1
|
Usher ET, Fossat MJ, Holehouse AS. Phosphorylation of disordered proteins tunes local and global intramolecular interactions. Biophys J 2024; 123:4082-4096. [PMID: 39539017 PMCID: PMC11628823 DOI: 10.1016/j.bpj.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared with published findings. We simulated short (<20 residues) and long (>80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multiphosphorylated IDRs. Our results support and expand on previous observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
Collapse
Affiliation(s)
- Emery T Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri
| | - Martin J Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
2
|
Zhang S, Ge Y, Voelz VA. Improved Estimates of Folding Stabilities and Kinetics with Multiensemble Markov Models. Biochemistry 2024; 63:3045-3056. [PMID: 39509176 DOI: 10.1021/acs.biochem.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Markov State Models (MSMs) have been widely applied to understand protein folding mechanisms by predicting long time scale dynamics from ensembles of short molecular simulations. Most MSM estimators enforce detailed balance, assuming that trajectory data are sampled at an equilibrium. This is rarely the case for ab initio folding studies, however, and as a result, MSMs can severely underestimate protein folding stabilities from such data. To remedy this problem, we have developed an enhanced-sampling protocol in which (1) unbiased folding simulations are performed and sparse tICA is used to obtain features that best capture the slowest events in folding, (2) umbrella sampling along this reaction coordinate is performed to observe folding and unfolding transitions, and (3) the thermodynamics and kinetics of folding are estimated using multiensemble Markov models (MEMMs). Using this protocol, folding pathways, rates, and stabilities of a designed α-helical hairpin, Z34C, can be predicted in good agreement with experimental measurements. These results indicate that accurate simulation-based estimates of absolute folding stabilities are within reach, with implications for the computational design of folded miniproteins and peptidomimetics.
Collapse
Affiliation(s)
- Si Zhang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yunhui Ge
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
3
|
Usher ET, Fossat MJ, Holehouse AS. Phosphorylation of disordered proteins tunes local and global intramolecular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598315. [PMID: 38915510 PMCID: PMC11195077 DOI: 10.1101/2024.06.10.598315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared to published findings. We simulated short (< 20 residues) and long (> 80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multi-phosphorylated IDRs. Our results support and expand on prior observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
Collapse
Affiliation(s)
- Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Martin J. Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Yuan Y, Mao X, Pan X, Zhang R, Su W. Kinetic Ensemble of Tau Protein through the Markov State Model and Deep Learning Analysis. J Chem Theory Comput 2024; 20:2947-2958. [PMID: 38501645 DOI: 10.1021/acs.jctc.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The ordered assembly of Tau protein into filaments characterizes Alzheimer's and other neurodegenerative diseases, and thus, stabilization of Tau protein is a promising avenue for tauopathies therapy. To dissect the underlying aggregation mechanisms on Tau, we employ a set of molecular simulations and the Markov state model to determine the kinetics of ensemble of K18. K18 is the microtubule-binding domain of Tau protein and plays a vital role in the microtubule assembly, recycling processes, and amyloid fibril formation. Here, we efficiently explore the conformation of K18 with about 150 μs lifetimes in silico. Our results observe that all four repeat regions (R1-R4) are very dynamic, featuring frequent conformational conversion and lacking stable conformations, and the R2 region is more flexible than the R1, R3, and R4 regions. Additionally, it is worth noting that residues 300-310 in R2-R3 and residues 319-336 in R3 tend to form sheet structures, indicating that K18 has a broader functional role than individual repeat monomers. Finally, the simulations combined with Markov state models and deep learning reveal 5 key conformational states along the transition pathway and provide the information on the microsecond time scale interstate transition rates. Overall, this study offers significant insights into the molecular mechanism of Tau pathological aggregation and develops novel strategies for both securing tauopathies and advancing drug discovery.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Xuqi Mao
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Xiaohang Pan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Ruisheng Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
5
|
Lebedenko OO, Salikov VA, Izmailov SA, Podkorytov IS, Skrynnikov NR. Using NMR diffusion data to validate MD models of disordered proteins: Test case of N-terminal tail of histone H4. Biophys J 2024; 123:80-100. [PMID: 37990496 PMCID: PMC10808029 DOI: 10.1016/j.bpj.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
MD simulations can provide uniquely detailed models of intrinsically disordered proteins (IDPs). However, these models need careful experimental validation. The coefficient of translational diffusion Dtr, measurable by pulsed field gradient NMR, offers a potentially useful piece of experimental information related to the compactness of the IDP's conformational ensemble. Here, we investigate, both experimentally and via the MD modeling, the translational diffusion of a 25-residue N-terminal fragment from histone H4 (N-H4). We found that the predicted values of Dtr, as obtained from mean-square displacement of the peptide in the MD simulations, are largely determined by the viscosity of the MD water (which has been reinvestigated as a part of our study). Beyond that, our analysis of the diffusion data indicates that MD simulations of N-H4 in the TIP4P-Ew water give rise to an overly compact conformational ensemble for this peptide. In contrast, TIP4P-D and OPC simulations produce the ensembles that are consistent with the experimental Dtr result. These observations are supported by the analyses of the 15N spin relaxation rates. We also tested a number of empirical methods to predict Dtr based on IDP's coordinates extracted from the MD snapshots. In particular, we show that the popular approach involving the program HYDROPRO can produce misleading results. This happens because HYDROPRO is not intended to predict the diffusion properties of highly flexible biopolymers such as IDPs. Likewise, recent empirical schemes that exploit the relationship between the small-angle x-ray scattering-informed conformational ensembles of IDPs and the respective experimental Dtr values also prove to be problematic. In this sense, the first-principle calculations of Dtr from the MD simulations, such as demonstrated in this work, should provide a useful benchmark for future efforts in this area.
Collapse
Affiliation(s)
- Olga O Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Vladislav A Salikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia; Department of Chemistry, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
6
|
Appadurai R, Koneru JK, Bonomi M, Robustelli P, Srivastava A. Clustering Heterogeneous Conformational Ensembles of Intrinsically Disordered Proteins with t-Distributed Stochastic Neighbor Embedding. J Chem Theory Comput 2023; 19:4711-4727. [PMID: 37338049 PMCID: PMC11108026 DOI: 10.1021/acs.jctc.3c00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) populate a range of conformations that are best described by a heterogeneous ensemble. Grouping an IDP ensemble into "structurally similar" clusters for visualization, interpretation, and analysis purposes is a much-desired but formidable task, as the conformational space of IDPs is inherently high-dimensional and reduction techniques often result in ambiguous classifications. Here, we employ the t-distributed stochastic neighbor embedding (t-SNE) technique to generate homogeneous clusters of IDP conformations from the full heterogeneous ensemble. We illustrate the utility of t-SNE by clustering conformations of two disordered proteins, Aβ42, and α-synuclein, in their APO states and when bound to small molecule ligands. Our results shed light on ordered substates within disordered ensembles and provide structural and mechanistic insights into binding modes that confer specificity and affinity in IDP ligand binding. t-SNE projections preserve the local neighborhood information, provide interpretable visualizations of the conformational heterogeneity within each ensemble, and enable the quantification of cluster populations and their relative shifts upon ligand binding. Our approach provides a new framework for detailed investigations of the thermodynamics and kinetics of IDP ligand binding and will aid rational drug design for IDPs.
