1
|
Schwarzer M, Borodin D, Wang Y, Fingerhut J, Kitsopoulos TN, Auerbach DJ, Guo H, Wodtke AM. Cooperative adsorbate binding catalyzes high-temperature hydrogen oxidation on palladium. Science 2024; 386:511-516. [PMID: 39480916 DOI: 10.1126/science.adk1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Atomic-scale structures that account for the acceleration of reactivity by heterogeneous catalysts often form only under reaction conditions of high temperatures and pressures, making them impossible to observe with low-temperature, ultra-high-vacuum methods. We present velocity-resolved kinetics measurements for catalytic hydrogen oxidation on palladium over a wide range of surface concentrations and at high temperatures. The rates exhibit a complex dependence on oxygen coverage and step density, which can be quantitatively explained by a density functional and transition-state theory-based kinetic model involving a cooperatively stabilized configuration of at least three oxygen atoms at steps. Here, two oxygen atoms recruit a third oxygen atom to a nearby binding site to produce an active configuration that is far more reactive than isolated oxygen atoms. Thus, hydrogen oxidation on palladium provides a clear example of how reactivity can be enhanced on a working catalyst.
Collapse
Affiliation(s)
- Michael Schwarzer
- Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Dmitriy Borodin
- Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Yingqi Wang
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jan Fingerhut
- Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Theofanis N Kitsopoulos
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Daniel J Auerbach
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | - Alec M Wodtke
- Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Li H, Zhao X, Ren X, Wei D, Zhang S, Wang H, Zuo ZW, Li L, Yu X. Energetic and Kinetic Competition on the Stability of Pd 13 Clusters: Ab Initio Molecular Dynamics Simulations. J Phys Chem A 2024; 128:8856-8864. [PMID: 39159008 DOI: 10.1021/acs.jpca.4c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Material stability is the focus on both experiments and calculations, which includes the energetic stability at the static state and the thermodynamic stability at the kinetic state. To show whether energetics or kinetics dominates on material stability, this study focuses on the Pd13 clusters, because of their observable magnetic moment in experiment. Energetically, the CALYPSO searching method and first-principles calculations find that Pd13(C2) is the ground state at 0 K while the static frequency calculations demonstrate that the icosahedron Pd13(Ih) becomes more favorable on free energy as temperature increases. However, their magnetic moments (8 μB) are not in agreement with the experimental value (<5.2 μB). Kinetically, ab initio molecular dynamics simulations reveal that Pd13(C3v) (6 μB) has supreme isomerization temperature and the other 11 low-lying isomers transform to Pd13(C3v) directly or indirectly, demonstrating that Pd13(C3v) has the maximum probability to be observed in experiment. The magnetic moment difference between experiment (<5.2 μB) and this calculation (6 μB) may be due to the spin multiplicities. Our result suggests that the magnetic moment disparity between theory and experiment (in Pd13 clusters) originates from the kinetic stability.
Collapse
Affiliation(s)
- Haisheng Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Xingju Zhao
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuai Zhang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Hui Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Zheng-Wei Zuo
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Liben Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi, Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China
| |
Collapse
|
3
|
Humphrey N, Bac S, Mallikarjun Sharada S. A configuration sampling study of reaction intermediates constituting catalytic cycles for CO oxidation with Pt1/TiO2. J Chem Phys 2024; 161:114709. [PMID: 39301857 DOI: 10.1063/5.0225962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
We combine ab initio molecular dynamics (AIMD) simulations with an unsupervised machine learning approach to automate the search for possible configurations of CO oxidation reaction intermediates catalyzed by the atomically dispersed Pt1/TiO2 catalyst. Following the example of Roncoroni and co-workers [Phys. Chem. Chem. Phys. 25, 13741 (2023)], we employ t-distributed stochastic neighbor embedding and hierarchical density-based spatial clustering of applications with noise to reduce the dimensionality and cluster AIMD snapshots based on the local coordination environment of Pt. We identify new local minima, particularly in cases where CO2 is bound to the active site, because it can coordinate in various ways with both the metal and support. The new minima constitute additional elementary steps in some proposed pathways for CO oxidation, resulting in turnover frequencies that differ from prior estimates by several orders of magnitude. This work, therefore, demonstrates that configuration sampling is a necessary component of computational studies of catalytic cycles for atomically dispersed catalysts.
Collapse
Affiliation(s)
- Nicholas Humphrey
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | - Selin Bac
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
4
|
Zhou X, Shen Q, Wang Y, Dai Y, Chen Y, Wu K. Surface and interfacial sciences for future technologies. Natl Sci Rev 2024; 11:nwae272. [PMID: 39280082 PMCID: PMC11394106 DOI: 10.1093/nsr/nwae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 09/18/2024] Open
Abstract
Physical science has undergone an evolutional transition in research focus from solid bulks to surfaces, culminating in numerous prominent achievements. Currently, it is experiencing a new exploratory phase-interfacial science. Many a technology with a tremendous impact is closely associated with a functional interface which delineates the boundary between disparate materials or phases, evokes complexities that surpass its pristine comprising surfaces, and thereby unveils a plethora of distinctive properties. Such an interface may generate completely new or significantly enhanced properties. These specific properties are closely related to the interfacial states formed at the interfaces. Therefore, establishing a quantitative relationship between the interfacial states and their functionalities has become a key scientific issue in interfacial science. However, interfacial science also faces several challenges such as invisibility in characterization, inaccuracy in calculation, and difficulty in precise construction. To tackle these challenges, people must develop new strategies for precise detection, accurate computation, and meticulous construction of functional interfaces. Such strategies are anticipated to provide a comprehensive toolbox tailored for future interfacial science explorations and thereby lay a solid scientific foundation for several key future technologies.
Collapse
Affiliation(s)
- Xiong Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Shen
- Department of Interdisciplinary Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Yongfeng Wang
- School of Electronics, Peking University, Beijing 100871, China
| | - Yafei Dai
- Department of Interdisciplinary Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Yongjun Chen
- Department of Interdisciplinary Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Kai Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Gao Y, Zhu B. Simulating Structural Dynamics of Metal Catalysts under Operative Conditions. J Phys Chem Lett 2024; 15:8351-8359. [PMID: 39110671 DOI: 10.1021/acs.jpclett.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Structural reconstructions of metal catalysts have been recognized as common phenomena during catalytic reactions, which play a key role in their activities in heterogeneous catalysis. Precisely identifying the structures under the operative conditions becomes a prerequisite to establish a reliable structure-activity relationship and further rationalize the design of metal catalysts. However, real-time capture of the structural variations of catalysts at the atomic level with high-temporal resolution is a grand challenge for present in situ characterizations. During the past decade, significant progress has been made in theory to couple the structures with the reaction conditions to reproduce the experimental observations and predict the adsorbate-induced changes of catalysts in composition, morphology, size, etc. Modeling the dynamic correlation between the structure and activity of the metal catalysts brings us advanced knowledge of heterogeneous catalysis and becomes indispensable for accurate evaluation of the performance of metal catalysts.
Collapse
Affiliation(s)
- Yi Gao
- Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Beien Zhu
- Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
6
|
Svensson R, Grönbeck H. Dynamics of Dilute Nanoalloy Catalysts. J Phys Chem Lett 2024; 15:7885-7891. [PMID: 39058634 PMCID: PMC11318031 DOI: 10.1021/acs.jpclett.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Capturing the dynamic character of metal nanoparticles under the reaction conditions is one of the major challenges within heterogeneous catalysis. The role of nanoparticle dynamics is particularly important for metal alloys as the surface composition responds sensitively to the gas environment. Here, a first-principles-based kinetic Monte Carlo method is developed to compare the dynamics of dilute PdAu alloy nanoparticles in inert and CO-rich atmospheres, corresponding to reaction conditions for catalyst deactivation and activation. CO influences the dynamics of the activation by facilitating the formation of vacancies and mobile Au-CO complexes, which are needed to obtain CO-stabilized Pd monomers on the surface. The structure of the catalyst and the location of the Pd monomers determine the rate of deactivation. The rate of catalyst deactivation is slow at low temperatures, which suggests that metastable structures determine the catalyst activity at typical operating conditions. The developed method is general and can be applied to a range of metal catalysts and reactions.
