1
|
Tian Q, Jing L, Yin Y, Liang Z, Du H, Yang L, Cheng X, Zuo D, Tang C, Liu Z, Liu J, Wan J, Yang J. Nanoengineering of Porous 2D Structures with Tunable Fluid Transport Behavior for Exceptional H 2O 2 Electrosynthesis. NANO LETTERS 2024; 24:1650-1659. [PMID: 38265360 DOI: 10.1021/acs.nanolett.3c04396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Precision nanoengineering of porous two-dimensional structures has emerged as a promising avenue for finely tuning catalytic reactions. However, understanding the pore-structure-dependent catalytic performance remains challenging, given the lack of comprehensive guidelines, appropriate material models, and precise synthesis strategies. Here, we propose the optimization of two-dimensional carbon materials through the utilization of mesopores with 5-10 nm diameter to facilitate fluid acceleration, guided by finite element simulations. As proof of concept, the optimized mesoporous carbon nanosheet sample exhibited exceptional electrocatalytic performance, demonstrating high selectivity (>95%) and a notable diffusion-limiting disk current density of -3.1 mA cm-2 for H2O2 production. Impressively, the electrolysis process in the flow cell achieved a production rate of 14.39 mol gcatalyst-1 h-1 to yield a medical-grade disinfectant-worthy H2O2 solution. Our pore engineering research focuses on modulating oxygen reduction reaction activity and selectivity by affecting local fluid transport behavior, providing insights into the mesoscale catalytic mechanism.
Collapse
Affiliation(s)
- Qiang Tian
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lingyan Jing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunchao Yin
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenye Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongnan Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lin Yang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaolei Cheng
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Daxian Zuo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuoxin Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayu Wan
- Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Chen H, Hung CT, Zhang W, Xu L, Zhang P, Li W, Zhao Z, Zhao D. Asymmetric Monolayer Mesoporous Nanosheets of Regularly Arranged Semi-Opened Pores via a Dual-Emulsion-Directed Micelle Assembly. J Am Chem Soc 2023; 145:27708-27717. [PMID: 38054893 DOI: 10.1021/jacs.3c09927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Constructing asymmetric two-dimensional (2D) mesoporous nanomaterials with new pore structure, tunable monolayer architectures, and especially anisotropic surfaces remains a great challenge in materials science. Here, we report a dual-emulsion directed micelle assembly approach to fabricate a novel type of asymmetric monolayer mesoporous organosilica nanosheet for the first time. In this asymmetric 2D structure, numerous quasi-spherical semiopened mesopores (∼20 nm in diameter, 24 nm in opening size) were regularly arranged on a plane, endowing the porous nanosheets (several micrometers in size) with a typical surface anisotropy on two sides. Meanwhile, lots of triangular intervoids (4.0-5.0 nm in size) can also be found among each three semiopened mesopores, enabling the nanosheet to be interconnected. Vitally, such interconnected, anisotropic porous nanosheets exhibit ultrahigh accessible surface area (∼714 m2 g-1) and good lipophilicity properties owing to the abundant semiopened mesopores. Additionally, besides the nanosheet, the configuration of the asymmetric porous structure can also be transformed into a microcapsule when controlling the emulsification size via a facile ultrasonic treatment. As a demonstration, we show that the asymmetric microcapsule shows a high demulsification efficiency (>98%) and cyclic stability (>6 recycle times). Our protocol opens up a new avenue for developing next-generation asymmetric mesoporous materials for various applications.
Collapse
Affiliation(s)
- Hanxing Chen
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Chin-Te Hung
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Li Xu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Pengfei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| |
Collapse
|
3
|
Qin J, Yang Z, Xing F, Zhang L, Zhang H, Wu ZS. Two-Dimensional Mesoporous Materials for Energy Storage and Conversion: Current Status, Chemical Synthesis and Challenging Perspectives. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Wei F, Xu H, Zhang T, Li W, Huang L, Peng Y, Guo H, Wang Y, Guan S, Fu J, Jing C, Cheng J, Liu S. Mesoporous Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Efficient Iodine Host for High-Performance Zinc-Iodine Batteries. ACS NANO 2023; 17:20643-20653. [PMID: 37796635 DOI: 10.1021/acsnano.3c07868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Here, by introducing polystyrenesulfonate (PSS) as a multifunctional bridging molecule to synchronously coordinate the interaction between the precursor and the structure-directing agent, we developed a mesoporous conductive polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) featuring adjustable size in the range of 105-1836 nm, open nanochannels, large specific surface area (105.5 m2 g-1), and high electrical conductivity (172.9 S cm-1). Moreover, a large-area ultrathin PEDOT:PSS thin film with well-defined mesopores can also be obtained by controllable growth on various functional interfaces. As an example, we demonstrated that the iodine-loaded mesoporous PEDOT:PSS nanospheres can serve as a promising cathode for aqueous zinc-iodine batteries with high specific capacity (241 mAh g-1), excellent rate performance, and superlong 20,000 cycle life. In-depth theoretical calculations and systematic experimental results together reveal that the exposed sulfur- and oxygen-containing functional groups hold strong interactions with iodine species, resulting in effectively anchoring iodine species and inhibiting the shuttling of polyiodide intermediates, thus ensuring the long-term stability of the batteries. This work introduces a member to the family of mesoporous materials as well as porous polymers with versatile applications.
Collapse
Affiliation(s)
- Facai Wei
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Tingting Zhang
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Wenda Li
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Lingyan Huang
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yonghui Peng
- Chanhigh Holdings Limited (Ningbo), 3388 Cang Hai Road, Ningbo, 315100, People's Republic of China
| | - Haitao Guo
- Chanhigh Holdings Limited (Ningbo), 3388 Cang Hai Road, Ningbo, 315100, People's Republic of China
| | - Yuexi Wang
- Chanhigh Holdings Limited (Ningbo), 3388 Cang Hai Road, Ningbo, 315100, People's Republic of China
| | - Shaojian Guan
- Chanhigh Holdings Limited (Ningbo), 3388 Cang Hai Road, Ningbo, 315100, People's Republic of China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, People's Republic of China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
5
|
Wei F, Zhang T, Dong R, Wu Y, Li W, Fu J, Jing C, Cheng J, Feng X, Liu S. Solution-based self-assembly synthesis of two-dimensional-ordered mesoporous conducting polymer nanosheets with versatile properties. Nat Protoc 2023; 18:2459-2484. [PMID: 37460631 DOI: 10.1038/s41596-023-00845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/20/2023] [Indexed: 08/09/2023]
Abstract
Conducting polymers with conjugated backbones have been widely used in electrochemical energy storage, catalysts, gas sensors and biomedical devices. In particular, two-dimensional (2D) mesoporous conducting polymers combine the advantages of mesoporous structure and 2D nanosheet morphology with the inherent properties of conducting polymers, thus exhibiting improved electrochemical performance. Despite the use of bottom-up self-assembly approaches for the fabrication of a variety of mesoporous materials over the past decades, the synchronous control of the dimensionalities and mesoporous architectures for conducting polymer nanomaterials remains a challenge. Here, we detail a simple, general and robust route for the preparation of a series of 2D mesoporous conducting polymer nanosheets with adjustable pore size (5-20 nm) and thickness (13-45 nm) and controllable morphology and composition via solution-based self-assembly. The synthesis conditions and preparation procedures are detailed to ensure the reproducibility of the experiments. We describe the fabrication of over ten high-quality 2D-ordered mesoporous conducting polymers and sandwich-structured hybrids, with tunable thickness, porosity and large specific surface area, which can serve as potential candidates for high-performance electrode materials used in supercapacitors and alkali metal ion batteries, and so on. The preparation time of the 2D-ordered mesoporous conducting polymer is usually no more than 12 h. The subsequent supercapacitor testing takes ~24 h and the Na ion battery testing takes ~72 h. The procedure is suitable for users with expertise in physics, chemistry, materials and other related disciplines.
