1
|
Xu Y, Ni F, Sun D, Peng Y, Zhao Y, Wu X, Li S, Qi X, He X, Li M, Zhou Y, Zhang C, Yan M, Yao C, Zhu S, Yang Y, An B, Yang C, Zhang G, Jiang W, Mi J, Chen X, Wei P, Tian G, Zhang Y. Glucagon Enhances Chemotherapy Efficacy By Inhibition of Tumor Vessels in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307271. [PMID: 38072640 PMCID: PMC10853751 DOI: 10.1002/advs.202307271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/19/2023] [Indexed: 02/10/2024]
Abstract
Chemotherapy is widely used to treat colorectal cancer (CRC). Despite its substantial benefits, the development of drug resistance and adverse effects remain challenging. This study aimed to elucidate a novel role of glucagon in anti-cancer therapy. In a series of in vitro experiments, glucagon inhibited cell migration and tube formation in both endothelial and tumor cells. In vivo studies demonstrated decreased tumor blood vessels and fewer pseudo-vessels in mice treated with glucagon. The combination of glucagon and chemotherapy exhibited enhanced tumor inhibition. Mechanistic studies demonstrated that glucagon increased the permeability of blood vessels, leading to a pronounced disruption of vessel morphology. Signaling pathway analysis identified a VEGF/VEGFR-dependent mechanism whereby glucagon attenuated angiogenesis through its receptor. Clinical data analysis revealed a positive correlation between elevated glucagon expression and chemotherapy response. This is the first study to reveal a role for glucagon in inhibiting angiogenesis and vascular mimicry. Additionally, the delivery of glucagon-encapsulated PEGylated liposomes to tumor-bearing mice amplified the inhibition of angiogenesis and vascular mimicry, consequently reinforcing chemotherapy efficacy. Collectively, the findings demonstrate the role of glucagon in inhibiting tumor vessel network and suggest the potential utility of glucagon as a promising predictive marker for patients with CRC receiving chemotherapy.
Collapse
|
2
|
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of Angiogenesis and Its Biomarkers in Development of Targeted Tumor Therapies. Stem Cells Int 2024; 2024:9077926. [PMID: 38213742 PMCID: PMC10783989 DOI: 10.1155/2024/9077926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|
3
|
Zhao W, Jiang J. Advances in Predictive Biomarkers for Anti-Angiogenic Therapy in Non-Small Cell Lung Cancer. Cancer Control 2024; 31:10732748241270589. [PMID: 39192835 PMCID: PMC11363049 DOI: 10.1177/10732748241270589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to explore advances in biomarkers related to anti-angiogenic therapy in patients with non-small cell lung cancer (NSCLC), thereby enhancing treatment selection, advancing personalized and precision medicine to improve treatment outcomes and patient survival rates. This article reviews key discoveries in predictive biomarkers for anti-angiogenic therapy in NSCLC in recent years, such as (1) liquid biopsy predictive biomarkers: studies have identified activated circulating endothelial cells (aCECs) via liquid biopsy as potential predictive biomarkers for the efficacy of anti-angiogenic therapy; (2) imaging biomarkers: advanced imaging technologies, such as dynamic contrast-enhanced integrated magnetic resonance positron emission tomography (MR-PET), are used to assess tumor angiogenesis in patients with NSCLC and evaluate the clinical efficacy of anti-angiogenic drugs; (3) genetic predictive biomarkers: research has explored polymorphisms of Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) and vascular endothelial growth factor-A (VEGF-A), as well as how plasma levels of VEGF-A can predict the outcomes and prognosis of patients with non-squamous NSCLC undergoing chemotherapy combined with bevacizumab. Despite progress in identifying biomarkers related to anti-angiogenic therapy, several challenges remain, including limitations in clinical trials, heterogeneity in NSCLC, and technical hurdles. Future research will require extensive clinical validation and in-depth mechanistic studies to fully exploit the potential of these biomarkers for personalized treatment.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Jun Jiang
- Division III, Department of Medical Oncology, Affiliated Hospital of Qinghai University, Qinghai, China
| |
Collapse
|
4
|
Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai K. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204365. [PMID: 36437106 PMCID: PMC9839863 DOI: 10.1002/advs.202204365] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Indexed: 05/08/2023]
Abstract
Cancer immunotherapy effect can be greatly enhanced by other methods to induce immunogenic cell death (ICD), which has profoundly affected immunotherapy as a highly efficient paradigm. However, these treatments have significant limitations, either by causing damage of the immune system or limited to superficial tumors. Sonodynamic therapy (SDT) can induce ICD to promote immunotherapy without affecting the immune system because of its excellent spatiotemporal selectivity and low side effects. Nevertheless, SDT is still limited by low reactive oxygen species yield and the complex tumor microenvironment. Recently, some emerging SDT-based nanomedicines have made numerous attractive and encouraging achievements in the field of cancer immunotherapy due to high immunotherapeutic efficiency. However, this cross-cutting field of research is still far from being widely explored due to huge professional barriers. Herein, the characteristics of the tumor immune microenvironment and the mechanisms of ICD are firstly systematically summarized. Subsequently, the therapeutic mechanism of SDT is fully summarized, and the advantages and limitations of SDT are discussed. The representative advances of SDT-based nanomedicines for cancer immunotherapy are further highlighted. Finally, the application prospects and challenges of SDT-based immunotherapy in future clinical translation are discussed.
