1
|
Pfeuty B. Free-energy transduction mechanisms shape the flux space of metabolic networks. Biophys J 2024; 123:3600-3611. [PMID: 39277793 PMCID: PMC11494513 DOI: 10.1016/j.bpj.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
The transduction of free energy in metabolic networks represents a thermodynamic mechanism by which the free energy derived from nutrients is converted to drive nonspontaneous, energy-requiring metabolic reactions. This transduction is typically observed in processes that generate energy-rich molecules such as ATP and NAD(P)H, which, in turn, power specific reactions, particularly biosynthetic reactions. This property establishes a pivotal connection between the intricate topology of metabolic networks and their ability to redirect energy for functional purposes. The present study proposes a dedicated framework aimed at exploring the relationship between free-energy dissipation, network topology, and metabolic objectives. The starting point is that, regardless of the network topology, nonequilibrium chemostatting conditions impose stringent thermodynamic constraints on the feasible flux steady states to satisfy energy and entropy balances. An analysis of randomly sampled reaction networks shows that the network topology imposes additional constraints that restrict the accessible flux solution space, depending on key structural features such as the reaction's molecularity, reaction cycles, and conservation laws. Notably, topologies featuring multimolecular reactions that implement free-energy transduction mechanisms tend to extend the accessible flux domains, facilitating the achievement of metabolic objectives such as anabolic flux maximization or flux rerouting capacity. This approach is applied to a coarse-grained model of carbohydrate metabolism, highlighting the structural requirements for optimal biomass yield.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- University Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, Lille, France.
| |
Collapse
|
2
|
Yang X, Zhang Y, Zhao G. Artificial carbon assimilation: From unnatural reactions and pathways to synthetic autotrophic systems. Biotechnol Adv 2024; 70:108294. [PMID: 38013126 DOI: 10.1016/j.biotechadv.2023.108294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
3
|
Campbell RP, Whittington AC, Zorio DAR, Miller BG. Recruitment of a Middling Promiscuous Enzyme Drives Adaptive Metabolic Evolution in Escherichia coli. Mol Biol Evol 2023; 40:msad202. [PMID: 37708398 PMCID: PMC10519446 DOI: 10.1093/molbev/msad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
A key step in metabolic pathway evolution is the recruitment of promiscuous enzymes to perform new functions. Despite the recognition that promiscuity is widespread in biology, factors dictating the preferential recruitment of one promiscuous enzyme over other candidates are unknown. Escherichia coli contains four sugar kinases that are candidates for recruitment when the native glucokinase machinery is deleted-allokinase (AlsK), manno(fructo)kinase (Mak), N-acetylmannosamine kinase (NanK), and N-acetylglucosamine kinase (NagK). The catalytic efficiencies of these enzymes are 103- to 105-fold lower than native glucokinases, ranging from 2,400 M-1 s-1 for the most active candidate, NagK, to 15 M-1 s-1 for the least active candidate, AlsK. To investigate the relationship between catalytic activities of promiscuous enzymes and their recruitment, we performed adaptive evolution of a glucokinase-deficient E. coli strain to restore glycolytic metabolism. We observed preferential recruitment of NanK via a trajectory involving early mutations that facilitate glucose uptake and amplify nanK transcription, followed by nonsynonymous substitutions in NanK that enhance the enzyme's promiscuous glucokinase activity. These substitutions reduced the native activity of NanK and reduced organismal fitness during growth on an N-acetylated carbon source, indicating that enzyme recruitment comes at a cost for growth on other substrates. Notably, the two most active candidates, NagK and Mak, were not recruited, suggesting that catalytic activity alone does not dictate evolutionary outcomes. The results highlight our lack of knowledge regarding biological drivers of enzyme recruitment and emphasize the need for a systems-wide approach to identify factors facilitating or constraining this important adaptive process.