Collapse
Affiliation(s)
- Facai Wei
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Tingting Zhang
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Yong Wu
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Wenda Li
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, P.R. China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany.
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
6
|
Zhang L, Liu Y, Wang T, Liu Z, Li W, Qiao ZA. Multi-Dimensional Molecular Self-Assembly Strategy for the Construction of Two-Dimensional Mesoporous Polydiaminopyridine and Carbon Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205693. [PMID: 36408773 DOI: 10.1002/smll.202205693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) mesoporous polymers, combining the advantages of organic polymers, porous materials, and 2D materials, have received great attention in adsorption, catalysis, and energy storage. However, the synthesis of 2D mesoporous polymers is not only challenged by the complex 2D structure construction, but also by the low yield and difficulty in controlling the dynamics of the assembly during the generation of mesopores. Herein, a facile multi-dimensional molecular self-assembly strategy is reported for the preparation of 2D mesoporous polydiaminopyridines (MPDAPs), which features tunable pore sizes (17-35 nm) and abundant N content up to 18.0 at%. Benefitting from the abundant N sites, 2D nanostructure, and uniform-large mesopores, the 2D MPDAPs exhibit excellent catalytic performance for the Knoevenagel condensation reaction. After calcination under N2 atmosphere, the obtained 2D N-doped mesoporous carbon (NMCs) with large and uniform pore sizes, high surface areas, abundant N content (up to 23.1%), and a high ratio of basic N species (57.0% pyridinic N and 35.9% pyrrolic N) can show an excellent CO2 uptake density (11.7 µmol m-2 at 273 K), higher than previously reported porous materials.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yumeng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Tao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhilin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Wei Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
7
|
Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers (Basel) 2022; 14:polym14235139. [PMID: 36501534 PMCID: PMC9738686 DOI: 10.3390/polym14235139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of its many specific properties, which have obvious advantages over bulk-structured PPy. This review outlines the main structures, preparation methods, physicochemical properties, potential applications, and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar template method, hard physical template method and templateless method. Due to their excellent electrical conductivity, biocompatibility, environmental stability and reversible redox properties, PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors, adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the current difficulties and future opportunities in this research area are discussed.
Collapse
|
8
|
Yang X, Shi Y, Xie K, Fang S, Zhang Y, Deng Y. Cocrystallization Enabled Spatial Self‐Confinement Approach to Synthesize Crystalline Porous Metal Oxide Nanosheets for Gas Sensing. Angew Chem Int Ed Engl 2022; 61:e202207816. [DOI: 10.1002/anie.202207816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xuanyu Yang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yatong Shi
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Kefeng Xie
- College of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Shaoming Fang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yonghui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yonghui Deng
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China
- School of Materials and Chemistry University of Shanghai for Science & Technology Shanghai 200093 P. R. China
| |
Collapse
|
9
|
Zhang T, Zhang P, Liao Z, Wang F, Wang J, Wang M, Zschech E, Zhuang X, Schmidt OG, Feng X. Interfacial synthesis of crystalline quasi-two-dimensional polyaniline thin films for high-performance flexible on-chip micro-supercapacitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Yang X, Shi Y, Xie K, Fang S, Zhang YH, Deng Y. Cocrystallization Enabled Spatial Self‐Confinement Gives Crystalline Porous Metal Oxide Nanosheets for Gas Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuanyu Yang
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Yatong Shi
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Kefeng Xie
- Lanzhou Jiaotong University School of Chemical and Biological Engineering CHINA
| | - Shaoming Fang
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Yong-Hui Zhang
- Zhengzhou University of Light Industry 5 Dongfeng Road zhengzhou CHINA
| | | |
Collapse
|
11
|
Wang X, Qin J, Hu Q, Das P, Wen P, Zheng S, Zhou F, Feng L, Wu ZS. Multifunctional Mesoporous Polyaniline/Graphene Nanosheets for Flexible Planar Integrated Microsystem of Zinc Ion Microbattery and Gas Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200678. [PMID: 35754164 DOI: 10.1002/smll.202200678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Indexed: 06/15/2023]
Abstract
The prosperity of smart portable microdevices urgently requires an advanced integrated microsystem equipped with cost-effective safe microbatteries and ultra-stable sensitive sensors. However, the practical application of smart microdevices is limited by complex active materials with single function. Here, the two-dimensional (2D) mesoporous nanosheets of polyaniline decorated on graphene with large specific surface area of 141 m2 g-1 , ample active sites, comparable conductivity, and ordered mesopores of 18 nm for a new-type co-planar integrated microsystem of zinc ion microbattery and gas sensor are developed. These unique triple-function mesoporous nanosheets are well proved for dendrite-free zinc anode with long cyclability (>500 h) and small overpotential (48 mV), a high performance cathode of zinc ion microbattery with outstanding volumetric capacity of 78 mAh cm-3 outperforming their counterparts reported, and a highly sensitive gas sensor with a resistance response (ΔR/R0 %) of 118% for 20 ppm NH3 . Moreover, the co-planar battery-sensor integrated microsystem exhibits superior mechanical stability and smart integration. Therefore, this work will open many opportunities to develop multifunctional 2D mesoporous materials for high performance smart integrated microsystems.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qi Hu
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Pengchao Wen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Shuanghao Zheng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Feng Zhou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
12
|
Xu P, Hong X, Zhu Z, Ouyang H, Zhou Z, Geng L, Xu N, Duan Y, Lv L, He L. Revealing Kinetics Process of Fast Charge‐Storage Behavior Associated with Potential in 2D Polyaniline. ENERGY TECHNOLOGY 2022. [DOI: 10.1002/ente.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peng Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Xufeng Hong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Zhe Zhu
- School of Mechanical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Huifang Ouyang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Zhiyuan Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lishan Geng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Nuo Xu
- Department of Physics School of Science Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yixue Duan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- School of Mechanical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Linfeng Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- School of Mechanical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- School of Mechanical Engineering Sichuan University Chengdu 610065 P. R. China
- Med+X Center for Manufacturing West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
13
|
Lan K, Wei Q, Zhao D. Versatile Synthesis of Mesoporous Crystalline TiO 2 Materials by Monomicelle Assembly. Angew Chem Int Ed Engl 2022; 61:e202200777. [PMID: 35194915 DOI: 10.1002/anie.202200777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/10/2022]
Abstract
Mesoscale TiO2 structures have realized many technological applications-ranging from catalysis and biomedicine to energy storage and conversion-because of their large mesoporosities offering desirable accessibility and mass transport. Tailoring mesoporous TiO2 structures with novel mesoscopic and microscopic configurations is envisaged to offer ample opportunities for further applications. In this Review, we explain how to synthesize novel mesoporous TiO2 materials and present recent examples. An emphasis is placed on a "monomicelle assembly" strategy as an emerging and powerful approach to direct the formation of mesostructured TiO2 with precise control over its structural orientations and architectures. Furthermore, typical examples of mesoporous TiO2 for applications in batteries and photocatalysis are highlighted. The Review ends with an outlook towards the synthesis of mesoporous TiO2 with tailored architectures by self-assembly, which could pave the way for developing advanced energy conversion and storage devices.
Collapse
Affiliation(s)
- Kun Lan
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
Wu Y, Cui J, Ling Y, Wang X, Fu J, Jing C, Cheng J, Ma Y, Liu J, Liu S. Polypyrrole Cubosomes with Ordered Ultralarge Mesopore for Controllable Encapsulation and Release of Albumin. NANO LETTERS 2022; 22:3685-3690. [PMID: 35446565 DOI: 10.1021/acs.nanolett.2c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite substantial progress in porous materials over past years, controllable preparation of conductive polymers (CPs) with continuous large pores is challenging, which are important for diverse applications, including energy storage, electrocatalysis, and biological separations. Here, we develop an unprecedented ordered bicontinuous mesoporous PPy cubosomes (mPPy-cs) using a soft-template strategy, resulting in ultralarge pores of ∼45 nm and high specific surface area of 69.5 m2 g-1. Along with their unique characteristics of adjustable surface charges and sensitivity to pH, mPPy-cs exhibited a near quantitative adsorption of albumin within 30 min, enabling efficient separation from immunoglobulin G, a typical inclusion in commercial albumin products. Moreover, the absorbed albumin could be further released in a controlled manner by lowering the pH. This work provides a feasible strategy for bottom-up construction of CPs with tailored pore sizes and nanoarchitectures, expected to attract significant attention to their properties and applications.
