1
|
Maire J, Collingro A, Tandon K, Jameson VJ, Judd LM, Horn M, Blackall LL, van Oppen MJH. Chlamydiae as symbionts of photosynthetic dinoflagellates. THE ISME JOURNAL 2024; 18:wrae139. [PMID: 39046276 PMCID: PMC11317633 DOI: 10.1093/ismejo/wrae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
Chlamydiae are ubiquitous intracellular bacteria and infect a wide diversity of eukaryotes, including mammals. However, chlamydiae have never been reported to infect photosynthetic organisms. Here, we describe a novel chlamydial genus and species, Candidatus Algichlamydia australiensis, capable of infecting the photosynthetic dinoflagellate Cladocopium sp. (originally isolated from a scleractinian coral). Algichlamydia australiensis was confirmed to be intracellular by fluorescence in situ hybridization and confocal laser scanning microscopy and temporally stable at the population level by monitoring its relative abundance across four weeks of host growth. Using a combination of short- and long-read sequencing, we recovered a high-quality (completeness 91.73% and contamination 0.27%) metagenome-assembled genome of A. australiensis. Phylogenetic analyses show that this chlamydial taxon represents a new genus and species within the Simkaniaceae family. Algichlamydia australiensis possesses all the hallmark genes for chlamydiae-host interactions, including a complete type III secretion system. In addition, a type IV secretion system is encoded on a plasmid and has previously been observed for only three other chlamydial species. Twenty orthologous groups of genes are unique to A. australiensis, one of which is structurally similar to a protein known from Cyanobacteria and Archaeplastida involved in thylakoid biogenesis and maintenance, hinting at potential chlamydiae interactions with the chloroplasts of Cladocopium cells. Our study shows that chlamydiae infect dinoflagellate symbionts of cnidarians, the first photosynthetic organism reported to harbor chlamydiae, thereby expanding the breadth of chlamydial hosts and providing a new contribution to the discussion around the role of chlamydiae in the establishment of the primary plastid.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Kshitij Tandon
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vanta J Jameson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute of Infection and Immunity, Parkville, VIC 3010, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Louise M Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
2
|
Davison HR, Hurst GDD. Hidden from plain sight: Novel Simkaniaceae and Rhabdochlamydiaceae diversity emerging from screening genomic and metagenomic data. Syst Appl Microbiol 2023; 46:126468. [PMID: 37847957 DOI: 10.1016/j.syapm.2023.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Chlamydiota are an ancient and hyperdiverse phylum of obligate intracellular bacteria. The best characterized representatives are pathogens or parasites of mammals, but it is thought that their most common hosts are microeukaryotes like Amoebozoa. The diversity in taxonomy, evolution, and function of non-pathogenic Chlamydiota are slowly being described. Here we use data mining techniques and genomic analysis to extend our current knowledge of Chlamydiota diversity and its hosts, in particular the Order Parachlamydiales. We extract one Rhabdochlamydiaceae and three Simkaniaceae Metagenome-Assembled Genomes (MAGs) from NCBI Short Read Archive deposits of ciliate and algal genome sequencing projects. We then use these to identify a further 14 and 8 MAGs respectively amongst existing, unidentified environmental assemblies. From these data we identify two novel clades with host associated data, for which we propose the names "Sacchlamyda saccharinae" (Family Rhabdochlamydiaceae) and "Amphrikana amoebophyrae" (Family Simkaniaceae), as well as a third new clade of environmental MAGs "Acheromyda pituitae" (Family Rhabdochlamydiaceae). The extent of uncharacterized diversity within the Rhabdochlamydiaceae and Simkaniaceae is indicated by 16 of the 22 MAGs being evolutionarily distant from currently characterised genera. Within our limited data, there was great predicted diversity in Parachlamydiales metabolism and evolution, including the potential for metabolic and defensive symbioses as well as pathogenicity. These data provide an imperative to link genomic diversity in metagenomics data to their associated eukaryotic host, and to develop onward understanding of the functional significance of symbiosis with this hyperdiverse clade.
