1
|
Stanistreet-Welsh K, Kerridge A. Quantifying Covalency and Environmental Effects in RASSCF-Simulated O K-Edge XANES of Uranyl. Inorg Chem 2024; 63:15115-15126. [PMID: 39091118 PMCID: PMC11323269 DOI: 10.1021/acs.inorgchem.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
A RASSCF approach to simulate the O K-edge XANES spectra of uranyl is employed, utilizing three models that progressively improve the representation of the local crystal environment. Simulations successfully reproduce the observed three-peak profile of the experimental spectrum and confirm peak assignments made by Denning. The [UO2Cl4]2- model offers the best agreement with experiment, with peak positions (to within 1 eV) and relative peak separations accurately reproduced. Establishing a direct link between a specific electronic transition and peak intensity is complicated, as a large number of possible transitions can contribute to the overall peak profile. Furthermore, a relationship between oxygen character in the antibonding orbital and the strength of the transition breaks down when using a variety of orbital composition approaches at larger excitation energy. Covalency analysis of the U-O bond in both the ground- and excited-state reveals a dependence on the crystal environment. Orbital composition analysis reveals an underestimation of the uranium contribution to ground-state bonding orbitals when probing O K-edge core-excited states, regardless of the uranyl model employed. However, improving the environmental model provides core-excited state electronic structures that are better representative of that of the ground-state, validating their use in the determination of covalency and bonding.
Collapse
Affiliation(s)
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, U.K.
| |
Collapse
|
2
|
Otte K, Niklas JE, Studvick CM, Montgomery CL, Bredar ARC, Popov IA, La Pierre HS. Proton-Coupled Electron Transfer at the Pu 5+/4+ Couple. J Am Chem Soc 2024; 146:21859-21867. [PMID: 39051969 PMCID: PMC11311234 DOI: 10.1021/jacs.4c06319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The synthesis and solution and solid-state characterization of [Pu4+(NPC)4], 1-Pu, (NPC = [NPtBu(pyrr)2]-; tBu = C(CH3)3; pyrr = pyrrolidinyl) and [Pu3+(NPC)4][K(2.2.2.-cryptand)], 2-Pu, is described. Cyclic voltammetry studies of 1-Pu reveal a quasi-reversible Pu4+/3+ couple, an irreversible Pu5+/4+ couple, and a third couple evincing a rapid proton-coupled electron transfer (PCET) reaction occurring after the electrochemical formation of Pu5+. The chemical identity of the product of the PCET reaction was confirmed by independent chemical synthesis to be [Pu4+(NPC)3(HNPC)][B(ArF5)4], 3-Pu, (B(ArF5)4 = tetrakis(2,3,4,5,6-pentafluourophenyl)borate) via two mechanistically distinct transformations of 1-Pu: protonation and oxidation. The kinetics and thermodynamics of this PCET reaction are determined via electrochemical analysis, simulation, and density functional theory. The computational studies demonstrate a direct correlation between the changing nature of 5f and 6d orbital participation in metal-ligand bonding and the electron density on the Nim atom with the thermodynamics of the PCET reaction from Np to Pu, and an indirect correlation with the roughly 5-orders of magnitude faster Pu PCET compared to Np for the An5+ species.
Collapse
Affiliation(s)
- Kaitlyn
S. Otte
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Julie E. Niklas
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Chad M. Studvick
- Department
of Chemistry, University of Akron, Akron, Ohio 44325-3601, United States
| | - Charlotte L. Montgomery
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599-3290, United States
| | - Alexandria R. C. Bredar
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599-3290, United States
| | - Ivan A. Popov
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Henry S. La Pierre
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Nuclear
and Radiological Engineering and Medical Physics Program, School of
Mechanical Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
3
|
Colliard I, Deblonde GJP. Polyoxometalate Ligands Reveal Different Coordination Chemistries Among Lanthanides and Heavy Actinides. JACS AU 2024; 4:2503-2513. [PMID: 39055135 PMCID: PMC11267554 DOI: 10.1021/jacsau.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Experimental studies involving actinide compounds are inherently limited in scope due to the radioactive nature of these elements and the scarcity and cost of their research isotopes. Now, ∼80 years after the introduction of the actinide concept by Glenn Seaborg, we still only have a limited understanding of the coordination chemistry of f-block metals when compared to more common elements such as the s-, p-, and d-blocks. This is particularly true for transplutonium actinides (Am, Cm, Bk, etc.) whose chemistry is often considered similar to trivalent lanthanides-mainly because of the lack of experimental data. We here report a metal-ligand system for which lanthanide and heavy actinide coordination compounds can be synthesized efficiently (i.e., requiring only a few micrograms) under identical conditions. Seventeen single crystal XRD structures of trivalent f-elements complexed to the polyoxometalate (POM) PW11O39 7- were obtained, including the full lanthanide series (Cs11Ln(PW11O39)2·nH2O, Ln = La to Lu, except Pm), the equivalent yttrium compound, a curium-POM compound (α2-Cs11Cm(PW11O39)2·33H2O), and the first two Am3+-POM compounds structurally characterized (α1-Cs11Am(PW11O39)2·6H2O and α2-Cs11Am(PW11O39)2·21H2O). Importantly, this represents a unique series of compounds built on the same 1:2 metal:ligand unit and where all the f-elements are 8-coordinated and squared antiprismatic, thus providing a consistent platform for intra- and inter-series comparison. Despite a similar first coordination sphere environment, significant crystallographic and spectroscopic differences were observed among early and late lanthanides, as well as lanthanides and actinides, and even between americium and curium. These results show that even within the same coordination chemistry framework, 4f and 5f elements exhibit fundamental chemical differences that cannot be explained by simple size-match arguments. This study offers a versatile coordination platform to magnify differences within the f-block that have remained difficult to observe with traditional ligand systems.
Collapse
Affiliation(s)
- Ian Colliard
- Physical
and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Material
Sciences Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Gauthier J.-P. Deblonde
- Physical
and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Nuclear
and Chemical Sciences Division, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
4
|
Yu Y, Hao Y, Xiao B, Langer E, Novikov SA, Ramanantoanina H, Pidchenko I, Schild D, Albrecht-Schoenzart TE, Eichel RA, Vitova T, Alekseev EV. U(V) Stabilization via Aliovalent Incorporation of Ln(III) into Oxo-salt Framework. Chemistry 2024; 30:e202401033. [PMID: 38775406 DOI: 10.1002/chem.202401033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 06/29/2024]
Abstract
Pentavalent uranium compounds are key components of uranium's redox chemistry and play important roles in environmental transport. Despite this, well-characterized U(V) compounds are scarce primarily because of their instability with respect to disproportionation to U(IV) and U(VI). In this work, we provide an alternate route to incorporation of U(V) into a crystalline lattice where different oxidation states of uranium can be stabilized through the incorporation of secondary cations with different sizes and charges. We show that iriginite-based crystalline layers allow for systematically replacing U(VI) with U(V) through aliovalent substitution of 2+ alkaline-earth or 3+ rare-earth cations as dopant ions under high-temperature conditions, specifically Ca(UVIO2)W4O14 and Ln(UVO2)W4O14 (Ln=Nd, Sm, Eu, Gd, Yb). Evidence for the existence of U(V) and U(VI) is supported by single-crystal X-ray diffraction, high energy resolution X-ray absorption near edge structure, X-ray photoelectron spectroscopy, and optical absorption spectroscopy. In contrast with other reported U(V) materials, the U(V) single crystals obtained using this route are relatively large (several centimeters) and easily reproducible, and thus provide a substantial improvement in the facile synthesis and stabilization of U(V).
