1
|
Peleg S, Kallevag RP, Dar G, Steinberg N, Lenzner Z, May H. The effect of Scheuermann's kyphosis on rib cage morphology: A skeletal study. Ann Anat 2025; 257:152348. [PMID: 39454838 DOI: 10.1016/j.aanat.2024.152348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Evolutionary changes in human rib cage morphology rendered it prone to pathologies like Scheuermann's kyphosis (SK). However, the impact of SK on rib cage morphology is unclear. PURPOSE This study aimed to examine differences in rib cage morphology (e.g., ribs and sternum) between SK patients and a control group. METHODS Measurements of the vertebral body, transverse process angle, sternum, and rib size were taken from the skeletons of SK patients (76) and a control group (96). Statistical tests were carried out to examine differences between the study and control groups and between the right and left sides. Correlations were obtained to examine the associations between the extent of the kyphosis (kyphosis angle) and rib cage variables. RESULTS The SK group yielded significantly longer and flatter ribs than the control group in both sexes. However, males had the largest differences in the 9th rib and females in the upper ribs (5-7). Inconsistency in symmetry results was found between the sexes. In summary, SK patients had a larger anteroposterior diameter in relation to the transverse diameter than the control group. DISCUSSION AND CONCLUSIONS SK affects the morphology of the entire thorax and changes rib proportions similarly in males and females. These changes might have a role in bipedal stability and locomotion efficiency. Moreover, understanding the unique anatomy of SK patients is essential when performing an anterior release and anterior fusion operative approach. Finally, it provides insights into respiratory complications and poor prognosis related to individuals suffering from severe hyperkyphosis.
Collapse
Affiliation(s)
- Smadar Peleg
- Biomechanics Laboratory, Faculty of Sports and Movement Sciences, Levinsky-Wingate Academic College (Wingate Campus), Netanya, Israel.
| | - Ruth Pelleg Kallevag
- Department of Anatomy and Anthropology, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; The Dan David Center for Human Evolution and Biohistory Research, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Physical Therapy, Zefat Academic College, Zefat, Israel
| | - Gali Dar
- Department of Physical Therapy, Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| | - Nili Steinberg
- Applied Anatomy Laboratory, Faculty of Sports and Movement Sciences, Levinsky-Wingate Academic College (Wingate Campus), Netanya, Israel
| | - Ziv Lenzner
- Academy of Arts and Design Bezalel, Jerusalem, Israel
| | - Hila May
- Department of Anatomy and Anthropology, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; The Dan David Center for Human Evolution and Biohistory Research, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Druelle F, Ghislieri M, Molina-Vila P, Rimbaud B, Agostini V, Berillon G. A comparative study of muscle activity and synergies during walking in baboons and humans. J Hum Evol 2024; 189:103513. [PMID: 38401300 DOI: 10.1016/j.jhevol.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Bipedal locomotion was a major functional change during hominin evolution, yet, our understanding of this gradual and complex process remains strongly debated. Based on fossil discoveries, it is possible to address functional hypotheses related to bipedal anatomy, however, motor control remains intangible with this approach. Using comparative models which occasionally walk bipedally has proved to be relevant to shed light on the evolutionary transition toward habitual bipedalism. Here, we explored the organization of the neuromuscular control using surface electromyography (sEMG) for six extrinsic muscles in two baboon individuals when they walk quadrupedally and bipedally on the ground. We compared their muscular coordination to five human subjects walking bipedally. We extracted muscle synergies from the sEMG envelopes using the non-negative matrix factorization algorithm which allows decomposing the sEMG data in the linear combination of two non-negative matrixes (muscle weight vectors and activation coefficients). We calculated different parameters to estimate the complexity of the sEMG signals, the duration of the activation of the synergies, and the generalizability of the muscle synergy model across species and walking conditions. We found that the motor control strategy is less complex in baboons when they walk bipedally, with an increased muscular activity and muscle coactivation. When comparing the baboon bipedal and quadrupedal pattern of walking to human bipedalism, we observed that the baboon bipedal pattern of walking is closer to human bipedalism for both baboons, although substantial differences remain. Overall, our findings show that the muscle activity of a non-adapted biped effectively fulfills the basic mechanical requirements (propulsion and balance) for walking bipedally, but substantial refinements are possible to optimize the efficiency of bipedal locomotion. In the evolutionary context of an expanding reliance on bipedal behaviors, even minor morphological alterations, reducing muscle coactivation, could have faced strong selection pressure, ultimately driving bipedal evolution in hominins.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France; Functional Morphology Laboratory, University of Antwerp, Campus Drie Eiken (Building D), Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Pablo Molina-Vila
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| |
Collapse
|
3
|
Kinoshita Y, Hirasaki E. Range of rotation of thoracolumbar vertebrae in Japanese macaques. Anat Rec (Hoboken) 2024; 307:223-232. [PMID: 37289013 DOI: 10.1002/ar.25273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In humans, the range of thoracic vertebral rotation is known to be greater than that of the lumbar vertebrae due to their zygapophyseal orientation and soft tissue structure. However, little is known regarding vertebral movements in non-human primate species, which are primarily quadrupedal walkers. To understand the evolutionary background of human vertebral movements, this study estimated the range of axial rotation of the thoracolumbar spine in macaque monkeys. First, computed tomography (CT) was performed while passively rotating the trunk of whole-body cadavers of Japanese macaques, after which the motion of each thoracolumbar vertebra was estimated. Second, to evaluate the influence of the shoulder girdle and surrounding soft tissues, specimens with only bones and ligaments were prepared, after which the rotation of each vertebra was estimated using an optical motion tracking system. In both conditions, the three-dimensional coordinates of each vertebra were digitized, and the axial rotational angles between adjacent vertebrae were calculated. In the whole-body condition, the lower thoracic vertebrae had a greater range of rotation than did the other regions, similar to that observed in humans. In addition, absolute values for the range of rotation were similar between humans and macaques. However, in the bone-ligament preparation condition, the upper thoracic vertebrae had a range of rotation similar to that of the lower thoracic vertebrae. Contrary to previous speculations, our results showed that the mechanical restrictions by the ribs were not as significant; rather, the shoulder girdle largely restricted the rotation of the upper thoracic vertebrae, at least, in macaques.