Collapse
Affiliation(s)
- Helen R Davison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB UK.
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB UK
| |
Collapse
|
3
|
Hernandez AM, Ryan JF. Six-state Amino Acid Recoding is not an Effective Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic Analyses. Syst Biol 2021; 70:1200-1212. [PMID: 33837789 PMCID: PMC8513762 DOI: 10.1093/sysbio/syab027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023] Open
Abstract
Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of six-state recoding approaches by comparing the performance of analyses on recoded and non-recoded data sets that have been simulated under gradients of compositional heterogeneity or saturation. In our simulation analyses, non-recoding approaches consistently outperform six-state recoding approaches. Our results suggest that six-state recoding strategies are not effective in the face of high saturation. Furthermore, while recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies six-state recoding outweighs its benefits. In addition, we evaluate recoding schemes with 9, 12, 15, and 18 states and show that these consistently outperform six-state recoding. Our analyses of other recoding schemes suggest that under conditions of very high compositional heterogeneity, it may be advantageous to apply recoding using more than six states, but we caution that applying any recoding should include sufficient justification. Our results have important implications for the more than 90 published papers that have incorporated six-state recoding, many of which have significant bearing on relationships across the tree of life. [Compositional heterogeneity; Dayhoff 6-state recoding; S&R 6-state recoding; six-state amino acid recoding; substitution saturation.]
Collapse
Affiliation(s)
- Alexandra M Hernandez
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat Commun 2021; 12:1783. [PMID: 33741994 PMCID: PMC7979703 DOI: 10.1038/s41467-021-22074-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/24/2021] [Indexed: 11/08/2022] Open
Abstract
Resolving the relationships between the major lineages in the animal tree of life is necessary to understand the origin and evolution of key animal traits. Sponges, characterized by their simple body plan, were traditionally considered the sister group of all other animal lineages, implying a gradual increase in animal complexity from unicellularity to complex multicellularity. However, the availability of genomic data has sparked tremendous controversy as some phylogenomic studies support comb jellies taking this position, requiring secondary loss or independent origins of complex traits. Here we show that incorporating site-heterogeneous mixture models and recoding into partitioned phylogenomics alleviates systematic errors that hamper commonly-applied phylogenetic models. Testing on real datasets, we show a great improvement in model-fit that attenuates branching artefacts induced by systematic error. We reanalyse key datasets and show that partitioned phylogenomics does not support comb jellies as sister to other animals at either the supermatrix or partition-specific level.
Collapse
|
5
|
Zeng L, Dehesh K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genomics 2021; 22:137. [PMID: 33637041 PMCID: PMC7912892 DOI: 10.1186/s12864-021-07448-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Isoprenoids are the most ancient and essential class of metabolites produced in all organisms, either via mevalonate (MVA)-and/or methylerythritol phosphate (MEP)-pathways. The MEP-pathway is present in all plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and evolutionary characteristics of MEP-pathway genes in eukaryotes. Results Here, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria and Chlamydiae sequences to the plant’s MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development. Conclusion Collectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids intermediates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07448-x.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Horizontal Gene Transfer in Eukaryotes: Not if, but How Much? Trends Genet 2020; 36:915-925. [DOI: 10.1016/j.tig.2020.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
|
7
|
Collingro A, Köstlbacher S, Horn M. Chlamydiae in the Environment. Trends Microbiol 2020; 28:877-888. [PMID: 32591108 DOI: 10.1016/j.tim.2020.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Chlamydiae have been known for more than a century as major pathogens of humans. Yet they are also found ubiquitously in the environment where they thrive within protists and in an unmatched wide range of animals. This review summarizes recent advances in understanding chlamydial diversity and distribution in nature. Studying these environmental chlamydiae provides a novel perspective on basic chlamydial biology and evolution. A picture is beginning to emerge with chlamydiae representing one of the evolutionarily most ancient and successful groups of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Sato N. Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event? JOURNAL OF PLANT RESEARCH 2020; 133:15-33. [PMID: 31811433 PMCID: PMC6946739 DOI: 10.1007/s10265-019-01157-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/01/2019] [Indexed: 05/10/2023]