Collapse
Affiliation(s)
- Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Massimiliano Bonomi
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry. CNRS UMR 3528, C3BI, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Paul Robustelli
- Dartmouth College, Department of Chemistry, Hanover, NH, 03755, USA
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
7
|
Liu G, Guo B, Luo M, Sun S, Lin Q, Kan Q, He Z, Miao J, Du H, Xiao H, Cao Y. A comprehensive review on preparation, structure-activities relationship, and calcium bioavailability of casein phosphopeptides. Crit Rev Food Sci Nutr 2022; 64:996-1014. [PMID: 36052610 DOI: 10.1080/10408398.2022.2111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Calcium is one of the important elements for human health. Calcium deficiencies can lead to numerous diseases. Calcium chelating peptides have shown potential application in the management of calcium deficiencies. Casein phosphopeptides (CPP) are phosphoseryl-containing fragments of casein by enzymatic hydrolysis or fermentation during manufacture of milk products as well as during intestinal digestion. An increasing number of CPP with the ability to facilitate and enhance the bioavailability of calcium are being discovered and identified. In this review, 249 reported CPP derived from four types of bovine casein (αs1, αs2, β and κ) were collected, and the amino acid sequence and phosphoserine group information were sorted out. This review outlines the current enzyme hydrolysis, detection methods, purification, structure-activity relationship and mechanism of intestinal calcium absorption in vitro and in vivo as well as application of CPP.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Baoyan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Minna Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Shengwei Sun
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qianru Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zeqi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Ahmed SS, Rifat ZT, Lohia R, Campbell AJ, Dunker AK, Rahman MS, Iqbal S. Characterization of intrinsically disordered regions in proteins informed by human genetic diversity. PLoS Comput Biol 2022; 18:e1009911. [PMID: 35275927 PMCID: PMC8942211 DOI: 10.1371/journal.pcbi.1009911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/23/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
All proteomes contain both proteins and polypeptide segments that don’t form a defined three-dimensional structure yet are biologically active—called intrinsically disordered proteins and regions (IDPs and IDRs). Most of these IDPs/IDRs lack useful functional annotation limiting our understanding of their importance for organism fitness. Here we characterized IDRs using protein sequence annotations of functional sites and regions available in the UniProt knowledgebase (“UniProt features”: active site, ligand-binding pocket, regions mediating protein-protein interactions, etc.). By measuring the statistical enrichment of twenty-five UniProt features in 981 IDRs of 561 human proteins, we identified eight features that are commonly located in IDRs. We then collected the genetic variant data from the general population and patient-based databases and evaluated the prevalence of population and pathogenic variations in IDPs/IDRs. We observed that some IDRs tolerate 2 to 12-times more single amino acid-substituting missense mutations than synonymous changes in the general population. However, we also found that 37% of all germline pathogenic mutations are located in disordered regions of 96 proteins. Based on the observed-to-expected frequency of mutations, we categorized 34 IDRs in 20 proteins (DDX3X, KIT, RB1, etc.) as intolerant to mutation. Finally, using statistical analysis and a machine learning approach, we demonstrate that mutation-intolerant IDRs carry a distinct signature of functional features. Our study presents a novel approach to assign functional importance to IDRs by leveraging the wealth of available genetic data, which will aid in a deeper understating of the role of IDRs in biological processes and disease mechanisms.
Collapse
Affiliation(s)
- Shehab S. Ahmed
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Zaara T. Rifat
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Ruchi Lohia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Arthur J. Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - M. Sohel Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
- * E-mail: (MSR); (SI)
| | - Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MSR); (SI)
| |
Collapse
|
9
|
Molecular Simulations of Intrinsically Disordered Proteins and Their Binding Mechanisms. Methods Mol Biol 2022; 2376:343-362. [PMID: 34845619 DOI: 10.1007/978-1-0716-1716-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack well-defined secondary or tertiary structures in solution but are found to be involved in a wide range of critical cellular processes that highlight their functional importance. IDPs usually undergo folding upon binding to their targets. Such binding coupled to folding behavior has widened our perspective on the protein structure-dynamics-function paradigm in molecular biology. However, characterizing the folding upon binding mechanism of IDPs experimentally remains quite challenging. Molecular simulations emerge as a potentially powerful tool that offers information complementary to experiments. Here we present a general computational framework for the molecular simulations of IDP folding upon binding processes that combines all-atom molecular dynamics (MD) and coarse-grained simulations. The classical all-atom molecular dynamics approach using GPU acceleration allows the researcher to explore the properties of the IDP conformational ensemble, whereas coarse-grained structure-based models implemented with parameters carefully calibrated to available experimental measurements can be used to simulate the entire folding upon binding process. We also discuss a set of tools for the analysis of MD trajectories and describe the details of the computational protocol to follow so that it can be adapted by the user to study any IDP in isolation and in complex with partners.
Collapse
|
10
|
Glielmo A, Husic BE, Rodriguez A, Clementi C, Noé F, Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem Rev 2021; 121:9722-9758. [PMID: 33945269 PMCID: PMC8391792 DOI: 10.1021/acs.chemrev.0c01195] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Unsupervised learning is becoming an essential tool to analyze the increasingly large amounts of data produced by atomistic and molecular simulations, in material science, solid state physics, biophysics, and biochemistry. In this Review, we provide a comprehensive overview of the methods of unsupervised learning that have been most commonly used to investigate simulation data and indicate likely directions for further developments in the field. In particular, we discuss feature representation of molecular systems and present state-of-the-art algorithms of dimensionality reduction, density estimation, and clustering, and kinetic models. We divide our discussion into self-contained sections, each discussing a specific method. In each section, we briefly touch upon the mathematical and algorithmic foundations of the method, highlight its strengths and limitations, and describe the specific ways in which it has been used-or can be used-to analyze molecular simulation data.
Collapse
Affiliation(s)
- Aldo Glielmo
- International
School for Advanced Studies (SISSA) 34014 Trieste, Italy
| | - Brooke E. Husic
- Freie
Universität Berlin, Department of Mathematics
and Computer Science, 14195 Berlin, Germany
| | - Alex Rodriguez
- International Centre for Theoretical
Physics (ICTP), Condensed Matter and Statistical
Physics Section, 34100 Trieste, Italy
| | - Cecilia Clementi
- Freie
Universität Berlin, Department for
Physics, 14195 Berlin, Germany
- Rice
University Houston, Department of Chemistry, Houston, Texas 77005, United States
| | - Frank Noé
- Freie
Universität Berlin, Department of Mathematics
and Computer Science, 14195 Berlin, Germany
- Freie
Universität Berlin, Department for
Physics, 14195 Berlin, Germany
- Rice
University Houston, Department of Chemistry, Houston, Texas 77005, United States
| | - Alessandro Laio
- International
School for Advanced Studies (SISSA) 34014 Trieste, Italy
- International Centre for Theoretical
Physics (ICTP), Condensed Matter and Statistical
Physics Section, 34100 Trieste, Italy
| |
Collapse
|
11
|
Donati L, Weber M, Keller BG. Markov models from the square root approximation of the Fokker-Planck equation: calculating the grid-dependent flux. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:115902. [PMID: 33352543 DOI: 10.1088/1361-648x/abd5f7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular dynamics (MD) are extremely complex, yet understanding the slow components of their dynamics is essential to understanding their macroscopic properties. To achieve this, one models the MD as a stochastic process and analyses the dominant eigenfunctions of the associated Fokker-Planck operator, or of closely related transfer operators. So far, the calculation of the discretized operators requires extensive MD simulations. The square-root approximation of the Fokker-Planck equation is a method to calculate transition rates as a ratio of the Boltzmann densities of neighboring grid cells times a flux, and can in principle be calculated without a simulation. In a previous work we still used MD simulations to determine the flux. Here, we propose several methods to calculate the exact or approximate flux for various grid types, and thus estimate the rate matrix without a simulation. Using model potentials we test computational efficiency of the methods, and the accuracy with which they reproduce the dominant eigenfunctions and eigenvalues. For these model potentials, rate matrices with up to [Formula: see text] states can be obtained within seconds on a single high-performance compute server if regular grids are used.