Collapse
Affiliation(s)
- Yong Wu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
| | - Jing Cui
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
- Shanghai Academy of Quality Management, Shanghai 200050, China
| | - Yang Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, P.R. China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
15
|
Lan K, Wei Q, Zhao D. Versatile Synthesis of Mesoporous Crystalline TiO
2
Materials by Monomicelle Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kun Lan
- Laboratory of Advanced Materials Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering Fujian Key Laboratory of Materials Genome Xiamen Key Laboratory of High Performance Metals and Materials College of Materials Xiamen University Xiamen 361005 P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
16
|
Zhu C, Xue H, Zhao H, Fei T, Liu S, Chen Q, Gao B, Zhang T. A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta 2022; 242:123289. [DOI: 10.1016/j.talanta.2022.123289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
|
17
|
Gou Z, Qu H, Liu H, Ma Y, Zong L, Li B, Xie C, Li Z, Li W, Wang L. Coupling of N-Doped Mesoporous Carbon and N-Ti 3 C 2 in 2D Sandwiched Heterostructure for Enhanced Oxygen Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106581. [PMID: 35229469 DOI: 10.1002/smll.202106581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
2D heterostructures provide a competitive platform to tailor electrical property through control of layer structure and constituents. However, despite the diverse integration of 2D materials and their application flexibility, tailoring synergistic interlayer interactions between 2D materials that form electronically coupled heterostructures remains a grand challenge. Here, the rational design and optimized synthesis of electronically coupled N-doped mesoporous defective carbon and nitrogen modified titanium carbide (Ti3 C2 ) in a 2D sandwiched heterostructure, is reported. First, a F127-polydopamine single-micelle-directed interfacial assembly strategy guarantees the construction of two surrounding mesoporous N-doped carbon monolayers assembled on both sides of Ti3 C2 nanosheets. Second, the followed ammonia post-treatment successfully introduces N elements into Ti3 C2 structure and more defective sites in N-doped mesoporous carbon. Finally, the oxygen reduction reaction (ORR) and theoretical calculation prove the synergistic coupled electronic effect between N-Ti3 C2 and defective N-doped carbon active sites in the 2D sandwiched heterostructure. Compared with the control 2D samples (0.87-0.88 V, 4.90-5.15 mA cm-2 ), the coupled 2D heterostructure possesses the best onset potential of 0.90 V and limited density current of 5.50 mA cm-2 . Meanwhile, this catalyst exhibits superior methanol tolerance and cyclic durability. This design philosophy opens up a new thought for tailoring synergistic interlayer interactions between 2D materials.
Collapse
Affiliation(s)
- Zhaolin Gou
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Huiqi Qu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
| | - Hanfang Liu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yiru Ma
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lingbo Zong
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bin Li
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Congxia Xie
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai, Shanghai, 200433, China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
18
|
Yang H, Zhao Y, Chen Z, Huang S, Lu C, Ke C, Zhai G, Zhu J, Zhuang X. A Narrow Bandgap, Isocyanide‐based Coordination Polymer Framework for Micro‐Supercapacitors with AC Line‐Filtering Performance. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hang Yang
- School of Materials Science and Engineering Changzhou University Changzhou 213164 China
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Yazhen Zhao
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenying Chen
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Senhe Huang
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Chenbao Lu
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Changchun Ke
- School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Guangqun Zhai
- School of Materials Science and Engineering Changzhou University Changzhou 213164 China
| | - Jinhui Zhu
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaodong Zhuang
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
19
|
Shi L, Li W, Wu Y, Wei F, Zhang T, Fu J, Jing C, Cheng J, Liu S. Controlled Synthesis of Mesoporous π-Conjugated Polymer Nanoarchitectures as Anode for Lithium-ions Battery. Macromol Rapid Commun 2022; 43:e2100897. [PMID: 35182088 DOI: 10.1002/marc.202100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Indexed: 11/06/2022]
Abstract
Conjugated polymers possess better electron conductivity due to large π-electron conjugated configuration endowing them significant scientific and technological interest. However, the obvious deficiency of active-site underutilization impairs their electrochemical performance. Therefore, designing and engineering π-conjugated polymers with rich redox functional groups and mesoporous architectures could offer new opportunities for them in these emerging applications and further expand their application scopes. Herein, a series of 1, 3, 5-tris(4-aminophenyl) benzene (TAPB)-based π-conjugated mesoporous polymers (π-CMPs) are constructed by one-pot emulsion-induced interface assembly strategy. Furthermore, co-induced in-situ polymerization on 2D interfaces by emulsion and micelle is explored, which delivered sandwiched 2D mesoporous π-CMPs coated graphene oxides (GO@mPTAPB). Benefiting from specific redox-active functional groups, excellent electron conductivity and 2D mesoporous conjugated framework, GO@mPTAPB exhibits high capability of accommodating Li+ anions (up to 382 mAh g-1 at 0.2 A g-1 ) and outstanding electrochemical stability (87.6% capacity retention after 1000 cycles). The ex-situ Raman and impedance spectrum are further applied to reveal the high reversibility of GO@mPTAPB. This work will greatly promote the development of advanced π-CMPs-based organic anodes towards energy storage devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Limin Shi
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P.R. China
| | - Wenda Li
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P.R. China
| | - Yong Wu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P.R. China
| | - Facai Wei
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P.R. China
| | - Tingting Zhang
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P.R. China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, 75 Daxue Road, Zhengzhou, 450052, P. R. China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P.R. China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P.R. China.,State Key Lab of Transducer Technology Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
20
|
Li Z, Guo J, Zhang M, Li G, Hao L. Gadolinium-Coated Mesoporous Silica Nanoparticle for Magnetic Resonance Imaging. Front Chem 2022; 10:837032. [PMID: 35242742 PMCID: PMC8885602 DOI: 10.3389/fchem.2022.837032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance molecular imaging can provide anatomic, functional and molecular information. However, because of the intrinsically low sensitivity of magnetic resonance imaging (MRI), high-performance MRI contrast agents are required to generate powerful image information for image diagnosis. Herein, we describe a novel T 1 contrast agent with magnetic-imaging properties facilitated by the gadolinium oxide (Gd2O3) doping of mesoporous silica nanoparticles (MSN). The size, morphology, composition, MRI relaxivity (r 1 ), surface area and pore size of these nanoparticles were evaluated following their conjugation with Gd2O3 to produce Gd2O3@MSN. This unique structure led to a significant enhancement in T 1 contrast with longitudinal relaxivity (r 1 ) as high as 51.85 ± 1.38 mM-1s-1. Gd2O3@MSN has a larger T 1 relaxivity than commercial gadolinium diethylene triamine pentaacetate (Gd-DTPA), likely due to the geometrical confinement effect of silica nanoparticles. These results suggest that we could successfully prepare a novel high-performance T 1 contrast agent, which may be a potential candidate for in-vivo MRI.