Abstract
The paradigm "cyanobacterial origin of chloroplasts" is currently viewed as an established fact. However, we may have to re-consider the origin of chloroplast membranes, because membranes are not replicated by their own. It is the genes for lipid biosynthetic enzymes that are inherited. In the current understandings, these enzymes became encoded by the nuclear genome as a result of endosymbiotic gene transfer from the endosymbiont. However, we previously showed that many enzymes involved in the synthesis of chloroplast peptidoglycan and glycolipids did not originate from cyanobacteria. Here I present results of comprehensive phylogenetic analysis of chloroplast enzymes involved in fatty acid and lipid biosynthesis, as well as additional chloroplast components related to photosynthesis and gene expression. Four types of phylogenetic relationship between chloroplast enzymes (encoded by the chloroplast and nuclear genomes) and cyanobacterial counterparts were found: type 1, chloroplast enzymes diverged from inside of cyanobacterial clade; type 2, chloroplast and cyanobacterial enzymes are sister groups; type 3, chloroplast enzymes originated from homologs of bacteria other than cyanobacteria; type 4, chloroplast enzymes diverged from eukaryotic homologs. Estimation of evolutionary distances suggested that the acquisition times of chloroplast enzymes were diverse, indicating that multiple gene transfers accounted for the chloroplast enzymes analyzed. Based on the results, I try to relax the tight logic of the endosymbiotic origin of chloroplasts involving a single endosymbiotic event by proposing alternative hypotheses. The hypothesis of host-directed chloroplast formation proposes that glycolipid synthesis ability had been acquired by the eukaryotic host before the acquisition of chloroplast ribosomes. Chloroplast membrane system could have been provided by the host, whereas cyanobacteria contributed to the genes for the genetic and photosynthesis systems, at various times, either before or after the formation of chloroplast membranes. The origin(s) of chloroplasts seems to be more complicated than the single event of primary endosymbiosis.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan.
| |
Collapse
|
9
|
Lawrence TJ, Amrine KCH, Swingley WD, Ardell DH. tRNA functional signatures classify plastids as late-branching cyanobacteria. BMC Evol Biol 2019; 19:224. [PMID: 31818253 PMCID: PMC6902448 DOI: 10.1186/s12862-019-1552-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Eukaryotes acquired the trait of oxygenic photosynthesis through endosymbiosis of the cyanobacterial progenitor of plastid organelles. Despite recent advances in the phylogenomics of Cyanobacteria, the phylogenetic root of plastids remains controversial. Although a single origin of plastids by endosymbiosis is broadly supported, recent phylogenomic studies are contradictory on whether plastids branch early or late within Cyanobacteria. One underlying cause may be poor fit of evolutionary models to complex phylogenomic data. RESULTS Using Posterior Predictive Analysis, we show that recently applied evolutionary models poorly fit three phylogenomic datasets curated from cyanobacteria and plastid genomes because of heterogeneities in both substitution processes across sites and of compositions across lineages. To circumvent these sources of bias, we developed CYANO-MLP, a machine learning algorithm that consistently and accurately phylogenetically classifies ("phyloclassifies") cyanobacterial genomes to their clade of origin based on bioinformatically predicted function-informative features in tRNA gene complements. Classification of cyanobacterial genomes with CYANO-MLP is accurate and robust to deletion of clades, unbalanced sampling, and compositional heterogeneity in input tRNA data. CYANO-MLP consistently classifies plastid genomes into a late-branching cyanobacterial sub-clade containing single-cell, starch-producing, nitrogen-fixing ecotypes, consistent with metabolic and gene transfer data. CONCLUSIONS Phylogenomic data of cyanobacteria and plastids exhibit both site-process heterogeneities and compositional heterogeneities across lineages. These aspects of the data require careful modeling to avoid bias in phylogenomic estimation. Furthermore, we show that amino acid recoding strategies may be insufficient to mitigate bias from compositional heterogeneities. However, the combination of our novel tRNA-specific strategy with machine learning in CYANO-MLP appears robust to these sources of bias with high accuracy in phyloclassification of cyanobacterial genomes. CYANO-MLP consistently classifies plastids as late-branching Cyanobacteria, consistent with independent evidence from signature-based approaches and some previous phylogenetic studies.