Collapse
Affiliation(s)
- Luca Donati
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - Marcus Weber
- Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
| | - Bettina G Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| |
Collapse
|
12
|
Gao C, Ma C, Wang H, Zhong H, Zang J, Zhong R, He F, Yang D. Intrinsic disorder in protein domains contributes to both organism complexity and clade-specific functions. Sci Rep 2021; 11:2985. [PMID: 33542394 PMCID: PMC7862400 DOI: 10.1038/s41598-021-82656-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/22/2021] [Indexed: 11/09/2022] Open
Abstract
Interestingly, some protein domains are intrinsically disordered (abbreviated as IDD), and the disorder degree of same domains may differ in different contexts. However, the evolutionary causes and biological significance of these phenomena are unclear. Here, we address these issues by genome-wide analyses of the evolutionary and functional features of IDDs in 1,870 species across the three superkingdoms. As the result, there is a significant positive correlation between the proportion of IDDs and organism complexity with some interesting exceptions. These phenomena may be due to the high disorder of clade-specific domains and the different disorder degrees of the domains shared in different clades. The functions of IDDs are clade-specific and the higher proportion of post-translational modification sites may contribute to their complex functions. Compared with metazoans, fungi have more IDDs with a consecutive disorder region but a low disorder ratio, which reflects their different functional requirements. As for disorder variation, it’s greater for domains among different proteins than those within the same proteins. Some clade-specific ‘no-variation’ or ‘high-variation’ domains are involved in clade-specific functions. In sum, intrinsic domain disorder is related to both the organism complexity and clade-specific functions. These results deepen the understanding of the evolution and function of IDDs.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing, 102206, China
| | - Chong Ma
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing, 102206, China.,Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Huqiang Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing, 102206, China
| | - Haolin Zhong
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing, 102206, China
| | - Jiayin Zang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing, 102206, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing, 102206, China.
| | - Dong Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, 38 Science Park Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
13
|
Fatafta H, Samantray S, Sayyed-Ahmad A, Coskuner-Weber O, Strodel B. Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:135-185. [PMID: 34656328 DOI: 10.1016/bs.pmbts.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure but do exhibit some dynamical and structural ordering. The structural plasticity of IDPs indicates that entropy-driven motions are crucial for their function. Many IDPs undergo function-related disorder-to-order transitions upon by their interaction with specific binding partners. Approaches that are based on both experimental and theoretical tools enable the biophysical characterization of IDPs. Molecular simulations provide insights into IDP structural ensembles and disorder-to-order transition mechanisms. However, such studies depend strongly on the chosen force field parameters and simulation techniques. In this chapter, we provide an overview of IDP characteristics, review all-atom force fields recently developed for IDPs, and present molecular dynamics-based simulation methods that allow IDP ensemble generation as well as the characterization of disorder-to-order transitions. In particular, we introduce metadynamics, replica exchange molecular dynamics simulations, and also kinetic models resulting from Markov State modeling, and provide various examples for the successful application of these simulation methods to IDPs.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Suman Samantray
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; AICES Graduate School, RWTH Aachen University, Aachen, Germany
| | | | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, Istanbul, Turkey
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Liutkute M, Maiti M, Samatova E, Enderlein J, Rodnina MV. Gradual compaction of the nascent peptide during cotranslational folding on the ribosome. eLife 2020; 9:60895. [PMID: 33112737 PMCID: PMC7593090 DOI: 10.7554/elife.60895] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nascent polypeptides begin to fold in the constrained space of the ribosomal peptide exit tunnel. Here we use force-profile analysis (FPA) and photo-induced energy-transfer fluorescence correlation spectroscopy (PET-FCS) to show how a small α-helical domain, the N-terminal domain of HemK, folds cotranslationally. Compaction starts vectorially as soon as the first α-helical segments are synthesized. As nascent chain grows, emerging helical segments dock onto each other and continue to rearrange at the vicinity of the ribosome. Inside or in the proximity of the ribosome, the nascent peptide undergoes structural fluctuations on the µs time scale. The fluctuations slow down as the domain moves away from the ribosome. Mutations that destabilize the packing of the domain's hydrophobic core have little effect on folding within the exit tunnel, but abolish the final domain stabilization. The results show the power of FPA and PET-FCS in solving the trajectory of cotranslational protein folding and in characterizing the dynamic properties of folding intermediates.
Collapse
Affiliation(s)
- Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manisankar Maiti
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
15
|
Characterization of partially ordered states in the intrinsically disordered N-terminal domain of p53 using millisecond molecular dynamics simulations. Sci Rep 2020; 10:12402. [PMID: 32709860 PMCID: PMC7382488 DOI: 10.1038/s41598-020-69322-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
The exploration of intrinsically disordered proteins in isolation is a crucial step to understand their complex dynamical behavior. In particular, the emergence of partially ordered states has not been explored in depth. The experimental characterization of such partially ordered states remains elusive due to their transient nature. Molecular dynamics mitigates this limitation thanks to its capability to explore biologically relevant timescales while retaining atomistic resolution. Here, millisecond unbiased molecular dynamics simulations were performed in the exemplar N-terminal region of p53. In combination with state-of-the-art Markov state models, simulations revealed the existence of several partially ordered states accounting for [Formula: see text] 40% of the equilibrium population. Some of the most relevant states feature helical conformations similar to the bound structure of p53 to Mdm2, as well as novel [Formula: see text]-sheet elements. This highlights the potential complexity underlying the energy surface of intrinsically disordered proteins.
Collapse
|
16
|
Gilabert JF, Gracia Carmona O, Hogner A, Guallar V. Combining Monte Carlo and Molecular Dynamics Simulations for Enhanced Binding Free Energy Estimation through Markov State Models. J Chem Inf Model 2020; 60:5529-5539. [PMID: 32644807 DOI: 10.1021/acs.jcim.0c00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present a multistep protocol, combining Monte Carlo and molecular dynamics simulations, for the estimation of absolute binding free energies, one of the most significant challenges in computer-aided drug design. The protocol is based on an initial short enhanced Monte Carlo simulation, followed by clustering of the ligand positions, which serve to identify the most relevant states of the unbinding process. From these states, extensive molecular dynamics simulations are run to estimate an equilibrium probability distribution obtained with Markov State Models, which is subsequently used to estimate the binding free energy. We tested the procedure on two different protein systems, the Plasminogen kringle domain 1 and Urokinase, each with multiple ligands, for an aggregated molecular dynamics length of 760 μs. Our results indicate that the initial sampling of the unbinding events largely facilitates the convergence of the subsequent molecular dynamics exploration. Moreover, the protocol is capable to properly rank the set of ligands examined, albeit with a significant computational cost for the, more realistic, Urokinase complexes. Overall, this work demonstrates the usefulness of combining enhanced sampling methods with regular simulation techniques as a way to obtain more reliable binding affinity estimates.