Collapse
Affiliation(s)
- Ryan P Campbell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - A Carl Whittington
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Diego A R Zorio
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
4
|
Wang S, Zhao Y, Yang J, Liu S, Ni W, Bai X, Yang Z, Zhao D, Liu M. Ginseng polysaccharide attenuates red blood cells oxidative stress injury by regulating red blood cells glycolysis and liver gluconeogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115716. [PMID: 36122792 DOI: 10.1016/j.jep.2022.115716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Mey (PG) is famous for "Qi-tonifying" effect, which has a medicinal history of more than 2 millennia. Modern pharmacology has confirmed that the "Qi-tonifying" effect of PG may be closely related to its pharmacological properties such as anti-oxidation, antineoplastic and treatment of cardiovascular disease. As one of the earliest cells affected by oxidative stress, RBCs are widely used in the diagnosis of diseases. Ginseng polysaccharide (GPS), is one of the major active components of PG, which plays an important role in resisting oxidative stress, affecting energy metabolism and other effects. However, the molecular mechanism explaining the "Qi-tonifying" effect of GPS from the perspective of RBCs oxidative damage has not been reported. AIM OF THE STUDY This study aimed to investigate the protective effect of GPS on oxidatively damaged RBCs using in vitro and in vivo models and explore the molecular mechanisms from the perspective of glycolysis and gluconeogenesis pathways. To provides a theoretical basis for the future research of antioxidant drugs. MATERIALS AND METHODS Established three different in vitro and in vivo research models: an in vitro model of RBCs exposed to hydrogen peroxide (H2O2) (40 mM), an in vivo model of RBCs from rats subjected to exhaustive swimming, and an in vitro model of BRL-3A cells exposed to H2O2 (25 μM). All three models were also tested in the presence of different concentrations of GPS. RESULTS The findings showed that GPS was the most potent antagonist of H2O2-induced hemolysis and redox inbalance in RBCs. In exhaustive exercise rats, GPS ameliorated RBVs hemolysis, including reducing whole-blood viscosity (WBV), improving deformability, oxygen-carrying and -releasing capacities, which was related to the enhancing of antioxidant capacity. Moreover, GPS promoted RBCs glycolysis in rats with exhaustive exercise by recovering the activities of glycolysis-related enzymes and increasing band 3 protein expression, thereby regulating the imbalance of energy metabolism caused by oxidative stress. Furthermore, we demonstrated that GPS improved antioxidant defense system, enhanced energy metabolism, and regulated gluconeogenesis via activating PPAR gamma co-activator 1 alpha (PGC-1α) pathway in H2O2-exposed BRL-3A cells. Mechanistically, GPS promoted glycolysis and protected RBCs from oxidative injury was partly dependent on the regulation of gluconeogenesis, as inhibition of gluconeogenesis by metformin (Met) attenuates the regulation of antioxidant enzymes and key enzymes of glycolytic by GPS in exhaustive exercise rats. CONCLUSION This study demonstrates that GPS protects RBCs from oxidative stress damage by promoting RBCs glycolysis and liver gluconeogenesis pathways. These results may contribute to the study of new RBCs treatments to boost antioxidant capacity and protect RBCs against oxidative stress.
Collapse
Affiliation(s)
- Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Yuchu Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Junjie Yang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Shichao Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Weifeng Ni
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Xueyuan Bai
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Ze Yang
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Meichen Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| |
Collapse
|
5
|
Li J, Tang X, Pan K, Zhu B, Li Y, Wang Z, Zhao Y. Energy metabolism and intracellular pH regulation reveal different physiological acclimation mechanisms of Chlorella strains to high concentrations of CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158627. [PMID: 36087671 DOI: 10.1016/j.scitotenv.2022.158627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The intolerance of high CO2 in the exhaust gas is the "bottleneck" limiting the wide application of microalgae for CO2 biosequestration. Around this topic, we selected high-CO2-tolerant (LAMB 33 and 31) and nontolerant (LAMB 122) Chlorella strains to study their different energy metabolisms and cytoplasmic pH regulations in response to high CO2. Under 40 % CO2, LAMB 33 and 31 both showed elevated ATP synthesis, accelerated ATP consumption and fast cytoplasmic pH regulation while exhibiting different acclimating strategies therein: chloroplast acclimations were reflected by high chlorophyll contents in 33 but photosystem transitions in 31; faster mitochondrial acclimations occurred in 33 than in 31; cellular organic carbon mainly flowed to monosaccharide synthesis for 33 but to monosaccharide and protein synthesis for 31; and cytoplasmic pH regulation was attributed to V-ATPase in 31 but not in 33. All the above metabolic processes gradually collapsed in 122, leading to growth inhibition. Our study identified different metabolic acclimation strategies among Chlorella strains to high CO2 and provided new traits for breeding microalgae for CO2 biosequestration.
