of developmental modules. EvoDevo 2016; 7:15. [PMID: 27489611 PMCID: PMC4971649 DOI: 10.1186/s13227-016-0053-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Background Organisms develop and evolve in a modular fashion, but how individual modules interact with the environment remains poorly understood. Phenotypically plastic traits are often under selection, and studies are needed to address how traits respond to the environment in a modular fashion. In this study, tissue-specific plasticity of melanic spots was examined in the large milkweed bug, Oncopeltus fasciatus. Results Although the size of the abdominal melanic bands varied according to rearing temperatures, wing melanic bands were more robust. To explore the regulation of abdominal pigmentation plasticity, candidate genes involved in abdominal melanic spot patterning and biosynthesis of melanin were analyzed. While the knockdown of dopa decarboxylase (Ddc) led to lighter pigmentation in both the wings and the abdomen, the shape of the melanic elements remained unaffected. Although the knockdown of Abdominal-B (Abd-B) partially phenocopied the low-temperature phenotype, the abdominal bands were still sensitive to temperature shifts. These observations suggest that regulators downstream of Abd-B but upstream of DDC are responsible for the temperature response of the abdomen. Ablation of wings led to the regeneration of a smaller wing with reduced melanic bands that were shifted proximally. In addition, the knockdown of the Wnt signaling nuclear effector genes, armadillo1 and armadillo 2, altered both the melanic bands and the wing shape. Thus, the pleiotropic effects of Wnt signaling may constrain the amount of plasticity in wing melanic bands. Conclusions We propose that when traits are regulated by distinct pre-patterning mechanisms, they can respond to the environment in a modular fashion, whereas when the environment impacts developmental regulators that are shared between different modules, phenotypic plasticity can manifest as a developmentally integrated system. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0053-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aabha I Sharma
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481 USA ; Departments of Pathology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Ward Building 4-075, 303 East Chicago Avenue, Chicago, IL 60611 USA
| | - Katherine O Yanes
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481 USA
| | - Luyang Jin
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481 USA ; The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229 USA
| | - Sarah L Garvey
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481 USA
| | - Sartu M Taha
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481 USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481 USA
| |
Collapse
|
48
|
Zhang W, Dasmahapatra KK, Mallet J, Moreira GRP, Kronforst MR. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol 2016; 17:25. [PMID: 26921238 PMCID: PMC4769579 DOI: 10.1186/s13059-016-0889-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
Background Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded ‘postman’ wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. Results We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Conclusions Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0889-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| | | | - James Mallet
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Gilson R P Moreira
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
49
|
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 2016; 200:1-19. [PMID: 25953905 DOI: 10.1534/genetics.114.172387] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation.
Collapse
|
50
|
Springer SA, Manhart M, Morozov AV. Separating Spandrels from Phenotypic Targets of Selection in Adaptive Molecular Evolution. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|