Collapse
Affiliation(s)
- Yuki Kinoshita
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| | - Eishi Hirasaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| |
Collapse
|
4
|
Xv XW, Chen WB, Xiong CH, Huang B, Cheng LF, Sun BY. Exploring the effects of skeletal architecture and muscle properties on bipedal standing in the common chimpanzee ( Pan troglodytes) from the perspective of biomechanics. Front Bioeng Biotechnol 2023; 11:1140262. [PMID: 37214291 PMCID: PMC10196953 DOI: 10.3389/fbioe.2023.1140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: It is well known that the common chimpanzee, as both the closest living relative to humans and a facultative bipedal, has the capability of bipedal standing but cannot do so fully upright. Accordingly, they have been of exceeding significance in elucidating the evolution of human bipedalism. There are many reasons why the common chimpanzee can only stand with its hips-knees bent, such as the distally oriented long ischial tubercle and the almost absent lumbar lordosis. However, it is unknown how the relative positions of their shoulder-hip-knee-ankle joints are coordinated. Similarly, the distribution of the biomechanical characteristics of the lower-limb muscles and the factors that affect the erectness of standing as well as the muscle fatigue of the lower limbs remain a mystery. The answers are bound to light up the evolutional mechanism of hominin bipedality, but these conundrums have not been shed much light upon, because few studies have comprehensively explored the effects of skeletal architecture and muscle properties on bipedal standing in common chimpanzees. Methods: Thus, we first built a musculoskeletal model comprising the head-arms-trunk (HAT), thighs, shanks, and feet segments of the common chimpanzee, and then, the mechanical relationships of the Hill-type muscle-tendon units (MTUs) in bipedal standing were deduced. Thereafter, the equilibrium constraints were established, and a constrained optimization problem was formulated where the optimization objective was defined. Finally, thousands of simulations of bipedal standing experiments were performed to determine the optimal posture and its corresponding MTU parameters including muscle lengths, muscle activation, and muscle forces. Moreover, to quantify the relationship between each pair of the parameters from all the experimental simulation outcomes, the Pearson correlation analysis was employed. Results: Our results demonstrate that in the pursuit of the optimal bipedal standing posture, the common chimpanzee cannot simultaneously achieve maximum erectness and minimum muscle fatigue of the lower limbs. For uni-articular MTUs, the relationship between muscle activation, relative muscle lengths, together with relative muscle forces, and the corresponding joint angle is generally negatively correlated for extensors and positively correlated for flexors. For bi-articular MTUs, the relationship between muscle activation, coupled with relative muscle forces, and the corresponding joint angles does not show the same pattern as in the uni-articular MTUs. Discussion: The results of this study bridge the gap between skeletal architecture, along with muscle properties, and biomechanical performance of the common chimpanzee during bipedal standing, which enhances existing biomechanical theories and advances the comprehension of bipedal evolution in humans.
Collapse
|
5
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Aerts P, Goyens J, Berillon G, D'Août K, Druelle F. From quadrupedal to bipedal walking 'on the fly': the mechanics of dynamical mode transition in primates. J Exp Biol 2023; 226:286677. [PMID: 36657384 DOI: 10.1242/jeb.244792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023]
Abstract
We investigated how baboons transition from quadrupedal to bipedal walking without any significant interruption in their forward movement (i.e. transition 'on the fly'). Building on basic mechanical principles (momentum only changes when external forces/moments act on the body), insights into possible strategies for such a dynamical mode transition are provided and applied first to the recorded planar kinematics of an example walking sequence (including several continuous quadrupedal, transition and subsequent bipedal steps). Body dynamics are calculated from the kinematics. The strategy used in this worked example boils down to: crouch the hind parts and sprint them underneath the rising body centre of mass. Forward accelerations are not in play. Key characteristics of this transition strategy were extracted: progression speed, hip height, step duration (frequency), foot positioning at touchdown with respect to the hip and the body centre of mass (BCoM), and congruity between the moments of the ground reaction force about the BCoM and the rate of change of the total angular moment. Statistical analyses across the full sample (15 transitions of 10 individuals) confirm this strategy is always used and is shared across individuals. Finally, the costs (in J kg-1 m-1) linked to on the fly transitions were estimated. The costs are approximately double those of both the preceding quadrupedal and subsequent bipedal walking. Given the short duration of the transition as such (<1 s), it is argued that the energetic costs to change walking posture on the fly are negligible when considered in the context of the locomotor repertoire.