Collapse
Affiliation(s)
- Joan F Gilabert
- Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
| | | | - Anders Hogner
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain.,ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
17
|
Dreßler C, Kabbe G, Brehm M, Sebastiani D. Exploring non-equilibrium molecular dynamics of mobile protons in the solid acid CsH2PO4 at the micrometer and microsecond scale. J Chem Phys 2020; 152:164110. [DOI: 10.1063/5.0002167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Christian Dreßler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Gabriel Kabbe
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Martin Brehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Daniel Sebastiani
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
18
|
Dreßler C, Kabbe G, Brehm M, Sebastiani D. Dynamical matrix propagator scheme for large-scale proton dynamics simulations. J Chem Phys 2020; 152:114114. [PMID: 32199428 DOI: 10.1063/1.5140635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We derive a matrix formalism for the simulation of long range proton dynamics for extended systems and timescales. On the basis of an ab initio molecular dynamics simulation, we construct a Markov chain, which allows us to store the entire proton dynamics in an M × M transition matrix (where M is the number of oxygen atoms). In this article, we start from common topology features of the hydrogen bond network of good proton conductors and utilize them as constituent constraints of our dynamic model. We present a thorough mathematical derivation of our approach and verify its uniqueness and correct asymptotic behavior. We propagate the proton distribution by means of transition matrices, which contain kinetic data from both ultra-short (sub-ps) and intermediate (ps) timescales. This concept allows us to keep the most relevant features from the microscopic level while effectively reaching larger time and length scales. We demonstrate the applicability of the transition matrices for the description of proton conduction trends in proton exchange membrane materials.
Collapse
Affiliation(s)
- Christian Dreßler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Gabriel Kabbe
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Martin Brehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Daniel Sebastiani
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
19
|
Rieloff E, Skepö M. Phosphorylation of a Disordered Peptide-Structural Effects and Force Field Inconsistencies. J Chem Theory Comput 2020; 16:1924-1935. [PMID: 32050065 DOI: 10.1021/acs.jctc.9b01190] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphorylation is one of the most abundant types of post-translational modifications of intrinsically disordered proteins (IDPs). This study examines the conformational changes in the 15-residue-long N-terminal fragment of the IDP statherin upon phosphorylation, using computer simulations with two different force fields: AMBER ff99SB-ILDN and CHARMM36m. The results from the simulations are compared with experimental small-angle X-ray scattering (SAXS) and circular dichroism data. In the unphosphorylated state, the two force fields are in excellent agreement regarding global structural properties such as size and shape. However, they exhibit some differences in the extent and type of the secondary structure. In the phosphorylated state, neither of the force fields performs well compared to the experimental data. Both force fields show a compaction of the peptide upon phosphorylation, greater than what is seen in SAXS experiments, although they differ in the local structure. While the CHARMM force field increases the fraction of bends in the peptide as a response to strong interactions between the phosphorylated residues and arginines, the AMBER force field shows an increase of the helical content in the N-terminal part of the peptide, where the phosphorylated residues reside, in better agreement with circular dichroism results.
Collapse
Affiliation(s)
- Ellen Rieloff
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Marie Skepö
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.,LINXS-Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
20
|
Chong SH, Im H, Ham S. Explicit Characterization of the Free Energy Landscape of pKID-KIX Coupled Folding and Binding. ACS CENTRAL SCIENCE 2019; 5:1342-1351. [PMID: 31482116 PMCID: PMC6716127 DOI: 10.1021/acscentsci.9b00200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 06/10/2023]
Abstract
The most fundamental aspect of the free energy landscape of proteins is that it is globally funneled such that protein folding is energetically biased. Then, what are the distinctive characteristics of the landscape of intrinsically disordered proteins, apparently lacking such energetic bias, that nevertheless fold upon binding? Here, we address this fundamental issue through the explicit characterization of the free energy landscape of the paradigmatic pKID-KIX system (pKID, phosphorylated kinase-inducible domain; KIX, kinase interacting domain). This is done based on unguided, fully atomistic, explicit-water molecular dynamics simulations with an aggregated simulation time of >30 μs and on the computation of the free energy that defines the landscape. We find that, while the landscape of pKID before binding is considerably shallower than the one for a protein that autonomously folds, it becomes progressively more funneled as the binding of pKID with KIX proceeds. This explains why pKID is disordered in a free state, and the binding of pKID with KIX is a prerequisite for pKID's folding. In addition, we observe that the key event in completing the pKID-KIX coupled folding and binding is the directed self-assembly where pKID is docked upon the KIX surface to maximize the surface electrostatic complementarity, which, in turn, require pKID to adopt the correct folded structure. This key process shows up as the free energy barrier in the pKID landscape separating the intermediate nonspecific complex state and the specific complex state. The present work not only provides a detailed molecular picture of the coupled folding and binding of pKID but also expands the funneled landscape perspective to intrinsically disordered proteins.
Collapse
Affiliation(s)
| | | | - Sihyun Ham
- E-mail: . Phone: +82 2 710 9410. Fax: +82 2 2077 7321
| |
Collapse
|
21
|
Zhao L, Ouyang Y, Li Q, Zhang Z. Modulation of p53 N-terminal transactivation domain 2 conformation ensemble and kinetics by phosphorylation. J Biomol Struct Dyn 2019; 38:2613-2623. [DOI: 10.1080/07391102.2019.1637784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Likun Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Ouyang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins. Biomolecules 2019; 9:biom9040146. [PMID: 30979035 PMCID: PMC6523529 DOI: 10.3390/biom9040146] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered proteins (IDP) are abundant in the human genome and have recently emerged as major therapeutic targets for various diseases. Unlike traditional proteins that adopt a definitive structure, IDPs in free solution are disordered and exist as an ensemble of conformations. This enables the IDPs to signal through multiple signaling pathways and serve as scaffolds for multi-protein complexes. The challenge in studying IDPs experimentally stems from their disordered nature. Nuclear magnetic resonance (NMR), circular dichroism, small angle X-ray scattering, and single molecule Förster resonance energy transfer (FRET) can give the local structural information and overall dimension of IDPs, but seldom provide a unified picture of the whole protein. To understand the conformational dynamics of IDPs and how their structural ensembles recognize multiple binding partners and small molecule inhibitors, knowledge-based and physics-based sampling techniques are utilized in-silico, guided by experimental structural data. However, efficient sampling of the IDP conformational ensemble requires traversing the numerous degrees of freedom in the IDP energy landscape, as well as force-fields that accurately model the protein and solvent interactions. In this review, we have provided an overview of the current state of computational methods for studying IDP structure and dynamics and discussed the major challenges faced in this field.
Collapse
|
23
|
Joseph JA, Wales DJ. Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. J Phys Chem B 2018; 122:11906-11921. [DOI: 10.1021/acs.jpcb.8b08371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jerelle A. Joseph
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
24
|
Donati L, Heida M, Keller BG, Weber M. Estimation of the infinitesimal generator by square-root approximation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:425201. [PMID: 30192232 DOI: 10.1088/1361-648x/aadfc8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, for the analysis of molecular processes, the estimation of time-scales and transition rates has become fundamental. Estimating the transition rates between molecular conformations is-from a mathematical point of view-an invariant subspace projection problem. We present a method to project the infinitesimal generator acting on function space to a low-dimensional rate matrix. This projection can be performed in two steps. First, we discretize the conformational space in a Voronoi tessellation, then the transition rates between adjacent cells is approximated by the geometric average of the Boltzmann weights of the Voronoi cells. This method demonstrates that there is a direct relation between the potential energy surface of molecular structures and the transition rates of conformational changes. We will show also that this approximation is correct and converges to the generator of the Smoluchowski equation in the limit of infinitely small Voronoi cells. We present results for a two dimensional diffusion process and alanine dipeptide as a high-dimensional system.