Collapse
Affiliation(s)
- Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Kehou Pan
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Baohua Zhu
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ziqi Wang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
6
|
Metabolomic and Mitochondrial Fingerprinting of the Epithelial-to-Mesenchymal Transition (EMT) in Non-Tumorigenic and Tumorigenic Human Breast Cells. Cancers (Basel) 2022; 14:cancers14246214. [PMID: 36551699 PMCID: PMC9776482 DOI: 10.3390/cancers14246214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, β-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.
Collapse
|
7
|
Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. THE ISME JOURNAL 2022; 16:1883-1895. [PMID: 35444262 PMCID: PMC9296628 DOI: 10.1038/s41396-022-01226-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Endozoicomonas are prevalent, abundant bacterial associates of marine animals, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify potential interactions within the coral holobiont, we characterized the novel isolate Endozoicomonas marisrubri sp. nov. 6c and assessed its transcriptomic and proteomic response to tissue extracts of its native host, the Red Sea coral Acropora humilis. We show that coral tissue extracts stimulated differential expression of genes putatively involved in symbiosis establishment via the modulation of the host immune response by E. marisrubri 6c, such as genes for flagellar assembly, ankyrins, ephrins, and serpins. Proteome analyses revealed that E. marisrubri 6c upregulated vitamin B1 and B6 biosynthesis and glycolytic processes in response to holobiont cues. Our results suggest that the priming of Endozoicomonas for a symbiotic lifestyle involves the modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas may play an important role in holobiont nutrient cycling and may therefore contribute to coral health, acclimatization, and adaptation.
Collapse
|
8
|
The view of microbes as energy converters illustrates the trade-off between growth rate and yield. Biochem Soc Trans 2021; 49:1663-1674. [PMID: 34282835 DOI: 10.1042/bst20200977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
The application of thermodynamics to microbial growth has a long tradition that originated in the middle of the 20th century. This approach reflects the view that self-replication is a thermodynamic process that is not fundamentally different from mechanical thermodynamics. The key distinction is that a free energy gradient is not converted into mechanical (or any other form of) energy but rather into new biomass. As such, microbes can be viewed as energy converters that convert a part of the energy contained in environmental nutrients into chemical energy that drives self-replication. Before the advent of high-throughput sequencing technologies, only the most central metabolic pathways were known. However, precise measurement techniques allowed for the quantification of exchanged extracellular nutrients and heat of growing microbes with their environment. These data, together with the absence of knowledge of metabolic details, drove the development of so-called black-box models, which only consider the observable interactions of a cell with its environment and neglect all details of how exactly inputs are converted into outputs. Now, genome sequencing and genome-scale metabolic models (GEMs) provide us with unprecedented detail about metabolic processes inside the cell. However, mostly due to computational complexity issues, the derived modelling approaches make surprisingly little use of thermodynamic concepts. Here, we review classical black-box models and modern approaches that integrate thermodynamics into GEMs. We also illustrate how the description of microbial growth as an energy converter can help to understand and quantify the trade-off between microbial growth rate and yield.