Collapse
Affiliation(s)
- Peter Aerts
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium.,Department of Movement and Sports Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Jana Goyens
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium
| | - Gilles Berillon
- HNHP (UMR 7194), CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS (UAR 846), 13790 Rousset, France
| | - Kristiaan D'Août
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - François Druelle
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium.,HNHP (UMR 7194), CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS (UAR 846), 13790 Rousset, France
| |
Collapse
|
7
|
Drummond-Clarke RC, Kivell TL, Sarringhaus L, Stewart FA, Humle T, Piel AK. Wild chimpanzee behavior suggests that a savanna-mosaic habitat did not support the emergence of hominin terrestrial bipedalism. SCIENCE ADVANCES 2022; 8:eadd9752. [PMID: 36516260 PMCID: PMC9750136 DOI: 10.1126/sciadv.add9752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Bipedalism, a defining feature of the human lineage, is thought to have evolved as forests retreated in the late Miocene-Pliocene. Chimpanzees living in analogous habitats to early hominins offer a unique opportunity to investigate the ecological drivers of bipedalism that cannot be addressed via the fossil record alone. We investigated positional behavior and terrestriality in a savanna-mosaic community of chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania as the first test in a living ape of the hypothesis that wooded, savanna habitats were a catalyst for terrestrial bipedalism. Contrary to widely accepted hypotheses of increased terrestriality selecting for habitual bipedalism, results indicate that trees remained an essential component of the hominin adaptive niche, with bipedalism evolving in an arboreal context, likely driven by foraging strategy.
Collapse
Affiliation(s)
| | - Tracy L. Kivell
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Lauren Sarringhaus
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Fiona A. Stewart
- Department of Anthropology, University College London, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tatyana Humle
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alex K. Piel
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
8
|
Thompson NE, Rubinstein D, Parrella-O'Donnell W, Brett MA, Demes B, Larson SG, O'Neill MC. The loss of the 'pelvic step' in human evolution. J Exp Biol 2021; 224:271233. [PMID: 34412111 DOI: 10.1242/jeb.240440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Human bipedalism entails relatively short strides compared with facultatively bipedal primates. Unique non-sagittal-plane motions associated with bipedalism may account for part of this discrepancy. Pelvic rotation anteriorly translates the hip, contributing to bipedal stride length (i.e. the 'pelvic step'). Facultative bipedalism in non-human primates entails much larger pelvic rotation than in humans, suggesting that a larger pelvic step may contribute to their relatively longer strides. We collected data on the pelvic step in bipedal chimpanzees and over a wide speed range of human walking. At matched dimensionless speeds, humans have 26.7% shorter dimensionless strides, and a pelvic step 5.4 times smaller than bipedal chimpanzees. Differences in pelvic rotation explain 31.8% of the difference in dimensionless stride length between the two species. We suggest that relative stride lengths and the pelvic step have been significantly reduced throughout the course of hominin evolution.
Collapse
Affiliation(s)
- Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568,USA
| | | | | | - Matthew A Brett
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568,USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794,USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794,USA
| | - Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308,USA
| |
Collapse
|
9
|
Functional anatomy and adaptation of the third to sixth thoracic vertebrae in primates using three-dimensional geometric morphometrics. Primates 2021; 62:845-855. [PMID: 34245393 DOI: 10.1007/s10329-021-00929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The morphology of the cranial thoracic vertebrae has long been neglected in the study of primate skeletal functional morphology. This study explored the characteristics of the third to sixth thoracic vertebrae among various positional behavioural primates. A total of 67 skeletal samples from four species of hominoids, four of cercopithecoids, and two of platyrrhines were used. Computed tomography images of the thoracic vertebrae were converted to a three-dimensional (3D) bone surface, and 104 landmarks were obtained on the 3D surface. For size-independent shape analysis, the vertebrae were scaled to the same centroid size, and the normalised landmarks were registered using the generalised Procrustes method. Principle components of shape variation among samples were clarified using the variance-covariance matrix of the Procrustes residuals. The present study revealed that the transverse processes were more dorsally positioned in hominoids compared to non-hominoids. The results showed that not only a dorsolaterally oriented but also a dorsally positioned transverse process in relation to the vertebral arch contribute to the greater dorsal depth in hominoids than in monkeys. The thoracic vertebrae of Ateles and Nasalis show relatively dorsoventrally low and craniocaudally long vertebrae with craniocaudally long zygapophyses and craniocaudally long base/short tip of the caudally oriented spinous process, accompanied by a laterally oriented and craniocaudally long base of the transverse process. Despite being phylogenetically separated, the vertebral features of Ateles (suspensory platyrrhine with its prehensile tail's aid) are similar to those of Nasalis (arboreal quadrupedal/jumping/arm-swing colobine). The morphology of the third to sixth thoracic vertebrae tends to reflect the functional adaptation in relation to positional behaviour rather than the phylogenetic characteristics of hominoids, cercopithecoids, and platyrrhines.
Collapse
|
10
|
Blickhan R, Andrada E, Hirasaki E, Ogihara N. Trunk and leg kinematics of grounded and aerial running in bipedal macaques. J Exp Biol 2021; 224:jeb225532. [PMID: 33288531 DOI: 10.1242/jeb.225532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/27/2020] [Indexed: 11/20/2022]
Abstract
Across a wide range of Froude speeds, non-human primates such as macaques prefer to use grounded and aerial running when locomoting bipedally. Both gaits are characterized by bouncing kinetics of the center of mass. In contrast, a discontinuous change from pendular to bouncing kinetics occurs in human locomotion. To clarify the mechanism underlying these differences in bipedal gait mechanics between humans and non-human primates, we investigated the influence of gait on joint kinematics in the legs and trunk of three macaques crossing an experimental track. The coordination of movement was compared with observations available for primates. Compared with human running, macaque leg retraction cannot merely be produced by hip extension, but needs to be supported by substantial knee flexion. As a result, despite quasi-elastic whole-leg operation, the macaque's knee showed only minor rebound behavior. Ankle extension resembled that observed during human running. Unlike human running and independent of gait, torsion of the trunk represents a rather conservative feature in primates, and pelvic axial rotation added to step length. Pelvic lateral lean during grounded running by macaques (compliant leg) and human walking (stiff leg) depends on gait dynamics at the same Froude speed. The different coordination between the thorax and pelvis in the sagittal plane as compared with human runners indicates different bending modes of the spine. Morphological adaptations in non-human primates to quadrupedal locomotion may prevent human-like operation of the leg and limit exploitation of quasi-elastic leg operation despite running dynamics.
