1
|
Wang H, Fan L, Choy JS, Kassab GS, Lee LC. Mechanisms of coronary sinus reducer for treatment of myocardial ischemia: in silico study. J Appl Physiol (1985) 2024; 136:1157-1169. [PMID: 38511210 PMCID: PMC11368528 DOI: 10.1152/japplphysiol.00910.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024] Open
Abstract
The coronary sinus reducer (CSR) is an emerging medical device for treating patients with refractory angina, often associated with myocardial ischemia. Patients implanted with CSR have shown positive outcomes, but the underlying mechanisms are unclear. This study sought to understand the mechanisms of CSR by investigating its effects on coronary microcirculation hemodynamics that may help explain the therapy's efficacy. We applied a validated computer model of the coronary microcirculation to investigate how CSR affects hemodynamics under different degrees of coronary artery stenosis. With moderate coronary stenosis, an increase in capillary transit time (CTT) [up to 69% with near-complete coronary sinus (CS) occlusion] is the key change associated with CSR. Because capillaries in the microcirculation can still receive oxygenated blood from the upstream artery with moderate stenosis, the increase in CTT allows more time for the exchange of gases and nutrients, aiding tissue oxygenation. With severe coronary stenosis; however, the redistribution of blood draining from the nonischemic region to the ischemic region (up to 96% with near-complete CS occlusion) and the reduction in capillary flow heterogeneity are the key changes associated with CSR. Because blood draining from the nonischemic region is not completely devoid of O2, the redistribution of blood to the capillaries in the ischemic region by CSR is beneficial especially when little or no oxygenated blood reaches these capillaries. This simulation study provides insights into the mechanisms of CSR in improving clinical symptoms. The mechanisms differ with the severity of the upstream stenosis.NEW & NOTEWORTHY Emerging coronary venous retroperfusion treatments, particularly coronary sinus reducer (CSR) for refractory angina linked to myocardial ischemia, show promise; however, their mechanisms of action are not well understood. We find that CSR's effectiveness varies with the severity of coronary stenosis. In moderate stenosis, CSR improves tissue oxygenation by increasing capillary transit time, whereas in severe stenosis, it redistributes blood from nonischemic to ischemic regions and reduces capillary flow heterogeneity.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, United States
| | - Lei Fan
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jenny S Choy
- California Medical Innovations Institute, San Diego, California, United States
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, California, United States
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
2
|
Mohl W, Molnár L, Merkely B. Cardiac Vein Anatomy and Transcoronary Sinus Catheter Interventions in Myocardial Ischemia. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
3
|
Wu H, Kassab GS, Tan W, Huo Y. Flow velocity is relatively uniform in the coronary sinusal venous tree: structure-function relation. J Appl Physiol (1985) 2017; 122:60-67. [PMID: 27789767 DOI: 10.1152/japplphysiol.00295.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/06/2016] [Accepted: 10/23/2016] [Indexed: 11/22/2022] Open
Abstract
The structure and function of coronary venous vessels are different from those of coronary arteries and are much less understood despite the therapeutic significance of coronary sinus interventions. Here we aimed to perform a hemodynamic analysis in the entire coronary sinusal venous tree, which enhances the understanding of coronary venous circulation. A hemodynamic model was developed in the entire coronary sinusal venous tree reconstructed from casts and histological data of five swine hearts. Various morphometric and hemodynamic parameters were determined in each vessel and analyzed in the diameter-defined Strahler system. The findings demonstrate an area preservation between the branches of the coronary venous system that leads to relatively uniform flow velocity in different orders of the venous tree. Pressure and circumferential and wall shear stresses decreased abruptly from the smallest venules toward vessels of order -5 (80.4 ± 39.1 µm) but showed a more modest change toward the coronary sinus. The results suggest that vessels of order -5 denote a hemodynamic transition from the venular bed to the transmural subnetwork. In contrast with the coronary arterial tree, which obeys the minimum energy hypothesis, the coronary sinusal venous system complies with the area-preserving rule for efficient venous return, i.e., da Vinci's rule. The morphometric and hemodynamic model serves as a physiological reference state to test various therapeutic rationales through the venous route. NEW & NOTEWORTHY A hemodynamic model is developed in the entire coronary sinusal venous tree of the swine heart. A key finding is that the coronary sinusal venous system complies with the area preservation rule for efficient venous return while the coronary arterial tree obeys the minimum energy hypothesis. This model can also serve as a physiological reference state to test various therapeutic rationales through the venous route.