Collapse
Affiliation(s)
- Luca Donati
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
25
|
Zeng J, Huang Z. From Levinthal's Paradox to the Effects of Cell Environmental Perturbation on Protein Folding. Curr Med Chem 2018; 26:7537-7554. [PMID: 30332937 DOI: 10.2174/0929867325666181017160857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/04/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND The rapidly increasing number of known protein sequences calls for more efficient methods to predict the Three-Dimensional (3D) structures of proteins, thus providing basic knowledge for rational drug design. Understanding the folding mechanism of proteins is valuable for predicting their 3D structures and for designing proteins with new functions and medicinal applications. Levinthal's paradox is that although the astronomical number of conformations possible even for proteins as small as 100 residues cannot be fully sampled, proteins in nature normally fold into the native state within timescales ranging from microseconds to hours. These conflicting results reveal that there are factors in organisms that can assist in protein folding. METHODS In this paper, we selected a crowded cell-like environment and temperature, and the top three Posttranslational Modifications (PTMs) as examples to show that Levinthal's paradox does not reflect the folding mechanism of proteins. We then revealed the effects of these factors on protein folding. RESULTS The results summarized in this review indicate that a crowded cell-like environment, temperature, and the top three PTMs reshape the Free Energy Landscapes (FELs) of proteins, thereby regulating the folding process. The balance between entropy and enthalpy is the key to understanding the effect of the crowded cell-like environment and PTMs on protein folding. In addition, the stability/flexibility of proteins is regulated by temperature. CONCLUSION This paper concludes that the cellular environment could directly intervene in protein folding. The long-term interactions of the cellular environment and sequence evolution may enable proteins to fold efficiently. Therefore, to correctly understand the folding mechanism of proteins, the effect of the cellular environment on protein folding should be considered.
Collapse
Affiliation(s)
- Juan Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, China.,Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zunnan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
26
|
Donati L, Keller BG. Girsanov reweighting for metadynamics simulations. J Chem Phys 2018; 149:072335. [DOI: 10.1063/1.5027728] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Luca Donati
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - Bettina G. Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| |
Collapse
|
27
|
Cohen-Khait R, Schreiber G. Selecting for Fast Protein-Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP. Biochemistry 2018; 57:4644-4650. [PMID: 29671590 DOI: 10.1021/acs.biochem.8b00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.
Collapse
Affiliation(s)
- Ruth Cohen-Khait
- Department of Biomolecular Sciences , Weizmann Institute of Science , 76100 Rehovot , Israel
| | - Gideon Schreiber
- Department of Biomolecular Sciences , Weizmann Institute of Science , 76100 Rehovot , Israel
| |
Collapse
|
28
|
Perez A, Sittel F, Stock G, Dill K. MELD-Path Efficiently Computes Conformational Transitions, Including Multiple and Diverse Paths. J Chem Theory Comput 2018; 14:2109-2116. [PMID: 29547695 DOI: 10.1021/acs.jctc.7b01294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular actions of proteins occur along reaction coordinates. Current computer methods have limited ability to explore them. We describe a fast protocol called MELD-path that (1) efficiently samples relevant conformational states via MELD, an accelerator of Molecular Dynamics (MD), (2) seeds multiple short MD trajectories from MELD states, and then (3) constructs Markov State Models (MSM) that give the routes and kinetics. We tested the method against extensive (multi μs) MD simulations of the right-handed- to left-handed-helix transition of a 9-mer peptide of AIB, the symmetry of which allows us to establish convergence. MELD-path finds all the metastable states, their correct relative populations, and the full ensemble of routes, not just a single assumed route. For this transition, we find a very broad route structure. MELD-path is highly parallelizable and efficient, yielding the full route map in a few days of computation. We believe MELD-path could be a general and rapid way to explore mechanistic processes in biomolecules on the computer.
Collapse
Affiliation(s)
- Alberto Perez
- Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 1179 4, United States
| | - Florian Sittel
- Biomolecular Dynamics, Institute of Physics , Albert Ludwigs University , 79104 Freiburg , Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics , Albert Ludwigs University , 79104 Freiburg , Germany
| | - Ken Dill
- Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 1179 4, United States
| |
Collapse
|
29
|
Pérez A, Martínez-Rosell G, De Fabritiis G. Simulations meet machine learning in structural biology. Curr Opin Struct Biol 2018; 49:139-144. [PMID: 29477048 DOI: 10.1016/j.sbi.2018.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
Abstract
Classical molecular dynamics (MD) simulations will be able to reach sampling in the second timescale within five years, producing petabytes of simulation data at current force field accuracy. Notwithstanding this, MD will still be in the regime of low-throughput, high-latency predictions with average accuracy. We envisage that machine learning (ML) will be able to solve both the accuracy and time-to-prediction problem by learning predictive models using expensive simulation data. The synergies between classical, quantum simulations and ML methods, such as artificial neural networks, have the potential to drastically reshape the way we make predictions in computational structural biology and drug discovery.
Collapse
Affiliation(s)
- Adrià Pérez
- Computational Biophysiscs Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Gerard Martínez-Rosell
- Computational Biophysiscs Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Gianni De Fabritiis
- Computational Biophysiscs Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
30
|
Gógl G, Biri-Kovács B, Póti ÁL, Vadászi H, Szeder B, Bodor A, Schlosser G, Ács A, Turiák L, Buday L, Alexa A, Nyitray L, Reményi A. Dynamic control of RSK complexes by phosphoswitch-based regulation. FEBS J 2017; 285:46-71. [PMID: 29083550 DOI: 10.1111/febs.14311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Assembly and disassembly of protein-protein complexes needs to be dynamically controlled and phosphoswitches based on linear motifs are crucial in this process. Extracellular signal-regulated kinase 2 (ERK2) recognizes a linear-binding motif at the C-terminal tail (CTT) of ribosomal S6 kinase 1 (RSK1), leading to phosphorylation and subsequent activation of RSK1. The CTT also contains a classical PDZ domain-binding motif which binds RSK substrates (e.g. MAGI-1). We show that autophosphorylation of the disordered CTT promotes the formation of an intramolecular charge clamp, which efficiently masks critical residues and indirectly hinders ERK binding. Thus, RSK1 CTT operates as an autoregulated phosphoswitch: its phosphorylation at specific sites affects its protein-binding capacity and its conformational dynamics. These biochemical feedbacks, which form the structural basis for the rapid dissociation of ERK2-RSK1 and RSK1-PDZ substrate complexes under sustained epidermal growth factor (EGF) stimulation, were structurally characterized and validated in living cells. Overall, conformational changes induced by phosphorylation in disordered regions of protein kinases, coupled to allosteric events occurring in the kinase domain cores, may provide mechanisms that contribute to the emergence of complex signaling activities. In addition, we show that phosphoswitches based on linear motifs can be functionally classified as ON and OFF protein-protein interaction switches or dimmers, depending on the specific positioning of phosphorylation target sites in relation to functional linear-binding motifs. Moreover, interaction of phosphorylated residues with positively charged residues in disordered regions is likely to be a common mechanism of phosphoregulation. DATABASE Structural data are available in the PDB database under the accession numbers 5N7D, 5N7F and 5N7G. NMR spectral assignation data are available in the BMRB database under the accession numbers 27213 and 27214.