Collapse
Affiliation(s)
- Yunrong Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Jia Huang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Min Liu
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuqi Yang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
5
|
Basal VEGF-A and ACE Plasma Levels of Metastatic Colorectal Cancer Patients Have Prognostic Value for First-Line Treatment with Chemotherapy Plus Bevacizumab. Cancers (Basel) 2022; 14:cancers14133054. [PMID: 35804826 PMCID: PMC9265004 DOI: 10.3390/cancers14133054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Molecular biology knowledge has enabled the incorporation of targeted therapies, such as the anti-angiogenic drug bevacizumab, into combined chemotherapy regimens for the treatment of metastatic colorectal cancer. However, to date, there are no reliable useful biomarkers to predict the efficacy of this anti-angiogenic therapy. The objective of this prospective study was to evaluate potential circulating plasma biomarkers in mCRC patients prior to the start of first-line treatment with chemotherapy plus bevacizumab. We found that high VEGF-A and low ACE plasma levels were associated with poor OS after treatment. Moreover, a simple scoring system combining both biomarkers efficiently stratified patients into high- or low-risk groups, which allows the selection of patients for anti-angiogenic therapy. Abstract The identification of factors that respond to anti-angiogenic therapy would represent a significant advance in the therapeutic management of metastatic-colorectal-cancer (mCRC) patients. We previously reported the relevance of VEGF-A and some components of the renin–angiotensin-aldosterone system (RAAS) in the response to anti-angiogenic therapy in cancer patients. Therefore, this prospective study aims to evaluate the prognostic value of basal plasma levels of VEGF-A and angiotensin-converting enzyme (ACE) in 73 mCRC patients who were to receive bevacizumab-based therapies as a first-line treatment. We found that high basal VEGF-A plasma levels were significantly associated with worse overall survival (OS) and progression-free survival (FPS). On the other hand, low ACE levels were significantly associated with poor OS. Importantly, a simple scoring system combining the basal plasma levels of VEGF-A and ACE efficiently stratified mCRC patients, according to OS, into high-risk or low-risk groups, prior to their treatment with bevacizumab. In conclusion, our study supports that VEGF-A and ACE may be potential biomarkers for selecting those mCRC patients who will most benefit from receiving chemotherapy plus bevacizumab treatment in first-line therapy. Additionally, our data reinforce the notion of a close association between the RAAS and the anti-angiogenic response in cancer.