Collapse
Affiliation(s)
- Yi Yu
- School of Physics and Electronics information, Gannan Normal University, Ganzhou, 341000, PR China
| | - Yucheng Hao
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, 230000, PR China
| | - Bin Xiao
- Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich, D-52428, Jülich, Germany
| | - Eike Langer
- Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich, D-52428, Jülich, Germany
| | - Sergei A Novikov
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
| | - Harry Ramanantoanina
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, D-76125, Karlsruhe, Germany g
| | - Ivan Pidchenko
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, D-76125, Karlsruhe, Germany g
| | - Dieter Schild
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, D-76125, Karlsruhe, Germany g
| | - Thomas E Albrecht-Schoenzart
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado, 80401, USA
| | - Rüdiger-A Eichel
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich, D-52428, Jülich, Germany
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, D-76125, Karlsruhe, Germany g
| | - Evgeny V Alekseev
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich, D-52428, Jülich, Germany
| |
Collapse
|
5
|
Pereiro FA, Galley SS, Jackson JA, Shafer JC. Contemporary Assessment of Energy Degeneracy in Orbital Mixing with Tetravalent f-Block Compounds. Inorg Chem 2024; 63:9687-9700. [PMID: 38743642 DOI: 10.1021/acs.inorgchem.3c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The f block is a comparatively understudied group of elements that find applications in many areas. Continued development of technologies involving the lanthanides (Ln) and actinides (An) requires a better fundamental understanding of their chemistry. Specifically, characterizing the electronic structure of the f elements presents a significant challenge due to the spatially core-like but energetically valence-like nature of the f orbitals. This duality led f-block scientists to hypothesize for decades that f-block chemistry is dominated by ionic metal-ligand interactions with little covalency because canonical covalent interactions require both spatial orbital overlap and orbital energy degeneracy. Recent studies on An compounds have suggested that An ions can engage in appreciable orbital mixing between An 5f and ligand orbitals, which was attributed to "energy-degeneracy-driven covalency". This model of bonding has since been a topic of debate because different computational methods have yielded results that support and refute the energy-degeneracy-driven covalency model. In this Viewpoint, literatures concerning the metal- and ligand-edge X-ray absorption near-edge structure (XANES) of five tetravalent f-block systems─MO2 (M = Ln, An), LnF4, MCl62-, and [Ln(NP(pip)3)4]─are compiled and discussed to explore metal-ligand bonding in f-block compounds through experimental metrics. Based on spectral assignments from a variety of theoretical models, covalency is seen to decrease from CeO2 and PrO2 to TbO2 through weaker ligand-to-metal charge-transfer (LMCT) interactions, while these LMCT interactions are not observed in the trivalent Ln sesquixodes until Yb. In comparison, while XANES characterization of AnO2 compounds is scarce, computational modeling of available X-ray absorption spectra suggests that covalency among AnO2 reaches a maximum between Am and Cm. Moreover, a decrease in covalency is observed upon changing ligands while maintaining an isostructural coordination environment from CeO2 to CeF4. These results could allude to the importance of orbital energy degeneracy in f-block bonding, but there are a variety of data gaps and conflicting results from different modeling techniques that need to be addressed before broad conclusions can be drawn.
Collapse
Affiliation(s)
- Felipe A Pereiro
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Shane S Galley
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jessica A Jackson
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jenifer C Shafer
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Bai Z, Beck NB, Scheibe B, Sperling JM, Weiland A, Ruf M, Brannon JP, Rotermund BM, Gomez Martinez D, Albrecht-Schönzart TE. Investigation of Pressure Effects in the Bimetallic Transplutonium Tetrazolate Complexes [(An(pmtz) 2(H 2O) 3) 2(μ-pmtz)] 2(pmtz) 2· nH 2O (An 3+ = Cm 3+, Bk 3+, and Cf 3+). J Am Chem Soc 2024; 146:7822-7830. [PMID: 38456811 DOI: 10.1021/jacs.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Understanding the effects of pressure on actinide compounds is an integral part of safe nuclear waste storage in deep geologic repositories and provides a means of systematically altering the structure and properties. However, detailing how the effects of pressure evolve across the actinide series in the later elements is not typically undertaken because of the challenges of conducting research on these unstable isotopes. Here, a family of bimetallic actinide complexes, [(An(pmtz)2(H2O)3)2(μ-pmtz)]2(pmtz)2·nH2O (An3+ = Cm3+, Bk3+, and Cf3+, pmtz- = 5-(pyrimidyl)tetrazolate; Cm1, Bk1, and Cf1), are reported and represent the first structurally characterized bimetallic berkelium and californium compounds. The pressure response as determined from UV-vis-NIR transitions varies for Cm1, Bk1, and Cf1. The 5f → 5f transitions in Cm1 are notably more sensitive to pressure compared to those in Bk1 and Cf1 and show substantial bathochromic shifting of several 5f → 5f transitions. In the case of Bk1, an ingrowth of a metal-to-ligand charge-transfer transition occurs at elevated pressures because of the accessible Bk3+/Bk4+ couple. For Cf1, no substantial transition shifting or emergence of MLCT transitions is observed at elevated pressures because of the prohibitive energetics of the Cf3+/Cf4+ couple and reduced sensitivity of the 5f → 5f transitions to the local coordination environment because of the more contracted 5f shell versus Cm3+ and Bk3+.
Collapse
Affiliation(s)
- Zhuanling Bai
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nicholas B Beck
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Benjamin Scheibe
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Joseph M Sperling
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ashley Weiland
- Bruker AXS, 5465 E Cheryl Pkwy, Fitchburg, Madison, Wisconsin 53711, United States
| | - Michael Ruf
- Bruker AXS, 5465 E Cheryl Pkwy, Fitchburg, Madison, Wisconsin 53711, United States
| | - Jacob P Brannon
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Brian M Rotermund
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Daniela Gomez Martinez
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
7
|
Arteaga A, Nicholas AD, Sinnwell MA, McNamara BK, Buck EC, Surbella RG. Expanding the Transuranic Metal-Organic Framework Portfolio: The Optical Properties of Americium(III) MOF-76. Inorg Chem 2023; 62:21036-21043. [PMID: 38038352 DOI: 10.1021/acs.inorgchem.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Reported is the synthesis, crystal structure, and solid-state characterization of a new americium containing metal-organic framework (MOF), [Am(C9H3O6)(H2O)], MOF-76(Am). This material is constructed from Am3+ metal centers and 1,3,5-tricarboxylic acid (BTC) ligands, forming a porous three-dimensional framework that is isostructural with several known trivalent lanthanide (Ln) analogs (e.g., Ce, Nd, and Sm-Lu). The Am3+ ions have seven coordinates and assume a distorted, capped trigonal prismatic geometry with C1 symmetry. The Am3+-O bonds were studied via infrared spectroscopy and compared to several MOF-76(Ln) analogs, where Ln = Nd3+, Eu3+, Tb3+, and Ho3+. The results show that the strength of the ligand carboxylate stretching and bending modes increase with Nd3+ < Eu3+ < Am3+ < Tb3+ < Ho3+, suggesting the metal-oxygen bonds are predominantly ionic. Optical absorbance spectroscopy measurements reveal strong f-f transitions; some exhibit pronounced crystal field splitting. The photoluminescence spectrum contains weak Am3+-based emission that is achieved through direct and indirect metal center excitation. The weak emissive behavior is somewhat surprising given that ligand-to-metal resonance energy transfer is efficient in the isoelectronic Eu3+ (4f6) and related Tb3+ (4f8) analogs. The optical properties were explored further within a series of heterometallic MOF-76(Tb1-xAmx) (x = 0.8, 0.2, and 0.1) samples, and the results reveal enhanced Am3+ photoluminescence.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Michael A Sinnwell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Bruce K McNamara
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Islam MA, Berthon C, Jung J, Bolvin H. Bonding and Magnetic Trends in the [An III(DPA) 3] 3- Series Compared to the Ln(III) and An(IV) Analogues. Inorg Chem 2023; 62:17254-17264. [PMID: 37818639 DOI: 10.1021/acs.inorgchem.3c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The crystal field parameters are determined from first-principles calculations in the [AnIII(DPA)3]3- series, completing previous work on the [LnIII(DPA)3]3- and [AnIV(DPA)3]2- series. The crystal field strength parameter follows the Ln(III) < An(III) < An(IV) trend. The parameters deduced at the orbital level decrease along the series, while J-mixing strongly impacts the many-electron parameters, especially for the Pu(III) complex. We further compile the available data for the three series. In some aspects, An(III) complexes are closer to Ln(III) than to An(IV) complexes with regard to the geometrical structure and bonding descriptors. At the beginning of the series, up to Pu(III), there is a quantitative departure from the free ion, especially for the Pa(III) complex. The magnetic properties of the actinides keep the trends of the lanthanides; in particular, the axial magnetic susceptibility follows Bleaney's theory qualitatively.
Collapse
Affiliation(s)
- Md Ashraful Islam
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
| | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Julie Jung
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
9
|
Stanistreet-Welsh K, Kerridge A. Bounding [AnO 2] 2+ (An = U, Np) covalency by simulated O K-edge and An M-edge X-ray absorption near-edge spectroscopy. Phys Chem Chem Phys 2023; 25:23753-23760. [PMID: 37615175 DOI: 10.1039/d3cp03149g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Restricted active space simulations are shown to accurately reproduce and characterise both O K-edge and U M4,5-edge spectra of uranyl in excellent agreement with experimental peak positions and are extended to the Np analogue. Analysis of bonding orbital composition in the ground and O K-edge core-excited states demonstrates that metal contribution is underestimated in the latter. In contrast, An M4/5-edge core-excited states produce bonding orbital compositions significantly more representative of those in the ground state. Quantum Theory of Atoms in Molecules analysis is employed to explain the discrepancy between K- and M-edge data and demonstrates that the location of the core-hole impacts the pattern of electron localisation in core-excited states. An apparent contradiction to this behaviour in neptunyl is rationalised in terms interelectronic repulsion between the unpaired 5f electron and the excited core-electron.