Collapse
Affiliation(s)
- Gergő Gógl
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Biri-Kovács
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám L Póti
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Henrietta Vadászi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Ács
- MS Proteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anita Alexa
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Reményi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
31
|
Abstract
The protein elastin imparts extensibility, elastic recoil, and resilience to tissues including arterial walls, skin, lung alveoli, and the uterus. Elastin and elastin-like peptides are hydrophobic, disordered, and undergo liquid-liquid phase separation upon self-assembly. Despite extensive study, the structure of elastin remains controversial. We use molecular dynamics simulations on a massive scale to elucidate the structural ensemble of aggregated elastin-like peptides. Consistent with the entropic nature of elastic recoil, the aggregated state is stabilized by the hydrophobic effect. However, self-assembly does not entail formation of a hydrophobic core. The polypeptide backbone forms transient, sparse hydrogen-bonded turns and remains significantly hydrated even as self-assembly triples the extent of non-polar side chain contacts. Individual chains in the assembly approach a maximally-disordered, melt-like state which may be called the liquid state of proteins. These findings resolve long-standing controversies regarding elastin structure and function and afford insight into the phase separation of disordered proteins.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular MedicineThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Régis Pomès
- Molecular MedicineThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| |
Collapse
|
32
|
Paul F, Wehmeyer C, Abualrous ET, Wu H, Crabtree MD, Schöneberg J, Clarke J, Freund C, Weikl TR, Noé F. Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations. Nat Commun 2017; 8:1095. [PMID: 29062047 PMCID: PMC5653669 DOI: 10.1038/s41467-017-01163-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/22/2017] [Indexed: 11/10/2022] Open
Abstract
Understanding and control of structures and rates involved in protein ligand binding are essential for drug design. Unfortunately, atomistic molecular dynamics (MD) simulations cannot directly sample the excessively long residence and rearrangement times of tightly binding complexes. Here we exploit the recently developed multi-ensemble Markov model framework to compute full protein-peptide kinetics of the oncoprotein fragment 25-109Mdm2 and the nano-molar inhibitor peptide PMI. Using this system, we report, for the first time, direct estimates of kinetics beyond the seconds timescale using simulations of an all-atom MD model, with high accuracy and precision. These results only require explicit simulations on the sub-milliseconds timescale and are tested against existing mutagenesis data and our own experimental measurements of the dissociation and association rates. The full kinetic model reveals an overall downhill but rugged binding funnel with multiple pathways. The overall strong binding arises from a variety of conformations with different hydrophobic contact surfaces that interconvert on the milliseconds timescale.
Collapse
Affiliation(s)
- Fabian Paul
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14476, Potsdam, Germany
| | - Christoph Wehmeyer
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Esam T Abualrous
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Hao Wu
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Michael D Crabtree
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14476, Potsdam, Germany
| | - Frank Noé
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
33
|
Doerr S, Giorgino T, Martínez-Rosell G, Damas JM, De Fabritiis G. High-Throughput Automated Preparation and Simulation of Membrane Proteins with HTMD. J Chem Theory Comput 2017; 13:4003-4011. [DOI: 10.1021/acs.jctc.7b00480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stefan Doerr
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Toni Giorgino
- Institute
of Neurosciences, National Research Council of Italy (IN-CNR), 35127 Padua, Italy
| | - Gerard Martínez-Rosell
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - João M. Damas
- Acellera, Barcelona Biomedical Research Park
(PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Gianni De Fabritiis
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
34
|
Donati L, Hartmann C, Keller BG. Girsanov reweighting for path ensembles and Markov state models. J Chem Phys 2017; 146:244112. [DOI: 10.1063/1.4989474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- L. Donati
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - C. Hartmann
- Institute of Mathematics, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 1, D-03046 Cottbus, Germany
| | - B. G. Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| |
Collapse
|
35
|
Masone D, Uhart M, Bustos DM. On the role of residue phosphorylation in 14-3-3 partners: AANAT as a case study. Sci Rep 2017; 7:46114. [PMID: 28387381 PMCID: PMC5384239 DOI: 10.1038/srep46114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 01/14/2023] Open
Abstract
Twenty years ago, a novel concept in protein structural biology was discovered: the intrinsically disordered regions (IDRs). These regions remain largely unstructured under native conditions and the more are studied, more properties are attributed to them. Possibly, one of the most important is their ability to conform a new type of protein-protein interaction. Besides the classical domain-to-domain interactions, IDRs follow a 'fly-casting' model including 'induced folding'. Unfortunately, it is only possible to experimentally explore initial and final states. However, the complete movie of conformational changes of protein regions and their characterization can be addressed by in silico experiments. Here, we simulate the binding of two proteins to describe how the phosphorylation of a single residue modulates the entire process. 14-3-3 protein family is considered a master regulator of phosphorylated proteins and from a modern point-of-view, protein phosphorylation is a three component system, with writers (kinases), erasers (phosphatases) and readers. This later biological role is attributed to the 14-3-3 protein family. Our molecular dynamics results show that phosphorylation of the key residue Thr31 in a partner of 14-3-3, the aralkylamine N-acetyltransferase, releases the fly-casting mechanism during binding. On the other hand, the non-phosphorylation of the same residue traps the proteins, systematically and repeatedly driving the simulations into wrong protein-protein conformations.
Collapse
Affiliation(s)
- Diego Masone
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Marina Uhart
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Diego M. Bustos
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
36
|
Noé F, Clementi C. Collective variables for the study of long-time kinetics from molecular trajectories: theory and methods. Curr Opin Struct Biol 2017; 43:141-147. [PMID: 28327454 DOI: 10.1016/j.sbi.2017.02.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022]
Abstract
Collective variables are an important concept to study high-dimensional dynamical systems, such as molecular dynamics of macromolecules, liquids, or polymers, in particular to define relevant metastable states and state-transition or phase-transition. Over the past decade, a rigorous mathematical theory has been formulated to define optimal collective variables to characterize slow dynamical processes. Here we review recent developments, including a variational principle to find optimal approximations to slow collective variables from simulation data, and algorithms such as the time-lagged independent component analysis. Using these concepts, a distance metric can be defined that quantifies how slowly molecular conformations interconvert. Extensions and open questions are discussed.
Collapse
Affiliation(s)
- Frank Noé
- Department of Mathematics and Computer Science, FU Berlin, Arnimallee 6, 14195 Berlin, Germany.
| | - Cecilia Clementi
- Center for Theoretical Biological Physics, and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States.
| |
Collapse
|
37
|
Husic BE, McGibbon RT, Sultan MM, Pande VS. Optimized parameter selection reveals trends in Markov state models for protein folding. J Chem Phys 2017; 145:194103. [PMID: 27875868 DOI: 10.1063/1.4967809] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As molecular dynamics simulations access increasingly longer time scales, complementary advances in the analysis of biomolecular time-series data are necessary. Markov state models offer a powerful framework for this analysis by describing a system's states and the transitions between them. A recently established variational theorem for Markov state models now enables modelers to systematically determine the best way to describe a system's dynamics. In the context of the variational theorem, we analyze ultra-long folding simulations for a canonical set of twelve proteins [K. Lindorff-Larsen et al., Science 334, 517 (2011)] by creating and evaluating many types of Markov state models. We present a set of guidelines for constructing Markov state models of protein folding; namely, we recommend the use of cross-validation and a kinetically motivated dimensionality reduction step for improved descriptions of folding dynamics. We also warn that precise kinetics predictions rely on the features chosen to describe the system and pose the description of kinetic uncertainty across ensembles of models as an open issue.
Collapse
Affiliation(s)
- Brooke E Husic
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Robert T McGibbon
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Mohammad M Sultan
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Vijay S Pande
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
38
|
Gao Y, Zhang C, Zhang JZH, Mei Y. Evaluation of the Coupled Two-Dimensional Main Chain Torsional Potential in Modeling Intrinsically Disordered Proteins. J Chem Inf Model 2017; 57:267-274. [PMID: 28095698 DOI: 10.1021/acs.jcim.6b00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intrinsically disordered proteins (IDPs) carry out crucial biological functions in essential biological processes of life. Because of the highly dynamic and conformationally heterogeneous nature of the disordered states of IDPs, molecular dynamics simulations are becoming an indispensable tool for the investigation of the conformational ensembles and dynamic properties of IDPs. Nevertheless, there is still no consensus on the most reliable force field in molecular dynamics simulations for IDPs hitherto. In this work, the recently proposed AMBER99SB2D force field is evaluated in modeling some disordered polypeptides and proteins by checking its ability to reproduce experimental NMR data. The results highlight that when the ildn side-chain corrections are included, AMBER99SB2D-ildn exhibits reliable results that agree with experiments compared with its predecessors, the AMBER14SB, AMBER99SB, AMBER99SB-ildn, and AMBER99SB2D force fields, and that decreasing the overall magnitude of protein-protein interactions in favor of protein-water interactions is a key ingredient behind the improvement.