Collapse
|
6
|
Jin X, Dong C, Zheng K, Shi X, Liu Y, Huo L, Wang F, Li F. Scintigraphic Imaging of Neovascularization With 99mTc-3PRGD 2 for Evaluating Early Response to Endostar Involved Therapies on Pancreatic Cancer Xenografts In Vivo. Front Oncol 2021; 11:792431. [PMID: 35769548 PMCID: PMC9236135 DOI: 10.3389/fonc.2021.792431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
Background Molecular imaging targeting angiogenesis can specifically monitor the early therapeutic effect of antiangiogenesis therapy. We explore the predictive values of an integrin αvβ3-targeted tracer, 99mTc-PEG4-E[PEG4-c(RGDfK)]2 (99mTc-3PRGD2), for monitoring the efficacy of Endostar antiangiogenic therapy and chemotherapy in animal models. Methods The pancreatic cancer xenograft mice were randomly divided into four groups, with seven animals in each group and treated in different groups with 10 mg/kg/day of Endostar, 10 mg/kg/day of gemcitabine, 10 mg/kg/day of Endostar +10 mg/kg/day of gemcitabine at the same time, and the control group with 0.9% saline (0.1 ml/day). 99mTc-3PRGD2 scintigraphic imaging was carried out to monitor therapeutic effects. Microvessel density (MVD) was measured using immunohistochemical staining of the tumor tissues. The region of interest (ROI) of tumor (T) and contralateral corresponding site (NT) was delineated, and the ratio of radioactivity (T/NT) was calculated. Two-way repeated-measure analysis of variance (ANOVA) was used to assess differences between treatment groups. Results Tumor growth was significantly lower in treatment groups than that in the control group (p < 0.05), and the differences were noted on day 28 posttreatment. The differences of 99mTc-3PRGD2 uptakes were observed between the control group and Endostar group (p = 0.033) and the combined treatment group (p < 0.01) on day 7 posttreatment and on day 14 posttreatment between the control group and gemcitabine group (p < 0.01). The accumulation of 99mTc-3PRGD2 was significantly correlated with MVD (r = 0.998, p = 0.002). Conclusion With 99mTc-3PRGD2 scintigraphic imaging, the tumor response to antiangiogenic therapy, chemotherapy, and the combined treatment can be observed at an early stage of the treatments, much earlier than the tumor volume change. It provides new opportunities for developing individualized therapies and dose optimization.
Collapse
Affiliation(s)
- Xiaona Jin
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | | | - Kun Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | - Ximin Shi
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | - Yu Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | - Fan Wang
- Medical Isotopes Research Center, Peking University,
Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| |
Collapse
|
7
|
Liskova A, Koklesova L, Samec M, Varghese E, Abotaleb M, Samuel SM, Smejkal K, Biringer K, Petras M, Blahutova D, Bugos O, Pec M, Adamkov M, Büsselberg D, Ciccocioppo R, Adamek M, Rodrigo L, Caprnda M, Kruzliak P, Kubatka P. Implications of flavonoids as potential modulators of cancer neovascularity. J Cancer Res Clin Oncol 2020; 146:3079-3096. [PMID: 32902794 DOI: 10.1007/s00432-020-03383-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The formation of new blood vessels from previous ones, angiogenesis, is critical in tissue repair, expansion or remodeling in physiological processes and in various pathologies including cancer. Despite that, the development of anti-angiogenic drugs has great potential as the treatment of cancer faces many problems such as development of the resistance to treatment or an improperly selected therapy approach. An evaluation of predictive markers in personalized medicine could significantly improve treatment outcomes in many patients. METHODS This comprehensive review emphasizes the anticancer potential of flavonoids mediated by their anti-angiogenic efficacy evaluated in current preclinical and clinical cancer research. RESULTS AND CONCLUSION Flavonoids are important groups of phytochemicals present in common diet. Flavonoids show significant anticancer effects. The anti-angiogenic effects of flavonoids are currently a widely discussed topic of preclinical cancer research. Flavonoids are able to regulate the process of tumor angiogenesis through modulation of signaling molecules such as VEGF, MMPs, ILs, HIF or others. However, the evaluation of the anti-angiogenic potential of flavonoids within the clinical studies is not frequently discussed and is still of significant scientific interest.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Petras
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Blahutova
- Department of Biology and Ecology, Faculty of Education, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar.