Collapse
Affiliation(s)
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
10
|
Nicholas AD, Arteaga A, Ducati LC, Buck EC, Autschbach J, Surbella RG. Insight into the Structural and Emissive Behavior of a Three-Dimensional Americium(III) Formate Coordination Polymer. Chemistry 2023; 29:e202300077. [PMID: 36973189 DOI: 10.1002/chem.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
We report the structural, vibrational, and optical properties of americium formate (Am(CHO2 )3 ) crystals synthesized via the in situ hydrolysis of dimethylformamide (DMF). The coordination polymer features Am3+ ions linked by formate ligands into a three-dimensional network that is isomorphous to several lanthanide analogs, (e. g., Eu3+ , Nd3+ , Tb3+ ). Structure determination revealed a nine-coordinate Am3+ metal center that features a unique local C3v symmetry. The metal-ligand bonding interactions were investigated by vibrational spectroscopy, natural localized molecular orbital calculations, and the quantum theory of atoms in molecules. The results paint a predominantly ionic bond picture and suggest the metal-oxygen bonds increase in strength from Nd-O
Collapse
Affiliation(s)
- Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, NY, 14260-3000, USA
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
11
|
Long BN, Beltrán-Leíva MJ, Sperling JM, Poe TN, Celis-Barros C, Albrecht-Schönzart TE. Altering the spectroscopy, electronic structure, and bonding of organometallic curium(III) upon coordination of 4,4'-bipyridine. Nat Commun 2023; 14:3774. [PMID: 37355669 DOI: 10.1038/s41467-023-39481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Structural and electronic characterization of (Cp'3Cm)2(μ-4,4'-bpy) (Cp' = trimethylsilylcyclopentadienyl, 4,4'-bpy = 4,4'-bipyridine) is reported and provides a rare example of curium-carbon bonding. Cp'3Cm displays unexpectedly low energy emission that is quenched upon coordination by 4,4'-bipyridine. Electronic structure calculations on Cp'3Cm and (Cp'3Cm)2(μ-4,4'-bpy) rule out significant differences in the emissive state, rendering 4,4'-bipyridine as the primary quenching agent. Comparisons of (Cp'3Cm)2(μ-4,4'-bpy) with its samarium and gadolinium analogues reveal atypical bonding patterns and electronic features that offer insights into bonding between carbon with f-block metal ions. Here we show the structural characterization of a curium-carbon bond, in addition to the unique electronic properties never before observed in a curium compound.
Collapse
Affiliation(s)
- Brian N Long
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - María J Beltrán-Leíva
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, CO, 80401, USA.
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
12
|
Arteaga A, Nicholas AD, Ducati LC, Autschbach J, Surbella RG. Americium Oxalate: An Experimental and Computational Investigation of Metal-Ligand Bonding. Inorg Chem 2023; 62:4814-4822. [PMID: 36920249 DOI: 10.1021/acs.inorgchem.2c03976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A novel actinide-containing coordination polymer, [Am(C2O4)(H2O)3Cl] (Am-1), has been synthesized and structurally characterized. The crystallographic analysis reveals that the structure is two-dimensional and comprised of pseudo-dimeric Am3+ nodes that are bridged by oxalate ligands to form sheets. Each metal center is nine-coordinate, forming a distorted capped square antiprism geometry with a C1 symmetry, and features bound oxalate, aqua, and chloro ligands. The Am3+-ligand bonds were probed computationally using the quantum theory of atoms in molecules nd natural localized molecular orbital approaches to investigate the underlying mechanisms and hybrid atomic orbital contributions therein. The analyses indicate that the bonds within Am-1 are predominantly ionic and the 5f shell of the Am3+ metal centers does not add a significant covalent contribution to the bonds. Our bonding assessment is supported by measurements on the optical properties of Am-1 using diffuse reflectance and photoluminescence spectroscopies. The position of the principal absorption band at 507 nm (5L6' ← 7F0') is notable because it is consistent with previously reported americium oxalate complexes in solution, indicating similarities in the electronic structure and ionic bonding. Compound Am-1 is an active phosphor, featuring strong bright-blue oxalate-based luminescence with no evidence of metal-centered emission.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, 312 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Ray D, Oakley MS, Sarkar A, Bai X, Gagliardi L. Theoretical Investigation of Single-Molecule-Magnet Behavior in Mononuclear Dysprosium and Californium Complexes. Inorg Chem 2023; 62:1649-1658. [PMID: 36652606 PMCID: PMC9890484 DOI: 10.1021/acs.inorgchem.2c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Early-actinide-based (U, Np, and Pu) single-molecule magnets (SMMs) have yet to show magnetic properties similar to those of highly anisotropic lanthanide-based ones. However, there are not many studies exploring the late-actinides (more than half-filled f shells) as potential candidates for SMM applications. We computationally explored the electronic structure and magnetic properties of a hypothetical Cf(III) complex isostructural to the experimentally synthesized Dy(dbm)3(bpy) complex (bpy = 2,2'-bipyridine; dbm = dibenzoylmethanoate) via multireference methods and compared them to those of the Dy(III) analogue. This study shows that the Cf(III) complex can behave as a SMM and has a greater magnetic susceptibility compared to other experimentally and computationally studied early-actinide-based (U, Np, and Pu) magnetic complexes. However, Cf spontaneously undergoes α-decay and converts to Cm. Thus, we also explored the isostructural Cm(III)-based complex. The computed magnetic susceptibility and g-tensor values show that the Cm(III) complex has poor SMM behavior in comparison to both the Dy(III) and Cf(III) complexes, suggesting that the performance of Cf(III)-based magnets may be affected by α-decay and can explain the poor performance of experimentally studied Cf(III)-based molecular magnets in the literature. Further, this study suggests that the ligand field is dominant in Cf(III), which helps to increase the magnetization blocking barrier by nearly 3 times that of its 4f congener.
Collapse
Affiliation(s)
- Debmalya Ray
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Arup Sarkar
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois60637, United States
| | - Xiaojing Bai
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois60637, United States,
| |
Collapse
|
14
|
Colla CA, Colliard I, Sawvel AM, Nyman M, Mason HE, Deblonde GJP. Contrasting Trivalent Lanthanide and Actinide Complexation by Polyoxometalates via Solution-State NMR. Inorg Chem 2022; 62:6242-6254. [PMID: 36580490 DOI: 10.1021/acs.inorgchem.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs). We provide the first NMR measurements on americium-POM and curium-POM complexes, using one-dimensional (1D) 31P NMR, variable-temperature NMR, and spin-lattice relaxation time (T1) experiments. The proposed POM-NMR approach allows for the study of trivalent f-elements even when only microgram amounts are available and in phosphate-containing solutions where f-elements are typically insoluble. The solution-state speciation of trivalent americium, curium, plus multiple lanthanide ions (La3+, Nd3+, Sm3+, Eu3+, Yb3+, and Lu3+), in the presence of the model POM ligand PW11O397- was elucidated and revealed the concurrent formation of two stable complexes, [MIII(PW11O39)(H2O)x]4- and [MIII(PW11O39)2]11-. Interconversion reaction constants, reaction enthalpies, and reaction entropies were derived from the NMR data. The NMR results also provide experimental evidence of the weakly paramagnetic nature of the Am3+ and Cm3+ ions in solution. Furthermore, the study reveals a previously unnoticed periodicity break along the f-element series with the reversal of T1 relaxation times of the 1:1 and 1:2 complexes and the preferential formation of the long T1 species for the early lanthanides versus the short T1 species for the late lanthanides, americium, and curium. Given the broad variety of POM ligands that exist, with many of them containing NMR-active nuclei, the combined POM-NMR approach reported here opens a new avenue to investigate difficult-to-study elements such as heavy actinides and other radionuclides.
Collapse
Affiliation(s)
- Christopher A Colla
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ian Colliard
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon97331, United States
| | - April M Sawvel
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon97331, United States
| | - Harris E Mason
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Gauthier J-P Deblonde
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| |
Collapse
|
15
|
Arabzadeh H, Walker B, Sperling JM, Acevedo O, Ren P, Yang W, Albrecht-Schönzart TE. Molecular Dynamics and Free Energy Calculations of Dicyclohexano-18-crown-6 Diastereoisomers with Sm 2+, Eu 2+, Dy 2+, Yb 2+, Cf 2+, and Three Halide Salts in Tetrahydrofuran and Acetonitrile Using the AMOEBA Force Field. J Phys Chem B 2022; 126:10721-10731. [PMID: 36508277 PMCID: PMC9999210 DOI: 10.1021/acs.jpcb.2c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the continual development of lanthanides (Ln) in current technological devices, an efficient separation process is needed that can recover greater amounts of these rare elements. Dicyclohexano-18-crown-6 (DCH18C6) is a crown ether that may be a promising candidate for Ln separation, but additional research is required. As such, molecular dynamics (MD) simulations have been performed on four divalent lanthanide halide salts (Sm2+, Eu2+, Dy2+, and Yb2+) and one divalent actinide halide salt (Cf2+) bound to three diastereoisomers of DCH18C6. Dy2+, Yb2+, Cf2+, DCH18C6, and tetrahydrofuran (THF) solvent were parameterized for the AMOEBA polarizable force field for the first time, whereas existing parameters for Sm2+ and Eu2+ were utilized from our previous efforts. A coordination number (CN) of six for Ln2+/An2+-O solvated in THF indicated that the cations interacted almost entirely with the oxygens of the polyether ring. A CN of one for Ln2+/An2+-N solvated in acetonitrile for systems containing iodide suggested that the N atom of acetonitrile was competitive with I- for cation interactions. Fluctuation between five and six CNs for Dy2+ and Yb2+ suggested that although the cations remained in the polyether ring, the size of the ring may not be an ideal fit as these cations possess comparatively smaller ionic radii. Gibbs binding free energies of Sm2+ in all DCH18C6 diastereoisomers solvated in THF were calculated. The binding free energy of the cis-syn-cis diastereoisomer was the most favorable, followed by cis-anti-cis, and then trans-anti-trans. Finally, two major types of conformation were observed for each diastereoisomer that were related to the electrostatic interactions and charge density of the cations.