Collapse
Affiliation(s)
- Travis J Lawrence
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831 USA
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
| | - Katherine CH Amrine
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
- Insight Data Science, 500 3rd St., San Francisco, CA, 94107 USA
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, 1425 Lincoln Hwy., DeKalb, IL, 60115 USA
| | - David H Ardell
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
| |
Collapse
|
10
|
Gruber A, Haferkamp I. Nucleotide Transport and Metabolism in Diatoms. Biomolecules 2019; 9:E761. [PMID: 31766535 PMCID: PMC6995639 DOI: 10.3390/biom9120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.
Collapse
Affiliation(s)
- Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
11
|
Ponce-Toledo RI, López-García P, Moreira D. Horizontal and endosymbiotic gene transfer in early plastid evolution. THE NEW PHYTOLOGIST 2019; 224:618-624. [PMID: 31135958 PMCID: PMC6759420 DOI: 10.1111/nph.15965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
Plastids evolved from a cyanobacterium that was engulfed by a heterotrophic eukaryotic host and became a stable organelle. Some of the resulting eukaryotic algae entered into a number of secondary endosymbioses with diverse eukaryotic hosts. These events had major consequences on the evolution and diversification of life on Earth. Although almost all plastid diversity derives from a single endosymbiotic event, the analysis of nuclear genomes of plastid-bearing lineages has revealed a mosaic origin of plastid-related genes. In addition to cyanobacterial genes, plastids recruited for their functioning eukaryotic proteins encoded by the host nucleus and also bacterial proteins of noncyanobacterial origin. Therefore, plastid proteins and plastid-localised metabolic pathways evolved by tinkering and using gene toolkits from different sources. This mixed heritage seems especially complex in secondary algae containing green plastids, the acquisition of which appears to have been facilitated by many previous acquisitions of red algal genes (the 'red carpet hypothesis').
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
12
|
Gavelis GS, Gile GH. How did cyanobacteria first embark on the path to becoming plastids?: lessons from protist symbioses. FEMS Microbiol Lett 2019; 365:5079637. [PMID: 30165400 DOI: 10.1093/femsle/fny209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Symbioses between phototrophs and heterotrophs (a.k.a 'photosymbioses') are extremely common, and range from loose and temporary associations to obligate and highly specialized forms. In the history of life, the most transformative was the 'primary endosymbiosis,' wherein a cyanobacterium was engulfed by a eukaryote and became genetically integrated as a heritable photosynthetic organelle, or plastid. By allowing the rise of algae and plants, this event dramatically altered the biosphere, but its remote origin over one billion years ago has obscured the sequence of events leading to its establishment. Here, we review the genetic, physiological and developmental hurdles involved in early primary endosymbiosis. Since we cannot travel back in time to witness these evolutionary junctures, we will draw on examples of unicellular eukaryotes (protists) spanning diverse modes of photosymbiosis. We also review experimental approaches that could be used to recreate aspects of early primary endosymbiosis on a human timescale.