Collapse
|
9
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
10
|
Hassan A, Huang Q, Xu H, Wu J, Mehmood N. Silencing of the phosphofructokinase gene impairs glycolysis and causes abnormal locomotion in the subterranean termite Reticulitermes chinensis Snyder. INSECT MOLECULAR BIOLOGY 2021; 30:57-70. [PMID: 33068440 DOI: 10.1111/imb.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Phosphofructokinase (PFK) is a rate-limiting enzyme in glycolysis, but its linkage with locomotion in termites is not well understood, despite the demonstrated involvement of this gene in the locomotion of different animals. Here, we investigated the effect of the pfk gene on locomotion in the subterranean termite Reticulitermes chinensis Snyder through RNA interference and the use of an Ethovision XT tracking system. The knockdown of pfk resulted in significantly decreased expression of the pfk gene in different castes of termites. The pfk-silenced workers displayed higher levels of glucose but lower levels of nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) production and decreased activity of the PFK enzyme. Furthermore, abnormal locomotion (decreased distance travelled, velocity and acceleration but increased turn angle, angular velocity and meander) was observed in different castes of pfk-silenced termites. We found caste-specific locomotion among workers, soldiers and dealates. Additionally, soldiers and dealates showed higher velocity in the inner zone than in the wall zone, which is considered an effective behaviour to avoid predation. These findings reveal the close linkage between the pfk gene and locomotion in termites, which helps us to better understand the regulatory mechanism and caste specificity of social behaviours in social insects.
Collapse
Affiliation(s)
- A Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Q Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - H Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - J Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - N Mehmood
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Zhang Y, Sampathkumar A, Kerber SML, Swart C, Hille C, Seerangan K, Graf A, Sweetlove L, Fernie AR. A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nat Commun 2020; 11:4509. [PMID: 32908151 PMCID: PMC7481185 DOI: 10.1038/s41467-020-18234-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Glycolysis is one of the primordial pathways of metabolism, playing a pivotal role in energy metabolism and biosynthesis. Glycolytic enzymes are known to form transient multi-enzyme assemblies. Here we examine the wider protein-protein interactions of plant glycolytic enzymes and reveal a moonlighting role for specific glycolytic enzymes in mediating the co-localization of mitochondria and chloroplasts. Knockout mutation of phosphoglycerate mutase or enolase resulted in a significantly reduced association of the two organelles. We provide evidence that phosphoglycerate mutase and enolase form a substrate-channelling metabolon which is part of a larger complex of proteins including pyruvate kinase. These results alongside a range of genetic complementation experiments are discussed in the context of our current understanding of chloroplast-mitochondrial interactions within photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Arun Sampathkumar
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sandra Mae-Lin Kerber
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Corné Swart
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Carsten Hille
- Department of Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany
- Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Kumar Seerangan
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Lee Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
12
|
Détrée C, Navarro JM, Font A, Gonzalez M. Species vulnerability under climate change: Study of two sea urchins at their distribution margin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138850. [PMID: 32570334 DOI: 10.1016/j.scitotenv.2020.138850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In order to develop powerful predictions on the impact of climate change on marine organisms, it is critical to understand how abiotic drivers such as temperature can directly and indirectly affect marine organisms. Here, we evaluated and compared the physiological vulnerability of the leading-edge populations of two species of sea urchins Loxechinus albus and Pseudechinus magellanicus in response to predicted ocean warming and food limitation. After exposing sea urchins to a 60-day experimental period to contrasting temperature (1 °C, 7 °C and 14 °C corresponding respectively to the actual average summer temperature in Antarctica, the control treatment temperature and the predicted future temperature in the Strait of Magellan) and diet levels (ad libitum or food limitation), sea urchin stress tolerance was assessed. Sea urchins' physiology was measured at the organismal and sub-cellular level by studying the organisms energy balance (behavior, growth, gonad index, ingestion rate, O2 uptake, energy reserves) and the expression of genes associated with aerobic metabolism. Our results showed that at their distribution edge, and despite their distinct geographical repartition, both species might be resilient to ocean warming. However, the combination of ocean warming and food limitation reduced the stress tolerance of sea urchins. In a warming ocean, another strategy could be to migrate toward the pole to a cooler environment but incubation at 1 °C resulted in a diminution of both species' aerobic scope. Overall, if these engineer species are unable to acclimate to food limitation under future climate, population fitness could be affected with ecological and economic consequences.