Collapse
Affiliation(s)
- Hesam Arabzadeh
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Brandon Walker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph M. Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
16
|
Colliard I, Lee JRI, Colla CA, Mason HE, Sawvel AM, Zavarin M, Nyman M, Deblonde GJP. Polyoxometalates as ligands to synthesize, isolate and characterize compounds of rare isotopes on the microgram scale. Nat Chem 2022; 14:1357-1366. [PMID: 36050378 DOI: 10.1038/s41557-022-01018-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/04/2022] [Indexed: 01/04/2023]
Abstract
The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties. Three curium-POM complexes were prepared, using just 1-10 μg per synthesis of the rare isotope 248Cm3+, and characterized by single-crystal X-ray diffraction, showing an eight-coordinated Cm3+ centre. Moreover, spectrophotometric, fluorescence, NMR and Raman analyses of several f-block element-POM complexes, including 243Am3+ and 248Cm3+, showed otherwise unnoticeable differences between their solution versus solid-state chemistry, and actinide versus lanthanide behaviour. This POM-driven strategy represents a viable path to isolate even rarer complexes, notably with actinium or transcalifornium elements.
Collapse
Affiliation(s)
- Ian Colliard
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Jonathan R I Lee
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Christopher A Colla
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Harris E Mason
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - April M Sawvel
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Gauthier J-P Deblonde
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
17
|
Horne GP, Rotermund BM, Grimes TS, Sperling JM, Meeker DS, Zalupski PR, Beck N, Huffman ZK, Martinez DG, Beshay A, Peterman DR, Layne BH, Johnson J, Cook AR, Albrecht-Schönzart TE, Mezyk SP. Transient Radiation-Induced Berkelium(III) and Californium(III) Redox Chemistry in Aqueous Solution. Inorg Chem 2022; 61:10822-10832. [PMID: 35776877 DOI: 10.1021/acs.inorgchem.2c01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the significant impact of radiation-induced redox reactions on the accessibility and lifetimes of actinide oxidation states, fundamental knowledge of aqueous actinide metal ion radiation chemistry is limited, especially for the late actinides. A quantitative understanding of these intrinsic radiation-induced processes is essential for investigating the fundamental properties of these actinides. We present here a picosecond electron pulse reaction kinetics study into the radiation-induced redox chemistry of trivalent berkelium (Bk(III)) and californium (Cf(III)) ions in acidic aqueous solutions at ambient temperature. New and first-of-a-kind, second-order rate coefficients are reported for the transient radical-induced reduction of Bk(III) and Cf(III) by the hydrated electron (eaq-) and hydrogen atom (H•), demonstrating a significant reactivity (up to 1011 M-1 s-1) indicative of a preference of these metals to adopt divalent states. Additionally, we report the first-ever second-order rate coefficients for the transient radical-induced oxidation of these elements by a reaction with hydroxyl (•OH) and nitrate (NO3•) radicals, which also exhibited fast reactivity (ca. 108 M-1 s-1). Transient Cf(II), Cf(IV), and Bk(IV) absorption spectra are also reported. Overall, the presented data highlight the existence of rich, complex, intrinsic late actinide radiation-induced redox chemistry that has the potential to influence the findings of other areas of actinide science.
Collapse
Affiliation(s)
- Gregory P Horne
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States
| | - Brian M Rotermund
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Travis S Grimes
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - David S Meeker
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Peter R Zalupski
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States
| | - Nicholas Beck
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zachary K Huffman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Daniela Gomez Martinez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Andrew Beshay
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Dean R Peterman
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States
| | - Bobby H Layne
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jason Johnson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Andrew R Cook
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Stephen P Mezyk
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| |
Collapse
|
18
|
Cooper S, Kaltsoyannis N. Covalency in AnCl 2 (An = Th-No). Dalton Trans 2022; 51:5929-5937. [PMID: 35348160 DOI: 10.1039/d2dt00315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A potential connection has previously been proposed between the emergence of unexpected covalent behaviour in various transcurium complexes and the increasing stability of the +2 oxidation state in the later members of the actinide series. We recently used computational methods to study AnCl3, finding evidence for energy degeneracy driven covalency in the later actinides, and here present a comparative study of AnCl2. The An-Cl bond lengths of the latter divide into two data sets; Th-Np, Cm, Bk and Pu, Am, Cf-No. On average the An-Cl bond length decreases for both sets but, with significant increases between Np and Pu, and between Bk and Cf, unlike the former group (Pu, Am, Cf-No)Cl2 have significantly larger lengths than the corresponding trichlorides. Using a range of Natural Bond Orbital (NBO), Natural Resonance Theory (NRT) and Quantum Theory of Atoms In Molecules (QTAIM) metrics, the covalency of the dichloride bonds is analysed. We find that the first group of dichlorides are similar to their trichloride counterparts and possess significantly more covalent bonds than (Pu, Am, Cf-No)Cl2. We believe this change in covalent behaviour across the series for the dichlorides is due to a decreased involvement of the 6d orbital in the later elements (as a result of the f-d excitation energy exceeding the d-stabilisation energy of the actinide ions in question). Moreover, we find that unlike the trichlorides, where the QTAIM delocalisation index indicates that covalency plateaus/moderately increases, An-Cl covalency decreases across the second half of the series for AnCl2. We attribute this difference in behaviour to a lack of significant energy degeneracy driven covalency for the dichlorides, with the energy difference between the dichlorides' β 5f and 3p Natural Atomic Orbitals being larger than for the trichlorides. Hence we find it is not the presence of a stable +2 oxidation state, but instead the extent of energy matching between the actinide 5f orbitals and the ligand 3p, that drives covalency in the transcurium chlorides.
Collapse
Affiliation(s)
- Sophie Cooper
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
19
|
Hu Y, Shen Z, Li B, Tan X, Han B, Ji Z, Wang J, Zhao G, Wang X. State-of-the-art progress for the selective crystallization of actinides, synthesis of actinide compounds and their functionalization. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127838. [PMID: 34844805 DOI: 10.1016/j.jhazmat.2021.127838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Crystallization and immobilization of actinides to form actinide compounds are of significant importance for the extraction and reutilization of nuclear waste in the nuclear industry. In this paper, the state-of-art progress in the crystallization of actinides are summarized, as well as the main functionalization of the actinide compounds, i.e., as adsorbents for heavy metal ions and organic pollutant in waste management, as (photo)catalysts for organic degradation and conversion, including degradation of organic dyes and antibiotics, dehydrogenation of N-heterocycles, CO2 cycloaddition, selective alcohol oxidation and selective oxidation of sulfides. This review will give a comprehensive summary about the synthesis and application exploration of solid actinide crystalline salts and actinide-based metal organic frameworks in the past decades. Finally, the future perspectives and challenges are proposed in the end to give a promising direction for future investigation.
Collapse
Affiliation(s)
- Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bingfeng Li
- POWERCHINA SICHUAN Electric Power Engineering CO., LTD, Chengdu 610041, PR China
| | - Xiaoli Tan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bing Han
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhuoyu Ji
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
20
|
Carter KP, Wacker JN, Smith KF, Deblonde GJP, Moreau LM, Rees JA, Booth CH, Abergel RJ. In situ beam reduction of Pu(IV) and Bk(IV) as a route to trivalent transuranic coordination complexes with hydroxypyridinone chelators. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:315-322. [PMID: 35254293 PMCID: PMC8900832 DOI: 10.1107/s1600577522000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The solution-state interactions of plutonium and berkelium with the octadentate chelator 3,4,3-LI(1,2-HOPO) (343-HOPO) were investigated and characterized by X-ray absorption spectroscopy, which revealed in situ reductive decomposition of the tetravalent species of both actinide metals to yield Pu(III) and Bk(III) coordination complexes. X-ray absorption near-edge structure (XANES) measurements were the first indication of in situ synchrotron redox chemistry as the Pu threshold and white-line position energies for Pu-343-HOPO were in good agreement with known diagnostic Pu(III) species, whereas Bk-343-HOPO results were found to mirror the XANES behavior of Bk(III)-DTPA. Extended X-ray absorption fine structure results revealed An-OHOPO bond distances of 2.498 (5) and 2.415 (2) Å for Pu and Bk, respectively, which match well with bond distances obtained for trivalent actinides and 343-HOPO via density functional theory calculations. Pu(III)- and Bk(III)-343-HOPO data also provide initial insight into actinide periodicity as they can be compared with previous results with Am(III)-, Cm(III)-, Cf(III)-, and Es(III)-343-HOPO, which indicate there is likely an increase in 5f covalency and heterogeneity across the actinide series.