Collapse
Affiliation(s)
- Reinhard Blickhan
- Science of Motion, Friedrich-Schiller-University, Jena 07749, Germany
| | - Emanuel Andrada
- Institute of Zoology and Evolutionary Research, Jena 07743, Germany
| | - Eishi Hirasaki
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama 223-8522, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Torres-Tamayo N, Martelli S, Schlager S, García-Martínez D, Sanchis-Gimeno JA, Mata-Escolano F, Nalla S, Ogihara N, Oishi M, Bastir M. Assessing thoraco-pelvic covariation in Homo sapiens and Pan troglodytes: A 3D geometric morphometric approach. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:514-534. [PMID: 32864759 DOI: 10.1002/ajpa.24103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Understanding thoraco-pelvic integration in Homo sapiens and their closest living relatives (genus Pan) is of great importance within the context of human body shape evolution. However, studies assessing thoraco-pelvic covariation across Hominoidea species are scarce, although recent research would suggest shared covariation patterns in humans and chimpanzees but also species-specific features, with sexual dimorphism and allometry influencing thoraco-pelvic covariation in these taxa differently. MATERIAL AND METHODS N = 30 adult H. sapiens and N = 10 adult Pan troglodytes torso 3D models were analyzed using 3D geometric morphometrics and linear measurements. Effects of sexual dimorphism and allometry on thoraco-pelvic covariation were assessed via regression analyses, and patterns of thoraco-pelvic covariation in humans and chimpanzees were computed via Two-Block Partial Least Squares analyses. RESULTS Results confirm the existence of common aspects of thoraco-pelvic covariation in humans and chimpanzees, and also species-specific covariation in H. sapiens that is strongly influenced by sexual dimorphism and allometry. Species-specific covariation patterns in chimpanzees could not be confirmed because of the small sample size, but metrics point to a correspondence between the most caudal ribs and iliac crest morphology that would be irrespective of sex. CONCLUSIONS This study suggests that humans and chimpanzees share common aspects of thoraco-pelvic covariation but might differ in others. In humans, torso integration is strongly influenced by sexual dimorphism and allometry, whilst in chimpanzees it may not be. This study also highlights the importance not only of torso widths but also of torso depths when describing patterns of thoraco-pelvic covariation in primates. Larger samples are necessary to support these interpretations.
Collapse
Affiliation(s)
- Nicole Torres-Tamayo
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.,GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Sandra Martelli
- UCL Centre for Integrative Anatomy (CIA), Department of Cell and Developmental Biology, Faculty of Life Sciences, London, UK
| | - Stefan Schlager
- Biological Anthropology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel García-Martínez
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | | | | | - Shahed Nalla
- GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain.,Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Naomichi Ogihara
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Motoharu Oishi
- Laboratory of Anatomy 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Markus Bastir
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
12
|
Kinoshita Y, Goto R, Nakano Y, Hirasaki E. A comparison of axial trunk rotation during bipedal walking between humans and Japanese macaques. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:66-75. [PMID: 32860450 DOI: 10.1002/ajpa.24136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Human walking involves out-of-phase axial rotations of the thorax and pelvis. It has long been believed that this rotational capability is a distinctive feature of the genus Homo. However, Thompson et al. (2015) showed that chimpanzees also counter-rotate their thorax relative to the pelvis during bipedal walking, which raised questions regarding the origins and development of this characteristic. In this study, we measured the axial rotation of the trunk during bipedal walking in humans and macaques to investigate if intra-trunk axial rotations are observed in non-hominoid primate species. MATERIALS AND METHODS We collected three-dimensional trunk kinematic data during bipedal walking in six humans and five Japanese macaques. The human subjects walked on a treadmill, and the animal subjects walked on a 5-m runway. During walking, the positions of cluster markers, which defined trunk segments, were recorded by multiple video cameras. Segmental xyz coordinates were digitized, and transverse rotations were calculated using motion analysis software. RESULTS Although trunk rotations in the global coordinate system were greater in macaques than in humans, the intra-trunk rotation and range of motion showed a similar pattern in the two species. CONCLUSIONS Thoracic rotation relative to the pelvis during bipedal walking is not unique to the hominid lineage but rather a characteristic generated by the mechanical requirements of bipedal walking. The fact that the range of motion of counter rotation is similar in these species infers that an optimal range of rotation exists for bipedal walking.