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic. .,St. Anne's University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| |
Collapse
|
8
|
Abstract
Nanotechnology offers new solutions for the development of cancer therapeutics that display improved efficacy and safety. Although several nanotherapeutics have received clinical approval, the most promising nanotechnology applications for patients still lie ahead. Nanoparticles display unique transport, biological, optical, magnetic, electronic, and thermal properties that are not apparent on the molecular or macroscale, and can be utilized for therapeutic purposes. These characteristics arise because nanoparticles are in the same size range as the wavelength of light and display large surface area to volume ratios. The large size of nanoparticles compared to conventional chemotherapeutic agents or biological macromolecule drugs also enables incorporation of several supportive components in addition to active pharmaceutical ingredients. These components can facilitate solubilization, protection from degradation, sustained release, immunoevasion, tissue penetration, imaging, targeting, and triggered activation. Nanoparticles are also processed differently in the body compared to conventional drugs. Specifically, nanoparticles display unique hemodynamic properties and biodistribution profiles. Notably, the interactions that occur at the bio-nano interface can be exploited for improved drug delivery. This review discusses successful clinically approved cancer nanodrugs as well as promising candidates in the pipeline. These nanotherapeutics are categorized according to whether they predominantly exploit multifunctionality, unique electromagnetic properties, or distinct transport characteristics in the body. Moreover, future directions in nanomedicine such as companion diagnostics, strategies for modifying the microenvironment, spatiotemporal nanoparticle transitions, and the use of extracellular vesicles for drug delivery are also explored.
Collapse
Affiliation(s)
- Joy Wolfram
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida 32224, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
9
|
Naumenko V, Garanina A, Vodopyanov S, Nikitin A, Prelovskaya A, Demihov E, Abakumov M, Majouga A, Chekhonin V. Magnetic resonance imaging for predicting personalized antitumor nanomedicine efficacy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2018.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Magnetic resonance imaging (MRI) is widely used to diagnose cancer and study patterns and effectiveness of nanocarrier delivery of anticancer drugs. Accumulation of nanoparticles in a tumor varies widely in a given population; it is also highly dependent on biological factors, which remain largely unstudied. In recent years, there was developed a hypothesis that suggests that MRI can be used to predict response to nanoformulations-based anticancer therapy since it provides data on accumulation of MRI contrast agents in the tumor. Pilot tests prove feasibility of the approach based on this hypothesis, however, there is a number of conceptual and technical problems and limitations that hamper its introduction into the routine clinical practice. This article discusses the advantages and disadvantages of methods to stratify tumors by level of nanoparticles accumulation. Further research in this field would facilitate development of effective algorithms of personalized treatment with anticancer drugs delivered by nanoparticles.
Collapse
Affiliation(s)
- V.A. Naumenko
- Laboratory of Biomedical Nanomaterials National University of Science and Technology MISiS, Moscow
| | - A.S. Garanina
- Research Laboratory of Tissue-Specific Ligands, Faculty of Chemistry Federal State Budget Educational Institution of Higher Education MV Lomonosov Moscow State University, Moscow
| | - S.S. Vodopyanov
- Laboratory of Biomedical Nanomaterials National University of Science and Technology MISiS, Moscow
| | - A.A. Nikitin
- Laboratory of Biomedical Nanomaterials National University of Science and Technology MISiS, Moscow; Research Laboratory of Tissue-Specific Ligands, Faculty of Chemistry Federal State Budget Educational Institution of Higher Education MV Lomonosov Moscow State University, Moscow
| | - A.O. Prelovskaya
- Laboratory of Biomedical Nanomaterials National University of Science and Technology MISiS, Moscow
| | - E.I. Demihov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow
| | - M.A. Abakumov
- Laboratory of Biomedical Nanomaterials National University of Science and Technology MISiS, Moscow; Pirogov Russian National Research Medical University, Moscow
| | - A.M. Majouga
- Laboratory of Biomedical Nanomaterials National University of Science and Technology MISiS, Moscow; Research Laboratory of Tissue-Specific Ligands, Faculty of Chemistry Federal State Budget Educational Institution of Higher Education MV Lomonosov Moscow State University, Moscow; Lebedev Physical Institute, Russian Academy of Sciences, Moscow