Collapse
Affiliation(s)
- Korey P. Carter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer N. Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt F. Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Liane M. Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julian A. Rees
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corwin H. Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rebecca J. Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Long BN, Beltrán-Leiva MJ, Celis-Barros C, Sperling JM, Poe TN, Baumbach RE, Windorff CJ, Albrecht-Schönzart TE. Cyclopentadienyl coordination induces unexpected ionic Am-N bonding in an americium bipyridyl complex. Nat Commun 2022; 13:201. [PMID: 35017503 PMCID: PMC8752859 DOI: 10.1038/s41467-021-27821-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Variations in bonding between trivalent lanthanides and actinides is critical for reprocessing spent nuclear fuel. The ability to tune bonding and the coordination environment in these trivalent systems is a key factor in identifying a solution for separating lanthanides and actinides. Coordination of 4,4'-bipyridine (4,4'-bpy) and trimethylsilylcyclopentadienide (Cp') to americium introduces unexpectedly ionic Am-N bonding character and unique spectroscopic properties. Here we report the structural characterization of (Cp'3Am)2(μ - 4,4'-bpy) and its lanthanide analogue, (Cp'3Nd)2(μ - 4,4'-bpy), by single-crystal X-ray diffraction. Spectroscopic techniques in both solid and solution phase are performed in conjunction with theoretical calculations to probe the effects the unique coordination environment has on the electronic structure.
Collapse
Affiliation(s)
- Brian N Long
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - María J Beltrán-Leiva
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA.,Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, PO box 30001, Las Cruces, NM, 88003, USA
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA.
| |
Collapse
|
22
|
Tarlton ML, Skanthakumar S, Vallet V, Wilson RE. Hexanitrato complexes and hybrid double perovskites of Am 3+ and Cm 3+. Chem Commun (Camb) 2022; 58:11997-12000. [DOI: 10.1039/d2cc05162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isostructural, homoleptic twelve-coordinate nitrato complexes of the 5f-ions Am and Cm are reported that occur as hybrid double perovskites.
Collapse
Affiliation(s)
- Michael L. Tarlton
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S, Cass Avenue, Lemont, IL, USA
| | - Suntharalingam Skanthakumar
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S, Cass Avenue, Lemont, IL, USA
| | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, F-59000, Lille, France
| | - Richard E. Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S, Cass Avenue, Lemont, IL, USA
| |
Collapse
|
23
|
Gaiser AN, Celis-Barros C, White FD, Beltran-Leiva MJ, Sperling JM, Salpage SR, Poe TN, Gomez Martinez D, Jian T, Wolford NJ, Jones NJ, Ritz AJ, Lazenby RA, Gibson JK, Baumbach RE, Páez-Hernández D, Neidig ML, Albrecht-Schönzart TE. Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes. Nat Commun 2021; 12:7230. [PMID: 34893651 PMCID: PMC8664847 DOI: 10.1038/s41467-021-27576-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Controlling the properties of heavy element complexes, such as those containing berkelium, is challenging because relativistic effects, spin-orbit and ligand-field splitting, and complex metal-ligand bonding, all dictate the final electronic states of the molecules. While the first two of these are currently beyond experimental control, covalent M‒L interactions could theoretically be boosted through the employment of chelators with large polarizabilities that substantially shift the electron density in the molecules. This theory is tested by ligating BkIII with 4'-(4-nitrophenyl)-2,2':6',2"-terpyridine (terpy*), a ligand with a large dipole. The resultant complex, Bk(terpy*)(NO3)3(H2O)·THF, is benchmarked with its closest electrochemical analog, Ce(terpy*)(NO3)3(H2O)·THF. Here, we show that enhanced Bk‒N interactions with terpy* are observed as predicted. Unexpectedly, induced polarization by terpy* also creates a plane in the molecules wherein the M‒L bonds trans to terpy* are shorter than anticipated. Moreover, these molecules are highly anisotropic and rhombic EPR spectra for the CeIII complex are reported.
Collapse
Affiliation(s)
- Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Frankie D White
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Maria J Beltran-Leiva
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Sahan R Salpage
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Daniela Gomez Martinez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Tian Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nikki J Wolford
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Nathaniel J Jones
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Amanda J Ritz
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Dayán Páez-Hernández
- Center for Applied Nanosciences, Universidad Andres Bello, República 275, Santiago, Chile
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | | |
Collapse
|
24
|
Yu X, Sergentu DC, Feng R, Autschbach J. Covalency of Trivalent Actinide Ions with Different Donor Ligands: Do Density Functional and Multiconfigurational Wavefunction Calculations Corroborate the Observed "Breaks"? Inorg Chem 2021; 60:17744-17757. [PMID: 34747167 DOI: 10.1021/acs.inorgchem.1c02374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A comprehensive ab initio study of periodic actinide-ligand bonding trends for trivalent actinides is performed. Relativistic density functional theory (DFT) and complete active-space (CAS) self-consistent field wavefunction calculations are used to dissect the chemical bonding in the [AnCl6]3-, [An(CN)6]3-, [An(NCS)6]3-, [An(S2PMe2)3], [An(DPA)3]3-, and [An(HOPO)]- series of actinide (An = U-Es) complexes. Except for some differences for the early actinide complexes with DPA, bond orders and excess 5f-shell populations from donation bonding show qualitatively similar trends in 5f n active-space CAS vs DFT calculations. The influence of spin-orbit coupling on donation bonding is small for the tested systems. Along the actinide series, chemically soft vs chemically harder ligands exhibit clear differences in bonding trends. There are pronounced changes in the 5f populations when moving from Pu to Am or Cm, which correlate with previously noted "breaks" in chemical trends. Bonding involving 5f becomes very weak beyond Cm/Bk. We propose that Cm(III) is a borderline case among the trivalent actinides that can be meaningfully considered to be involved in ground-state 5f covalent bonding.
Collapse
Affiliation(s)
- Xiaojuan Yu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Rulin Feng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
25
|
|
26
|
Goodwin CAP, Su J, Stevens LM, White FD, Anderson NH, Auxier JD, Albrecht-Schönzart TE, Batista ER, Briscoe SF, Cross JN, Evans WJ, Gaiser AN, Gaunt AJ, James MR, Janicke MT, Jenkins TF, Jones ZR, Kozimor SA, Scott BL, Sperling JM, Wedal JC, Windorff CJ, Yang P, Ziller JW. Isolation and characterization of a californium metallocene. Nature 2021; 599:421-424. [PMID: 34789902 DOI: 10.1038/s41586-021-04027-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin-orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked. Organometallic molecules were foundational in elucidating periodicity and bonding trends across the periodic table1-3, with a twenty-first-century renaissance of organometallic thorium (Th) through plutonium (Pu) chemistry4-12, and to a smaller extent americium (Am)13, transforming chemical understanding. Yet, analogous curium (Cm) to Cf chemistry has lain dormant since the 1970s. Here, we revive air-/moisture-sensitive Cf chemistry through the synthesis and characterization of [Cf(C5Me4H)2Cl2K(OEt2)]n from two milligrams of 249Cf. This bent metallocene motif, not previously structurally authenticated beyond uranium (U)14,15, contains the first crystallographically characterized Cf-C bond. Analysis suggests the Cf-C bond is largely ionic with a small covalent contribution. Lowered Cf 5f orbital energy versus dysprosium (Dy) 4f in the colourless, isoelectronic and isostructural [Dy(C5Me4H)2Cl2K(OEt2)]n results in an orange Cf compound, contrasting with the light-green colour typically associated with Cf compounds16-22.
Collapse
Affiliation(s)
| | - Jing Su
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.,College of Chemistry, Sichuan University, Chengdu, China
| | - Lauren M Stevens
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Frankie D White
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - John D Auxier
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Sasha F Briscoe
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Justin N Cross
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - William J Evans
- Department of Chemistry, University of California, Irvine, CA, USA.