Collapse
Affiliation(s)
- Camille Détrée
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | - Jorge M Navarro
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Font
- Scientific Department, Chilean Antarctic Institute, Plaza Muñoz Gamero Punta Arenas, Chile
| | - Marcelo Gonzalez
- Scientific Department, Chilean Antarctic Institute, Plaza Muñoz Gamero Punta Arenas, Chile
| |
Collapse
|
13
|
Entner-Doudoroff glycolysis pathway as quadratic-cubic mixed autocatalytic network: A kinetic assay. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Selim KA, Lapina T, Forchhammer K, Ermilova E. Interaction of N-acetyl-l-glutamate kinase with the PII signal transducer in the non-photosynthetic alga Polytomella parva: Co-evolution towards a hetero-oligomeric enzyme. FEBS J 2019; 287:465-482. [PMID: 31287617 PMCID: PMC7027753 DOI: 10.1111/febs.14989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022]
Abstract
During evolution, several algae and plants became heterotrophic and lost photosynthesis; however, in most cases, a nonphotosynthetic plastid was maintained. Among these organisms, the colourless alga Polytomella parva is a special case, as its plastid is devoid of any DNA, but is maintained for specific metabolic tasks carried out by nuclear encoded enzymes. This makes P. parva attractive to study molecular events underlying the transition from autotrophic to heterotrophic lifestyle. Here we characterize metabolic adaptation strategies of P. parva in comparison to the closely related photosynthetic alga Chlamydomonas reinhardtii with a focus on the role of plastid‐localized PII signalling protein. Polytomella parva accumulates significantly higher amounts of most TCA cycle intermediates as well as glutamate, aspartate and arginine, the latter being specific for the colourless plastid. Correlating with the altered metabolite status, the carbon/nitrogen sensory PII signalling protein and its regulatory target N‐acetyl‐l‐glutamate‐kinase (NAGK; the controlling enzyme of arginine biosynthesis) show unique features: They have co‐evolved into a stable hetero‐oligomeric complex, irrespective of effector molecules. The PII signalling protein, so far known as a transiently interacting signalling protein, appears as a permanent subunit of the enzyme NAGK. NAGK requires PII to properly sense the feedback inhibitor arginine, and moreover, PII tunes arginine‐inhibition in response to glutamine. No other PII effector molecules interfere, indicating that the PII‐NAGK system in P. parva has lost the ability to estimate the cellular energy and carbon status but has specialized to provide an entirely glutamine‐dependent arginine feedback control, highlighting the evolutionary plasticity of PII signalling system.
Collapse
Affiliation(s)
- Khaled A Selim
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-Universität Tübingen, Germany
| | - Tatyana Lapina
- Biological Faculty, Saint-Petersburg State University, Russia
| | - Karl Forchhammer
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-Universität Tübingen, Germany
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Russia
| |
Collapse
|
15
|
Saa PA, Cortés MP, López J, Bustos D, Maass A, Agosin E. Expanding Metabolic Capabilities Using Novel Pathway Designs: Computational Tools and Case Studies. Biotechnol J 2019; 14:e1800734. [DOI: 10.1002/biot.201800734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/22/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Pedro A. Saa
- Departamento de Ingeniería Química y BioprocesosPontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 7820436 Santiago Chile
| | - María P. Cortés
- Centro de Modelamiento MatemáticoUniversidad de Chile Av. Beaucheff 851 Santiago 8370456 Chile
- Centro de Regulación del GenomaUniversidad de Chile Av. Beaucheff 851 Santiago 8370456 Chile
| | - Javiera López
- Centro de Aromas y SaboresDICTUC S.A Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
| | - Diego Bustos
- Centro de Aromas y SaboresDICTUC S.A Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
| | - Alejandro Maass
- Centro de Modelamiento MatemáticoUniversidad de Chile Av. Beaucheff 851 Santiago 8370456 Chile
- Departmento de Ingeniería MatemáticaUniversidad de Chile Av. Beaucheff 851 Santiago 8370456 Chile