Collapse
Affiliation(s)
- Rasmus Svensson
- Department of Physics and
Competence Centre for Catalysis, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and
Competence Centre for Catalysis, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
7
|
Le TD, Kim DS, Tran TV, Urupalli B, Shin GS, Oh GJ, Yu YT. Electronic Structure Engineering of Pt-Ni Alloy NPs by Coupling of Gold Single Atoms on N-Doped Carbon for Highly Efficient Oxygen Reduction Reaction and Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311971. [PMID: 38727202 DOI: 10.1002/smll.202311971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Indexed: 08/23/2024]
Abstract
Improving the catalytic activity and durability of platinum-based alloy catalysts remains a formidable challenge in the context of renewable energy electrolysis applications. Herein, a facile and rapid photochemical deposition strategy for the synthesis of gold single atoms (Au SAs) anchored on N-doped carbon is presented. These Au SAs serve as a charge redistribution support for Pt-Ni alloy nanoparticles (PtNiNPs/AuSA-NDC), creating an extended electron-donating interface with Pt-Ni alloy sites. Consequently, the PtNiNPs/AuSA-NDC hybrid catalyst manifests exceptional catalytic performance and durability in both the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) under acidic conditions. Specifically, in ORR, it exhibits a half-wave potential (0.92 V vs RHE), with a mass activity 20.4 times superior to Pt/C at 0.9 V. In HER, PtNiNPs/AuSA-NDC demonstrates a notably reduced overpotential of 19.1 mV vs RHE at 10 mA cm-2 and a mass activity 38 times higher than Pt/C (at 0.25 mV). Furthermore, this hybrid catalyst displays outstanding durability, with only an 8.0 mV decay observed for ORR and a 6.9 mV decay for HER after 10 000 cycles. Theoretical calculations provide insight into the mechanism, demonstrating that isolated Au sites effectively modulate the electronic structure of Pt-Ni alloy sites, facilitating intermediate adsorption and enhancing reaction kinetics.
Collapse
Affiliation(s)
- Thanh Duc Le
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Dong-Seog Kim
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Tuong Van Tran
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Bharagav Urupalli
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Gi-Seung Shin
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Geun-Jae Oh
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Yeon-Tae Yu
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju, 54896, South Korea
| |
Collapse
|
8
|
Huang ZQ, Su X, Yu XY, Ban T, Gao X, Chang CR. Theoretical Perspective on the Design of Surface Frustrated Lewis Pairs for Small-Molecule Activation. J Phys Chem Lett 2024; 15:5436-5444. [PMID: 38743952 DOI: 10.1021/acs.jpclett.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The excellent reactivity of frustrated Lewis pairs (FLP) to activate small molecules has gained increasing attention in recent decades. Though the development of surface FLP (SFLP) is prompting the application of FLP in the chemical industry, the design of SFLP with superior activity, high density, and excellent stability for small-molecule activation is still challenging. Herein, we review the progress of designing SFLP by surface engineering, screening natural SFLP, and the dynamic formation of SFLP from theoretical perspectives. We highlight the breakthrough in fine-tuning the activity, density, and stability of the designed SFLP studied by using computational methods. We also discuss future challenges and directions in designing SFLP with outstanding capabilities for small-molecule activation.
Collapse
Affiliation(s)
- Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xue Su
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xi-Yang Yu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tao Ban
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Xin Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, China
| |
Collapse
|
9
|
Huang A, Kong L, Zhang B, Liu X, Wang L, Li L, Xu J. Electrochemical Restructuring Driven Catalytic Cycle of Bi-Based Heterojunctions for High-Performance Lithium-Sulfur Batteries. ACS NANO 2024; 18:12795-12807. [PMID: 38719733 DOI: 10.1021/acsnano.3c12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Restructuring is an important phenomenon in catalytic reactions. Conversion-type materials with suitable redox potential may undergo in situ electrochemically driven restructurings and induce highly active catalytic sites in a working lithium-sulfur battery. Herein, driven by the electrochemical conversion reaction of BiVO4, a reversible catalytic cycle of Bi/amorphous Li3VO4 (a-Li3VO4) and Bi2S3/a-Li3VO4 heterojunctions is constructed, which targets the oxidation of Li2S and the conversion of polysulfide, respectively. The heterostructures and electrochemically driven size confinement provide abundant sites for shuttle restraining and sulfur conversion. Especially, the p-block Bi and Bi2S3 could dramatically reduce the conversion energy barriers of Li2S and polysulfide by virtue of the p-p orbital hybridization, promoting bidirectional reactions of the sulfur cathode. As a result, the corresponding sulfur cathode possesses a high reversible capacity of 7.5 mAh cm-2 after 120 cycles under a high sulfur loading of 10.3 mg cm-2 with a current density of 0.38 mA cm-2. This study furnishes a feasible scheme to obtain highly effective catalysts for bidirectional sulfur redox by utilizing the electrochemically induced restructuring.
Collapse
Affiliation(s)
- Ao Huang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Linglong Kong
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, School of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Bowen Zhang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Xuefan Liu
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Lu Wang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Lifang Li
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Jing Xu
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
10
|
Xin H, Li R, Lin L, Mu R, Li M, Li D, Fu Q, Bao X. Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface. Nat Commun 2024; 15:3100. [PMID: 38600159 PMCID: PMC11271606 DOI: 10.1038/s41467-024-47550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
In heterogeneous catalysis catalyst activation is often observed during the reaction process, which is mostly attributed to the induction by reactants. In this work we report that surface structure of molybdenum nitride (MoNx) catalyst exhibits a high dependency on the partial pressure or concentration of reaction products i.e., CO and H2O in reverse water gas-shift reaction (RWGS) (CO2:H2 = 1:3) but not reactants of CO2 and H2. Molybdenum oxide (MoOx) overlayers formed by oxidation with H2O are observed at reaction pressure below 10 mbar or with low partial pressure of CO/H2O products, while CO-induced surface carbonization happens at reaction pressure above 100 mbar and with high partial pressure of CO/H2O products. The reaction products induce restructuring of MoNx surface into more active molybdenum carbide (MoCx) to increase the reaction rate and make for higher partial pressure CO, which in turn promote further surface carbonization of MoNx. We refer to this as the positive feedback between catalytic activity and catalyst activation in RWGS, which should be widely present in heterogeneous catalysis.
Collapse
Affiliation(s)
- Hui Xin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
11
|
Yue Y, Wang B, Huang J, Wang S, Jin C, Chang R, Pan Z, Zhu Y, Zhao J, Li X. Reaction-Driven Dynamic and Reversible Transformations of Au Single Atoms and Au-Zr Alloys on Zirconia for Efficient Acetylene Hydrochlorination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16106-16119. [PMID: 38427537 DOI: 10.1021/acsami.3c18532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Catalysis involving gold supported on metal oxides has undergone extensive examination. However, the nature of the catalytic site under actual reaction conditions and the role of the support continue to be vigorously debated. This study addresses these issues through experimental investigations and theoretical simulations. We explore a novel catalytic mechanism that employs dynamic single-atom catalysis for the hydrochlorination of acetylene. This catalytic mechanism occurs in defective ZrO2-supported Au-Zr single-atom alloys. Specifically, the dynamic single-atom catalysis is a result of the mobility of the gold cation, which is accelerated by Cl radicals and strongly couples with the abundant unsaturated surface sites of ZrO2 in a synergistic manner. As a result, the Au electronic structure dynamically evolves, leading to a decrease in the addition reaction energy barrier. Notably, the Au cation can detach from the Au-Zr alloy structure to catalyze the hydrochlorination of acetylene near the Zr-Ov-Zr sites and then reintegrate back into the Au-Zr alloy structure upon completion of the reaction. This study underscores the significance of dynamic active sites under reaction conditions and their pivotal role in catalysis.
Collapse
Affiliation(s)
- Yuxue Yue
- Institute of Industrial Catalysis of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bolin Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jiale Huang
- Institute of Industrial Catalysis of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Hangzhou 310014, China
| | - Saisai Wang
- Institute of Industrial Catalysis of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Hangzhou 310014, China
| | - Chunxiao Jin
- Institute of Industrial Catalysis of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Hangzhou 310014, China
| | - Renqin Chang
- Research Center of Analysis Measurement, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yihan Zhu
- Research Center of Analysis Measurement, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jia Zhao
- Institute of Industrial Catalysis of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Hangzhou 310014, China
| | - Xiaonian Li
- Institute of Industrial Catalysis of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Hangzhou 310014, China
| |
Collapse
|
12
|
Liu L, Chen T, Chen Z. Understanding the Dynamic Aggregation in Single-Atom Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308046. [PMID: 38287886 PMCID: PMC10987127 DOI: 10.1002/advs.202308046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 01/31/2024]
Abstract
The dynamic response of single-atom catalysts to a reactive environment is an increasingly significant topic for understanding the reaction mechanism at the molecular level. In particular, single atoms may experience dynamic aggregation into clusters or nanoparticles driven by thermodynamic or kinetic factors. Herein, the inherent mechanistic nuances that determine the dynamic profile during the reaction will be uncovered, including the intrinsic stability and site-migration barrier of single atoms, external stimuli (temperature, voltage, and adsorbates), and the influence of catalyst support. Such dynamic aggregation can be beneficial or deleterious on the catalytic performance depending on the optimal initial state. Those examples will be highlighted where in situ formed clusters, rather than single atoms, serve as catalytically active sites for improved catalytic performance. This is followed by the introduction of operando techniques to understand the structural evolution. Finally, the emerging strategies via confinement and defect-engineering to regulate dynamic aggregation will be briefly discussed.
