1
|
Eom S, Lee SY, Park JT, Choi I. Alveoli-Like Multifunctional Scaffolds for Optical and Electrochemical In Situ Monitoring of Cellular Responses from Type II Pneumocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301395. [PMID: 37246281 PMCID: PMC10427368 DOI: 10.1002/advs.202301395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Indexed: 05/30/2023]
Abstract
While breathing, alveoli are exposed to external irritants, which contribute to the pathogenesis of lung disease. Therefore, in situ monitoring of alveolar responses to stimuli of toxicants under in vivo environments is important to understand lung disease. For this purpose, 3D cell cultures are recently employed for examining cellular responses of pulmonary systems exposed to irritants; however, most of them have used ex situ assays requiring cell lysis and fluorescent labeling. Here, an alveoli-like multifunctional scaffold is demonstrated for optical and electrochemical monitoring of cellular responses of pneumocytes. Porous foam with dimensions like the alveoli structure is used as a backbone for the scaffold, wherein electroactive metal-organic framework crystals, optically active gold nanoparticles, and biocompatible hyaluronic acid are integrated. The fabricated multifunctional scaffold allows for label-free detection and real-time monitoring of oxidative stress released in pneumocytes under toxic-conditions via redox-active amperometry and nanospectroscopy. Moreover, cellular behavior can be statistically classified based on fingerprint Raman signals collected from the cells on the scaffold. The developed scaffold is expected to serve as a promising platform to investigate cellular responses and disease pathogenesis, owing to its versatility in monitoring electrical and optical signals from cells in situ in the 3D microenvironments.
Collapse
Affiliation(s)
- Seonghyeon Eom
- Department of Life ScienceUniversity of SeoulSeoul02504Republic of Korea
| | - So Yeon Lee
- Department of Chemical EngineeringKonkuk UniversitySeoul05029Republic of Korea
| | - Jung Tae Park
- Department of Chemical EngineeringKonkuk UniversitySeoul05029Republic of Korea
| | - Inhee Choi
- Department of Life ScienceUniversity of SeoulSeoul02504Republic of Korea
- Department of Applied ChemistryUniversity of SeoulSeoul02504Republic of Korea
| |
Collapse
|
2
|
Muza UL, Ehrlich L, Pospiech D, Lederer A. High-Resolution Tracking of Multiple Distributions in Metallic Nanostructures: Advanced Analysis Was Carried Out with Novel 3D Correlation Thermal Field-Flow Fractionation. Anal Chem 2023. [PMID: 37441802 DOI: 10.1021/acs.analchem.3c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV-vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV-vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV-vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV-vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs.
Collapse
Affiliation(s)
- Upenyu L Muza
- Leibniz-Institut für Polymerforschung Dresden e.V., Center Macromolecular Structure Analysis, Hohe Straße 6, 01069 Dresden, Germany
| | - Lisa Ehrlich
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Macromolecular Chemistry, Hohe Straße 6, 01069 Dresden, Germany
| | - Doris Pospiech
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Macromolecular Chemistry, Hohe Straße 6, 01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Center Macromolecular Structure Analysis, Hohe Straße 6, 01069 Dresden, Germany
- Stellenbosch University, Department of Chemistry and Polymer Science, 7602 Matieland, South Africa
| |
Collapse
|
3
|
Fritsch B, Zech TS, Bruns MP, Körner A, Khadivianazar S, Wu M, Zargar Talebi N, Virtanen S, Unruh T, Jank MPM, Spiecker E, Hutzler A. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202803. [PMID: 35780494 PMCID: PMC9443456 DOI: 10.1002/advs.202202803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Indexed: 05/20/2023]
Abstract
Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Tobias S. Zech
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Mark P. Bruns
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Andreas Körner
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| | - Saba Khadivianazar
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Mingjian Wu
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Neda Zargar Talebi
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Sannakaisa Virtanen
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Michael P. M. Jank
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystraße 1091058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Andreas Hutzler
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| |
Collapse
|
4
|
Ozaki M, Yoshida S, Tsuruoka T, Usui K. Intracellular mineralization of gold nanoparticles using gold ion-binding peptides with cell-penetrating ability. Chem Commun (Camb) 2021; 57:725-728. [PMID: 33411858 DOI: 10.1039/d0cc06117d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We developed a system to directly produce gold nanoparticles in cells by intracellular mineralization in lower concentration than conventional methods using a peptide consisting of a cell-penetrating sequence and a gold ion-binding sequence. Furthermore, we could control the uniquely shaped gold nanostructures that were produced by changing peptide structures.