| | - Eduardo Agosin
- Departamento de Ingeniería Química y BioprocesosPontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 7820436 Santiago Chile
| |
Collapse
|
16
|
Sambamoorthy G, Sinha H, Raman K. Evolutionary design principles in metabolism. Proc Biol Sci 2019; 286:20190098. [PMID: 30836874 PMCID: PMC6458322 DOI: 10.1098/rspb.2019.0098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022] Open
Abstract
Microorganisms are ubiquitous and adapt to various dynamic environments to sustain growth. These adaptations accumulate, generating new traits forming the basis of evolution. Organisms adapt at various levels, such as gene regulation, signalling, protein-protein interactions and metabolism. Of these, metabolism forms the integral core of an organism for maintaining the growth and function of a cell. Therefore, studying adaptations in metabolic networks is crucial to understand the emergence of novel metabolic capabilities. Metabolic networks, composed of enzyme-catalysed reactions, exhibit certain repeating paradigms or design principles that arise out of different selection pressures. In this review, we discuss the design principles that are known to exist in metabolic networks, such as functional redundancy, modularity, flux coupling and exaptations. We elaborate on the studies that have helped gain insights highlighting the interplay of these design principles and adaptation. Further, we discuss how evolution plays a role in exploiting such paradigms to enhance the robustness of organisms. Looking forward, we predict that with the availability of ever-increasing numbers of bacterial, archaeal and eukaryotic genomic sequences, novel design principles will be identified, expanding our understanding of these paradigms shaped by varied evolutionary processes.
Collapse
Affiliation(s)
- Gayathri Sambamoorthy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Initiative for Biological Systems Engineering (IBSE), Indian Institute of Technology Madras, Chennai 600036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai 600036, India
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Initiative for Biological Systems Engineering (IBSE), Indian Institute of Technology Madras, Chennai 600036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai 600036, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Initiative for Biological Systems Engineering (IBSE), Indian Institute of Technology Madras, Chennai 600036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
17
|
Ng CY, Wang L, Chowdhury A, Maranas CD. Pareto Optimality Explanation of the Glycolytic Alternatives in Nature. Sci Rep 2019; 9:2633. [PMID: 30796263 PMCID: PMC6384925 DOI: 10.1038/s41598-019-38836-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/10/2019] [Indexed: 01/02/2023] Open
Abstract
The Entner-Doudoroff (ED) and Embden-Meyerhof-Parnas (EMP) glycolytic pathways are largely conserved across glycolytic species in nature. Is this a coincidence, convergent evolution or there exists a driving force towards either of the two pathway designs? We addressed this question by first employing a variant of the optStoic algorithm to exhaustively identify over 11,916 possible routes between glucose and pyruvate at different pre-determined stoichiometric yields of ATP. Subsequently, we analyzed the thermodynamic feasibility of all the pathways at physiological metabolite concentrations and quantified the protein cost of the feasible solutions. Pareto optimality analysis between energy efficiency and protein cost reveals that the naturally evolved ED and EMP pathways are indeed among the most protein cost-efficient pathways in their respective ATP yield categories and remain thermodynamically feasible across a wide range of ATP/ADP ratios and pathway intermediate metabolite concentration ranges. In contrast, pathways with higher ATP yield (>2) while feasible, are bound within stringent and often extreme operability ranges of cofactor and intermediate metabolite concentrations. The preponderance of EMP and ED is thus consistent with not only optimally balancing energy yield vs. enzyme cost but also with ensuring operability for wide metabolite concentration ranges and ATP/ADP ratios.