| | - V.P. Chekhonin
- Pirogov Russian National Research Medical University, Moscow
| |
Collapse
|
10
|
Atkinson SP, Andreu Z, Vicent MJ. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. J Pers Med 2018; 8:E6. [PMID: 29360800 PMCID: PMC5872080 DOI: 10.3390/jpm8010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Zoraida Andreu
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
11
|
Cui Y, Liu H, Liang S, Zhang C, Cheng W, Hai W, Yin B, Wang D. The feasibility of 18F-AlF-NOTA-PRGD2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18F-FDG. Oncotarget 2017; 7:27243-54. [PMID: 27029065 PMCID: PMC5053646 DOI: 10.18632/oncotarget.8402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose Radiolabeled arginine-glycine-aspartic acid (RGD) peptides have been developed for PET imaging of integrin avβ3 in the tumor vasculature, leading to great potential for noninvasively evaluating tumor angiogenesis and monitoring antiangiogenic treatment. The aim of this study was to investigate a novel one-step labeled integrin-targeted tracer, 18F-AlF-NOTA-PRGD2, for PET/CT for detecting tumor angiogenesis and monitoring the early therapeutic efficacy of antiangiogenic agent Endostar in human nasopharyngeal carcinoma (NPC) xenograft model. Experimental design and results Mice bearing NPC underwent 18F-AlF-NOTA-PRGD2 PET/CT at baseline and after 2, 4, 7, and 14 days of consecutive treatment with Endostar or PBS, compared with 18F-FDG PET/CT. Tumors were harvested at all imaging time points for histopathological analysis with H & E and microvessel density (MVD) and integrin avβ3 immunostaining. The maximum percent injected dose per gram of body weight (%ID/gmax) tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT was significantly lower than that in the control group starting from day 2 (p < 0.01), much earlier and more accurately than that of 18F-FDG PET/CT. Moreover, a moderate linear correlation was observed between tumor MVD and the corresponding tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT (r = 0.853, p < 0.01). Conclusions 18F-AlF-NOTA-PRGD2 PET/CT can be used for in vivo angiogenesis imaging and monitoring early response to Endostar antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation.
Collapse
Affiliation(s)
- Yanfen Cui
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Sheng Liang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Caiyuan Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wangxi Hai
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.,Med-X Ruijin Hospital Micro PET/CT Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Yin
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
12
|
Cattin S, Fellay B, Pradervand S, Trojan A, Ruhstaller T, Rüegg C, Fürstenberger G. Bevacizumab specifically decreases elevated levels of circulating KIT+CD11b+ cells and IL-10 in metastatic breast cancer patients. Oncotarget 2017; 7:11137-50. [PMID: 26840567 PMCID: PMC4905463 DOI: 10.18632/oncotarget.7097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Whether bevacizumab exerts its anti-tumor properties through systemic effects beyond local inhibition of angiogenesis and how these effects can be monitored in patients, remain largely elusive. To address these questions, we investigated bone marrow-derived cells and cytokines in the peripheral blood of metastatic breast cancer patients undergoing therapy with bevacizumab. METHODS Circulating endothelial cells (CEC), circulating endothelial progenitor (CEP) and circulating CD11b+ cells in metastatic breast cancer patients before and during therapy with paclitaxel alone (n = 11) or in combination with bevacizumab (n = 10) were characterized using flow cytometry, real time PCR and RNASeq. Circulating factors were measured by ELISA. Aged-matched healthy donors were used as baseline controls (n = 12). RESULTS Breast cancer patients had elevated frequencies of CEC, CEP, TIE2+CD11b+ and KIT+CD11b+ cell subsets. CEC decreased during therapy, irrespective of bevacizumab, while TIE2+CD11b+ remained unchanged. KIT+CD11b+ cells decreased in response to paclitaxel with bevacizumab, but not paclitaxel alone. Cancer patients expressed higher mRNA levels of the M2 polarization markers CD163, ARG1 and IL-10 in CD11b+ cells and increased levels of the M2 cytokines IL-10 and CCL20 in plasma. M1 activation markers and cytokines were low or equally expressed in cancer patients compared to healthy donors. Chemotherapy with paclitaxel and bevacizumab, but not with paclitaxel alone, significantly decreased IL-10 mRNA in CD11b+ cells and IL-10 protein in plasma. CONCLUSIONS This pilot study provides evidence of systemic immunomodulatory effects of bevacizumab and identified circulating KIT+CD11b+ cells and IL-10 as candidate biomarkers of bevacizumab activity in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sarah Cattin