Collapse
Affiliation(s)
- Gregory S Gavelis
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
13
|
Redmond AK, Zou J, Secombes CJ, Macqueen DJ, Dooley H. Discovery of All Three Types in Cartilaginous Fishes Enables Phylogenetic Resolution of the Origins and Evolution of Interferons. Front Immunol 2019; 10:1558. [PMID: 31354716 PMCID: PMC6640115 DOI: 10.3389/fimmu.2019.01558] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Interferons orchestrate host antiviral responses in jawed vertebrates. They are categorized into three classes; IFN1 and IFN3 are the primary antiviral cytokine lineages, while IFN2 responds to a broader variety of pathogens. The evolutionary relationships within and between these three classes have proven difficult to resolve. Here, we reassess interferon evolution, considering key phylogenetic pitfalls including taxon sampling, alignment quality, model adequacy, and outgroup choice. We reveal that cartilaginous fishes, and hence the jawed vertebrate ancestor, possess(ed) orthologs of all three interferon classes. We show that IFN3 groups sister to IFN1, resolve the origins of the human IFN3 lineages, and find that intronless IFN3s emerged at least three times. IFN2 genes are highly conserved, except for IFN-γ-rel, which we confirm resulted from a teleost-specific duplication. Our analyses show that IFN1 phylogeny is highly sensitive to phylogenetic error. By accounting for this, we describe a new backbone IFN1 phylogeny that implies several IFN1 genes existed in the jawed vertebrate ancestor. One of these is represented by the intronless IFN1s of tetrapods, including mammalian-like repertoires of reptile IFN1s and a subset of amphibian IFN1s, in addition to newly-identified intron-containing shark IFN1 genes. IFN-f, previously only found in teleosts, likely represents another ancestral jawed vertebrate IFN1 family member, suggesting the current classification of fish IFN1s into two groups based on the number of cysteines may need revision. The providence of the remaining fish IFN1s and the coelacanth IFN1s proved difficult to resolve, but they may also be ancestral jawed vertebrate IFN1 lineages. Finally, a large group of amphibian-specific IFN1s falls sister to all other IFN1s and was likely also present in the jawed vertebrate ancestor. Our results verify that intronless IFN1s have evolved multiple times in amphibians and indicate that no one-to-one orthology exists between mammal and reptile IFN1s. Our data also imply that diversification of the multiple IFN1s present in the jawed vertebrate ancestor has occurred through a rapid birth-death process, consistent with functional maintenance over a 450-million-year host-pathogen arms race. In summary, this study reveals a new model of interferon evolution important to our understanding of jawed vertebrate antiviral immunity.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom.,Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Jun Zou
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Christopher J Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute of Marine and Environmental Technology, Baltimore, MD, United States
| |
Collapse
|
14
|
Abstract
The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the "chlamydial anomaly." In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages.
Collapse
|
15
|
Redmond AK, Macqueen DJ, Dooley H. Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets. BMC Evol Biol 2018; 18:169. [PMID: 30442091 PMCID: PMC6238376 DOI: 10.1186/s12862-018-1290-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cartilaginous fishes diverged from other jawed vertebrates ~ 450 million years ago (mya). Despite this key evolutionary position, the only high-quality cartilaginous fish genome available is for the elephant shark (Callorhinchus milii), a chimaera whose ancestors split from the elasmobranch lineage ~ 420 mya. Initial analysis of this resource led to proposals that key components of the cartilaginous fish adaptive immune system, most notably their array of T cell subsets, was primitive compared to mammals. This proposal is at odds with the robust, antigen-specific antibody responses reported in elasmobranchs following immunization. To explore this discrepancy, we generated a multi-tissue transcriptome for small-spotted catshark (Scyliorhinus canicula), a tractable elasmobranch model for functional studies. We searched this, and other newly available sequence datasets, for CD4+ T cell subset-defining genes, aiming to confirm the presence or absence of each subset in cartilaginous fishes. RESULTS We generated a new transcriptome based on a normalised, multi-tissue RNA pool, aiming to maximise representation of tissue-specific and lowly expressed genes. We utilized multiple transcriptomic datasets and assembly variants in phylogenetic reconstructions to unambiguously identify several T cell subset-specific molecules in cartilaginous fishes for the first time, including interleukins, interleukin receptors, and key transcription factors. Our results reveal the inability of standard phylogenetic reconstruction approaches to capture the site-specific evolutionary processes of fast-evolving immune genes but show that site-heterogeneous mixture models can adequately do so. CONCLUSIONS Our analyses reveal that cartilaginous fishes are capable of producing a range of CD4+ T cell subsets comparable to that of mammals. Further, that the key molecules required for the differentiation and functioning of these subsets existed in the jawed vertebrate ancestor. Additionally, we highlight the importance of considering phylogenetic diversity and, where possible, utilizing multiple datasets for individual species, to accurately infer gene presence or absence at higher taxonomic levels.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Present address: Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, 701 E Pratt St, Baltimore, MD21202, USA.
| |
Collapse
|
16
|
Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, Kadouche D, Chabi M, Greub G, Bhattacharya D, Ball SG. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Sci Rep 2018; 8:15243. [PMID: 30323231 PMCID: PMC6189191 DOI: 10.1038/s41598-018-33663-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
Menaquinone (vitamin K2) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K1) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3-4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol.