Collapse
Affiliation(s)
- Yuki Kinoshita
- Section of Evolutionary Morphology, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Ryosuke Goto
- Laboratory of Biological Anthropology, Department of Human Sciences, Osaka University, Osaka, Japan
| | - Yoshihiko Nakano
- Laboratory of Biological Anthropology, Department of Human Sciences, Osaka University, Osaka, Japan
| | - Eishi Hirasaki
- Section of Evolutionary Morphology, Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
13
|
Thompson NE. The biomechanics of knuckle-walking: 3-D kinematics of the chimpanzee and macaque wrist, hand and fingers. J Exp Biol 2020; 223:jeb224360. [PMID: 32554524 DOI: 10.1242/jeb.224360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/05/2020] [Indexed: 08/26/2023]
Abstract
The origin and evolution of knuckle-walking has long been a key focus in understanding African ape, including human, origins. Yet, despite numerous studies documenting morphological characteristics potentially associated with knuckle-walking, little quantitative three-dimensional (3-D) data exist of forelimb motion during knuckle-walking. Nor do any comparative 3-D data exist for hand postures used during quadrupedalism in monkeys. This lack of data has limited the testability of proposed adaptations for knuckle-walking in African apes. This study presents the first 3-D kinematic data of the wrist, hand and metacarpophalangeal joints during knuckle-walking in chimpanzees and in macaques using digitigrade and palmigrade hand postures. These results clarify the unique characteristics of, and commonalities between, knuckle-walking and digitigrady/palmigrady in multiple planes of motion. Notably, chimpanzees utilized more wrist ulnar deviation than any macaque hand posture. Maximum extension of the chimpanzee wrist was slight (5-20 deg) and generally overlapped with macaque digitigrady. Metacarpophalangeal joint motion displayed distinct differences between digits in both species, likely related to the timing of force application. These data also reveal that maximum metacarpophalangeal extension angles during knuckle-walking (26-59 deg) were generally higher than previously considered. In macaques, maximum metacarpophalangeal extension during digitigrady and palmigrady overlapped for most digits, highlighting additional complexity in the interpretation of skeletal features that may be related to limiting metacarpophalangeal motion. Most importantly, however, these new 3-D data serve as a fundamental dataset with which evaluation of proposed musculoskeletal adaptations for knuckle-walking can be tested.
Collapse
Affiliation(s)
- Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
14
|
Reitmaier S, Schmidt H. Review article on spine kinematics of quadrupeds and bipeds during walking. J Biomech 2020; 102:109631. [DOI: 10.1016/j.jbiomech.2020.109631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/23/2022]
|
15
|
Bravi M, Gallotta E, Morrone M, Maselli M, Santacaterina F, Toglia R, Foti C, Sterzi S, Bressi F, Miccinilli S. Concurrent validity and inter trial reliability of a single inertial measurement unit for spatial-temporal gait parameter analysis in patients with recent total hip or total knee arthroplasty. Gait Posture 2020; 76:175-181. [PMID: 31862666 DOI: 10.1016/j.gaitpost.2019.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 12/10/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is one of the main causes of disability and its frequent hip and knee joint localization requires surgical joint replacement treatment. Patients after total hip (THA) or knee (TKA) arthroplasty often show gait abnormalities, whose comprehension is crucial in order to plan an appropriate rehabilitative treatment. Wearable sensor devices can be a valid tool for gait assessment in clinical practice, being relatively inexpensive and easy to use. RESEARCH QUESTION Does the use of crutches influence the ability of a single inertial measurement unit (IMU), placed on the lower trunk, to correctly record the spatial-temporal gait parameters in patients after recent THA or TKA? METHODS 20 patients walking with crutches after recent THA or TKA and 10 healthy subjects were recruited. Each participant was recorded simultaneously with an IMU and with an optoelectronic motion capture system during 5 consecutive walking tests. RESULTS Intraclass correlation index of spatial-temporal parameters recorded with the IMU showed moderate to excellent reliability results both for healthy subjects (ICC range 0.626-0.897) and for patients (ICC range 0.596-0.951). In terms of concurrent validity, Pearson's r coefficient of healthy subjects, showed strong to very strong levels of correlations for some spatial-temporal parameters (speed, mean cadence, left and right stride length and stride duration) (r range 0.646-0.977) and very week to moderately week levels of correlation for gait cycle phases (swing, stance, single support and double support) (r range 0.390-0.633). Patients' data analysis showed similar results for general spatial-temporal parameters (r range 0.704-0.986) and slightly lower values for gait cycle phases (r range 0.077-0.464). SIGNIFICANCE We can consider the single IMU as a reliable tool for the detection of some spatial-temporal gait parameters. Crutches seem to interfere with the detection of the gait cycle phases.
Collapse
Affiliation(s)
- Marco Bravi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| | - Emilio Gallotta
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| | - Michelangelo Morrone
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| | - Mirella Maselli
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| | - Fabio Santacaterina
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| | - Rossana Toglia
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| | - Calogero Foti
- Physical Medicine and Rehabilitation Unit, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Silvia Sterzi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| | - Federica Bressi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| | - Sandra Miccinilli
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University, Via Alvaro Del Portillo 5, 00128, Rome, Italy.
| |
Collapse
|
16
|
Plomp K, Viðarsdóttir US, Dobney K, Weston D, Collard M. Potential adaptations for bipedalism in the thoracic and lumbar vertebrae of Homo sapiens: A 3D comparative analysis. J Hum Evol 2019; 137:102693. [PMID: 31711026 DOI: 10.1016/j.jhevol.2019.102693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
A number of putative adaptations for bipedalism have been identified in the hominin spine. However, it is possible that some have been overlooked because only a few studies have used 3D and these studies have focused on cervical vertebrae. With this in mind, we used geometric morphometric techniques to compare the 3D shapes of three thoracic and two lumbar vertebrae of Homo sapiens, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus. The study had two goals. One was to confirm the existence of traits previously reported to distinguish the thoracic and lumbar vertebrae of H. sapiens from those of the great apes. The other was to, if possible, identify hitherto undescribed traits that differentiate H. sapiens thoracic and lumbar vertebrae from those of the great apes. Both goals were accomplished. Our analyses not only substantiated a number of traits that have previously been discussed in the literature but also identified four traits that have not been described before: (1) dorsoventrally shorter pedicles in the upper thoracic vertebrae; (2) dorsoventrally longer laminae in all five of the vertebrae examined; (3) longer transverse processes in the upper thoracic vertebrae; and (4) craniocaudally 'pinched' spinous process tips in all of the vertebrae examined. A review of the biomechanical literature suggests that most of the traits highlighted in our analyses can be plausibly linked to bipedalism, including three of the four new ones. As such, the present study not only sheds further light on the differences between the spines of H. sapiens and great apes but also enhances our understanding of how the shift to bipedalism affected the hominin vertebral column.