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Michael R James
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael T Janicke
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Tener F Jenkins
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Zachary R Jones
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Brian L Scott
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Justin C Wedal
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
27
|
Deblonde GJP, Zavarin M, Kersting AB. The coordination properties and ionic radius of actinium: A 120-year-old enigma. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Galley SS, Pattenaude SA, Ray D, Gaggioli CA, Whitefoot MA, Qiao Y, Higgins RF, Nelson WL, Baumbach R, Sperling JM, Zeller M, Collins TS, Schelter EJ, Gagliardi L, Albrecht-Schönzart TE, Bart SC. Using Redox-Active Ligands to Generate Actinide Ligand Radical Species. Inorg Chem 2021; 60:15242-15252. [PMID: 34569783 DOI: 10.1021/acs.inorgchem.1c01766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Using a redox-active dioxophenoxazine ligand, DOPO (DOPO = 2,4,6,8-tetra-tert-butyl-1-oxo-1H-phenoxazine-9-olate), a family of actinide (U, Th, Np, and Pu) and Hf tris(ligand) coordination compounds was synthesized. The full characterization of these species using 1H NMR spectroscopy, electronic absorption spectroscopy, SQUID magnetometry, and X-ray crystallography showed that these compounds are analogous and exist in the form M(DOPOq)2(DOPOsq), where two ligands are of the oxidized quinone form (DOPOq) and the third is of the reduced semiquinone (DOPOsq) form. The electronic structures of these complexes were further investigated using CASSCF calculations, which revealed electronic structures consistent with metals in the +4 formal oxidation state and one unpaired electron localized on one ligand in each complex. Furthermore, f orbitals of the early actinides show a sizable bonding overlap with the ligand 2p orbitals. Notably, this is the first example of a plutonium-ligand radical species and a rare example of magnetic data being recorded for a homogeneous plutonium coordination complex.
Collapse
Affiliation(s)
- Shane S Galley
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Scott A Pattenaude
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Debmalya Ray
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Centre, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlo Alberto Gaggioli
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Megan A Whitefoot
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yusen Qiao
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert F Higgins
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - W L Nelson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Ryan Baumbach
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler S Collins
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Kelley SP, Rungthanaphatsophon P, Walensky JR. Crystal structure of [Th 3(Cp*) 3(O)(OH) 3] 2Cl 2(N 3) 6: a discrete mol-ecular capsule built from multinuclear organothorium cluster cations. Acta Crystallogr E Crystallogr Commun 2021; 77:971-974. [PMID: 34667621 PMCID: PMC8491527 DOI: 10.1107/s2056989021008914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/19/2022]
Abstract
An unusually large and structurally complex charge-neutral polynuclear cluster, hexa-μ2-azido-di-μ3-chlorido-hexa-μ2-hydroxido-di-μ3-oxido-hexa-kis-(penta-methyl-cyclo-penta-dien-yl)hexa-thorium-diethyl ether-tetra-hydro-furan (1/0.56/1.44), [Th3(C10H15)6Cl3(N3)6(OH)6O2]·0.56C4H10O·1.44C4H8O or [Th3(Cp*)3(O)(OH)3]2Cl2(N3)6·0.56C4H10O·1.44C4H8O (Cp* = [penta-methyl-cyclo-penta-dien-yl])-, has been crystallized as a mixed tetra-hydro-furan/diethyl ether solvate and structurally characterized. The mol-ecule contains a number of unusual features, the most notable being a finite yet exceptionally long cyclic metal-azido chain. These rare features are the consequence of both sterically protecting Cp* ligands and highly bridging oxide and hydroxide ligands in the same system and illustrate the inter-esting new possibilities that can arise from combining organometallic and solvothermal f-block element chemistry.
Collapse
Affiliation(s)
- Steven P. Kelley
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | - Justin R. Walensky
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
30
|
Yu X, Einkauf JD, Bryantsev VS, Cheshire MC, Reinhart BJ, Autschbach J, Burns JD. Spectroscopic characterization of neptunium(VI), plutonium(VI), americium(VI) and neptunium(V) encapsulated in uranyl nitrate hexahydrate. Phys Chem Chem Phys 2021; 23:13228-13241. [PMID: 34086024 DOI: 10.1039/d1cp01047f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination of crystalline products resulting from the co-crystallization of Np(vi), Pu(vi), Am(vi), and Np(v) with uranyl nitrate hexahydrate (UNH) has been revealed through solid-state spectroscopic characterization via diffuse reflectance UV-Vis-NIR spectroscopy, SEM-EDS, and extended X-ray absorption fine structure (EXAFS) spectroscopy. Density functional and multireference wavefunction calculations were performed to analyze the An(vi/v)O2(NO3)2·2H2O electronic structures and to help assign the observed transitions in the absorption spectra. EXAFS show a similar coordination between the U(VI) in UNH and Np(vi) and Pu(vi); while Am resulted in a similar coordination to Am(iii), as reduction of Am(vi) occurred prior to EXAFS data being obtained. The co-crystallization of the oxidized transuranic species-penta- and hexavalent-with UNH, represents a significant advance from not only a practical standpoint in providing an elegant solution for used nuclear fuel recycle, but also as an avenue to expand the fundamental understanding of the 5f electronic behavior in the solid-state.
Collapse
Affiliation(s)
- Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Michael C Cheshire
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | | | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | - Jonathan D Burns
- Nuclear Engineering and Science Center, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
31
|
Goodwin CAP, Schlimgen AW, Albrecht‐Schönzart TE, Batista ER, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL, Stevens LM, White FD, Yang P. Structural and Spectroscopic Comparison of Soft‐Se vs. Hard‐O Donor Bonding in Trivalent Americium/Neodymium Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Enrique R. Batista
- Theoretical Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Andrew J. Gaunt
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Michael T. Janicke
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Stosh A. Kozimor
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Brian L. Scott
- Materials Physics and Applications Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Lauren M. Stevens
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Frankie D. White
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Ping Yang
- Theoretical Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
32
|
Goodwin CAP, Schlimgen AW, Albrecht-Schönzart TE, Batista ER, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL, Stevens LM, White FD, Yang P. Structural and Spectroscopic Comparison of Soft-Se vs. Hard-O Donor Bonding in Trivalent Americium/Neodymium Molecules. Angew Chem Int Ed Engl 2021; 60:9459-9466. [PMID: 33529478 DOI: 10.1002/anie.202017186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 11/06/2022]
Abstract
Covalency is often considered to be an influential factor in driving An3+ vs. Ln3+ selectivity invoked by soft donor ligands. This is intensely debated, particularly the extent to which An3+ /Ln3+ covalency differences prevail and manifest as the f-block is traversed, and the effects of periodic breaks beyond Pu. Herein, two Am complexes, [Am{N(E=PPh2 )2 }3 ] (1-Am, E=Se; 2-Am, E=O) are compared to isoradial [Nd{N(E=PPh2 )2 }3 ] (1-Nd, 2-Nd) complexes. Covalent contributions are assessed and compared to U/La and Pu/Ce analogues. Through ab initio calculations grounded in UV-vis-NIR spectroscopy and single-crystal X-ray structures, we observe differences in f orbital involvement between Am-Se and Nd-Se bonds, which are not present in O-donor congeners.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Anthony W Schlimgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Michael T Janicke
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Brian L Scott
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Lauren M Stevens
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Frankie D White
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
33
|
Faizova R, Fadaei‐Tirani F, Chauvin A, Mazzanti M. Synthesis and Characterization of Water Stable Uranyl(V) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Radmila Faizova
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Anne‐Sophie Chauvin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
34
|
Faizova R, Fadaei‐Tirani F, Chauvin A, Mazzanti M. Synthesis and Characterization of Water Stable Uranyl(V) Complexes. Angew Chem Int Ed Engl 2021; 60:8227-8235. [DOI: 10.1002/anie.202016123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Radmila Faizova
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Anne‐Sophie Chauvin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
35
|
Abstract
The geometric and electronic structures of AnCl3 are studied computationally using scalar relativistic, hybrid density functional theory (PBE0). The An-Cl bond lengths generally decrease across the 5f series, although there is a slight lengthening from Fm-Cl to No-Cl as the metal ions display increasing M(ii) character. Covalency in the An-Cl bond is studied using a wide range of metrics drawn from the Natural Bond Orbital, Natural Resonance Theory and Quantum Theory of Atoms-in-Molecules (QTAIM) methods, including bond order, orbital composition, orbital overlap and electron density topology data. Most metrics agree that the later An-Cl bonds are less ionic than might be anticipated on the basis of trends in the first half of the series, due to energy degeneracy-driven covalency in the β spin manifold; for example, the An-Cl QTAIM delocalisation index (bond order) for MdCl3 (0.88) is almost exactly the same as for NpCl3 (0.89). By contrast, the ratio of the kinetic to potential energy densities at the An-Cl bond critical points indicates that ionicity increases across the series, suggesting that the delocalisation index measures both orbital overlap and energy degeneracy-based covalency, while the bond critical point metric gauges only the former. Recalculation of all the data using the generalised gradient approximation PBE functional finds larger energy degeneracy-driven covalency in the later actinides than using hybrid DFT. Hence, we find that conclusions concerning the covalency of the An-Cl bond are dependent not only on the metric used to evaluate it, but also on the underlying electronic structure method.