Collapse
Affiliation(s)
- U Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - H Qiu
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - T Pillonel
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011, Lausanne, Switzerland
| | - P Cardol
- Laboratoire de Génétique et Physiologie des Microalgues, InBioS/Phytosystems, B22 Institut de Botanique, Université de Liège, 4000, Liège, Belgium
| | - C Remacle
- Laboratoire de Génétique et Physiologie des Microalgues, InBioS/Phytosystems, B22 Institut de Botanique, Université de Liège, 4000, Liège, Belgium
| | - C Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - D Kadouche
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - M Chabi
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - G Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011, Lausanne, Switzerland
| | - D Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - S G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
17
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
19
|
Aj Harris, Goldman AD. Phylogenetic Reconstruction Shows Independent Evolutionary Origins of Mitochondrial Transcription Factors from an Ancient Family of RNA Methyltransferase Proteins. J Mol Evol 2018; 86:277-282. [PMID: 29691606 PMCID: PMC6028840 DOI: 10.1007/s00239-018-9842-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
Here, we generate a robust phylogenetic framework for the rRNA adenine N(6)-methyltransferase (RAMTase) protein family that shows a more ancient and complex evolutionary history within the family than previously reported. RAMTases occur universally by descent across the three domains of life, and typical orthologs within the family perform methylation of the small subunits of ribosomal RNA (rRNA). However, within the RAMTase family, two different groups of mitochondrial transcription factors, mtTFB1 and mtTFB2, have evolved in eukaryotes through neofunctionalization. Previous phylogenetic analyses have suggested that mtTFB1 and mtTFB2 comprise sister clades that arose via gene duplication, which occurred sometime following the endosymbiosis event that produced the mitochondrion. Through dense and taxonomically broad sampling of RAMTase family members especially within bacteria, we found that these eukaryotic mitochondrial transcription factors, mtTFB1 and mtTFB2, have independent origins in phylogenetically distant clades such that their divergence most likely predates the last universal common ancestor of life. The clade of mtTFB2s comprises orthologs in Opisthokonts and the clade of mtTFB1s includes orthologs in Amoebozoa and Metazoa. Thus, we clearly demonstrate that the neofunctionalization producing the transcription factor function evolved twice independently within the RAMTase family. These results are consistent with and help to elucidate outcomes from prior experimental studies, which found that some members of mtTFB1 still perform the ancestral rRNA methylation function, and the results have broader implications for understanding the evolution of new protein functions. Our phylogenetic reconstruction is also in agreement with prior studies showing two independent origins of plastid RAMTases in Viridiplantae and other photosynthetic autotrophs. We believe that this updated phylogeny of RAMTases should provide a robust evolutionary framework for ongoing studies to identify and characterize the functions of these proteins within diverse organisms.
Collapse
Affiliation(s)
- Aj Harris
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA.
| | - Aaron David Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA. .,Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.