Collapse
Affiliation(s)
- Zhongtao Li
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Jing Guo
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Mengmeng Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Guohua Li
- Department of Radiology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
21
|
Jiang S, Li C, Zhang J, Li Q, Xu H, Xu F, Mai Y. Block Copolymer Self-Assembly Guided Synthesis of Mesoporous Carbons with In-Plane Holey Pores for Efficient Oxygen Reduction Reaction. Macromol Rapid Commun 2022; 43:e2100884. [PMID: 35170116 DOI: 10.1002/marc.202100884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Indexed: 11/09/2022]
Abstract
In this paper, we report a simple approach, using interfacial self-assembly of block copolymers (BCPs) on self-sacrificial templates, for preparing mesoporous carbons with in-plane holey pores, including nitrogen atom-doped carbon nanosheets and nanoflowers (denoted as NHCSs and NHCFs). The approach employed sheet- or flower-like layered double hydroxide as the templates, P123 copolymer as the pore-directing agent, and m-phenylenediamine as the carbon source. The holey mesopores may shorten the mass transfer distance to the internal active sites of stacked nanosheets, while the three-dimensional (3D) packing mode of nanosheets can reduce pore blockage caused by their tight stacking. Profiting from these structural advantages, acting as electrocatalysts for oxygen reduction reaction (ORR), both NHCSs and NHCFs show excellent catalytic performance better than that of carbon nanosheets without holey pores. Particularly, NHCFs exhibit a high half-wave-potential (0.82V) and a limiting current density (5.4 mA cm-2 ), close to those of commercial Pt/C catalysts. This study provides valuable clues on building mesoporous materials with in-plane holey pores as well as on the effect of pore structure and stacking mode of 2D materials on their electrocatalytic ORR performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Siqi Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haishan Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021; 121:14349-14429. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.
Collapse
Affiliation(s)
- Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yonghui Deng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
23
|
Xiao Z, Han J, He H, Zhang X, Xiao J, Han D, Kong D, Wang B, Yang QH, Zhi L. A template oriented one-dimensional Schiff-base polymer: towards flexible nitrogen-enriched carbonaceous electrodes with ultrahigh electrochemical capacity. NANOSCALE 2021; 13:19210-19217. [PMID: 34787151 DOI: 10.1039/d1nr05618b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-ion capacitors (LICs) have attracted much attention considering their efficient combination of high energy density and high-power density. However, to meet the increasing requirements of energy storage devices and the flexible portable electronic equipment, it is still challenging to develop flexible LIC anodes with high specific capacity and excellent rate capability. Herein, we propose a delicate bottom-up strategy to integrate unique Schiff-base-type polymers into desirable one-dimensional (1D) polymeric structures. A secondary-polymerization-induced template-oriented synthesis approach realizes the 1D integration of Schiff-base porous organic polymers with appealing characteristics of a high nitrogen-doping level and developed pore channels, and a further thermalization yields flexible nitrogen-enriched carbon nanofibers with high specific capacity and fast ion transport. Remarkably, when used as the flexible anode in LICs, the NPCNF//AC LIC demonstrates a high energy density of 154 W h kg-1 at 500 W kg-1 and a high power density of 12.5 kW kg-1 at 104 W h kg-1. This work may provide a new scenario for synthesizing 1D Schiff-base-type polymer derived nitrogen-enriched carbonaceous materials towards promising free-standing anodes in LICs.
Collapse
Affiliation(s)
- Zhichang Xiao
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, P. R. China.
| | - Junwei Han
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, P. R. China
| | - Haiyong He
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xinghao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Jing Xiao
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, P. R. China
| | - Daliang Han
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, P. R. China
| | - Debin Kong
- College of New Energy, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, P. R. China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|
24
|
Hydrophilic arginine-functionalized mesoporous polydopamine-graphene oxide composites for glycopeptides analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1189:123049. [PMID: 34840084 DOI: 10.1016/j.jchromb.2021.123049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023]
Abstract
Considering the importance of glycopeptides in the clinical diagnosis of cancer and some serious diseases, the identification of glycopeptides from complex biological samples has attracted considerable attention. Effective pre-enrichment before mass spectrometry analysis plays an important role. In this work, a kind of hydrophilic two-dimensional composites (denoted as GO@MPDA@Arg) based on mesoporous polydopamine-graphene oxide were used to selectively enrich glycopeptides in biological samples. The mesoporous polydopamine (MPDA) layer self-assembled with template Pluronic F127 provided more binding sites to load arginine, and bound arginine enhanced the hydrophilicity of the material. As a result, GO@MPDA@Arg composites exhibited excellent enrichment performance for glycopeptides, containing good selectivity (IgG digests : BSA digests = 1:50, molar ratio), low detection limit for IgG digests (10 fmol μL-1), high loading capacity for IgG digests (200 μg mg-1), and good size exclusion (IgG digests : IgG : BSA = 1:100:100, mass ratio). In addition, mouse brain tissue was selected as the actual biological sample to further study the enrichment effect of GO@MPDA@Arg composites. In three parallel experiments, a total of 401 glycopeptides belonging to 233 glycoproteins were enriched from 200 μg digestion of mouse brain extract. The enrichment results demonstrate that GO@MPDA@Arg composites have application potential for glycopeptides enrichment in protein post-translational modification research.
Collapse
|
25
|
Li Q, Xu X, Guo J, Hill JP, Xu H, Xiang L, Li C, Yamauchi Y, Mai Y. Two‐Dimensional MXene‐Polymer Heterostructure with Ordered In‐Plane Mesochannels for High‐Performance Capacitive Deionization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jingru Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Haishan Xu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chen Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering The University of Queensland Brisbane QLD 4072 Australia
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
26
|
Li Q, Xu X, Guo J, Hill JP, Xu H, Xiang L, Li C, Yamauchi Y, Mai Y. Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. Angew Chem Int Ed Engl 2021; 60:26528-26534. [PMID: 34748252 DOI: 10.1002/anie.202111823] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 11/11/2022]
Abstract
The application of traditional electrode materials for high-performance capacitive deionization (CDI) has been persistently limited by their low charge-storage capacities, excessive co-ion expulsion and slow salt removal rates. Here we report a bottom-up approach to the preparation of a two-dimensional (2D) Ti3 C2 Tx MXene-polydopamine heterostructure having ordered in-plane mesochannels (denoted as mPDA/MXene). Interfacial self-assembly of mesoporous polydopamine (mPDA) monolayers on MXene nanosheets leads to the mPDA/MXene heterostructure, which exhibits several unique features: (1) MXene undergoes reversible ion intercalation/deintercalation and possesses high conductivity; (2) mPDA layers establish redox capacitive characteristics and Na+ selectivity, and also help to prevent self-stacking and oxidation of MXene; (3) in-plane mesochannels enable the smooth transport of ions at the internal spaces of this stacked 2D material. When applied as an electrode material for CDI, mPDA/MXene nanosheets exhibit top-level CDI performance and cycling stability compared to those of the so far reported 2D materials. Our study opens an avenue for the rational construction of MXene-organic hybrid heterostructures, and further motivates the development of high-performance CDI electrode materials.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingru Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Haishan Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
27
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
28
|
Zhang S, Weng Y, Ma C. Quantitative Nanomechanical Mapping of Polyolefin Elastomer at Nanoscale with Atomic Force Microscopy. NANOSCALE RESEARCH LETTERS 2021; 16:113. [PMID: 34216298 PMCID: PMC8254710 DOI: 10.1186/s11671-021-03568-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Elastomeric nanostructures are normally expected to fulfill an explicit mechanical role and therefore their mechanical properties are pivotal to affect material performance. Their versatile applications demand a thorough understanding of the mechanical properties. In particular, the time dependent mechanical response of low-density polyolefin (LDPE) has not been fully elucidated. Here, utilizing state-of-the-art PeakForce quantitative nanomechanical mapping jointly with force volume and fast force volume, the elastic moduli of LDPE samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 up to 2 k Hz. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young's modulus was discovered with increasing acquisition frequency. It was measured 11.7 ± 5.2 MPa at 0.1 Hz and increased to 89.6 ± 17.3 MPa at 2 kHz. Moreover, creep compliance experiment showed that instantaneous elastic modulus E1, delayed elastic modulus E2, viscosity η, retardation time τ were 22.3 ± 3.5 MPa, 43.3 ± 4.8 MPa, 38.7 ± 5.6 MPa s and 0.89 ± 0.22 s, respectively. The multiparametric, multifunctional local probing of mechanical measurement along with exceptional high spatial resolution imaging open new opportunities for quantitative nanomechanical mapping of soft polymers, and can potentially be extended to biological systems.