Collapse
Affiliation(s)
- Sophie Cooper
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
36
|
Sperling JM, Warzecha E, Klamm BE, Gaiser AN, Windorff CJ, Whitefoot MA, Albrecht-Schönzart TE. Pronounced Pressure Dependence of Electronic Transitions for Americium Compared to Isomorphous Neodymium and Samarium Mellitates. Inorg Chem 2021; 60:476-483. [PMID: 33325231 DOI: 10.1021/acs.inorgchem.0c03293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mellitate ion is relevant in spent nuclear fuel processing and is utilized as a surrogate for studying the interactions of f elements with humic acids. A wealth of different coordination modes gives the potential for diverse structural chemistry across the actinide series. In this study, an americium mellitate, 243Am2[(C6(COO-)6](H2O)8·2H2O (1-Am), has been synthesized and characterized using structural analysis and spectroscopy at ambient and elevated pressures. 1-Am was then compared to isomorphous neodymium (1-Nd) and samarium (1-Sm) mellitates via bond-length analysis and pressure dependence of their Laporte-forbidden f → f transitions. Results show that the pressure dependence of the f → f transitions of 1-Am is significantly greater than that observed in 1-Nd and 1-Sm, with average shifts of 21.4, 4.7, and 3.6 cm-1/GPa, respectively. This greater shift found in 1-Am shows further evidence that the 5f orbitals are more affected than the 4f orbitals when pressure is applied to isostructural compounds.
Collapse
Affiliation(s)
- Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Evan Warzecha
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Bonnie E Klamm
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Megan A Whitefoot
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
37
|
Greer RDM, Celis-Barros C, Sperling JM, Gaiser AN, Windorff CJ, Albrecht-Schönzart TE. Structure and Characterization of an Americium Bis( O,O'-diethyl)dithiophosphate Complex. Inorg Chem 2020; 59:16291-16300. [PMID: 33119988 DOI: 10.1021/acs.inorgchem.0c02085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile synthesis of an americium complex with a sulfur-donor ligand has been developed, allowing characterization of americium bonding from multiple perspectives via several techniques. Reaction of 243Am with S2P(OEt)2- yields the tetrakis complex [Am(S2P(OEt)2)4]- that can be crystallized as the tetraphenylarsonium salt. Structures obtained from single crystal X-ray diffraction show bond length discrepancies from the neodymium analogue consistent with the soft-donor bond enhancement common to actinides. Solid state optical spectroscopy confirms interaction of the ligand with 5f orbitals. 31P nuclear magnetic reflects the minor paramagnetism of Am(III). Computational investigations through CASSCF calculations, ligand-field density functional theory, and quantum chemical topological analysis allow a quantification of covalency or orbital interaction effects via total energy density and nephelauxetic parameters, both of which indicate greater covalency in the americium species than in the neodymium analogue or the americium aquo complex.
Collapse
Affiliation(s)
- R D M Greer
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
38
|
|
39
|
Liu Y, Wang CZ, Wu QY, Lan JH, Chai ZF, Liu Q, Shi WQ. Theoretical Prediction of the Potential Applications of Phenanthroline Derivatives in Separation of Transplutonium Elements. Inorg Chem 2020; 59:11469-11480. [PMID: 32799470 DOI: 10.1021/acs.inorgchem.0c01271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recovery of transplutonium elements from adjacent actinides is extremely complicated in spent fuel reprocessing. Uncovering the electronic structures of transplutonium compounds is essential for designing robust ligands for in-group separation of transplutonium actinides. Here, we demonstrate the in-group transplutonium actinides separation ability of the recent developed phenanthroline ligand Et-Tol-DAPhen (N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9-dicarboxamide, La) and its derivatives (5-bromo-(N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9-dicarboxamide, Lb), and 5-(4-(λ1-oxidaneyl)phenyl)-(N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9- dicarboxamide, Lc) through quasi-relativistic density functional theory (DFT). Both electrostatic potential and molecular orbital analyses of the ligands indicate that the electron-donating group substituted ligand Lc is a better electron donor to actinides than La and Lb. The possible extracted complexes AnL(NO3)3 and [AnL2(NO3)]2+ (L = La, Lb, Lc; An = Am, Cm, Bk, Cf) possess similar structures. Bonding nature analysis validates that the covalent interactions of the metal-ligand bonds are enhanced across actinide series from Am to Cf, which stem from the energy degeneracy of the 5f orbitals of actinides and the 2p orbitals of the ligand coordinating atoms. The Lc ligand displays slightly stronger covalent bonding compared to the other two ligands. Simultaneously, thermodynamic analysis confirms the stronger metal-ligand bonding of the Cf3+ complexes and the higher stability of the extraction species with Lc. Consequently, the covalency between the DAPhen derivatives and transplutonium actinides seems to be positively correlated with the extraction ability of these ligands. Nevertheless, these ligands exhibit diverse separation abilities to in-group actinide recovery. Therefore, the enhancement of covalency does not necessarily lead to the improvement of separation ability due to different extraction capabilities. We hope that these results will provide some inspiration for designing novel ligands for in-group transplutonium separation.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Open questions in transplutonium coordination chemistry. Commun Chem 2020; 3:103. [PMID: 36703310 PMCID: PMC9814350 DOI: 10.1038/s42004-020-00338-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/29/2023] Open
Abstract
Over the past decade, momentous progress has been made in the characterization of late actinide compounds. Here the authors highlight how advances in spectroscopic and computational tools have developed our understanding of fundamental transplutonium bonding interactions, and discuss whether covalency and heterogeneity changes in 5f-orbital bonding could be harnessed in environmentally and industrially relevant systems.
Collapse
|
41
|
Sperling JM, Warzecha E, Windorff CJ, Klamm BE, Gaiser AN, Whitefoot MA, White FD, Poe TN, Albrecht-Schönzart TE. Pressure-Induced Spectroscopic Changes in a Californium 1D Material Are Twice as Large as Found in the Holmium Analog. Inorg Chem 2020; 59:10794-10801. [PMID: 32648751 DOI: 10.1021/acs.inorgchem.0c01290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the synthesis, characterization, and pressure response of a 1D californium mellitate (mellitate = 1,2,3,4,5,6-benzenehexacarboxylate) coordination polymer, Cf2(mell)(H2O)10·4H2O (Cf-1), are reported. The Cf-O lengths within the crystal structure are compared to its gadolinium (Gd-1) and holmium (Ho-1) analogs as well. These data show that the average Cf-O bond distance is slightly longer than the average Gd-O bond, consistent with trends in effective ionic radii. UV-vis-NIR absorption spectra as a function of pressure were collected using diamond-anvil techniques for both Cf-1 and Ho-1. These experiments show that the Cf(III) f → f transitions have a stronger dependence on pressure than that of the holmium analog. In the former case, the shift is nearly linear with applied pressure and averages 6.6 cm-1/GPa, whereas in the latter, it is <3 cm-1/GPa.
Collapse
Affiliation(s)
- Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Evan Warzecha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Bonnie E Klamm
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Megan A Whitefoot
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Frankie D White
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
42
|
Galley SS, Gaggioli CA, Zeller M, Celis-Barros C, Albrecht-Schmitt TE, Gagliardi L, Bart SC. Evidence of Alpha Radiolysis in the Formation of a Californium Nitrate Complex. Chemistry 2020; 26:8885-8888. [PMID: 32315469 DOI: 10.1002/chem.202001904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 11/05/2022]
Abstract
Well-characterized complexes of transplutonium elements are scarce because of the experimental challenges of working with these elements and the rarity of the isotopes. This leads to a lack of structural and spectroscopic data needed to understand the nature of chemical bonds in these compounds. In this work, the synthesis of Cf(DOPOq )2 (NO3 )(py) (DOPOq =2,4,6,8-tetra-tert-butyl-1-oxo-1H-phenoxazin-9-olate; py=pyridine) is reported, in which the nitrate anion is hypothesized to form through the α-radiolysis-induced reaction of pyridine and/or the ligand. Computational analysis of the electronic structure of the complex reveals that the CfIII -ligand interactions are largely ionic.