| |
Collapse
|
20
|
Sato N, Awai K. "Prokaryotic Pathway" Is Not Prokaryotic: Noncyanobacterial Origin of the Chloroplast Lipid Biosynthetic Pathway Revealed by Comprehensive Phylogenomic Analysis. Genome Biol Evol 2018; 9:3162-3178. [PMID: 29145606 PMCID: PMC5716074 DOI: 10.1093/gbe/evx238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Lipid biosynthesis within the chloroplast, or more generally plastids, was conventionally called “prokaryotic pathway,” which produces glycerolipids bearing C18 acids at the sn-1 position and C16 acids at the sn-2 position, as in cyanobacteria such as Anabaena and Synechocystis. This positional specificity is determined during the synthesis of phosphatidate, which is a precursor to diacylglycerol, the acceptor of galactose for the synthesis of galactolipids. The first acylation at sn-1 is catalyzed by glycerol-3-phosphate acyltransferase (GPAT or GPT), whereas the second acylation at sn-2 is performed by lysophosphatidate acyltransferase (LPAAT, AGPAT, or PlsC). Here we present comprehensive phylogenomic analysis of the origins of various acyltransferases involved in the synthesis of phosphatidate, as well as phosphatidate phosphatases in the chloroplasts. The results showed that the enzymes involved in the two steps of acylation in cyanobacteria and chloroplasts are entirely phylogenetically unrelated despite a previous report stating that the chloroplast LPAAT (ATS2) and cyanobacterial PlsC were sister groups. Phosphatidate phosphatases were separated into eukaryotic and prokaryotic clades, and the chloroplast enzymes were not of cyanobacterial origin, in contrast with another previous report. These results indicate that the lipid biosynthetic pathway in the chloroplasts or plastids did not originate from the cyanobacterial endosymbiont and is not “prokaryotic” in the context of endosymbiotic theory of plastid origin. This is another line of evidence for the discontinuity of plastids and cyanobacteria, which has been suggested in the glycolipid biosynthesis.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan.,Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Koichiro Awai
- Japan Science and Technology Agency, CREST, Tokyo, Japan.,Department of Biological Science, Faculty of Science, and Research Institute of Electronics, Shizuoka University, Japan
| |
Collapse
|
21
|
Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, Wörheide G, Pisani D. Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals. Curr Biol 2017; 27:3864-3870.e4. [DOI: 10.1016/j.cub.2017.11.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/19/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
22
|
Affiliation(s)
- William F. Martin
- University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| |
Collapse
|
23
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
24
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|
25
|
Cenci U, Bhattacharya D, Weber APM, Colleoni C, Subtil A, Ball SG. Biotic Host-Pathogen Interactions As Major Drivers of Plastid Endosymbiosis. TRENDS IN PLANT SCIENCE 2017; 22:316-328. [PMID: 28089380 DOI: 10.1016/j.tplants.2016.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/21/2016] [Accepted: 12/12/2016] [Indexed: 05/22/2023]
Abstract
The plastid originated 1.5 billion years ago through a primary endosymbiosis involving a heterotrophic eukaryote and an ancient cyanobacterium. Phylogenetic and biochemical evidence suggests that the incipient endosymbiont interacted with an obligate intracellular chlamydial pathogen that housed it in an inclusion. This aspect of the ménage-à-trois hypothesis (MATH) posits that Chlamydiales provided critical novel transporters and enzymes secreted by the pathogens in the host cytosol. This initiated the efflux of photosynthate to both the inclusion lumen and host cytosol. Here we review the experimental evidence supporting the MATH and focus on chlamydial genes that replaced existing cyanobacterial functions. The picture emerging from these studies underlines the importance of chlamydial host-pathogen interactions in the metabolic integration of the primary plastid.