Collapse
Affiliation(s)
- Shuting Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Yihui Weng
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chunhua Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
29
|
Luo H, Kaneti YV, Ai Y, Wu Y, Wei F, Fu J, Cheng J, Jing C, Yuliarto B, Eguchi M, Na J, Yamauchi Y, Liu S. Nanoarchitectured Porous Conducting Polymers: From Controlled Synthesis to Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007318. [PMID: 34085735 DOI: 10.1002/adma.202007318] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Conductive polymers (CPs) integrate the inherent characteristics of conventional polymers and the unique electrical properties of metals. They have aroused tremendous interest over the last decade owing to their high conductivity, robust and flexible properties, facile fabrication, and cost-effectiveness. Compared to bulk CPs, porous CPs with well-defined nano- or microstructures possess open porous architectures, high specific surface areas, more exposed reactive sites, and remarkably enhanced activities. These attractive features have led to their applications in sensors, energy storage and conversion devices, biomedical devices, and so on. In this review article, the different strategies for synthesizing porous CPs, including template-free and template-based methods, are summarized, and the importance of tuning the morphology and pore structure of porous CPs to optimize their functional performance is highlighted. Moreover, their representative applications (energy storage devices, sensors, biomedical devices, etc.) are also discussed. The review is concluded by discussing the current challenges and future development trend in this field.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yusuf Valentino Kaneti
- JST-ERATO Yamauchi Materials Space-Tectonics and World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Engineering Physics Department, Institute of Technology Bandung, Bandung, 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
| | - Yan Ai
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yong Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Facai Wei
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450002, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Brian Yuliarto
- Engineering Physics Department, Institute of Technology Bandung, Bandung, 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space-Tectonics and World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
30
|
Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat Commun 2021; 12:3563. [PMID: 34117228 PMCID: PMC8196154 DOI: 10.1038/s41467-021-23819-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
The fast-growing interest for two-dimensional (2D) nanomaterials is undermined by their natural restacking tendency, which severely limits their practical application. Novel porous heterostructures that coordinate 2D nanosheets with monolayered mesoporous scaffolds offer an opportunity to greatly expand the library of advanced materials suitable for electrochemical energy storage technologies.
Collapse
|
31
|
You Y, Li F, Ai Y, Wei F, Cui J, Fu J, Zheng M, Liu S. Diblock copolymers directing construction of hierarchically porous metal-organic frameworks for enhanced-performance supercapacitors. NANOTECHNOLOGY 2021; 32:165601. [PMID: 33455954 DOI: 10.1088/1361-6528/abdc8d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A rationally designed strategy is developed to synthesize hierarchically porous Fe-based metal-organic frameworks (P-Fe-MOF) via solution-based self-assembly of diblock copolymers. The well-chosen amphiphilic diblock copolymers (BCP) of polystyrene-block-poly(acrylic acid) (PS-b-PAA) exhibits outstanding tolerance capability of rigorous conditions (e.g. strong acidity or basicity, high temperature and pressure), steering the peripheral crystallization of Fe-based MOF by anchoring ferric ions with outer PAA block. Importantly, the introduction of BCP endows MOF materials with additional mesopores (∼40 nm) penetrating whole crystals, along with their inherent micropores and introduced macropores. The unique hierarchically porous architecture contributes to fast charge transport and electrolyte ion diffusion, and thus promotes their redox reaction kinetics processes. Accordingly, the resultant P-Fe-MOF material as a new electrode material for supercapacitors delivers the unprecedented highest specific capacitance up to 78.3 mAh g-1 at a current density of 1 A g-1, which is 9.8 times than that of Fe-based MOF/carbon nanotubes composite electrode reported previously. This study may inspire new design of porous metal coordination polymers and advanced electrode materials for energy storage and conversion field.
Collapse
Affiliation(s)
- Yuxiu You
- Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Fanggang Li
- Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yan Ai
- State Key Laboratory of Precision Spectroscopy & Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Facai Wei
- State Key Laboratory of Precision Spectroscopy & Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Jing Cui
- State Key Laboratory of Precision Spectroscopy & Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Maojun Zheng
- Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy & Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, People's Republic of China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
32
|
Wang H, Qiu F, Lu C, Zhu J, Ke C, Han S, Zhuang X. A Terpyridine-Fe 2+-Based Coordination Polymer Film for On-Chip Micro-Supercapacitor with AC Line-Filtering Performance. Polymers (Basel) 2021; 13:polym13071002. [PMID: 33805228 PMCID: PMC8037160 DOI: 10.3390/polym13071002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
The preparation of redox-active, ultrathin polymer films as the electrode materials represents a major challenge for miniaturized flexible electronics. Herein, we demonstrated a liquid–liquid interfacial polymerization approach to a coordination polymer films with ultrathin thickness from tri(terpyridine)-based building block and iron atoms. The as-synthesized polymer films exhibit flexible properties, good redox-active and narrow bandgap. After directly transferred to silicon wafers, the on-chip micro-supercapacitors of TpPB-Fe-MSC achieved the high specific capacitances of 1.25 mF cm−2 at 50 mV s−1 and volumetric energy density of 5.8 mWh cm−3, which are superior to most of semiconductive polymer-based micro-supercapacitor (MSC) devices. In addition, as-fabricated on-chip MSCs exhibit typical alternating current (AC) line-filtering performance (−71.3° at 120 Hz) and a short resistance–capacitance (RC) time (0.06 ms) with the electrolytes of PVA/LiCl. This study provides a simple interfacial approach to redox-active polymer films for microsized energy storage devices.
Collapse
Affiliation(s)
- Hongxing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China;
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China;
- Correspondence: (F.Q.); (S.H.); (X.Z.)
| | - Chenbao Lu
- Frontiers Science Center for Transformative Molecules, The Meso-Entropy Matter Lab, The State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (C.L.); (J.Z.)
| | - Jinhui Zhu
- Frontiers Science Center for Transformative Molecules, The Meso-Entropy Matter Lab, The State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (C.L.); (J.Z.)
| | - Changchun Ke
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China;
- Correspondence: (F.Q.); (S.H.); (X.Z.)
| | - Xiaodong Zhuang
- Frontiers Science Center for Transformative Molecules, The Meso-Entropy Matter Lab, The State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (C.L.); (J.Z.)
- Correspondence: (F.Q.); (S.H.); (X.Z.)