Collapse
Affiliation(s)
- Laihao Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Tiankai Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Zhongxin Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
13
|
Guo Z, Yu Y, Li C, Campos Dos Santos E, Wang T, Li H, Xu J, Liu C, Li H. Deciphering Structure-Activity Relationship Towards CO 2 Electroreduction over SnO 2 by A Standard Research Paradigm. Angew Chem Int Ed Engl 2024; 63:e202319913. [PMID: 38284290 DOI: 10.1002/anie.202319913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Authentic surface structures under reaction conditions determine the activity and selectivity of electrocatalysts, therefore, the knowledge of the structure-activity relationship can facilitate the design of efficient catalyst structures for specific reactivity requirements. However, understanding the relationship between a more realistic active surface and its performance is challenging due to the complicated interface microenvironment in electrocatalysis. Herein, we proposed a standard research paradigm to effectively decipher the structure-activity relationship in electrocatalysis, which is exemplified in the CO2 electroreduction over SnO2 . The proposed practice has aided in discovering authentic/resting surface states (Sn layer) of SnO2 accountable for the electrochemical CO2 reduction reaction (CO2 RR) performance under electrocatalytic conditions, which then is corroborated in the subsequent CO2 RR experiments over SnO2 with different morphologies (nanorods, nanoparticles, and nanosheets) in combination with in situ characterizations. This proposed methodology is further extended to the SnO electrocatalysts, providing helpful insights into catalytic structures. It is believed that our proposed standard research paradigm is also applicable to other electrocatalytic systems, in the meantime, decreases the discrepancy between theory and experiments, and accelerates the design of catalyst structures that achieve sustainable performance for energy conversion.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yihong Yu
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Congcong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Egon Campos Dos Santos
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Huihui Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuangwei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
14
|
Zhu X, He M, Chen X, Zhou Y, Xu C, Li X, Luo Q, Yang J. First-Principles Insights into Tungsten Semicarbide-Based Single-Atom Catalysts: Single-Atom Migration and Mechanisms in Oxygen Reduction. J Phys Chem Lett 2024:2815-2824. [PMID: 38441004 DOI: 10.1021/acs.jpclett.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Understanding the structural evolution of single-atom catalysts (SACs) in catalytic reactions is crucial for unraveling their catalytic mechanisms. In this study, we utilize density functional theory calculations to delve into the active phase evolution and the oxygen reduction reaction (ORR) mechanism of tungsten semicarbide-based transition metal SACs (TM1/W2C). The stable crystal phases and optimal surface exposures of W2C are identified by using ab initio atomistic thermodynamics simulations. Focusing on the W-terminated (001) surface, we screen 13 stable TM1/W2C variants, ultimately selecting Pt1/W2C(001) as our primary model. The surface Pourbaix diagram, mapped for this model under ORR conditions, reveals dynamic Pt1 migration on the surface, triggered by surface oxidation. This discovery suggests a novel single-atom evolution pathway. Remarkably, this single-atom migration behavior is also discerned in seven other group VIII SACs, enhancing both their catalytic activity and their stability. Our findings offer insights into the evolution of active phases in SACs, considering substrate structural arrangement, single-atom incorporation, and self-optimization of catalysts under various conditions.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Mingqi He
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xing Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yanan Zhou
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chang Xu
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Xingxing Li
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jinlong Yang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Wang SD, Ma TM, Li XN, He SG. CO Oxidation Promoted by NO Adsorption on RhMn 2O 3- Cluster Anions. J Phys Chem A 2024; 128:738-746. [PMID: 38236743 DOI: 10.1021/acs.jpca.3c06445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CO oxidation represents an important model reaction in the gas phase to provide a clear structure-reactivity relationship in related heterogeneous catalysis. Herein, in combination with mass spectrometry experiments and quantum-chemical calculations, we identified that the RhMn2O3- cluster cannot oxidize CO into gas-phase CO2 at room temperature, while the NO preadsorbed products RhMn2O3-[(NO)1,2] are highly reactive in CO oxidation. This discovery is helpful to get a fundamental understanding on the reaction behavior in real-world three-way catalytic conditions where different kinds of reactants coexist. Theoretical calculations were performed to rationalize the crucial roles of preadsorbed NO where the strongly attached NO on the Rh atom can greatly stabilize the products RhMn2O2-[(NO)1,2] during CO oxidation and at the same time works together with the Rh atom to store electrons that stay originally in the attached CO2- unit. The leading result is that the desorption of CO2, which is the rate-determining step of CO oxidation by RhMn2O3-, can be greatly facilitated on the reactions of RhMn2O3-[(NO)1,2] with CO.
Collapse
Affiliation(s)
- Si-Dun Wang
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Xiao-Na Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Zhang Z, Li J, Wang YG. Modeling Interfacial Dynamics on Single Atom Electrocatalysts: Explicit Solvation and Potential Dependence. Acc Chem Res 2024; 57:198-207. [PMID: 38166366 DOI: 10.1021/acs.accounts.3c00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
ConspectusSingle atom electrocatalysts, with noble metal-free composition, maximal atom efficiency, and exceptional reactivity toward various energy and environmental applications, have become a research hot spot in the recent decade. Their simplicity and the isolated nature of the atomic structure of their active site have also made them an ideal model catalyst system for studying reaction mechanisms and activity trends. However, the state of the single atom active sites during electrochemical reactions may not be as simple as is usually assumed. To the contrary, the single atom electrocatalysts have been reported to be under greater influence from interfacial dynamics, with solvent and electrolyte ions perpetually interacting with the electrified active center under an applied electrode potential. These complexities render the activity trends and reaction mechanisms derived from simplistic models dubious.In this Account, with a few popular single atom electrocatalysis systems, we show how the change in electrochemical potential induces nontrivial variation in the free energy profile of elemental electrochemical reaction steps, demonstrate how the active centers with different electronic structure features can induce different solvation structures at the interface even for the same reaction intermediate of the simplest electrochemical reaction, and discuss the implication of the complexities on the kinetics and thermodynamics of the reaction system to better address the activity and selectivity trends. We also venture into more intriguing interfacial phenomena, such as alternative reaction pathways and intermediates that are favored and stabilized by solvation and polarization effects, long-range interfacial dynamics across the region far beyond the contact layer, and the dynamic activation or deactivation of single atom sites under operation conditions. We show the necessity of including realistic aspects (explicit solvent, electrolyte, and electrode potential) into the model to correctly capture the physics and chemistry at the electrochemical interface and to understand the reaction mechanisms and reactivity trends. We also demonstrate how the popular simplistic design principles fail and how they can be revised by including the kinetics and interfacial factors in the model. All of these rich dynamics and chemistry would remain hidden or overlooked otherwise. We believe that the complexity at an electrochemical interface is not a curse but a blessing in that it enables deeper understanding and finer control of the potential-dependent free energy landscape of electrochemical reactions, which opens up new dimensions for further design and optimization of single atom electrocatalysts and beyond. Limitations of current methods and challenges faced by the theoretical and experimental communities are discussed, along with the possible solutions awaiting development in the future.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
17
|
Qi J, Zhou H, Tang J. Facile preparation of small-sized gold nanoparticle decorated silica nanocomposites and their morphological changes in catalytic reactions. NANOTECHNOLOGY 2024; 35:125702. [PMID: 38096572 DOI: 10.1088/1361-6528/ad15bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Due to the unique physicochemical properties of gold nanoparticles (AuNPs) decorated silica nanostructures (SiO2@AuNPs), they show great potential for applications in catalysis, biosensing, optical devices and medicine. It is essential to explore the catalytic effect of SiO2@AuNPs and the understanding of the essential process of catalytic reactions. We have prepared SiO2@AuNPs by loading small-sized AuNPs on surface-modified silica nanospheres. SiO2@AuNPs was used as a catalyst for the catalytic reduction of 4-nitrophenol (4-NP) in the presence of excess NaBH4, and the results showed that with the increase of the amount of catalyst from 30 to 100μl, the corresponding rate constantKappwas increased from 6.44 × 10-3to 1.45 × 10-2s-1, and its TOF was as high as 1.326 × 103h-1, and the catalytic rate could still be maintained at 87% after five cycles. By analyzing the morphology and size of the SiO2supported AuNPs before and after the catalytic reaction, it can be seen that the atoms on the surface of small-sized AuNPs supported by silica have migrated during the catalytic process, which subsequently affects the catalytic efficiency of the structure. This study proves the good catalytic effect of SiO2@AuNPs structure and lays the foundation for its wider application.