Collapse
Affiliation(s)
- Ya Gao
- College of Fundamental Studies, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Chaomin Zhang
- College of Fundamental Studies, Shanghai University of Engineering Science , Shanghai 201620, China
| | - John Z H Zhang
- College of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China
| | - Ye Mei
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China.,State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University , Shanghai 200062, China
| |
Collapse
|
39
|
Exploring the dark foldable proteome by considering hydrophobic amino acids topology. Sci Rep 2017; 7:41425. [PMID: 28134276 PMCID: PMC5278394 DOI: 10.1038/srep41425] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
The protein universe corresponds to the set of all proteins found in all organisms. A way to explore it is by taking into account the domain content of the proteins. However, some part of sequences and many entire sequences remain un-annotated despite a converging number of domain families. The un-annotated part of the protein universe is referred to as the dark proteome and remains poorly characterized. In this study, we quantify the amount of foldable domains within the dark proteome by using the hydrophobic cluster analysis methodology. These un-annotated foldable domains were grouped using a combination of remote homology searches and domain annotations, leading to define different levels of darkness. The dark foldable domains were analyzed to understand what make them different from domains stored in databases and thus difficult to annotate. The un-annotated domains of the dark proteome universe display specific features relative to database domains: shorter length, non-canonical content and particular topology in hydrophobic residues, higher propensity for disorder, and a higher energy. These features make them hard to relate to known families. Based on these observations, we emphasize that domain annotation methodologies can still be improved to fully apprehend and decipher the molecular evolution of the protein universe.
Collapse
|
40
|
Zeng J, Jiang F, Wu YD. Mechanism of Phosphorylation-Induced Folding of 4E-BP2 Revealed by Molecular Dynamics Simulations. J Chem Theory Comput 2016; 13:320-328. [PMID: 28068774 DOI: 10.1021/acs.jctc.6b00848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Site-specific phosphorylation of an intrinsically disordered protein, eIF4E-binding protein isoform 2 (4E-BP2), can suppress its native function by folding it into a four-stranded β-sheet, but the mechanism of this phosphorylation-induced folding is unclear. In this work, we use all-atom molecular dynamics simulations to investigate both the folded and unfolded states of 4E-BP2 under different phosphorylation states of T37 and T46. The results show that the phosphorylated forms of both T37 and T46 play important roles in stabilizing the folded structure, especially for the β-turns and the sequestered binding motif. The phosphorylated residues not only guide the folding of the protein through several intermediate states but also affect the conformational distribution of the unfolded ensemble. Significantly, the phosphorylated residues can function as nucleation sites for the folding of the protein by forming certain local structures that are stabilized by hydrogen bonding involving the phosphate group. The region around phosphorylated T46 appears to fold before that around phosphorylated T37. These findings provide new insight into the intricate effects of protein phosphorylation.
Collapse
Affiliation(s)
- Juan Zeng
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
41
|
Schor M, Mey ASJS, MacPhee CE. Analytical methods for structural ensembles and dynamics of intrinsically disordered proteins. Biophys Rev 2016; 8:429-439. [PMID: 28003858 PMCID: PMC5135723 DOI: 10.1007/s12551-016-0234-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 01/02/2023] Open
Abstract
Intrinsically disordered proteins, proteins that do not have a well-defined three-dimensional structure, make up a significant proportion of our proteome and are particularly prevalent in signaling and regulation. Although their importance has been realized for two decades, there is a lack of high-resolution experimental data. Molecular dynamics simulations have been crucial in reaching our current understanding of the dynamical structural ensemble sampled by intrinsically disordered proteins. In this review, we discuss enhanced sampling simulation methods that are particularly suitable to characterize the structural ensemble, along with examples of applications and limitations. The dynamics within the ensemble can be rigorously analyzed using Markov state models. We discuss recent developments that make Markov state modeling a viable approach for studying intrinsically disordered proteins. Finally, we briefly discuss challenges and future directions when applying molecular dynamics simulations to study intrinsically disordered proteins.
Collapse
Affiliation(s)
- Marieke Schor
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Cait E. MacPhee
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Wieczorek M, Sticht J, Stolzenberg S, Günther S, Wehmeyer C, El Habre Z, Álvaro-Benito M, Noé F, Freund C. MHC class II complexes sample intermediate states along the peptide exchange pathway. Nat Commun 2016; 7:13224. [PMID: 27827392 PMCID: PMC5105163 DOI: 10.1038/ncomms13224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/13/2016] [Indexed: 01/07/2023] Open
Abstract
The presentation of peptide-MHCII complexes (pMHCIIs) for surveillance by T cells is a well-known immunological concept in vertebrates, yet the conformational dynamics of antigen exchange remain elusive. By combining NMR-detected H/D exchange with Markov modelling analysis of an aggregate of 275 microseconds molecular dynamics simulations, we reveal that a stable pMHCII spontaneously samples intermediate conformations relevant for peptide exchange. More specifically, we observe two major peptide exchange pathways: the kinetic stability of a pMHCII's ground state defines its propensity for intrinsic peptide exchange, while the population of a rare, intermediate conformation correlates with the propensity of the HLA-DM-catalysed pathway. Helix-destabilizing mutants designed based on our model shift the exchange behaviour towards the HLA-DM-catalysed pathway and further allow us to conceptualize how allelic variation can shape an individual's MHC restricted immune response. MHCII proteins bind and present both foreign and self-antigens to potentially activate CD4+ T cells via cognate T cell receptors (TCRs) during the adaptive immune response. Here, the authors combine NMR-detected H/D exchange with Markov modelling analysis to shed light on the dynamics of MHCII peptide exchange.
Collapse
Affiliation(s)
- Marek Wieczorek
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Sebastian Stolzenberg
- Computational Molecular Biology group, Institute for Mathematics, Arnimallee 6, 14195 Berlin, Germany
| | - Sebastian Günther
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.,Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | - Christoph Wehmeyer
- Computational Molecular Biology group, Institute for Mathematics, Arnimallee 6, 14195 Berlin, Germany
| | - Zeina El Habre
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Frank Noé
- Computational Molecular Biology group, Institute for Mathematics, Arnimallee 6, 14195 Berlin, Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
43
|
Palazzesi F, Salvalaglio M, Barducci A, Parrinello M. Communication: Role of explicit water models in the helix folding/unfolding processes. J Chem Phys 2016; 145:121101. [DOI: 10.1063/1.4963340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ferruccio Palazzesi
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland
- Facoltá di Informatica, Istituto di Scienze Computazionali, Universitá della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Matteo Salvalaglio
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Alessandro Barducci
- Inserm, U1054 Montpellier, France
- Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland
- Facoltá di Informatica, Istituto di Scienze Computazionali, Universitá della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
44
|
Zwier MC, Pratt AJ, Adelman JL, Kaus JW, Zuckerman DM, Chong LT. Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein-Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide. J Phys Chem Lett 2016; 7:3440-5. [PMID: 27532687 PMCID: PMC5008990 DOI: 10.1021/acs.jpclett.6b01502] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The characterization of protein binding processes - with all of the key conformational changes - has been a grand challenge in the field of biophysics. Here, we have used the weighted ensemble path sampling strategy to orchestrate molecular dynamics simulations, yielding atomistic views of protein-peptide binding pathways involving the MDM2 oncoprotein and an intrinsically disordered p53 peptide. A total of 182 independent, continuous binding pathways were generated, yielding a kon that is in good agreement with experiment. These pathways were generated in 15 days using 3500 cores of a supercomputer, substantially faster than would be possible with "brute force" simulations. Many of these pathways involve the anchoring of p53 residue F19 into the MDM2 binding cleft when forming the metastable encounter complex, indicating that F19 may be a kinetically important residue. Our study demonstrates that it is now practical to generate pathways and calculate rate constants for protein binding processes using atomistic simulation on typical computing resources.