Collapse
Affiliation(s)
- Hao Wu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China.,State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China
| | | | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China; .,State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China.,Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China; and
| | - Yunlong Huo
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China.,State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China.,College of Medicine, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
4
|
Mohl W, Molnár L, Merkely B. Cardiac Vein Anatomy and Transcoronary Sinus Catheter Interventions in Myocardial Ischemia. Interv Cardiol 2016. [DOI: 10.1002/9781118983652.ch84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Werner Mohl
- Department of Cardiac Surgery; Medical University of Vienna; Vienna Austria
| | | | | |
Collapse
|
5
|
Verheye S, Jolicœur EM, Behan MW, Pettersson T, Sainsbury P, Hill J, Vrolix M, Agostoni P, Engstrom T, Labinaz M, de Silva R, Schwartz M, Meyten N, Uren NG, Doucet S, Tanguay JF, Lindsay S, Henry TD, White CJ, Edelman ER, Banai S. Efficacy of a device to narrow the coronary sinus in refractory angina. N Engl J Med 2015; 372:519-27. [PMID: 25651246 PMCID: PMC6647842 DOI: 10.1056/nejmoa1402556] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Many patients with coronary artery disease who are not candidates for revascularization have refractory angina despite standard medical therapy. The balloon-expandable, stainless steel, hourglass-shaped, coronary-sinus reducing device creates a focal narrowing and increases pressure in the coronary sinus, thus redistributing blood into ischemic myocardium. METHODS We randomly assigned 104 patients with Canadian Cardiovascular Society (CCS) class III or IV angina (on a scale from I to IV, with higher classes indicating greater limitations on physical activity owing to angina) and myocardial ischemia, who were not candidates for revascularization, to implantation of the device (treatment group) or to a sham procedure (control group). The primary end point was the proportion of patients with an improvement of at least two CCS angina classes at 6 months. RESULTS A total of 35% of the patients in the treatment group (18 of 52 patients), as compared with 15% of those in the control group (8 of 52), had an improvement of at least two CCS angina classes at 6 months (P=0.02). The device was also associated with improvement of at least one CCS angina class in 71% of the patients in the treatment group (37 of 52 patients), as compared with 42% of those in the control group (22 of 52) (P=0.003). Quality of life as assessed with the use of the Seattle Angina Questionnaire was significantly improved in the treatment group, as compared with the control group (improvement on a 100-point scale, 17.6 vs. 7.6 points; P=0.03). There were no significant between-group differences in improvement in exercise time or in the mean change in the wall-motion index as assessed by means of dobutamine echocardiography. At 6 months, 1 patient in the treatment group had had a myocardial infarction; in the control group, 1 patient had died and 3 had had a myocardial infarction. CONCLUSIONS In this small clinical trial, implantation of the coronary-sinus reducing device was associated with significant improvement in symptoms and quality of life in patients with refractory angina who were not candidates for revascularization. (Funded by Neovasc; COSIRA ClinicalTrials.gov number, NCT01205893.).
Collapse
Affiliation(s)
- Stefan Verheye
- Antwerp Cardiovascular Center, ZNA Middelheim, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | - Ranil de Silva
- National Heart and Lung Institute, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust. London, UK
| | | | - Nathalie Meyten
- Antwerp Cardiovascular Center, ZNA Middelheim, Antwerp, Belgium
| | | | | | | | | | | | - Christopher J. White
- The John Ochsner Heart & Vascular Institute, Ochsner Clinical School, University of Queensland, New Orleans, LA, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, MIT, Cambridge, MA USA, and Cardiovascular Division Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Shmuel Banai
- Tel Aviv Medical Center, The Tel Aviv University Medical School, Tel Aviv, Israel
| |
Collapse
|
6
|
Jolicœur EM, Banai S, Henry TD, Schwartz M, Doucet S, White CJ, Edelman E, Verheye S. A phase II, sham-controlled, double-blinded study testing the safety and efficacy of the coronary sinus reducer in patients with refractory angina: study protocol for a randomized controlled trial. Trials 2013; 14:46. [PMID: 23413981 PMCID: PMC3599995 DOI: 10.1186/1745-6215-14-46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/21/2013] [Indexed: 01/06/2023] Open
Abstract
Background A growing population of patients lives with severe coronary artery disease not amenable to coronary revascularization and with refractory angina despite optimal medical therapy. Percutaneous reduction of the coronary sinus is an emerging treatment for myocardial ischemia that increases coronary sinus pressure to promote a transcollateral redistribution of coronary artery in-flow from nonischemic to ischemic subendocardial territories. A first-in-man study has demonstrated that the percutaneous reduction of the coronary sinus can be performed safely in such patients. The COSIRA trial seeks to assess whether a percutaneous reduction of the coronary sinus can improve the symptoms of refractory angina in patients with limited revascularization options. Methods/Design The COSIRA trial is a phase II double-blind, sham-controlled, randomized parallel trial comparing the percutaneously implanted coronary sinus Reducer (Neovasc Inc, Richmond, BC, Canada) to a sham implantation in 124 patients enrolled in Canada, Belgium, England, Scotland, Sweden and Denmark. All patients need to have stable Canadian Cardiovascular Society (CCS) class III or IV angina despite optimal medical therapy, with evidence of reversible ischemia related to disease in the left coronary artery, and a left ventricular ejection fraction >25%. Participants experiencing an improvement in their angina ≥2 CCS classes six months after the randomization will meet the primary efficacy endpoint. The secondary objective of this trial is to test whether coronary sinus Reducer implantation will improve left ventricular ischemia, as measured by the improvement in dobutamine echocardiogram wall motion score index and in time to 1 mm ST-segment depression from baseline to six-month post-implantation. Discussion Based on previous observations, the COSIRA is expected to provide a significant positive result or an informative null result upon which rational development decisions can be based. Patient safety is a central concern and extensive monitoring should allow an appropriate investigation of the safety related to the coronary sinus Reducer. Trial registration ClinicalTrials.gov identifier - NCT01205893.
Collapse
Affiliation(s)
- E Marc Jolicœur
- Montreal Heart Institute, Université de Montréal, 5000 Bélanger Street East, Montréal, Québec Q H1T 1C8, Canada.
| | | | | | | | | | | | | | | |
Collapse
|