Collapse
Affiliation(s)
- Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anupam Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
Aprile-Garcia F, Tomar P, Hummel B, Khavaran A, Sawarkar R. Nascent-protein ubiquitination is required for heat shock–induced gene downregulation in human cells. Nat Struct Mol Biol 2019; 26:137-146. [DOI: 10.1038/s41594-018-0182-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
|
19
|
Zerfaß C, Asally M, Soyer OS. Interrogating metabolism as an electron flow system. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 13:59-67. [PMID: 31008413 PMCID: PMC6472609 DOI: 10.1016/j.coisb.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolism is generally considered as a neatly organised system of modular pathways, shaped by evolution under selection for optimal cellular growth. This view falls short of explaining and predicting a number of key observations about the structure and dynamics of metabolism. We highlight these limitations of a pathway-centric view on metabolism and summarise studies suggesting how these could be overcome by viewing metabolism as a thermodynamically and kinetically constrained, dynamical flow system. Such a systems-level, first-principles based view of metabolism can open up new avenues of metabolic engineering and cures for metabolic diseases and allow better insights to a myriad of physiological processes that are ultimately linked to metabolism. Towards further developing this view, we call for a closer interaction among physical and biological disciplines and an increased use of electrochemical and biophysical approaches to interrogate cellular metabolism together with the microenvironment in which it exists.
Collapse
Affiliation(s)
- Christian Zerfaß
- Bio-Electrical Engineering (BEE) Innovation Hub, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Munehiro Asally
- Bio-Electrical Engineering (BEE) Innovation Hub, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, CV4 7AL, UK
| | - Orkun S. Soyer
- Bio-Electrical Engineering (BEE) Innovation Hub, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
20
|
Enumerating all possible biosynthetic pathways in metabolic networks. Sci Rep 2018; 8:9932. [PMID: 29967471 PMCID: PMC6028704 DOI: 10.1038/s41598-018-28007-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Exhaustive identification of all possible alternate pathways that exist in metabolic networks can provide valuable insights into cellular metabolism. With the growing number of metabolic reconstructions, there is a need for an efficient method to enumerate pathways, which can also scale well to large metabolic networks, such as those corresponding to microbial communities. We developed MetQuest, an efficient graph-theoretic algorithm to enumerate all possible pathways of a particular size between a given set of source and target molecules. Our algorithm employs a guided breadth-first search to identify all feasible reactions based on the availability of the precursor molecules, followed by a novel dynamic-programming based enumeration, which assembles these reactions into pathways of a specified size producing the target from the source. We demonstrate several interesting applications of our algorithm, ranging from identifying amino acid biosynthesis pathways to identifying the most diverse pathways involved in degradation of complex molecules. We also illustrate the scalability of our algorithm, by studying large graphs such as those corresponding to microbial communities, and identify several metabolic interactions happening therein. MetQuest is available as a Python package, and the source codes can be found at https://github.com/RamanLab/metquest.
Collapse
|
21
|
Wang L, Dash S, Ng CY, Maranas CD. A review of computational tools for design and reconstruction of metabolic pathways. Synth Syst Biotechnol 2017; 2:243-252. [PMID: 29552648 PMCID: PMC5851934 DOI: 10.1016/j.synbio.2017.11.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 11/28/2022] Open
Abstract
Metabolic pathways reflect an organism's chemical repertoire and hence their elucidation and design have been a primary goal in metabolic engineering. Various computational methods have been developed to design novel metabolic pathways while taking into account several prerequisites such as pathway stoichiometry, thermodynamics, host compatibility, and enzyme availability. The choice of the method is often determined by the nature of the metabolites of interest and preferred host organism, along with computational complexity and availability of software tools. In this paper, we review different computational approaches used to design metabolic pathways based on the reaction network representation of the database (i.e., graph or stoichiometric matrix) and the search algorithm (i.e., graph search, flux balance analysis, or retrosynthetic search). We also put forth a systematic workflow that can be implemented in projects requiring pathway design and highlight current limitations and obstacles in computational pathway design.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
22
|
Pandit AV, Srinivasan S, Mahadevan R. Redesigning metabolism based on orthogonality principles. Nat Commun 2017; 8:15188. [PMID: 28555623 PMCID: PMC5459945 DOI: 10.1038/ncomms15188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/08/2017] [Indexed: 01/25/2023] Open
Abstract
Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering.