Collapse
Affiliation(s)
- Jinhui Qi
- College of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Haichun Zhou
- College of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junqi Tang
- College of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
| |
Collapse
|
18
|
Ruffman C, Steenbergen KG, Garden AL, Gaston N. Dynamic sampling of liquid metal structures for theoretical studies on catalysis. Chem Sci 2023; 15:185-194. [PMID: 38131068 PMCID: PMC10732005 DOI: 10.1039/d3sc04416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Liquid metals have recently emerged as promising catalysts that can outcompete their solid counterparts for many reactions. Although theoretical modelling is extensively used to improve solid-state catalysts, there is currently no way to capture the interactions of adsorbates with a dynamic liquid metal. We propose a new approach based on ab initio molecular dynamics sampling of an adsorbate on a liquid catalyst. Using this approach, we describe time-resolved structures for formate adsorbed on liquid Ga-In, and for all intermediates in the methanol oxidation pathway on Ga-Pt. This yields a range of accessible adsorption energies that take into account the at-temperature motion of the liquid metal. We find that a previously proposed pathway for methanol oxidation on Ga-Pt results in unstable intermediates on a dynamic liquid surface, and propose that H desorption must occur during the path. The results showcase a more accurate way to treat liquid metal catalysts in this emerging field.
Collapse
Affiliation(s)
- Charlie Ruffman
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland Private Bag 92019 Auckland New Zealand
| | - Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, School of Chemical and Physical Sciences, Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Anna L Garden
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago P.O. Box 56 Dunedin 9054 New Zealand
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland Private Bag 92019 Auckland New Zealand
| |
Collapse
|
19
|
Bonati L, Polino D, Pizzolitto C, Biasi P, Eckert R, Reitmeier S, Schlögl R, Parrinello M. The role of dynamics in heterogeneous catalysis: Surface diffusivity and N 2 decomposition on Fe(111). Proc Natl Acad Sci U S A 2023; 120:e2313023120. [PMID: 38060558 PMCID: PMC10723053 DOI: 10.1073/pnas.2313023120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
Dynamics has long been recognized to play an important role in heterogeneous catalytic processes. However, until recently, it has been impossible to study their dynamical behavior at industry-relevant temperatures. Using a combination of machine learning potentials and advanced simulation techniques, we investigate the cleavage of the N[Formula: see text] triple bond on the Fe(111) surface. We find that at low temperatures our results agree with the well-established picture. However, if we increase the temperature to reach operando conditions, the surface undergoes a global dynamical change and the step structure of the Fe(111) surface is destabilized. The catalytic sites, traditionally associated with this surface, appear and disappear continuously. Our simulations illuminate the danger of extrapolating low-temperature results to operando conditions and indicate that the catalytic activity can only be inferred from calculations that take dynamics fully into account. More than that, they show that it is the transition to this highly fluctuating interfacial environment that drives the catalytic process.
Collapse
Affiliation(s)
- Luigi Bonati
- Atomistic Simulations, Italian Institute of Technology, Genova16152, Italy
| | - Daniela Polino
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano6962, Switzerland
| | - Cristina Pizzolitto
- Basic Research, Research and Development Division, Casale SA, Lugano6900, Switzerland
| | - Pierdomenico Biasi
- Basic Research, Research and Development Division, Casale SA, Lugano6900, Switzerland
| | - Rene Eckert
- BU Catalysts, R&D Syngas Applications, Clariant Produkte (Deutschland) GmbH, Munich83052, Germany
| | - Stephan Reitmeier
- BU Catalysts, R&D Syngas Applications, Clariant Produkte (Deutschland) GmbH, Munich83052, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck-Society, Berlin14195, Germany
| | - Michele Parrinello
- Atomistic Simulations, Italian Institute of Technology, Genova16152, Italy
| |
Collapse
|
20
|
Ye YL, Zhang ZC, Ni BL, Yu D, Chen JH, Sun WM. Theoretical prediction of superatom WSi 12-based catalysts for CO oxidation by N 2O. Phys Chem Chem Phys 2023; 25:32525-32533. [PMID: 37997746 DOI: 10.1039/d3cp05363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Catalytic conversion of N2O and CO into nonharmful gases is of great significance to reduce their adverse impact on the environment. The potential of the WSi12 superatom to serve as a new cluster catalyst for CO oxidation by N2O is examined for the first time. It is found that WSi12 prefers to adsorb the N2O molecule rather than the CO molecule, and the charge transfer from WSi12 to N2O results in the full activation of N2O into a physically absorbed N2 molecule and an activated oxygen atom that is attached to an edge of the hexagonal prism structure of WSi12. After the release of N2, the remaining oxygen atom can oxidize one CO molecule via overcoming a rate-limiting barrier of 28.19 kcal mol-1. By replacing the central W atom with Cr and Mo, the resulting MSi12 (M = Cr and Mo) superatoms exhibit catalytic performance for CO oxidation comparable to the parent WSi12. In particular, the catalytic ability of WSi12 for CO oxidation is well maintained when it is extended into tube-like WnSi6(n+1) (n = 2, 4, and 6) clusters with energy barriers of 25.63-29.50 kcal mol-1. Moreover, all these studied MSi12 (M = Cr, Mo, and W) and WnSi6(n+1) (n = 2, 4, and 6) species have high structural stability and can absorb sunlight to drive the catalytic process. This study not only opens a new door for the atomically precise design of new silicon-based nanoscale catalysts for various chemical reactions but also provides useful atomic-scale insights into the size effect of such catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- Department of Pharmacy, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, People's Republic of China
| | - Zhi-Chao Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Bi-Lian Ni
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Dan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
21
|
Zou M, Yang J, Yue X, Yuan Y, Che Z, Li M, Li B, Cui J, Hu W, Wang S, Jiang J, Jia C. Design of Efficient Oxygen Reduction Reaction Catalysts with Single Transition Metal Atom on N-Doped Graphdiyne. J Phys Chem Lett 2023; 14:9624-9632. [PMID: 37870322 DOI: 10.1021/acs.jpclett.3c02649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The revelation of the underlying structure-property relationship of single-atom catalysts (SACs) is a fundamental issue in the oxygen reduction reaction (ORR). Here we present systematic theoretical and experimental investigations of various N-doped graphdiyne (NGDY) supported transition metals (TMs) to shed light on this relationship. Calculation results indicate that the TMs' comprehensive activities follow the order of Pd@NGDY > Ni@NGDY > Co@NGDY > Fe@NGDY, which fits well with our experimental conclusion. Moreover, detailed structure-property relationship (194 in total) analysis suggests that the key-species binding stability (ΔG*OH), the d-orbital center (εd/εd-a) and charge transfer (ΔQTM/ΔQTM-a) of the active metal before/after reactants adsorption and the bond length of TM-O (LTM-O) as descriptors can well reflect the intermediate binding stability or ORR activity on different TM-SACs. Specifically, the change trend of catalytic activity is opposite to that of intermediate binding stability, meaning that too strongly bonded *OOH, *O, and *OH intermediates are unfavorable for ORR.