Collapse
Affiliation(s)
- Kimberly Plomp
- Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Department of Archaeology, Classics and Egyptology, University of Liverpool, 14 Abercromby Square, Liverpool, L69 7WZ, UK.
| | - Una Strand Viðarsdóttir
- Biomedical Center, University of Iceland, Læknagarður, Vatnsmýrarvegi 16, 101 Reykjavík, Iceland
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 14 Abercromby Square, Liverpool, L69 7WZ, UK
| | - Darlene Weston
- Department of Anthropology, University of British Columbia, 6303 NW Marine Drive, Vancouver, BC V6T 1Z1, Canada
| | - Mark Collard
- Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
17
|
Nalley TK, Scott JE, Ward CV, Alemseged Z. Comparative morphology and ontogeny of the thoracolumbar transition in great apes, humans, and fossil hominins. J Hum Evol 2019; 134:102632. [DOI: 10.1016/j.jhevol.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
|
18
|
Affiliation(s)
- TASUKU KIMURA
- The University Museum, The University of Tokyo, Tokyo
| |
Collapse
|
19
|
Druelle F, Schoonaert K, Aerts P, Nauwelaerts S, Stevens JMG, D'Août K. Segmental morphometrics of bonobos (Pan paniscus): are they really different from chimpanzees (Pan troglodytes)? J Anat 2018; 233:843-853. [PMID: 30294787 PMCID: PMC6231171 DOI: 10.1111/joa.12894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2018] [Indexed: 11/28/2022] Open
Abstract
The inertial properties of body segments reflect performance and locomotor habits in primates. While Pan paniscus is generally described as more gracile, lighter in body mass, and as having relatively longer and heavier hindlimbs than Pan troglodytes, both species exhibit very similar patterns of (quadrupedal and bipedal) kinematics, but show slightly different locomotor repertoires. We used a geometric model to estimate the inertial properties for all body segments (i.e. head, trunk, upper and lower arms, hand, thigh, shank and foot) using external length and diameter measurements of 12 anaesthetized bonobos (eight adults and four immatures). We also calculated whole limb inertial properties. When we compared absolute and relative segment morphometric and inertial variables between bonobos and chimpanzees, we found that adult bonobos are significantly lighter than adult chimpanzees. The bonobo is also shorter in head length, upper and lower arm lengths, and foot length, and is generally lighter in most absolute segment mass values (except head and hand). In contrast, the bonobo has a longer trunk. When scaled relative to body mass, most differences disappear between the two species. Only the longer trunk and the shorter head of the bonobo remain apparent, as well as the lighter thigh compared with the chimpanzee. We found similar values of natural pendular periods of the limbs in both species, despite differences in absolute limb lengths, masses, mass centres (for the hindlimb) and moments of inertia. While our data contradict the commonly accepted view that bonobos have relatively longer and heavier hindlimbs than chimpanzees, they are consistent with the observed similarities in the quadrupedal and bipedal kinematics between these species. The morphological differences between both species are more subtle than those previously described from postcranial osteological materials.
Collapse
Affiliation(s)
- François Druelle
- Laboratory for Functional MorphologyUniversity of AntwerpWilrijkBelgium
| | - Kirsten Schoonaert
- Laboratory for Functional MorphologyUniversity of AntwerpWilrijkBelgium
- Antwerp Zoo Centre for Research and ConservationAntwerpBelgium
| | - Peter Aerts
- Laboratory for Functional MorphologyUniversity of AntwerpWilrijkBelgium
- Department of Movement and Sports SciencesUniversity of GhentGentBelgium
| | - Sandra Nauwelaerts
- Laboratory for Functional MorphologyUniversity of AntwerpWilrijkBelgium
- Antwerp Zoo Centre for Research and ConservationAntwerpBelgium
| | - Jeroen M. G. Stevens
- Antwerp Zoo Centre for Research and ConservationAntwerpBelgium
- Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Kristiaan D'Août
- Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| |
Collapse
|
20
|
Thompson NE, O’Neill MC, Holowka NB, Demes B. Step width and frontal plane trunk motion in bipedal chimpanzee and human walking. J Hum Evol 2018; 125:27-37. [DOI: 10.1016/j.jhevol.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
21
|
Thompson NE, Rubinstein D, Larson SG. Great ape thorax and shoulder configuration-An adaptation for arboreality or knuckle-walking? J Hum Evol 2018; 125:15-26. [PMID: 30502892 DOI: 10.1016/j.jhevol.2018.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Great apes exhibit a suite of morphological traits of the shoulder and upper thorax that have traditionally been linked to orthograde arborealism. Recently it has been proposed that these traits are instead adaptations for knuckle-walking, and more broadly, that knuckle-walking itself is an adaptation for shock absorption during terrestriality. Here we test several tenets of these hypotheses using kinematic and kinetic data from chimpanzees and macaques, and electromyographic data of shoulder muscle activity in chimpanzees. We collected 3D kinematic data to quantify motion of the acromion and trunk during quadrupedalism and vertical climbing in chimpanzees as well as ground reaction forces to investigate the presence and magnitude of impact transient forces during terrestrial locomotion in chimpanzees and macaques. We also investigated patterns of recruitment of select forelimb musculature (triceps brachii and serratus anterior) using previously collected data in chimpanzees to determine whether these muscles may function to absorb impact transient forces. We found that the acromion is significantly more elevated in vertical climbing than during knuckle-walking, while dorsoventral ranges and magnitudes of motion were similar between gaits. Ground reaction forces indicate that only a minority of strides in either chimpanzees or macaques have transient forces and, when present, these transient forces as well as loading rates are small. Electromyographic results show that activity of the triceps brachii may facilitate energy absorption while serratus anterior likely functions to support the trunk, as in other primates. Our data suggest there is little to no evidence supporting recent hypotheses that the African ape upper thorax and shoulder configuration is an adaptation for knuckle-walking, or more broadly, that knuckle-walking exists as an adaptation to absorb impact shock during terrestriality. We do however find some evidence that shoulder configuration allows greater scapular elevation in chimpanzees during arboreal behaviors (e.g., vertical climbing).