Collapse
Affiliation(s)
- Ugo Cenci
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Christophe Colleoni
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
| | - Agathe Subtil
- Institut Pasteur, Unité de Biologie Cellulaire de l'Infection Microbienne, 25 Rue du Dr Roux, 75015 Paris, France
| | - Steven G Ball
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
26
|
Ku C, Martin WF. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70 % rule. BMC Biol 2016; 14:89. [PMID: 27751184 PMCID: PMC5067920 DOI: 10.1186/s12915-016-0315-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The literature harbors many claims for lateral gene transfer (LGT) from prokaryotes to eukaryotes. Such claims are typically founded in analyses of genome sequences. It is undisputed that many genes entered the eukaryotic lineage via the origin of mitochondria and the origin of plastids. Claims for lineage-specific LGT to eukaryotes outside the context of organelle origins and claims of continuous LGT to eukaryotic lineages are more problematic. If eukaryotes acquire genes from prokaryotes continuously during evolution, then sequenced eukaryote genomes should harbor evidence for recent LGT, like prokaryotic genomes do. RESULTS Here we devise an approach to investigate 30,358 eukaryotic sequences in the context of 1,035,375 prokaryotic homologs among 2585 phylogenetic trees containing homologs from prokaryotes and eukaryotes. Prokaryote genomes reflect a continuous process of gene acquisition and inheritance, with abundant recent acquisitions showing 80-100 % amino acid sequence identity to their phylogenetic sister-group homologs from other phyla. By contrast, eukaryote genomes show no evidence for either continuous or recent gene acquisitions from prokaryotes. We find that, in general, genes in eukaryotic genomes that share ≥70 % amino acid identity to prokaryotic homologs are genome-specific; that is, they are not found outside individual genome assemblies. CONCLUSIONS Our analyses indicate that eukaryotes do not acquire genes through continual LGT like prokaryotes do. We propose a 70 % rule: Coding sequences in eukaryotic genomes that share more than 70 % amino acid sequence identity to prokaryotic homologs are most likely assembly or annotation artifacts. The findings further uncover that the role of differential loss in eukaryote genome evolution has been vastly underestimated.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
27
|
Wollman FA. An antimicrobial origin of transit peptides accounts for early endosymbiotic events. Traffic 2016; 17:1322-1328. [DOI: 10.1111/tra.12446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
|
28
|
Affiliation(s)
- Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
29
|
Affiliation(s)
- Steven G Ball
- Université de Lille CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Cenci U, Ducatez M, Kadouche D, Colleoni C, Ball SG. Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis? Front Cell Infect Microbiol 2016; 6:67. [PMID: 27446814 PMCID: PMC4916741 DOI: 10.3389/fcimb.2016.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid endosymbiosis. In particular we show that half of the genes encoding enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. It would also have allowed possible export of this valuable amino-acid in the inclusion of the tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida thereby considerably strengthening our proposal.
Collapse
Affiliation(s)
- Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| | - Mathieu Ducatez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| | - Derifa Kadouche
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| | - Christophe Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| |
Collapse
|
31
|
Ball SG, Bhattacharya D, Qiu H, Weber APM. Commentary: Plastid establishment did not require a chlamydial partner. Front Cell Infect Microbiol 2016; 6:43. [PMID: 27148492 PMCID: PMC4829877 DOI: 10.3389/fcimb.2016.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/27/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique-Université des Sciences et Technologies de Lille Villeneuve d'Ascq, France
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey , New Brunswick, NJ, USA
| | - Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey , New Brunswick, NJ, USA
| | - Andreas P M Weber
- Center of Excellence on Plant Sciences, Institute for Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
32
|
Ball SG, Greub G. Blurred pictures from the crime scene: the growing case for a function of Chlamydiales in plastid endosymbiosis. Microbes Infect 2015; 17:723-6. [DOI: 10.1016/j.micinf.2015.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022]
|
33
|
Abstract
Horizontal gene transfer (HGT) is the sharing of genetic material between organisms that are not in a parent-offspring relationship. HGT is a widely recognized mechanism for adaptation in bacteria and archaea. Microbial antibiotic resistance and pathogenicity are often associated with HGT, but the scope of HGT extends far beyond disease-causing organisms. In this Review, we describe how HGT has shaped the web of life using examples of HGT among prokaryotes, between prokaryotes and eukaryotes, and even between multicellular eukaryotes. We discuss replacement and additive HGT, the proposed mechanisms of HGT, selective forces that influence HGT, and the evolutionary impact of HGT on ancestral populations and existing populations such as the human microbiome.
Collapse
|
34
|
Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140330. [PMID: 26323761 PMCID: PMC4571569 DOI: 10.1098/rstb.2014.0330] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 11/12/2022] Open
Abstract
For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Sriram Garg
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
35
|
Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 2015; 524:427-32. [PMID: 26287458 DOI: 10.1038/nature14963] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/20/2015] [Indexed: 01/11/2023]
Abstract
Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Shijulal Nelson-Sathi
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mayo Roettger
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Peter J Lockhart
- Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - David Bryant
- Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana 43107, Israel
| | - James O McInerney
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.,Michael Smith Building, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Giddy Landan
- Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|