Collapse
Affiliation(s)
- Min Zou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| | - Jing Yang
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Xiaolong Yue
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
| | - Yanan Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
| | - Zhongmei Che
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
| | - Mei Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
| | - Bo Li
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| |
Collapse
|
22
|
Zhao H, Lv X, Wang Y. Realistic Modeling of the Electrocatalytic Process at Complex Solid-Liquid Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303677. [PMID: 37749877 PMCID: PMC10646274 DOI: 10.1002/advs.202303677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
The rational design of electrocatalysis has emerged as one of the most thriving means for mitigating energy and environmental crises. The key to this effort is the understanding of the complex electrochemical interface, wherein the electrode potential as well as various internal factors such as H-bond network, adsorbate coverage, and dynamic behavior of the interface collectively contribute to the electrocatalytic activity and selectivity. In this context, the authors have reviewed recent theoretical advances, and especially, the contributions to modeling the realistic electrocatalytic processes at complex electrochemical interfaces, and illustrated the challenges and fundamental problems in this field. Specifically, the significance of the inclusion of explicit solvation and electrode potential as well as the strategies toward the design of highly efficient electrocatalysts are discussed. The structure-activity relationships and their dynamic responses to the environment and catalytic functionality under working conditions are illustrated to be crucial factors for understanding the complexed interface and the electrocatalytic activities. It is hoped that this review can help spark new research passion and ultimately bring a step closer to a realistic and systematic modeling method for electrocatalysis.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xinmao Lv
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yang‐Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
23
|
Li X, Mitchell S, Fang Y, Li J, Perez-Ramirez J, Lu J. Advances in heterogeneous single-cluster catalysis. Nat Rev Chem 2023; 7:754-767. [PMID: 37814032 DOI: 10.1038/s41570-023-00540-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
Heterogeneous single-cluster catalysts (SCCs) comprising atomically precise and isolated metal clusters stabilized on appropriately chosen supports offer exciting prospects for enabling novel chemical reactions owing to their broad structural diversity with unparalled opportunities for engineering their properties. Although the pioneering work revealed intriguing performance trends of size-selected metal clusters deposited on supports, synthetic and analytical challenges hindered a thorough understanding of surface chemistry under realistic conditions. This Review underscores the importance of considering the cluster environment in SCCs, encompassing the development of robust metal-support interactions, precise control over the ligand sphere, the influence of reaction media and dynamic behaviour, to uncover new reactivities. Through examples, we illustrate the criticality of tailoring the entire catalytic ensemble in SCCs to achieve stable and selective performance with practically relevant metal coverages. This expansion in application scope transcends from model reactions to complex and technically relevant reactions. Furthermore, we provide a perspective on the opportunities and future directions for SCC design within this rapidly evolving field.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yiyun Fang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, China.
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Javier Perez-Ramirez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Liu WJ, Zhou X, Min Y, Huang JW, Chen JJ, Wu Y, Yu HQ. Engineering of Local Coordination Microenvironment in Single-Atom Catalysts Enabling Sustainable Conversion of Biomass into a Broad Range of Amines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305924. [PMID: 37698463 DOI: 10.1002/adma.202305924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Utilizing renewable biomass as a substitute for fossil resources to produce high-value chemicals with a low carbon footprint is an effective strategy for achieving a carbon-neutral society. Production of chemicals via single-atom catalysis is an attractive proposition due to its remarkable selectivity and high atomic efficiency. In this work, a supramolecular-controlled pyrolysis strategy is employed to fabricate a palladium single-atom (Pd1 /BNC) catalyst with B-doped Pd-Nx atomic configuration. Owing to the meticulously tailored local coordination microenvironment, the as-synthesized Pd1 /BNC catalyst exhibits remarkable conversion capability for a wide range of biomass-derived aldehydes/ketones. Thorough characterizations and density functional theory calculations reveal that the highly polar metal-N-B site, formed between the central Pd single atom and its adjacent N and B atoms, promotes hydrogen activation from the donor (reductants) and hydrogen transfer to the acceptor (C═O group), consequently leading to exceptional selectivity. This system can be further extended to directly synthesize various aromatic and furonic amines from renewable lignocellulosic biomass, with their greenhouse gas emission potentials being negative in comparison to those of fossil-fuel resource-based amines. This research presents a highly effective and sustainable methodology for constructing C─N bonds, enabling the production of a diverse array of amines from carbon-neutral biomass resources.
Collapse
Affiliation(s)
- Wu-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Wei Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
25
|
Deng P, Duan J, Liu F, Yang N, Ge H, Gao J, Qi H, Feng D, Yang M, Qin Y, Ren Y. Atomic Insights into Synergistic Nitroarene Hydrogenation over Nanodiamond-Supported Pt 1 -Fe 1 Dual-Single-Atom Catalyst. Angew Chem Int Ed Engl 2023; 62:e202307853. [PMID: 37401743 DOI: 10.1002/anie.202307853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Fundamental understanding of the synergistic effect of bimetallic catalysts is of extreme significance in heterogeneous catalysis, but a great challenge lies in the precise construction of uniform dual-metal sites. Here, we develop a novel method for constructing Pt1 -Fe1 /ND dual-single-atom catalyst, by anchoring Pt single atoms on Fe1 -N4 sites decorating a nanodiamond (ND) surface. Using this catalyst, the synergy of nitroarenes selective hydrogenation is revealed. In detail, hydrogen is activated on the Pt1 -Fe1 dual site and the nitro group is strongly adsorbed on the Fe1 site via a vertical configuration for subsequent hydrogenation. Such synergistic effect decreases the activation energy and results in an unprecedented catalytic performance (3.1 s-1 turnover frequency, ca. 100 % selectivity, 24 types of substrates). Our findings advance the applications of dual-single-atom catalysts in selective hydrogenations and open up a new way to explore the nature of synergistic catalysis at the atomic level.
Collapse
Affiliation(s)
- Pengcheng Deng
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianglin Duan
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fenli Liu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Na Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Gao
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haifeng Qi
- Department of Renewable Resources, Leibniz-Institut für Katalyse, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Dan Feng
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Man Yang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
26
|
He XY, Liu YZ, Chen JJ, Lan X, Li XN, He SG. Size-Dependent Reactivity of Co n- ( n = 5-25) Cluster Anions toward Carbon Dioxide. J Phys Chem Lett 2023; 14:6948-6955. [PMID: 37498356 DOI: 10.1021/acs.jpclett.3c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A fundamental understanding of the reactivity evolution of nanosized clusters at an atomically precise level is pivotal to assemble desired materials with promising candidates. Benefiting from the tandem mass spectrometer coupled with a high-temperature ion-trap reactor, the reactions of mass-selected Con- (n = 5-25) clusters with CO2 were investigated and the increased reactivity of Co20-25- was newly discovered herein. This finding marks an important step to understand property evolution of subnanometer metal clusters (Co25-, ∼0.8 nm) atom-by-atom. The reasons behind the increased reactivity of Co20-25- were proposed by analyzing the reactions of smaller Co6-8- clusters that exhibit significantly different reactivity toward CO2, in which a lower electron affinity of Con contributes to the capture of CO2 while the flexibility of Con- could play vital roles to stabilize reaction intermediates and suppress the barriers of O-CO rupture and CO desorption.
Collapse
Affiliation(s)
- Xing-Yue He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
28
|
Gao T, Shen Y, Gu L, Zhang Z, Yuan W, Xi W. Surface-strain-enhanced oxygen dissociation on gold catalysts. RSC Adv 2023; 13:22710-22716. [PMID: 37502824 PMCID: PMC10369369 DOI: 10.1039/d3ra03781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined. In situ electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O2. The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation.
Collapse
Affiliation(s)
- Tianqi Gao
- Center for Electron Microscopy, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Yongli Shen
- Center for Electron Microscopy, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Lin Gu
- Center for Electron Microscopy, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Zhaocheng Zhang
- Center for Electron Microscopy, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Wenjuan Yuan
- Center for Electron Microscopy, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Wei Xi
- Center for Electron Microscopy, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
29
|
Rapetti D, Delle Piane M, Cioni M, Polino D, Ferrando R, Pavan GM. Machine learning of atomic dynamics and statistical surface identities in gold nanoparticles. Commun Chem 2023; 6:143. [PMID: 37407706 DOI: 10.1038/s42004-023-00936-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
It is known that metal nanoparticles (NPs) may be dynamic and atoms may move within them even at fairly low temperatures. Characterizing such complex dynamics is key for understanding NPs' properties in realistic regimes, but detailed information on, e.g., the stability, survival, and interconversion rates of the atomic environments (AEs) populating them are non-trivial to attain. In this study, we decode the intricate atomic dynamics of metal NPs by using a machine learning approach analyzing high-dimensional data obtained from molecular dynamics simulations. Using different-shape gold NPs as a representative example, an AEs' dictionary allows us to label step-by-step the individual atoms in the NPs, identifying the native and non-native AEs and populating them along the MD simulations at various temperatures. By tracking the emergence, annihilation, lifetime, and dynamic interconversion of the AEs, our approach permits estimating a "statistical equivalent identity" for metal NPs, providing a comprehensive picture of the intrinsic atomic dynamics that shape their properties.