Collapse
Affiliation(s)
- Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
| | - Danielle Rubinstein
- New York Institute of Technology, College of Osteopathic Medicine, NY 11568 USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794-8081, USA
| |
Collapse
|
22
|
Mignardot JB, Le Goff CG, van den Brand R, Capogrosso M, Fumeaux N, Vallery H, Anil S, Lanini J, Fodor I, Eberle G, Ijspeert A, Schurch B, Curt A, Carda S, Bloch J, von Zitzewitz J, Courtine G. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med 2018; 9:9/399/eaah3621. [PMID: 28724575 DOI: 10.1126/scitranslmed.aah3621] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/26/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022]
Abstract
Gait recovery after neurological disorders requires remastering the interplay between body mechanics and gravitational forces. Despite the importance of gravity-dependent gait interactions and active participation for promoting this learning, these essential components of gait rehabilitation have received comparatively little attention. To address these issues, we developed an adaptive algorithm that personalizes multidirectional forces applied to the trunk based on patient-specific motor deficits. Implementation of this algorithm in a robotic interface reestablished gait dynamics during highly participative locomotion within a large and safe environment. This multidirectional gravity-assist enabled natural walking in nonambulatory individuals with spinal cord injury or stroke and enhanced skilled locomotor control in the less-impaired subjects. A 1-hour training session with multidirectional gravity-assist improved locomotor performance tested without robotic assistance immediately after training, whereas walking the same distance on a treadmill did not ameliorate gait. These results highlight the importance of precise trunk support to deliver gait rehabilitation protocols and establish a practical framework to apply these concepts in clinical routine.
Collapse
Affiliation(s)
- Jean-Baptiste Mignardot
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Camille G Le Goff
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Rubia van den Brand
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Marco Capogrosso
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Nicolas Fumeaux
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Heike Vallery
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Selin Anil
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stefano Carda
- Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland.,Neurorehabilitation, CHUV, Lausanne, Switzerland
| | - Jocelyne Bloch
- Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland.,Neurosurgery, CHUV, Lausanne, Switzerland
| | - Joachim von Zitzewitz
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. .,Neurosurgery, CHUV, Lausanne, Switzerland
| |
Collapse
|
23
|
Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins. Proc Natl Acad Sci U S A 2018; 115:4134-4139. [PMID: 29610309 PMCID: PMC5910817 DOI: 10.1073/pnas.1715120115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The evolution of humans’ distinct bipedal gait remains a focus of research and debate. Many reconstructions of hominin locomotor evolution assume climbing capability trades off against walking economy, with improvement in one requiring diminishment of the other, but few have tested these functional inferences experimentally. In this study, we integrate experimental locomotor mechanics from humans and other primates with osteological measurements to assess the locomotor capabilities of early hominins. Our analyses show that changes in the ischium and hamstrings would have made walking more economical without reducing the utility of these muscles for climbing in early hominins. A wider set of evolutionary solutions may have been available to early hominins than previously recognized. The evolutionary emergence of humans’ remarkably economical walking gait remains a focus of research and debate, but experimentally validated approaches linking locomotor capability to postcranial anatomy are limited. In this study, we integrated 3D morphometrics of hominoid pelvic shape with experimental measurements of hip kinematics and kinetics during walking and climbing, hamstring activity, and passive range of hip extension in humans, apes, and other primates to assess arboreal–terrestrial trade-offs in ischium morphology among living taxa. We show that hamstring-powered hip extension during habitual walking and climbing in living apes and humans is strongly predicted, and likely constrained, by the relative length and orientation of the ischium. Ape pelves permit greater extensor moments at the hip, enhancing climbing capability, but limit their range of hip extension, resulting in a crouched gait. Human pelves reduce hip extensor moments but permit a greater degree of hip extension, which greatly improves walking economy (i.e., distance traveled/energy consumed). Applying these results to fossil pelves suggests that early hominins differed from both humans and extant apes in having an economical walking gait without sacrificing climbing capability. Ardipithecus was capable of nearly human-like hip extension during bipedal walking, but retained the capacity for powerful, ape-like hip extension during vertical climbing. Hip extension capability was essentially human-like in Australopithecus afarensis and Australopithecus africanus, suggesting an economical walking gait but reduced mechanical advantage for powered hip extension during climbing.