Collapse
Affiliation(s)
- Makoto Ozaki
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Shuhei Yoshida
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Takaaki Tsuruoka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| |
Collapse
|
5
|
Shiraishi Y, Tanaka H, Sakamoto H, Hayashi N, Kofuji Y, Ichikawa S, Hirai T. Synthesis of Au Nanoparticles with Benzoic Acid as Reductant and Surface Stabilizer Promoted Solely by UV Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13797-13804. [PMID: 29119792 DOI: 10.1021/acs.langmuir.7b03192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoreductive synthesis of colloidal gold nanoparticles (AuNPs) from Au3+ is one important process for nanoprocessing. Several methods have been proposed; however, there is no report of a method capable of producing AuNPs with inexpensive reagents acting as both reductant and surface stabilizer, promoted solely under photoirradiation. We found that UV irradiation of water with Au3+ and benzoic acid successfully produces monodispersed AuNPs, where thermal reduction does not occur in the dark condition even at elevated temperatures. Photoexcitation of a benzoate-Au3+ complex reduces Au3+ while oxidizing benzoic acid. The benzoic acid molecules are adsorbed on the AuNPs and act as surface stabilizers. Change in light intensity and benzoic acid amount successfully creates AuNPs with controllable sizes. The obtained AuNPs can easily be redispersed in an organic solvent or loaded onto a solid support by simple treatments.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) , Saitama 332-0012, Japan
| | - Haruki Tanaka
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | - Hirokatsu Sakamoto
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | - Naoto Hayashi
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | - Yusuke Kofuji
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | - Satoshi Ichikawa
- Institute for NanoScience Design, Osaka University , Toyonaka 560-8531, Japan
| | - Takayuki Hirai
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| |
Collapse
|
6
|
Liang Y, Gao W, Peng X, Deng X, Sun C, Wu H, He B. Near infrared light responsive hybrid nanoparticles for synergistic therapy. Biomaterials 2016; 100:76-90. [PMID: 27244691 DOI: 10.1016/j.biomaterials.2016.05.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023]
Abstract
A near infrared (NIR) light responsive chromophore 7-(diethylamino)-4-(hydroxymethyl)-2H-chromen-2-one (DEACM) was synthesized and incorporated to β-cyclodextrins with cRGD functionalized poly(ethylene glycol), the amphiphiles were coordinated with Au nanorods or nanoparticles to load anticancer drug doxorubicin (DOX) for fabricating hybrid nanoparticles. The π-π stacking interaction between DEACM and DOX was formed in the hybrid nanoparticles, which contributed to the high drug loading content. The Au nanorods or nanoparticles enhanced the photosolvolysis of DEACM under the irradiation of NIR with 808 nm wavelength and triggered the accelerated drug release from the nanoparticles. The drug loaded hybrid nanoparticles with NIR irradiation exhibited efficient inhibition effect on the proliferation of 4T1 breast cancer cells in vitro. The in vivo anticancer activity study on breast cancer bearing mice revealed that the hybrid nanoparticles containing Au nanorods exhibited excellent anticancer activity under the irradiation of 808 nm wavelength NIR with 800 mW.