| |
Collapse
|
33
|
Wang Y, Lv X, Zou S, Lin X, Ni Y. MoS 2/polyaniline/functionalized carbon cloth electrode materials for excellent supercapacitor performance. RSC Adv 2021; 11:10941-10950. [PMID: 35423601 PMCID: PMC8695988 DOI: 10.1039/d0ra09126j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, molybdenum disulfide (MoS2), polyaniline (PANI) and their composite (MoS2/PANI) were facilely prepared via a liquid-phase method and in situ polymerization. An MoS2/PANI/functionalized carbon cloth (MoS2/PANI/FCC) was facilely constructed by a drop-casting method. MoS2/PANI-10/FCC displays remarkable electrochemical performances, and its specific capacitances varied from 452.25 to 355.5 F g−1 at current densities ranging from 0.2 to 4 A g−1, which were higher than those of MoS2/CC (from 56.525 to 7.5 F g−1) and pure PANI/CC (319.5 to 248.5 F g−1), respectively. More importantly, the MoS2-10/PANI/FCC electrode has a long cycling life, and a capacity retention of 87% was obtained after 1000 cycles at a large current density of 10 A g−1. Moreover, the MoS2/PANI-10/FCC-based symmetric supercapacitor also exhibits excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 72.8 F g−1 at a current density of 0.2 A g−1 and the capacitance retention of 85% is obtained after 1000 cycles. A MoS2/PANI/functionalized carbon cloth (MoS2/PANI/FCC) was constructed by a drop-casting method. Its specific capacitances were higher than those of MoS2/CC and pure PANI/CC.![]()
Collapse
Affiliation(s)
- Yanfang Wang
- College of Chemistry, Nanchang University Nanchang 330031 China +86 791 83969500 +86 791 83969500
| | - Xinrong Lv
- College of Chemistry, Nanchang University Nanchang 330031 China +86 791 83969500 +86 791 83969500
| | - Suyan Zou
- College of Chemistry, Nanchang University Nanchang 330031 China +86 791 83969500 +86 791 83969500
| | - Xiaoyun Lin
- College of Chemistry, Nanchang University Nanchang 330031 China +86 791 83969500 +86 791 83969500.,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University Nanchang 330031 China
| | - Yongnian Ni
- College of Chemistry, Nanchang University Nanchang 330031 China +86 791 83969500 +86 791 83969500
| |
Collapse
|
34
|
Chen Z, Chen Y, Zhao Y, Qiu F, Jiang K, Huang S, Ke C, Zhu J, Tranca D, Zhuang X. B/N-Enriched Semi-Conductive Polymer Film for Micro-Supercapacitors with AC Line-Filtering Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2523-2531. [PMID: 33570418 DOI: 10.1021/acs.langmuir.0c03635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microsupercapacitors (MSCs) have drawn great attention for use as miniaturized electrochemical energy storage devices in portable, wearable, as well as implantable electronics. Many materials have been developed as electrodes for MSCs. However, the thin-film fabrication for most of these materials involves multistep operations, including filtration, spray coating, and sputtering. Most importantly, these methods present challenges for the preparation of thin films at the atomic or molecular scale. Therefore, the understanding of performance of ultrathin-film-based MSCs remains challenge. Herein, a B/N-enriched polymer film is successfully prepared using the photoassisted interfacial approach. The as-synthesized polymer film exhibits typical semiconductive characteristics and can be easily scaled up to a large area of up to tens of square centimeters. This ultrathin polymer film can be directly transferred to silicon wafers to fabricate MSC through laser scribing. The prepared MSC exhibits specific volumetric capacitance as high as 20.9 F cm-3, corresponding to volumetric energy density of 2.9 mWh cm-3 (at 0.1 V s-1). Moreover, the volumetric power density can reach 1461 W cm-3, surpassing most existing semiconductive polymer film-based MSC devices. In addition, the prepared MSC exhibits typical AC line-filtering ability (-67° at 120 Hz). This study offers a facile interfacial approach to preparing semiconductive polymer films with aromatic moieties for microsized energy storage devices.
Collapse
Affiliation(s)
- Zhenying Chen
- The meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Yuanhai Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yazhen Zhao
- The meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Kaiyue Jiang
- The meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Senhe Huang
- The meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Changchun Ke
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinhui Zhu
- The meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Diana Tranca
- The meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaodong Zhuang
- The meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
35
|
Qiu P, Yao Y, Li W, Sun Y, Jiang Z, Mei B, Gu L, Zhang Q, Shang T, Yu X, Yang J, Fang Y, Zhu G, Zhang Z, Zhu X, Zhao T, Jiang W, Fan Y, Wang L, Ma B, Liu L, Yu Y, Luo W. Sub-nanometric Manganous Oxide Clusters in Nitrogen Doped Mesoporous Carbon Nanosheets for High-Performance Lithium-Sulfur Batteries. NANO LETTERS 2021; 21:700-708. [PMID: 33301324 DOI: 10.1021/acs.nanolett.0c04322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The greatest challenge for lithium-sulfur (Li-S) batteries application is the development of cathode hosts to address the low conductivity, huge volume change, and shuttling effect of sulfur or lithium polysulfides (LiPs). Herein, we demonstrate a composite host to circumvent these problems by confining sub-nanometric manganous oxide clusters (MOCs) in nitrogen doped mesoporous carbon nanosheets. The atomic structure of MOCs is well-characterized and optimized via the extended X-ray absorption fine structure analysis and density functional theory (DFT) calculations. Benefiting from the unique design, the assembled Li-S battery displays remarkable electrochemical performances including a high reversible capacity (990 mAh g-1 after 100 cycles at 0.2 A g-1) and a superior cycle life (60% retention over 250 cycles at 2 A g-1). Both the experimental results and DFT calculations demonstrate that the well-dispersed MOCs could significantly promote the chemisorption of LiPs, thus greatly improving the capacity and rate performance.
Collapse
Affiliation(s)
- Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yang Sun
- School of Materials, Sun Yat-sen University, Guangzhou 510006, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201213, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201213, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tongtong Shang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiqian Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Yuan Fang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Guihua Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Ziling Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Xiaohang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Tao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Bin Ma
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Liangliang Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
36
|
Yang X, Li Y, Ma J, Zou Y, Zhou X, Cheng X, Alharthi FA, Alghamdi AA, Deng Y. General and Efficient Synthesis of Two-Dimensional Monolayer Mesoporous Materials with Diverse Framework Compositions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1222-1233. [PMID: 33356112 DOI: 10.1021/acsami.0c18027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) mesoporous materials have received substantial research interest due to their highly exposed active sites and unusual nanoconfinement effect. However, controllable and efficient synthesis of 2D mesoporous materials and investigation of their intrinsic properties have remained quite rare. Herein, a general and effective surface-limited cooperative assembly (SLCA) method enabled by leveling precursor solutions on KCl crystals via centrifugation is employed to conveniently synthesize two-dimensional (2D) monolayer mesoporous materials with different compositions. This novel strategy is performed in a manner similar to spin coating, not only enabling generation of ultrathin mesostructured composite film on KCl particles and recycling excessive precursor solution but also providing favorable solvent annealing environment for the film to form ordered mesostructures. Taking monolayer mesoporous Ce0.8Zr0.2O2 solid solutions as a sample, they display ultrathin nanosheet morphology with a thickness of ∼20 nm, highly open porous structure, and easily accessible active sites of surface superoxide species. Upon decoration of 2D mesoporous Ce0.8Zr0.2O2 nanosheets with Pt nanoparticles, the obtained catalyst exhibits superior catalytic activity and stability toward CO oxidation with a low onset temperature of 30 °C and a 100% conversion temperature of 95 °C, which are 35-70 °C lower than those for their counterpart materials, namely, three-dimensional (3D) mesoporous Pt/Ce0.8Zr0.2O2. Moreover, their TOFPt value is ∼11.3 times higher than that of 3D mesoporous Pt/Ce0.8Zr0.2O2. Characterizations based on various techniques indicate that such an outstanding catalytic performance is due to the ultrashort distance (20 nm) of mass diffusion, highly exposed active sites, rich surface-chemisorbed oxygen, and the synergistic effect between the Ce0.8Zr0.2O2 matrix and Pt species.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Yidong Zou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Xinran Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Fahad A Alharthi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Alghamdi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
37
|
|
38
|
Zhou Y, Tao X, Chen G, Lu R, Wang D, Chen MX, Jin E, Yang J, Liang HW, Zhao Y, Feng X, Narita A, Müllen K. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat Commun 2020; 11:5892. [PMID: 33208746 PMCID: PMC7674447 DOI: 10.1038/s41467-020-19599-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022] Open
Abstract
Metal single-atom catalysts (M-SACs) have emerged as an attractive concept for promoting heterogeneous reactions, but the synthesis of high-loading M-SACs remains a challenge. Here, we report a multilayer stabilization strategy for constructing M-SACs in nitrogen-, sulfur- and fluorine-co-doped graphitized carbons (M = Fe, Co, Ru, Ir and Pt). Metal precursors are embedded into perfluorotetradecanoic acid multilayers and are further coated with polypyrrole prior to pyrolysis. Aggregation of the metals is thus efficiently inhibited to achieve M-SACs with a high metal loading (~16 wt%). Fe-SAC serves as an efficient oxygen reduction catalyst with half-wave potentials of 0.91 and 0.82 V (versus reversible hydrogen electrode) in alkaline and acid solutions, respectively. Moreover, as an air electrode in zinc–air batteries, Fe-SAC demonstrates a large peak power density of 247.7 mW cm−2 and superior long-term stability. Our versatile method paves an effective way to develop high-loading M-SACs for various applications. Metal single-atom catalysts offer great potential in bridging the gap between heterogeneous and homogeneous catalysis. Here the authors demonstrate a multilayer stabilization strategy for fabricating high-loading single-atom catalysts including non-precious and noble metals.