Collapse
Affiliation(s)
- Daniele Rapetti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Massimo Delle Piane
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Matteo Cioni
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Daniela Polino
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962, Lugano-Viganello, Switzerland
| | - Riccardo Ferrando
- Department of Physics, Università degli Studi di Genova, Via Dodecaneso 33, 16146, Genova, Italy
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962, Lugano-Viganello, Switzerland.
| |
Collapse
|
30
|
Ma W, Jing C, Wu P, Li W. Understanding the selection of catalytic pathway on graphene-supported nitrogen coordinated Ru-atom by ab initio molecular dynamics simulation. J Mol Model 2023; 29:212. [PMID: 37322382 DOI: 10.1007/s00894-023-05620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
CONTEXT In the paper, the ORR/OER on graphene-supported nitrogen coordinated Ru-atom (Ru-N-C) is simulated. We discuss nitrogen coordination influences electronic properties, adsorption energies, and catalytic activity in a single-atom Ru active site. The over potentials on Ru-N-C are 1.12 eV/1.00 eV for ORR/OER. We calculate Gibbs-free energy (ΔG) for every reaction step in ORR/OER process. In order to gain a deeper understanding of the catalytic process on the surface of single atom catalysts, the ab initio molecular dynamics (AIMD) simulations show that Ru-N-C has a structural stability at 300 K and that ORR/OER on Ru-N-C can occur along a typical four-electron process of reaction. AIMD simulations of catalytic processes provide detailed information about atom interactions. METHODS In this paper, we use density functional theory (DFT) with PBE functional to study the electronic properties and adsorption properties of graphene-supported nitrogen coordinated Ru-atom (Ru-N-C) Gibbs-free energy and Gibbs-free energy for very reaction step. The structural optimization and all the calculations are carried out by Dmol3 package, adopting the PNT basis set and DFT semicore pseudopotential. Ab initio molecular dynamics simulations (AIMD) were run for 10 ps. The canonical (NVT) ensemble, massive GGM thermostat, and a temperature of 300 K are taken into account. The functional of B3LYP and the DNP basis set are chosen for AIMD.
Collapse
Affiliation(s)
- Wenqiang Ma
- School of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, Henan, People's Republic of China.
| | - Cuiyu Jing
- School of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, Henan, People's Republic of China
| | - Ping Wu
- Aircraft Strength Research Institute of China, Xi'an, 710065, People's Republic of China
| | - Weiyin Li
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China
| |
Collapse
|
31
|
Chen J, Xiong S, Liu H, Shi J, Mi J, Liu H, Gong Z, Oliviero L, Maugé F, Li J. Reverse oxygen spillover triggered by CO adsorption on Sn-doped Pt/TiO 2 for low-temperature CO oxidation. Nat Commun 2023; 14:3477. [PMID: 37311800 DOI: 10.1038/s41467-023-39226-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
The spillover of oxygen species is fundamentally important in redox reactions, but the spillover mechanism has been less understood compared to that of hydrogen spillover. Herein Sn is doped into TiO2 to activate low-temperature (<100 °C) reverse oxygen spillover in Pt/TiO2 catalyst, leading to CO oxidation activity much higher than that of most oxide-supported Pt catalysts. A combination of near-ambient-pressure X-ray photoelectron spectroscopy, in situ Raman/Infrared spectroscopies, and ab initio molecular dynamics simulations reveal that the reverse oxygen spillover is triggered by CO adsorption at Pt2+ sites, followed by bond cleavage of Ti-O-Sn moieties nearby and the appearance of Pt4+ species. The O in the catalytically indispensable Pt-O species is energetically more favourable to be originated from Ti-O-Sn. This work clearly depicts the interfacial chemistry of reverse oxygen spillover that is triggered by CO adsorption, and the understanding is helpful for the design of platinum/titania catalysts suitable for reactions of various reactants.
Collapse
Affiliation(s)
- Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Shangchao Xiong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Haiyan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jianqiang Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinxing Mi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Laetitia Oliviero
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen, CNRS, 6 bd du Maréchal Juin, 14050, Caen, France
| | - Françoise Maugé
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen, CNRS, 6 bd du Maréchal Juin, 14050, Caen, France
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
32
|
Ye J, Jing M, Liang Y, Li W, Zhao W, Huang J, Lai Y, Song W, Liu J, Sun J. Structure engineering of CeO 2 for boosting the Au/CeO 2 nanocatalyst in the green and selective hydrogenation of nitrobenzene. NANOSCALE HORIZONS 2023; 8:812-826. [PMID: 37016980 DOI: 10.1039/d3nh00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Exploring eco-friendly and cost-effective strategies for structure engineering at the nanoscale is important for boosting heterogeneous catalysis but still under a long-standing challenge. Herein, multifunctional polyphenol tannic acid, a low-cost natural biomass containing catechol and galloyl species, was employed as a green reducing agent, chelating agent, and stabilizer to prepare Au nanoparticles, which were dispersed on different-shaped CeO2 supports (e.g., rod, flower, cube, and octahedral). Systematic characterizations revealed that Au/CeO2-rod had the highest oxygen vacancy density and Ce(III) proportion, favoring the dispersion and stabilization of the metal active sites. Using isopropanol as a hydrogen-transfer reagent, deep insights into the structure-activity relationship of the Au/CeO2 catalysts with various morphologies of CeO2 in the catalytic nitrobenzene transfer hydrogenation reaction were gained. Notably, the catalytic performance followed the order: Au/CeO2-rod (110), (100), (111) > Au/CeO2-flower (100), (111) > Au/CeO2-cube (100) > Au/CeO2-octa (111). Au/CeO2-rod displayed the highest conversion of 100% nitrobenzene and excellent stability under optimal conditions. Moreover, DFT calculations indicated that nitrobenzene molecules had a suitable adsorption energy and better isopropanol dehydrogenation capacity on the Au/CeO2 (110) surface. A reaction pathway and the synergistic catalytic mechanism for catalytic nitrobenzene transfer hydrogenation are proposed based on the results. This work demonstrates that CeO2 structure engineering is an efficient strategy for fabricating advanced and environmentally benign materials for nitrobenzene hydrogenation.
Collapse
Affiliation(s)
- Junqing Ye
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Meizan Jing
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| | - Yu Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Wenjin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Wanting Zhao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| | - Jian Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
33
|
Li Z, Ni H, Wang P, Liu Z, Ao C, Zhang L, Wang Y. Evolution hydrothermal aging mechanism for Ag/CeO 2 catalysts in regeneration of catalytic diesel particulate filter with DFT calculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27626-6. [PMID: 37231133 DOI: 10.1007/s11356-023-27626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
In order to avoid the high cost of existing precious metal catalyst like Pt, Ag/CeO2 was the most promising catalysts for mobile source soot emission control technologies, but there was a clear trade-off between hydrothermal aging resistance and catalytic oxidation performance hindered the application of this catalyst. In order to reveal the hydrothermal aging mechanism of Ag/CeO2 catalysts, the TGA (thermogravimetric analysis) experiments were investigated to reveal the mechanism of Ag modification on catalytic activity of CeO2 catalyst between fresh and hydrothermal aging and were also characterized with the related characterization experiments to in-depth research the lattice morphology and valence changes. The degradation mechanism of Ag/CeO2 catalysts in vapor with high-temperature was also explained and demonstrated based on density functional and molecular thermodynamics theories. The experimental and simulation data showed that the catalytic activity of soot combustion within Ag/CeO2 decreased more significantly after hydrothermal aging than CeO2 due to the less agglomerated, which caused by the decreased in OII/OI and Ce3+/Ce4+ compared with CeO2. As shown in density function theory (DFT) calculation, the decreased surface energy and the increased oxygen vacancy formation energy of the low Mille index surface after Ag modification led to the instability structure and the high catalytic activity. Ag modification also increased the adsorption energy and Gibbs free energy of H2O on the low Miller index surface compared to CeO2, indicating that the desorption temperature of H2O molecules in (1 1 0) and (1 0 0) was higher than (1 1 1) in CeO2 and Ag/CeO2, which led to the migration of (1 1 1) crystal surfaces to (1 1 0) and (1 0 0) in the vapor environment. These conclusions can provide a valuable addition to the regenerative application of Ce-based catalysts in diesel exhaust aftertreatment system the aerial pollution.
Collapse
Affiliation(s)
- Zonglin Li
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Science, Beijing, 100012, China
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hong Ni
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
| | - Pan Wang
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Riskj Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengcheng Ao
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lidong Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| |
Collapse
|
34
|
Zhang Z, Tian J, Lu Y, Yang S, Jiang D, Huang W, Li Y, Hong J, Hoffman AS, Bare SR, Engelhard MH, Datye AK, Wang Y. Memory-dictated dynamics of single-atom Pt on CeO 2 for CO oxidation. Nat Commun 2023; 14:2664. [PMID: 37160890 PMCID: PMC10169862 DOI: 10.1038/s41467-023-37776-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
Single atoms of platinum group metals on CeO2 represent a potential approach to lower precious metal requirements for automobile exhaust treatment catalysts. Here we show the dynamic evolution of two types of single-atom Pt (Pt1) on CeO2, i.e., adsorbed Pt1 in Pt/CeO2 and square planar Pt1 in PtATCeO2, fabricated at 500 °C and by atom-trapping method at 800 °C, respectively. Adsorbed Pt1 in Pt/CeO2 is mobile with the in situ formation of few-atom Pt clusters during CO oxidation, contributing to high reactivity with near-zero reaction order in CO. In contrast, square planar Pt1 in PtATCeO2 is strongly anchored to the support during CO oxidation leading to relatively low reactivity with a positive reaction order in CO. Reduction of both Pt/CeO2 and PtATCeO2 in CO transforms Pt1 to Pt nanoparticles. However, both catalysts retain the memory of their initial Pt1 state after reoxidative treatments, which illustrates the importance of the initial single-atom structure in practical applications.