Collapse
Affiliation(s)
- Aditya Vikram Pandit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| | - Shyam Srinivasan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, CanadaM5S 3G9
| |
Collapse
|
23
|
Zagorski M, Burda Z, Waclaw B. Beyond the Hypercube: Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks. PLoS Comput Biol 2016; 12:e1005218. [PMID: 27935934 PMCID: PMC5147777 DOI: 10.1371/journal.pcbi.1005218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/23/2016] [Indexed: 01/04/2023] Open
Abstract
Evolutionary pathways describe trajectories of biological evolution in the space of different variants of organisms (genotypes). The probability of existence and the number of evolutionary pathways that lead from a given genotype to a better-adapted genotype are important measures of accessibility of local fitness optima and the reproducibility of evolution. Both quantities have been studied in simple mathematical models where genotypes are represented as binary sequences of two types of basic units, and the network of permitted mutations between the genotypes is a hypercube graph. However, it is unclear how these results translate to the biologically relevant case in which genotypes are represented by sequences of more than two units, for example four nucleotides (DNA) or 20 amino acids (proteins), and the mutational graph is not the hypercube. Here we investigate accessibility of the best-adapted genotype in the general case of K > 2 units. Using computer generated and experimental fitness landscapes we show that accessibility of the global fitness maximum increases with K and can be much higher than for binary sequences. The increase in accessibility comes from the increase in the number of indirect trajectories exploited by evolution for higher K. As one of the consequences, the fraction of genotypes that are accessible increases by three orders of magnitude when the number of units K increases from 2 to 16 for landscapes of size N ∼ 106 genotypes. This suggests that evolution can follow many different trajectories on such landscapes and the reconstruction of evolutionary pathways from experimental data might be an extremely difficult task. Biological evolution is driven by heritable, genetic alterations that affect the fitness of organisms. However, the pool of “fitter” variants (genotypes) is often restricted and it is not at all obvious how evolution finds its way from low-fitness to high-fitness genotypes in a complex, multidimensional “fitness landscapes” with many peaks (fit organisms) and valleys (unfit ones). To address this question we investigate how likely it is for biological evolution to find a way “uphill” from a lower-fitness organism to the best adapted organism. We discover that the accessibility of the fittest organism depends on the number of types of basic “units” used to encode genotypes. These units can be, for example, the four DNA nucleotides A,T,C,G, or the ∼20 amino acids used for synthesizing proteins, and the choice of the most appropriate unit is dictated by how the genotypes and the fitnesses are related—a relationship that researchers have begun to unveil only recently. We find that increasing the number of units strongly increases the probability that there will be at least one uphill path to the best-adapted genotype, and the number of evolutionary pathways leading to it. Our findings suggest that biological evolution can follow many more pathways than previously thought.
Collapse
Affiliation(s)
- Marcin Zagorski
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
- Institute of Physics, Jagiellonian University, Krakow, Poland
- * E-mail:
| | - Zdzislaw Burda
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Bartlomiej Waclaw
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Abstract
An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabolites required to replicate RNA. Although the possibility of an RNA-catalysed metabolic network has been considered, it is to be questioned whether RNA molecules, at least on their own, possess the required catalytic capacities. An alternative scenario for the origin of metabolism involves chemical reactions that are based on environmental catalysts. Recently, we described a non-enzymatic glycolysis and pentose phosphate pathway-like reactions catalysed by metal ions [mainly Fe(II)] and phosphate, simple inorganic molecules abundantly found in Archaean sediments. While the RNA world can serve to explain the origin of genetics, the origin of the metabolic network might thus date back to constraints of environmental chemistry. Interestingly, considering a metal-catalysed origin of metabolism gives rise to an attractive hypothesis about how the first enzymes could have formed: simple RNA or (poly)peptide molecules could have bound the metal ions, and thus increased their solubility, concentration and accessibility. In a second step, this would have allowed substrate specificity to evolve.
Collapse
|