Collapse
Affiliation(s)
- Yazhou Zhou
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.,School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiafang Tao
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.,School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Ruihu Lu
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Ding Wang
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Ming-Xi Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Enquan Jin
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany. .,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.
| |
Collapse
|
39
|
Gao J, Qin J, Chang J, Liu H, Wu ZS, Feng L. NH 3 Sensor Based on 2D Wormlike Polypyrrole/Graphene Heterostructures for a Self-Powered Integrated System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38674-38681. [PMID: 32805960 DOI: 10.1021/acsami.0c10794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid development of a NH3 sensor puts forward a great challenge for active materials and integrated sensing systems. In this work, an ultrasensitive NH3 sensor based on two-dimensional (2D) wormlike mesoporous polypyrrole/reduced graphene oxide (w-mPPy@rGO) heterostructures, synthesized by a universal soft template method is reported, revealing the structure-property coupling effect of the w-mPPy/rGO heterostructure for sensing performance improvement, and demonstrates great potential in the integration of a self-powered sensor system. Remarkably, the 2D w-mPPy@rGO heterostructrure exhibits preferable response toward NH3 (ΔR/R0 = 45% for 10 ppm NH3 with a detection limit of 41 ppb) than those of the spherical mesoporous hybrid (s-mPPy@rGO) and the nonporous hybrid (n-PPy@rGO) due to its large specific surface area (193 m2/g), which guarantees fast gas diffusion and transport of carriers. Moreover, the w-mPPy@rGO heterostructures display outstanding selectivity to common volatile organic compounds (VOCs), H2S, and CO, prominent antihumidity inteference superior to most existing chemosensors, superior reversibility and favorable repeatability, providing high potential for practicability. Thus, a self-powered sensor system composed of a nanogenerator, a lithium-ion battery, and a w-mPPy@rGO-based sensor was fabricated to realize wireless, portable, cost-effective, and light-weight NH3 monitoring. Impressively, our self-powered sensor system exhibits high response toward 5-40 mg NH4NO3, which is a common explosive to generate NH3 via alkaline hydrolysis, rendering it a highly prospective technique in a NH3-based sensing field.
Collapse
Affiliation(s)
- Jianmei Gao
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieqiong Qin
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Chang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanqing Liu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
40
|
Tu K, Zou L, Yang C, Su Y, Lu C, Zhu J, Zhang F, Ke C, Zhuang X. Ionic Polyimide Derived Porous Carbon Nanosheets as High-Efficiency Oxygen Reduction Catalysts for Zn-Air Batteries. Chemistry 2020; 26:6525-6534. [PMID: 31788872 DOI: 10.1002/chem.201904769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/28/2019] [Indexed: 11/11/2022]
Abstract
Two-dimensional (2D) porous carbon nanosheets (2DPCs) have attracted great attention for their good porosity and long-distance conductivity. Factors such as templates, precursors, and carbonization-activation methods, directly determine their performance. However, rational design and preparation of porous carbon materials with controlled 2D morphology and heteroatom dopants remains a challenge. Therefore, an ionic polyimide with both sp2 - and sp3 -hybridized nitrogen atoms was prepared as a precursor for fabricating N-doped hexagonal porous carbon nanosheets through a hard-template approach. Because of the large surface area and efficient charge-mass transport, the resulting activated 2D porous carbon nanosheets (2DPCs-a) displayed promising electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline and acidic media, such as ultralow half-wave potential (0.83 vs. 0.84 V of Pt/C) and superior limiting current density (5.42 vs. 5.14 mA cm-2 of Pt/C). As air cathodes in Zn-air batteries, the as-developed 2DPCs-a exhibited long stability and high capacity (up to 614 mA h g-1 ), which are both higher than those of commercial Pt/C. This work provides a convenient method for controllable and scalable 2DPCs fabrication as well as new opportunities to develop high-efficiency electrocatalysts for ORR and Zn-air batteries.
Collapse
Affiliation(s)
- Kejun Tu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lingyi Zou
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chongqing Yang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chenbao Lu
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jinhui Zhu
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fan Zhang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Changchun Ke
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
41
|
Jiang K, Weng Q. Miniaturized Energy Storage Devices Based on Two-Dimensional Materials. CHEMSUSCHEM 2020; 13:1420-1446. [PMID: 31637825 DOI: 10.1002/cssc.201902520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Indexed: 06/10/2023]
Abstract
A growing demand for miniaturized biomedical sensors, microscale self-powered electronic systems, and many other portable, wearable, and integratable electronic devices is continually stimulating the rapid development of miniaturized energy storage devices (MESDs). Miniaturized batteries (MBs) and supercapacitors (MSCs) were considered to be suitable energy storage devices to power microelectronics uninterruptedly with reasonable energy and power densities. However, in addition to similar challenges encountered with electrode materials in conventional energy storage devices, their performances are also greatly affected by microfabrication technologies, as well as the challenges of how to realize stable and high-performance MESDs in such a limited footprint area. Benefiting from the unique architectural engineering of two-dimensional materials and the emergence of precise and controllable microfabrication techniques, the output electrochemical performances of MSCs and MBs are improving rapidly. This minireview summarizes recent advances in MSCs and MBs built from two-dimensional materials, including electrode/device configuration designs, material synthesis, microfabrication processes, smart function incorporations, and system integrations. An introduction to configurations of the MESDs, from linear fibrous shapes, planar sandwich thin-film or interdigital structures, to three-dimensional configurations, is presented. The fundamental influences of the electrode material and configuration designs on the exhibited MB/MSC electrochemical performances are also highlighted.
Collapse
Affiliation(s)
- Kang Jiang
- School of Materials Science and Engineering, Hunan University, Changsha, 110016, P.R. China
| | - Qunhong Weng
- School of Materials Science and Engineering, Hunan University, Changsha, 110016, P.R. China
| |
Collapse
|
42
|
Liu L, Yang X, Xie Y, Liu H, Zhou X, Xiao X, Ren Y, Ma Z, Cheng X, Deng Y, Zhao D. A Universal Lab-on-Salt-Particle Approach to 2D Single-Layer Ordered Mesoporous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906653. [PMID: 31995257 DOI: 10.1002/adma.201906653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Indexed: 05/27/2023]
Abstract
The advantages of existing ordered mesoporous materials have not yet been fully realized, due to their limited accessibility of in-pore surface and long mass-diffusion length. A general, controllable, and scalable synthesis of a family of two-dimensional (2D) single-layer ordered mesoporous materials (SOMMs) with completely exposed mesopore channels, significantly improved mass diffusion, and diverse framework composition is reported here. The SOMMs are synthesized via a surface-limited cooperative assembly (SLCA) on water-removable substrates of inorganic salts (e.g., NaCl), combined with vacuum filtration. As a proof of concept, the obtained CeO2 -based SOMMs show superior catalytic performance in CO oxidation with high conversion efficiency, ≈33 times higher than that of conventional bulk mesoporous CeO2 . This SLCA is a promising approach for developing next-generation porous materials for various applications.