Collapse
Affiliation(s)
- Zihao Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Jinshu Tian
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yubing Lu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85257, USA
| | - Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Weixin Huang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Yixiao Li
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Jiyun Hong
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Mark H Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Abhaya K Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
35
|
Chen L, Allec SI, Nguyen MT, Kovarik L, Hoffman AS, Hong J, Meira D, Shi H, Bare SR, Glezakou VA, Rousseau R, Szanyi J. Dynamic Evolution of Palladium Single Atoms on Anatase Titania Support Determines the Reverse Water-Gas Shift Activity. J Am Chem Soc 2023; 145:10847-10860. [PMID: 37145876 DOI: 10.1021/jacs.3c02326] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, ∼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, ∼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.
Collapse
Affiliation(s)
- Linxiao Chen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah I Allec
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Debora Meira
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Honghong Shi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Roger Rousseau
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - János Szanyi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
36
|
Krishna SH, Goswami A, Wang Y, Jones CB, Dean DP, Miller JT, Schneider WF, Gounder R. Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3. Nat Catal 2023. [DOI: 10.1038/s41929-023-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
37
|
Boonpalit K, Wongnongwa Y, Prommin C, Nutanong S, Namuangruk S. Data-Driven Discovery of Graphene-Based Dual-Atom Catalysts for Hydrogen Evolution Reaction with Graph Neural Network and DFT Calculations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12936-12945. [PMID: 36746619 DOI: 10.1021/acsami.2c19391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The flexible tuning ability of dual-atom catalysts (DACs) makes them an ideal system for a wide range of electrochemical applications. However, the large design space of DACs and the complexity in the binding motif of electrochemical intermediates hinder the efficient determination of DAC combinations for desirable catalytic properties. A crystal graph convolutional neural network (CGCNN) was adopted for DACs to accelerate the high-throughput screening of hydrogen evolution reaction (HER) catalysts. From a pool of 435 dual-atom combinations in N-doped graphene (N6Gr), we screened out two high-performance HER catalysts (AuCo@N6Gr and NiNi@N6Gr) with excellent HER, electronic conductivity, and stability using the combination of CGCNN and density functional theory (DFT). Furthermore, comprehensive DFT studies were conducted on these two catalysts to confirm their outstanding reaction kinetics and to understand the cooperative effect between the metal pair for HER. To obtain ideal hydrogen binding in AuCo, the inert Au weakens the strong hydrogen binding of Co, while for NiNi, the two weakly binding Ni cooperate. The present protocol was able to select the two catalysts with different physical origins for HER and can be applied to other DAC catalysts, which should hasten catalyst discovery.
Collapse
Affiliation(s)
- Kajjana Boonpalit
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong21210, Thailand
| | - Yutthana Wongnongwa
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong21210, Thailand
- NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani12120, Thailand
| | - Chanatkran Prommin
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong21210, Thailand
| | - Sarana Nutanong
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong21210, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani12120, Thailand
| |
Collapse
|
38
|
Jan F, Yang M, Zhou N, Sun X, Li B. Engineering the catalytic properties of CeO2 catalyst in HCl-assisted propane dehydrogenation by effective doping: A first-principles-based microkinetic simulation. Front Chem 2023; 11:1133865. [PMID: 36970413 PMCID: PMC10036589 DOI: 10.3389/fchem.2023.1133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
HCl-assisted propane dehydrogenation (PDH) is an attractive route for propene production with good selectivity. In this study, the doping of CeO2 with different transition metals, including V, Mn, Fe, Co, Ni, Pd, Pt, and Cu, in the presence of HCl was investigated for PDH. The dopants have a pronounced effect on the electronic structure of pristine ceria that significantly alters the catalytic capabilities. The calculations indicate the spontaneous dissociation of HCl on all surfaces with a facile abstraction of the first hydrogen atom except on V- and Mn-doped surfaces. The lowest energy barrier of 0.50 and 0.51eV was found for Pd- and Ni-doped CeO2 surfaces. The surface oxygen is responsible for hydrogen abstraction, and its activity is described by the p-band center. Microkinetics simulation is performed on all doped surfaces. The increase in the turnover frequency (TOF) is directly linked with the partial pressure of propane. The adsorption energy of reactants aligned with the observed performance. The reaction follows first-order kinetics to C3H8. Furthermore, on all surfaces, the formation of C3H7 is found as the rate-determining step confirmed by the degree of rate control (DRC) analysis. This study provides a decisive description of catalyst modification for HCl-assisted PDH.
Collapse
Affiliation(s)
- Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - Min Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - Nuodan Zhou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - XiaoYing Sun
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
- *Correspondence: Bo Li, ; XiaoYing Sun,
| | - Bo Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
- *Correspondence: Bo Li, ; XiaoYing Sun,
| |
Collapse
|
39
|
Xia Z, Yin Y, Li J, Xiao H. Single-atom catalysis enabled by high-energy metastable structures. Chem Sci 2023; 14:2631-2639. [PMID: 36908952 PMCID: PMC9993862 DOI: 10.1039/d2sc06962h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Owing to limited degrees of freedom, the active sites of stable single-atom catalyst (SAC) often have one structure that is energetically much lower than other local-minimum structures. Thus, the SAC adopts one lowest-energy structure (LES) with an overwhelmingly larger proportion than any other high-energy metastable structure (HEMS), and the LES is commonly assumed to be solely responsible for the catalytic performance of an SAC. Herein, we demonstrate with SACs anchored on CeO2 that the HEMS of an SAC, even though its proportion remains several orders of magnitude lower than the LES throughout the catalytic reaction, can dictate catalysis with extraordinary activity arising from its unique coordination environment and oxidation state. Thus, we unravel the key role of HEMS-enabled catalysis in single-atom catalysis, which shakes the common assumption in the studies of SACs and urges new developments in both experiment and theory to identify and exploit catalysis via HEMSs.
Collapse
Affiliation(s)
- Zhaoming Xia
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Yue Yin
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| |
Collapse
|
40
|
Ren T, Yin M, Chen S, Ouyang C, Huang X, Zhang X. Single-Atom Fe-N 4 Sites for Catalytic Ozonation to Selectively Induce a Nonradical Pathway toward Wastewater Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3623-3633. [PMID: 36790324 DOI: 10.1021/acs.est.2c07653] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonradical oxidation has been determined to be a promising pathway for the degradation of organic pollutants in heterogeneous catalytic ozonation (HCO). However, the bottlenecks are the rational design of catalysts to selectively induce nonradicals and the interpretation of detailed nonradical generation mechanisms. Herein, we propose a new HCO process based on single-atom iron catalysts, in which Fe-N4 sites anchored on the carbon skeleton exhibited outstanding catalytic ozonation activity and stability for the degradation of oxalic acid (OA) and p-hydroxybenzoic acid (pHBA) as well as the advanced treatment of a landfill leachate secondary effluent. Unlike traditional radical oxidation, nonradical pathways based on surface-adsorbed atomic oxygen (*Oad) and singlet oxygen (1O2) were identified. A substrate-dependent behavior was also observed. OA was adsorbed on the catalyst surface and mainly degraded by *Oad, while pHBA was mostly removed by O3 and 1O2 in the bulk solution. Density functional theory calculations and molecular dynamics simulations revealed that one terminal oxygen atom of ozone preferred bonding with the central iron atom of Fe-N4, subsequently inducing the cleavage of the O-O bond near the catalyst surface to produce *Oad and 1O2. These findings highlight the structural design of an ozone catalyst and an atomic-level understanding of the nonradical HCO process.