Collapse
Affiliation(s)
- Matthew C. Zwier
- Department of Chemistry, Drake University, Des Moines, Iowa 50311, United States
| | - Adam J. Pratt
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua L. Adelman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joseph W. Kaus
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Daniel M. Zuckerman
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Institute of Biochemistry and Biotechnology, Martin-Luther Universität Halle-Wittenberg, Halle 06120, Germany
- Corresponding Author:
| |
Collapse
|
45
|
Ferruz N, Tresadern G, Pineda-Lucena A, De Fabritiis G. Multibody cofactor and substrate molecular recognition in the myo-inositol monophosphatase enzyme. Sci Rep 2016; 6:30275. [PMID: 27440438 PMCID: PMC4954947 DOI: 10.1038/srep30275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/29/2016] [Indexed: 01/22/2023] Open
Abstract
Molecular recognition is rarely a two-body protein-ligand problem, as it often involves the dynamic interplay of multiple molecules that together control the binding process. Myo-inositol monophosphatase (IMPase), a drug target for bipolar disorder, depends on 3 Mg(2+) ions as cofactor for its catalytic activity. Although the crystallographic pose of the pre-catalytic complex is well characterized, the binding process by which substrate, cofactor and protein cooperate is essentially unknown. Here, we have characterized cofactor and substrate cooperative binding by means of large-scale molecular dynamics. Our study showed the first and second Mg(2+) ions identify the binding pocket with fast kinetics whereas the third ion presents a much higher energy barrier. Substrate binding can occur in cooperation with cofactor, or alone to a binary or ternary cofactor-IMPase complex, although the last scenario occurs several orders of magnitude faster. Our atomic description of the three-body mechanism offers a particularly challenging example of pathway reconstruction, and may prove particularly useful in realistic contexts where water, ions, cofactors or other entities cooperate and modulate the binding process.
Collapse
Affiliation(s)
- Noelia Ferruz
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003, Barcelona, Spain
- Acellera, Barcelona Biomedical Research Park, C Dr Aiguader 88, 08003, Barcelona, Spain
| | - Gary Tresadern
- Research Informatics, Janssen Research and Development, Janssen Cilag S A, Calle Jarama 75, Poligono Industrial, Toledo 45007, Spain
| | | | - Gianni De Fabritiis
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
46
|
McAnany CE, Mura C. Claws, Disorder, and Conformational Dynamics of the C-Terminal Region of Human Desmoplakin. J Phys Chem B 2016; 120:8654-67. [PMID: 27188911 DOI: 10.1021/acs.jpcb.6b03261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multicellular organisms consist of cells that interact via elaborate adhesion complexes. Desmosomes are membrane-associated adhesion complexes that mechanically tether the cytoskeletal intermediate filaments (IFs) between two adjacent cells, creating a network of tough connections in tissues such as skin and heart. Desmoplakin (DP) is the key desmosomal protein that binds IFs, and the DP·IF association poses a quandary: desmoplakin must stably and tightly bind IFs to maintain the structural integrity of the desmosome. Yet, newly synthesized DP must traffic along the cytoskeleton to the site of nascent desmosome assembly without "sticking" to the IF network, implying weak or transient DP···IF contacts. Recent work reveals that these contacts are modulated by post-translational modifications (PTMs) in DP's C-terminal tail (DPCTT). Using molecular dynamics simulations, we have elucidated the structural basis of these PTM-induced effects. Our simulations, nearing 2 μs in aggregate, indicate that phosphorylation of S2849 induces an "arginine claw" in desmoplakin's C-terminal tail. If a key arginine, R2834, is methylated, the DPCTT preferentially samples conformations that are geometrically well-suited as substrates for processive phosphorylation by the cognate kinase GSK3. We suggest that DPCTT is a molecular switch that modulates, via its conformational dynamics, DP's overall efficacy as a substrate for GSK3. Finally, we show that the fluctuating DPCTT can contact other parts of DP, suggesting a competitive binding mechanism for the modulation of DP···IF interactions.
Collapse
Affiliation(s)
- Charles E McAnany
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Cameron Mura
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| |
Collapse
|
47
|
Umezawa K, Ohnuki J, Higo J, Takano M. Intrinsic disorder accelerates dissociation rather than association. Proteins 2016; 84:1124-33. [DOI: 10.1002/prot.25057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/16/2016] [Accepted: 04/24/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Koji Umezawa
- Department of Pure and Applied Physics; Waseda University; Okubo 3-4-1, Shinjuku-Ku Tokyo 169-8555 Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics; Waseda University; Okubo 3-4-1, Shinjuku-Ku Tokyo 169-8555 Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University; Suita Osaka 565-0871 Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics; Waseda University; Okubo 3-4-1, Shinjuku-Ku Tokyo 169-8555 Japan
| |
Collapse
|
48
|
Yuwen T, Xue Y, Skrynnikov NR. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos. Biochemistry 2016; 55:1784-800. [PMID: 26910732 DOI: 10.1021/acs.biochem.5b01283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tairan Yuwen
- Department
of Chemistry, Purdue University, West Lafayette Indiana 47907, United States
| | - Yi Xue
- Department
of Chemistry, Purdue University, West Lafayette Indiana 47907, United States
| | - Nikolai R. Skrynnikov
- Department
of Chemistry, Purdue University, West Lafayette Indiana 47907, United States
- Laboratory
of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
49
|
The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor. Sci Rep 2016; 6:22639. [PMID: 26940769 PMCID: PMC4778059 DOI: 10.1038/srep22639] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/18/2016] [Indexed: 01/04/2023] Open
Abstract
The binding process through the membrane bilayer of lipid-like ligands to a protein target is an important but poorly explored recognition process at the atomic level. In this work we succeeded in resolving the binding of the lipid inhibitor ML056 to the sphingosine-1-phosphate receptor 1 (S1P1R) using unbiased molecular dynamics simulations with an aggregate sampling of over 800 μs. The binding pathway is a multi-stage process consisting of the ligand diffusing in the bilayer leaflet to contact a "membrane vestibule" at the top of TM 7, subsequently moving from this lipid-facing vestibule to the orthosteric binding cavity through a channel formed by TMs 1 and 7 and the N-terminal of the receptor. Unfolding of the N-terminal alpha-helix increases the volume of the channel upon ligand entry, helping to reach the crystallographic pose that also corresponds to the predicted favorable pose. The relaxation timescales of the binding process show that the binding of the ligand to the "membrane vestibule" is the rate-limiting step in the multi microseconds timescale. We comment on the significance and parallels of the binding process in the context of other binding studies.
Collapse
|
50
|
Trendelkamp-Schroer B, Wu H, Paul F, Noé F. Estimation and uncertainty of reversible Markov models. J Chem Phys 2015; 143:174101. [DOI: 10.1063/1.4934536] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Hao Wu
- Institut für Mathematik und Informatik, FU Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Fabian Paul
- Institut für Mathematik und Informatik, FU Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Frank Noé
- Institut für Mathematik und Informatik, FU Berlin, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|