Collapse
|
24
|
Finestone EM, Brown MH, Ross SR, Pontzer H. Great ape walking kinematics: Implications for hominoid evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:43-55. [PMID: 29313896 DOI: 10.1002/ajpa.23397] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Great apes provide a point of reference for understanding the evolution of locomotion in hominoids and early hominins. We assessed (1) the extent to which great apes use diagonal sequence, diagonal couplet gaits, like other primates, (2) the extent to which gait and posture vary across great apes, and (3) the role of body mass and limb proportions on ape quadrupedal kinematics. METHODS High-speed digital video of zoo-housed bonobos (Pan paniscus, N = 8), chimpanzees (Pan troglodytes, N = 13), lowland gorillas (Gorilla gorilla, N = 13), and orangutans (Pongo spp. N = 6) walking over-ground at self-selected speeds were used to determine the timing of limb touch-down, take-off, and to measure joint and segment angles at touch-down, midstance, and take-off. RESULTS The great apes in our study showed broad kinematic and spatiotemporal similarity in quadrupedal walking. Size-adjusted walking speed was the strongest predictor of gait variables. Body mass had a negligible effect on variation in joint and segment angles, but stride frequency did trend higher among larger apes in analyses including size-adjusted speed. In contrast to most other primates, great apes did not favor diagonal sequence footfall patterns, but exhibited variable gait patterns that frequently shifted between diagonal and lateral sequences. CONCLUSION Similarities in the terrestrial walking kinematics of extant great apes likely reflect their similar post-cranial anatomy and proportions. Our results suggest that the walking kinematics of orthograde, suspensory Miocene ape species were likely similar to living great apes, and highlight the utility of videographic and behavioral data in interpreting primate skeletal morphology.
Collapse
Affiliation(s)
- Emma M Finestone
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York 10016.,New York Consortium in Evolutionary Primatology (NYCEP), New York, New York
| | - Mary H Brown
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Ilinois 60614
| | - Stephen R Ross
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Ilinois 60614
| | - Herman Pontzer
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York 10016.,New York Consortium in Evolutionary Primatology (NYCEP), New York, New York.,Department of Anthropology, Hunter College, City University of New York, New York, New York, 10065
| |
Collapse
|
25
|
Wallace IJ, Hainline C, Lieberman DE. Sports and the human brain: an evolutionary perspective. HANDBOOK OF CLINICAL NEUROLOGY 2018; 158:3-10. [PMID: 30482358 DOI: 10.1016/b978-0-444-63954-7.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An evolutionary perspective helps explain a conundrum faced by sports neurologists: why is the human brain dependent on physical activity to function optimally, yet simultaneously susceptible to harm from particular types of athletics? For millions of years, human bodies and brains co-evolved to meet the physical and cognitive demands of the uniquely human subsistence strategy of hunting and gathering. Natural selection favored bodies with adaptations for endurance-based physical activity patterns, whereas brains were selected to be big and powerful to navigate the complex cultural and ecologic landscapes of hunter-gatherers. Human brains require physical activity to function optimally because their physiology evolved among individuals who were rarely able to avoid regular physical activity. Moreover, because energy from food was limited, human brains, like most energetically costly physiologic systems, evolved to require stimuli from physical activity to adjust capacity to demand. Consequently, human brains are poorly adapted to excessive physical inactivity. In addition, while brain enlargement during human evolution was vital to successful hunting and gathering, it came at the cost of a decreased ability to withstand brain accelerations and decelerations, which commonly occur during contact/collision sports.
Collapse
Affiliation(s)
- Ian J Wallace
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Clotilde Hainline
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
26
|
Thompson NE, Almécija S. The evolution of vertebral formulae in Hominoidea. J Hum Evol 2017; 110:18-36. [DOI: 10.1016/j.jhevol.2017.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 01/06/2023]
|
27
|
Hammond AS, Almécija S. Lower Ilium Evolution in Apes and Hominins. Anat Rec (Hoboken) 2017; 300:828-844. [PMID: 28406561 DOI: 10.1002/ar.23545] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/09/2016] [Indexed: 01/18/2023]
Abstract
Elucidating the pelvic morphology of the Pan-Homo last common ancestor (LCA) is crucial for understanding ape and human evolution. The pelvis of Ardipithecus ramidus has been the basis of controversial interpretations of the LCA pelvis. In particular, it was proposed that the lower ilium became elongate independently in the orangutan and chimpanzee clades, making these taxa poor analogues for the pelvis of the LCA. This study examines the variation in relative lower ilium height between and within living and fossil hominoid species (and other anthropoids), and models its evolution using available fossil hominoids as calibration points. We find nuanced differences in relative lower ilium height among living hominoids, particularly in regards to gorillas, which do not have elongate lower ilia (because they are likely to represent the plesiomorphic hominoid condition for this trait). We also show that differences in relative lower ilium height among hominoid taxa are not readily explained by differences in size between species. Our maximum likelihood ancestral state reconstructions support inferences that chimpanzees (Pan troglodytes in particular) and orangutans evolved their elongate lower ilia independently. We also find that the predicted lower ilium height of the Pan-Homo LCA is shorter than all great apes except gorillas. This study adds to a growing body of evidence that finds different regions of the body show different evolutionary histories in different hominoids, and underscores that the unique combinations of morphologies of each modern and fossil hominoid species should be considered when reconstructing the mosaic nature of the Pan-Homo LCA. Anat Rec, 300:828-844, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ashley S Hammond
- Center for Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, District of Columbia, 20052
| | - Sergio Almécija
- Center for Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, District of Columbia, 20052.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Williams SA, García-Martínez D, Bastir M, Meyer MR, Nalla S, Hawks J, Schmid P, Churchill SE, Berger LR. The vertebrae and ribs of Homo naledi. J Hum Evol 2017; 104:136-154. [DOI: 10.1016/j.jhevol.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
29
|
Castillo ER, Hsu C, Mair RW, Lieberman DE. Testing biomechanical models of human lumbar lordosis variability. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:110-121. [DOI: 10.1002/ajpa.23189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Eric R. Castillo
- Department of Human Evolutionary Biology; Harvard University; Cambridge Massachusetts 02138
| | - Connie Hsu
- Department of Human Evolutionary Biology; Harvard University; Cambridge Massachusetts 02138
| | - Ross W. Mair
- Department of Human Evolutionary Biology; Harvard University; Cambridge Massachusetts 02138
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology; Harvard University; Cambridge Massachusetts 02138
| |
Collapse
|