Collapse
Affiliation(s)
- Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
41
|
Giulimondi V, Mitchell S, Pérez-Ramírez J. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catal 2023; 13:2981-2997. [PMID: 36910873 PMCID: PMC9990067 DOI: 10.1021/acscatal.2c05992] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/16/2023]
Abstract
Controlling the electronic structure of transition-metal single-atom heterogeneous catalysts (SACs) is crucial to unlocking their full potential. The ability to do this with increasing precision offers a rational strategy to optimize processes associated with the adsorption and activation of reactive intermediates, charge transfer dynamics, and light absorption. While several methods have been proposed to alter the electronic characteristics of SACs, such as the oxidation state, band structure, orbital occupancy, and associated spin, the lack of a systematic approach to their application makes it difficult to control their effects. In this Perspective, we examine how the electronic configuration of SACs can be engineered for thermochemical, electrochemical, and photochemical applications, exploring the relationship with their activity, selectivity, and stability. We discuss synthetic and analytical challenges in controlling and discriminating the electronic structure of SACs and possible directions toward closing the gap between computational and experimental efforts. By bringing this topic to the center, we hope to stimulate research to understand, control, and exploit electronic effects in SACs and ultimately spur technological developments.
Collapse
Affiliation(s)
- Vera Giulimondi
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
42
|
Fu Q. Dynamic Construction and Maintenance of Confined Nanoregions via Hydrogen-Bond Networks between Acetylene Reactants and a Polyoxometalate-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8275-8285. [PMID: 36745005 DOI: 10.1021/acsami.2c23072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The nanoconfinement effect in catalysis has attracted much attention because it provides a novel means of regulating the molecular properties and related reactions. Confined nanoregions composed of both reactants and catalysts through weak interactions are expected to improve the catalytic performance and promote the mass transport of relevant molecules simultaneously. However, at reaction temperatures, the structural variation of such confined spaces constructed via weak interactions remains unclear. Herein, through density functional theory calculations combined with ab initio molecular dynamics simulations, we have systematically investigated the dynamic structural evolution of the confined space constructed by acetylene reactants and a polyoxometalate-based metal-organic framework (POMOF) via hydrogen-bond networks. It is found that, at the reaction temperature of acetylene semihydrogenation, the hydrogen-bond networks and generated confined nanoregions are not rigid but are constantly changing and dynamically maintained. The steering role played by the O atoms at the surfaces of the polyoxometalate clusters is essential for generation of the hydrogen-bond networks and maintenance of the nanoregions. Upon confinement, the acetylene reactants can be better activated than those in an unconstrained atmosphere, which is reflected by the different dynamic distributions of the ∠CHC bending magnitude. Moreover, from a comparison of the distinct interaction characteristics between acetylene/ethylene and POMOF, the different manifestations in the adsorption energy variations of the confined molecules can be interpreted. This work helps to elucidate the underlying mechanisms of confined catalysis and may promote its application in practical catalytic processes.
Collapse
Affiliation(s)
- Qiang Fu
- School of Future Technology, University of Science and Technology of China (USTC), Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, China
| |
Collapse
|
43
|
Chen JJ, Liu QY, Wang SD, Li XN, He SG. Catalytic NO Reduction by NO Pre-Adsorbed RhCeO 2 NO - Clusters. Chemphyschem 2023; 24:e202200743. [PMID: 36308426 DOI: 10.1002/cphc.202200743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/11/2022]
Abstract
A fundamental understanding on the dynamically structural evolution of catalysts induced by reactant gases under working conditions is challenging but pivotal in catalyst design. Herein, in combination with state-of-the-art mass spectrometry for cluster reactions, cryogenic photoelectron imaging spectroscopy, and quantum-chemical calculations, we identified that NO adsorption on rhodium-cerium bimetallic oxide cluster RhCeO2 - can create a Ce3+ ion in product RhCeO2 NO- that serves as the starting point to trigger the catalysis of NO reduction by CO. Theoretical calculations substantiated that the reduction of another two NO molecules into N2 O takes place exclusively on the Ce3+ ion while Rh behaves like a promoter to buffer electrons and cooperates with Ce3+ to drive NO reduction. Our finding demonstrates the importance of NO in regulating the catalytic behavior of Rh under reaction conditions and provides much-needed insights into the essence of NO reduction over Rh/CeO2 , one of the most efficient components in three-way catalysts for NOx removal.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, South China University of Technology Tianhe District, Guangzhou, 510641, China.,Beijing, 100049, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
44
|
Li XN, He SG. Gas-phase reactions driven by polarized metal-metal bonding in atomic clusters. Phys Chem Chem Phys 2023; 25:4444-4459. [PMID: 36723009 DOI: 10.1039/d2cp05148f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multimetallic catalysts exhibit great potential in the activation and catalytic transformation of small molecules. The polarized metal-metal bonds have been gradually recognized to account for the reactivity of multimetallic catalysts due to the synergistic effect of different metal centers. Gas-phase reactions on atomic clusters that compositionally resemble the active sites on related condensed-phase catalysts provide a widely accepted strategy to clarify the nature of polarized metal-metal bonds and the mechanistic details of elementary steps involved in the catalysis driven by this unique chemical bonding. This perspective review concerns the progress in the fundamental understanding of industrially and environmentally important reactions that are closely related to the polarized metal-metal bonds in clusters at a strictly molecular level. The following topics have been summarized and discussed: (1) catalytic CO oxidation with O2, H2O, and NO as oxidants (2) and the activation of other inert molecules (e.g., CH4, CO2, and N2) mediated with clusters featuring polarized metal-metal bonding. It turns out that the findings in the gas phase parallel the catalytic behaviors of condensed-phase catalysts and the knowledge can prove to be essential in inspiring future design of promising catalysts.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
45
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
46
|
Piliai L, Matvija P, Dinhová TN, Khalakhan I, Skála T, Doležal Z, Bezkrovnyi O, Kepinski L, Vorokhta M, Matolínová I. In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO 2(111). ACS APPLIED MATERIALS & INTERFACES 2022; 14:56280-56289. [PMID: 36484234 DOI: 10.1021/acsami.2c15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal-substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.
Collapse
Affiliation(s)
- Lesia Piliai
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Peter Matvija
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Thu Ngan Dinhová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Ivan Khalakhan
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Tomas Skála
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Zdeněk Doležal
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Oleksii Bezkrovnyi
- W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Leszek Kepinski
- W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Mykhailo Vorokhta
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Iva Matolínová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| |
Collapse
|
47
|
Kinetics of Heterogeneous Single‐Site Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202201082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Song LN, Zheng LJ, Wang XX, Wang YF, Wang Y, Liang S, Xu JJ. Unraveling the Mechanism of Field-Induced Li + Concentration for Improved Kinetics in Rechargeable Li-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52907-52917. [PMID: 36378151 DOI: 10.1021/acsami.2c15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of highly efficient electrocatalysts is a promising strategy to improve the electrochemical kinetics of Li-CO2 batteries. However, electrocatalysts usually aim to reduce the energetic barrier for the corresponding electrochemical reactions; little attention has been given to modulating the kinetics that directly determine the local concentration of reaction molecules surrounding catalysts. Herein, we present a systematic study on the role of Li+ reunion on the improvement of reaction kinetics in Li-CO2 batteries with a Cu cone cathode. Specifically, this local, geometry-driven tip effect can enrich the local electron concentration to facilitate Li+ ions diffusion from the bulk electrolyte to the surface of catalyst, leading to boosted catalytic performance. Further studies demonstrate that Cu(II/I) as a solid redox mediator dominates the reversible bulk redox reactions in a Cu cone cathode, which acts as an electron-hole transfer agent and permits the efficient reduction and oxidation of solid Li2CO3, contributing to an accessible theoretical discharge voltage, low charge potential below 3.2 V, impressive rate capability, and a long cycling stability (333 days) for Li-CO2 batteries. The exploitation of the sharp-tip enhancement effect and dynamic creation of catalytic active sites is expected to become routine practice in future mechanistic studies for metal-air batteries.
Collapse
Affiliation(s)
- Li-Na Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
- International Center of Future Science, Jilin University, Changchun130012, P. R. China
| | - Yi-Feng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Shuang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
- International Center of Future Science, Jilin University, Changchun130012, P. R. China
| |
Collapse
|
49
|
Wang Y, Zhang F, Wang M, Mou X, Liu S, Jiang Z, Liu W, Lin R, Ding Y. Discerning the Contributions of Gold Species in Butadiene Hydrogenation: From Single Atoms to Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202214166. [DOI: 10.1002/anie.202214166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yi Wang
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
| | - Fan Zhang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mengru Wang
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
| | - Xiaoling Mou
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Shuhui Liu
- Dalian Jiaotong University Dalian Liaoning, 116028 China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China
| | - Wei Liu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ronghe Lin
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Yunjie Ding
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
50
|
Liu JC, Luo L, Xiao H, Zhu J, He Y, Li J. Metal Affinity of Support Dictates Sintering of Gold Catalysts. J Am Chem Soc 2022; 144:20601-20609. [DOI: 10.1021/jacs.2c06785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin-Cheng Liu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hai Xiao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology China, Hefei, Anhui 230029, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|