Collapse
Affiliation(s)
- Liangliang Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yujie Xie
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Huan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP 3) Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xinran Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Xingyu Xiao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yuan Ren
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Zhen Ma
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP 3) Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| |
Collapse
|
43
|
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020; 49:4681-4736. [DOI: 10.1039/d0cs00021c] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper reviews the progress in the field of block copolymer-templated mesoporous materials, including synthetic methods, morphological and pore size control and their potential applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Dan Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Key Laboratory of Marine Chemistry Theory and Technology
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| |
Collapse
|
44
|
The Effect of SBA-15 Surface Modification on the Process of 18β-Glycyrrhetinic Acid Adsorption: Modeling of Experimental Adsorption Isotherm Data. MATERIALS 2019; 12:ma12223671. [PMID: 31703371 PMCID: PMC6888531 DOI: 10.3390/ma12223671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
This study aimed at the adsorption of 18β-glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid derivative of oleanane type, onto functionalized mesoporous SBA-15 silica and non-porous silica (Aerosil®) as the reference adsorbent. Although 18β-GA possesses various beneficial pharmacological properties including antitumor, anti-inflammatory, and antioxidant activity, it occurs is small amounts in plant materials. Thus, the efficient methods of this bioactive compound enrichment from vegetable raw materials are currently studied. Siliceous adsorbents were functionalized while using various alkoxysilane derivatives, such as (3-aminopropyl)trimethoxysilane (APTMS), [3-(methylamino)propyl]trimethoxysilane (MAPTMS), (N,N-dimethylaminopropyl)trimethoxysilane (DMAPTMS), and [3-(2-aminothylamino)propyl] trimethoxysilane (AEAPTMS). The effect of silica surface modification with agents differing in the structure and the order of amine groups on the adsorption capacity of the adsorbent and adsorption efficiency were thoroughly examined. The equilibrium adsorption data were analyzed while using the Langmuir, Freundlich, Redlich-Peterson, Temkin, Dubinin-Radushkevich, and Dubinin-Astakhov isotherms. Both linear regression and nonlinear fitting analysis were employed in order to find the best-fitted model. The adsorption isotherms of 18β-GA onto silicas functionalized with APTMS, MAPTMS, and AEAPTMS indicate the Langmuir-type adsorption, whereas sorbents modified with DMAPTMS show the constant distribution of the adsorbate between the adsorbent and the solution regardless of silica type. The Dubinin-Astakhov, Dubinin-Radushkevich, and Redlich-Peterson equations described the best the process of 18β-GA adsorption onto SBA-15 and Aerosil® silicas that were functionalized with APTMS, MAPTMS, and AEAPTMS, regardless of the method that was used for the estimation of isotherm parameters. Based on nonlinear fitting analysis (Dubinin-Astakhov model), it can be concluded that SBA-15 sorbent that was modified with APTMS, MAPTMS, and AEAPTMS is characterized by twice the adsorption capacity (202.8–237.3 mg/g) as compared to functionalized non-porous silica (118.2–144.2 mg/g).
Collapse
|
45
|
Lan K, Wei Q, Wang R, Xia Y, Tan S, Wang Y, Elzatahry A, Feng P, Mai L, Zhao D. Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly. J Am Chem Soc 2019; 141:16755-16762. [DOI: 10.1021/jacs.9b06962] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kun Lan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, PR China
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qiulong Wei
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Ruicong Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, PR China
| | - Yuan Xia
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, PR China
| | - Shuangshuang Tan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 Hubei, PR China
| | - Yanxiang Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ahmed Elzatahry
- Material Science and Technology Program, College of Arts and Science, Qatar University, Doha 2713, Qatar
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 Hubei, PR China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, PR China
| |
Collapse
|
46
|
Liu Z, Zhang H, Eredia M, Qiu H, Baaziz W, Ersen O, Ciesielski A, Bonn M, Wang HI, Samorì P. Water-Dispersed High-Quality Graphene: A Green Solution for Efficient Energy Storage Applications. ACS NANO 2019; 13:9431-9441. [PMID: 31386338 DOI: 10.1021/acsnano.9b04232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene has been the subject of widespread research during the past decade because of its outstanding physical properties which make it an ideal nanoscale material to investigate fundamental properties. Such characteristics promote graphene as a functional material for the emergence of disruptive technologies. However, to impact daily life products and devices, high-quality graphene needs to be produced in large quantities using an environmentally friendly protocol. In this context, the production of graphene which preserves its outstanding electronic properties using a green chemistry approach remains a key challenge. Herein, we report the efficient production of electrode material for micro-supercapacitors obtained by functionalization of water-dispersed high-quality graphene nanosheets with polydopamine. High-frequency (terahertz) conductivity measurements of the graphene nanosheets reveal high charge carrier mobility up to 1000 cm-2 V-1 s-1. The fine water dispersibility enables versatile functionalization of graphene, as demonstrated by the pseudocapacitive polydopamine coating of graphene nanosheets. The polydopamine functionalization causes a modest, i.e., 20%, reduction of charge carrier mobility. Thin film electrodes based on such hybrid materials for micro-supercapacitors exhibit excellent electrochemical performance, namely a volumetric capacitance of 340 F cm-3 and a power density of 1000 W cm-3, thus outperforming most of the reported graphene-based micro-supercapacitors. These results highlight the potential for water-dispersed, high-quality graphene nanosheets as a platform material for energy-storage applications.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Université de Strasbourg and CNRS , ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Heng Zhang
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Matilde Eredia
- Université de Strasbourg and CNRS , ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Haixin Qiu
- Université de Strasbourg and CNRS , ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) , UMR 7504 Université de Strasbourg and CNRS , 23 rue du Loess , 67034 Strasbourg , France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) , UMR 7504 Université de Strasbourg and CNRS , 23 rue du Loess , 67034 Strasbourg , France
| | - Artur Ciesielski
- Université de Strasbourg and CNRS , ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Paolo Samorì
- Université de Strasbourg and CNRS , ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| |
Collapse
|
47
|
Tian H, Qin J, Hou D, Li Q, Li C, Wu Z, Mai Y. General Interfacial Self‐Assembly Engineering for Patterning Two‐Dimensional Polymers with Cylindrical Mesopores on Graphene. Angew Chem Int Ed Engl 2019; 58:10173-10178. [DOI: 10.1002/anie.201903684] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/28/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Hao Tian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jieqiong Qin
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Dan Hou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhong‐Shuai Wu
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
48
|
Tian H, Qin J, Hou D, Li Q, Li C, Wu Z, Mai Y. General Interfacial Self‐Assembly Engineering for Patterning Two‐Dimensional Polymers with Cylindrical Mesopores on Graphene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hao Tian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jieqiong Qin
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Dan Hou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhong‐Shuai Wu
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
49
|
Cheng X, Tan D, Zeng S, Zhang X, Tan X, Shi J, Zhang B, Zheng L, Zhang F, Feng J, Liu L, Wan Q, Chen G, Han B, Zhang J, An P, Zhang J. Metal Ionic Liquids Produce Metal‐Dispersed Carbon‐Nitrogen Networks for Efficient CO
2
Electroreduction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiuyan Cheng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Dongxing Tan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Shaojuan Zeng
- Institute of Process EngineeringChinese Academy of Sciences Beijing 100190 P.R. China
| | - Xiangping Zhang
- Institute of Process EngineeringChinese Academy of Sciences Beijing 100190 P.R. China
| | - Xiuniang Tan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jinbiao Shi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Bingxing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Lirong Zheng
- Beijng Synchrotron Radiation Facility (BSRF), Institute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 P.R. China
| | - Fanyu Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jiaqi Feng
- Institute of Process EngineeringChinese Academy of Sciences Beijing 100190 P.R. China
| | - Lifei Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Qiang Wan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Gang Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center Beijing 101400 P.R. China
| | - Jing Zhang
- Beijng Synchrotron Radiation Facility (BSRF), Institute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 P.R. China
| | - Pengfei An
- Beijng Synchrotron Radiation Facility (BSRF), Institute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 P.R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P.R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center Beijing 101400 P.R. China
| |
Collapse
|
50
|
|