Collapse
Affiliation(s)
- Shane S Galley
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Carlo Alberto Gaggioli
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA
| | - Thomas E Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA
| | - Laura Gagliardi
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Suzanne C Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
43
|
Brenner N, Sperling JM, Poe TN, Celis-Barros C, Brittain K, Villa EM, Albrecht-Schmitt TE, Polinski MJ. Trivalent f-Element Squarates, Squarate-Oxalates, and Cationic Materials, and the Determination of the Nine-Coordinate Ionic Radius of Cf(III). Inorg Chem 2020; 59:9384-9395. [DOI: 10.1021/acs.inorgchem.0c01254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natasha Brenner
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, 400 East Second Street, Bloomsburg, Pennsylvania 17815, United States
| | - Joseph M. Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Todd N. Poe
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, 400 East Second Street, Bloomsburg, Pennsylvania 17815, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kristi Brittain
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, 400 East Second Street, Bloomsburg, Pennsylvania 17815, United States
| | - Eric M. Villa
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Thomas E. Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Matthew J. Polinski
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, 400 East Second Street, Bloomsburg, Pennsylvania 17815, United States
| |
Collapse
|
44
|
Tamain C, Bonato L, Aupiais J, Dumas T, Guillaumont D, Barkleit A, Berthon C, Solari PL, Ikeda‐Ohno A, Guilbaud P, Moisy P. Role of the Hydroxo Group in the Coordination of Citric Acid to Trivalent Americium. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Laura Bonato
- CEA, DES, DMRC, Univ Montpellier Marcoule France
| | | | - Thomas Dumas
- CEA, DES, DMRC, Univ Montpellier Marcoule France
| | | | - Astrid Barkleit
- Institute of Resource Ecology Helmholtz‐Zentrum Dresden Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
| | | | - Pier L. Solari
- Synchrotron SOLEIL L'Orme des Merisiers Saint Aubin, BP 48 F‐91192 Gif‐sur‐Yvette Cedex France
| | - Atsushi Ikeda‐Ohno
- Institute of Resource Ecology Helmholtz‐Zentrum Dresden Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
- Collaborative Laboratories for Advanced Nuclear Decommissioning (CLADS) Japan Atomic Energy Agency (JAEA) 2‐4 Shirakata Tokai‐mura, Naka‐gun Ibaraki 319‐1195 Japan
| | | | | |
Collapse
|
45
|
Autillo M, Islam MA, Jung J, Pilmé J, Galland N, Guerin L, Moisy P, Berthon C, Tamain C, Bolvin H. Crystallographic structure and crystal field parameters in the [AnIV(DPA)3]2− series, An = Th, U, Np, Pu. Phys Chem Chem Phys 2020; 22:14293-14308. [DOI: 10.1039/d0cp02137g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The [AnIV(DPA)3]2− series with An = Th, U, Np, Pu has been synthesized and characterized using SC-XRD, vibrational spectroscopy, and first principles calculations.
Collapse
Affiliation(s)
| | - Md. Ashraful Islam
- Laboratoire de Chimie et Physique Quantiques
- CNRS
- Université Toulouse III
- 31062 Toulouse
- France
| | - Julie Jung
- Theoretical division
- Los Alamos National Laboratory
- Los Alamos
- USA
| | - Julien Pilmé
- Sorbonne Université
- CNRS
- Laboratoire de Chimie Théorique CC 137-4 place Jussieu
- 75252 Paris Cédex 05
- France
| | | | | | | | | | | | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques
- CNRS
- Université Toulouse III
- 31062 Toulouse
- France
| |
Collapse
|
46
|
Stein BW, Morgenstern A, Batista ER, Birnbaum ER, Bone SE, Cary SK, Ferrier MG, John KD, Pacheco JL, Kozimor SA, Mocko V, Scott BL, Yang P. Advancing Chelation Chemistry for Actinium and Other +3 f-Elements, Am, Cm, and La. J Am Chem Soc 2019; 141:19404-19414. [PMID: 31794205 DOI: 10.1021/jacs.9b10354] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A major chemical challenge facing implementation of 225Ac in targeted alpha therapy-an emerging technology that has potential for treatment of disease-is identifying an 225Ac chelator that is compatible with in vivo applications. It is unclear how to tailor a chelator for Ac binding because Ac coordination chemistry is poorly defined. Most Ac chemistry is inferred from radiochemical experiments carried out on microscopic scales. Of the few Ac compounds that have been characterized spectroscopically, success has only been reported for simple inorganic ligands. Toward advancing understanding in Ac chelation chemistry, we have developed a method for characterizing Ac complexes that contain highly complex chelating agents using small quantities (μg) of 227Ac. We successfully characterized the chelation of Ac3+ by DOTP8- using EXAFS, NMR, and DFT techniques. To develop confidence and credibility in the Ac results, comparisons with +3 cations (Am, Cm, and La) that could be handled on the mg scale were carried out. We discovered that all M3+ cations (M = Ac, Am, Cm, La) were completely encapsulated within the binding pocket of the DOTP8- macrocycle. The computational results highlighted the stability of the M(DOTP)5- complexes.
Collapse
Affiliation(s)
- Benjamin W Stein
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Amanda Morgenstern
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Enrique R Batista
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Eva R Birnbaum
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Sharon E Bone
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | | | - Maryline G Ferrier
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Kevin D John
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Juan Lezama Pacheco
- Stanford University , Stanford , California 94305 , United States of America
| | - Stosh A Kozimor
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Veronika Mocko
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Brian L Scott
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Ping Yang
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| |
Collapse
|
47
|
Joshi M, Ghanty TK. Lanthanide and actinide doped B 12H 122- and Al 12H 122- clusters: new magnetic superatoms with f-block elements. Phys Chem Chem Phys 2019; 21:23720-23732. [PMID: 31633129 DOI: 10.1039/c9cp04333k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, actinide containing clusters have attracted immense attention because of the distinctive bonding properties of their 5f and 6d electrons. In this context, in the present work, we have studied the isoelectronic series of actinide (An = Np+, Pu2+, Am3+) doped B12H122- and Al12H122- clusters using density functional theory (DFT). Similarly, corresponding isoelectronic lanthanide (Ln = Pm+, Sm2+, Eu3+) doped clusters are also investigated using DFT for comparison. Both exohedral and endohedral metal doped Al12H122- clusters are investigated in various possible spin states, whereas for B12H122- only exohedral metal doped clusters are studied due to its smaller cage diameter. Among all the metal doped clusters, the exohedral metal doped B12H122- and Al12H122- clusters in a septet spin state with retained high spin population on the doped actinide ion, are the most stable, indicating that all these doped clusters are magnetic in nature. The high stability of exohedral clusters is due to small steric repulsion as compared to that in the corresponding endohedral clusters. A prominent charge transfer from cage to metal ion is responsible for the strong interaction of the doped metal ion with the cage atoms. The studied Ln@B12H122- (Ln@Al12H122-) and An@B12H122- (An@Al12H122-) clusters are not only thermodynamically stable, but also kinetically stable. Metal ion encapsulated endohedral Al12H122- clusters are found to satisfy the 32-electron principle corresponding to the completely filled s, p, d and f shells of the central f-block atom. Theoretical predictions of these lanthanide and actinide doped stable B12H122- and Al12H122- clusters could encourage experimentalists for the preparation of these metal-doped clusters. Thus, the present work offers borane and alane clusters as new hosts for encapsulating radioactive actinides. Furthermore, various functional derivatives of these actinide doped B12H122- clusters may find applications in the field of radiation medicine.
Collapse
Affiliation(s)
- Meenakshi Joshi
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | |
Collapse
|
48
|
Ridenour JA, Surbella RG, Gelis AV, Koury D, Poineau F, Czerwinski KR, Cahill CL. An Americium‐Containing Metal–Organic Framework: A Platform for Studying Transplutonium Elements. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. August Ridenour
- Department of Chemistry The George Washington University 800 22nd St NW Washington D.C. 20052 USA
| | - Robert G. Surbella
- Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99354 USA
| | - Artem V. Gelis
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Daniel Koury
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Frederic Poineau
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Kenneth R. Czerwinski
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Christopher L. Cahill
- Department of Chemistry The George Washington University 800 22nd St NW Washington D.C. 20052 USA
| |
Collapse
|
49
|
Corbey JF, Reilly DD, Sweet LE, Lach TG. Extraction of plutonium-containing microcrystals from Hanford soil using a focused ion beam for single-crystal X-ray diffraction analysis. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719012299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Herein, the successful use of a focused ion beam/scanning electron microscope to prepare microsamples of radioactive single crystals for X-ray diffraction analysis is reported. This technique was used to extract and analyze crystalline Pu-containing particles as small as 28 µm3 from Hanford soil taken from the 216-Z-9 waste crib, which were then crystallographically characterized using single-crystal X-ray diffraction to confirm the cubic structure of PuO2. As a systematic proof of concept, the technique was first tested using UO2 crystals milled into cubic shapes with approximate volumes of 4620, 1331, 125, 8 and 1 µm3, in order to empirically determine the crystal size limits for characterization by a laboratory-based diffractometer with a sealed tube Mo or Ag anode X-ray source and a charge-coupled device detector.
Collapse
|
50
|
Ridenour JA, Surbella RG, Gelis AV, Koury D, Poineau F, Czerwinski KR, Cahill CL. An Americium‐Containing Metal–Organic Framework: A Platform for Studying Transplutonium Elements. Angew Chem Int Ed Engl 2019; 58:16508-16511. [DOI: 10.1002/anie.201909988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- J. August Ridenour
- Department of Chemistry The George Washington University 800 22nd St NW Washington D.C. 20052 USA
| | - Robert G. Surbella
- Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99354 USA
| | - Artem V. Gelis
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Daniel Koury
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Frederic Poineau
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Kenneth R. Czerwinski
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Christopher L. Cahill
- Department of Chemistry The George Washington University 800 22nd St NW Washington D.C. 20052 USA
| |
Collapse
|