Collapse
Affiliation(s)
- Yan Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Xinyu Peng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xin Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Changzhen Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Terakawa M, Torres-Mapa ML, Takami A, Heinemann D, Nedyalkov NN, Nakajima Y, Hördt A, Ripken T, Heisterkamp A. Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethylene glycol) diacrylate (PEGDA) hydrogel. OPTICS LETTERS 2016; 41:1392-1395. [PMID: 27192244 DOI: 10.1364/ol.41.001392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The fabrication of three-dimensional (3D) metal microstructures in a synthetic polymer-based hydrogel is demonstrated by femtosecond laser-induced photoreduction. The linear-shaped silver structure of approximately 2 micrometers in diameter is fabricated inside a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel. The silver structure is observed and confirmed by scanning electron microscopy (SEM) and elemental analysis using energy-dispersive X-ray spectroscopy (EDX). Shrinking and swelling of the fabricated structure is also demonstrated experimentally, which shows the potential of the present method for realizing 3D flexible electronic and optical devices, as well as for fabricating highly integrated devices at submicron scales.
Collapse
|
8
|
Giordano MC, Foti A, Messina E, Gucciardi PG, Comoretto D, Buatier de Mongeot F. SERS Amplification from Self-Organized Arrays of Plasmonic Nanocrescents. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6629-38. [PMID: 26824254 DOI: 10.1021/acsami.5b11843] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report on the surface-enhanced Raman scattering (SERS) efficiency of self-organized arrays of Au nanocrescents confined on monolayers of polystyrene nanospheres. A dichroic SERS emission in the visible spectrum is observed due to the selective excitation of a localized surface plasmon (LSP) resonance along the "short axis" of the Au nanocrescents. Under these conditions SERS signal amplifications in the range of 10(3) have been observed with respect to a flat reference Au film. The far field and near field plasmonic response of Au nanocrescent arrays have been investigated as a function of the metal dose deposited onto the polymeric spheres. In this way, we show the possibility of simply tailoring the SERS emission by engineering the morphology of the plasmonic nanocrescents. We highlight the SERS activity of chains of satellite nanoclusters that decorate the border of each connected crescent and sustain isotropic high energy LSP resonances in the visible spectrum.
Collapse
Affiliation(s)
| | - Antonino Foti
- CNR IPCF Institute for Chemical and Physical processes , Viale F. Stagno D'Alcontres 37, I-98156 Messina, Italy
- School of Doctorate in Physics, University of Messina , Viale F. Stagno D'Alcontres 31, I-98156 Messina, Italy
| | - Elena Messina
- CNR IPCF Institute for Chemical and Physical processes , Viale F. Stagno D'Alcontres 37, I-98156 Messina, Italy
| | - Pietro Giuseppe Gucciardi
- CNR IPCF Institute for Chemical and Physical processes , Viale F. Stagno D'Alcontres 37, I-98156 Messina, Italy
| | - Davide Comoretto
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31, 16146, Genova, Italy
| | | |
Collapse
|
9
|
Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy. Sci Rep 2016; 6:20177. [PMID: 26858127 PMCID: PMC4746575 DOI: 10.1038/srep20177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023] Open
Abstract
We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive.
Collapse
|
10
|
La Rocca R, Messina GC, Dipalo M, Shalabaeva V, De Angelis F. Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4632-7. [PMID: 26114644 DOI: 10.1002/smll.201500891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Indexed: 05/25/2023]
Abstract
Out-of-plane plasmonic nanoantennas protruding from the substrate are exploited to perform very sensitive surface enhanced Raman scattering analysis of living cells. Cells cultured on three-dimensional surfaces exhibit tight adhesion with nanoantenna tips where the plasmonic hot-spot resides. This fact provides observable cell adhesion sites combined with high plasmonic enhancement, resulting in an ideal system for Raman investigation of cell membranes.
Collapse
Affiliation(s)
- Rosanna La Rocca
- Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | | | - Michele Dipalo
- Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | | | | |
Collapse
|