- Department of Medicine, Faculty of Science, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Benoît Fellay
- Central Laboratory, HFR Hôpital Cantonal, CH-1700 Fribourg, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, Center of Integrative Genomic (CIG), University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | | | - Thomas Ruhstaller
- Breast Center, Kantonsspital St.Gallen, CH-9000 St.Gallen, Switzerland
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
13
|
Shah A, Bush N, Box G, Eccles S, Bamber J. Value of combining dynamic contrast enhanced ultrasound and optoacoustic tomography for hypoxia imaging. PHOTOACOUSTICS 2017; 8:15-27. [PMID: 28932684 PMCID: PMC5596361 DOI: 10.1016/j.pacs.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 05/09/2023]
Abstract
Optoacoustic imaging (OAI) can detect haemoglobin and assess its oxygenation. However, the lack of a haemoglobin signal need not indicate a lack of perfusion. This study uses a novel method to assist the co-registration of optoacoustic images with dynamic contrast enhanced ultrasound (DCE-US) images to demonstrate, in preclinical tumour models, the value of combining haemoglobin imaging with a perfusion imaging method, showing that a lack of a haemoglobin signal does not necessarily indicate an absence of perfusion. DCE-US was chosen for this particular experiment because US is extremely sensitive to microbubble contrast agents and because microbubbles, like red blood cells but unlike currently available optical contrast agents, do not extravasate. Significant spatial correlations were revealed between the DCE-US properties and tumour blood-oxygen saturation and haemoglobin, as estimated using OAI. It is speculated that DCE-US properties could be applied as surrogate biomarkers for hypoxia when planning clinical radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Anant Shah
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| | - Nigel Bush
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| | - Gary Box
- The Institute of Cancer Research, Division of Cancer Therapeutics – Sutton, United Kingdom
| | - Suzanne Eccles
- The Institute of Cancer Research, Division of Cancer Therapeutics – Sutton, United Kingdom
| | - Jeffrey Bamber
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| |
Collapse
|
14
|
Xu Y, Zhang Y, Wang Z, Chen N, Zhou J, Liu L. The role of serum angiopoietin-2 levels in progression and prognosis of lung cancer: A meta-analysis. Medicine (Baltimore) 2017; 96:e8063. [PMID: 28906403 PMCID: PMC5604672 DOI: 10.1097/md.0000000000008063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Angiogenesis is an essential process in the development and progression of malignant tumors including lung cancer, in which angiopoietin-2 (Ang-2) plays an important role. The objective of this study was to assess the prognostic value of serum Ang-2 levels in patients with lung cancer. METHODS A comprehensive systematic electronic search was performed in the Pubmed, Embase, Web of Science, china national knowledge infrastructure, and VIP databases update to October, 2016 (qikan.cqvip.com). Literatures examining the relevance of serum Ang-2 levels to progression and prognosis of lung cancer were eligible for our study. Standardized mean differences (SMD) with 95% confidence interval (95% CI) and a P value were applied to compare continuous variables, and hazard ratio (HR) with 95% CI as well as P value were applied for prognostic role. RESULTS Twenty studies with 1911 patients met the eligibility criteria. Among them, 7 studies with 575 patients with lung cancer assessed the association between expression of serum Ang-2 and prognosis. According to our results, higher levels of serum Ang-2 were associated with the later stage of tumor. Serum Ang-2 levels were significantly lower in stage I than in stage II (SMD: -0.51; 95% CI: -0.75 to -0.27; P < .001), in stage II than in stage III (SMD: -0.52; 95% CI: -0.80 to -0.24; P < .001), in stage III than in stage IV (SMD: -0.58; 95% CI: -0.93 to -0.23; P = .001). In addition, serum Ang-2 levels were higher in patients with lymph node metastasis (SMD: 1.06; 95% CI, 0.57-1.56; P < .001). Meanwhile, patients with lung cancer with higher levels of serum Ang-2 were associated with a significant poorer prognosis when compared to those with lower serum Ang-2 levels (HR: 1.64; 95% CI: 1.20-2.25; P = .002), and this role was further detected when stratified by ethnicity and histological type. CONCLUSIONS This systematic review and meta-analysis suggested that serum Ang-2 levels might be a potential predictor for staging, and were associated with prognosis of lung cancer.
Collapse
Affiliation(s)
- Yuyang Xu
- Department of Thoracic Surgery, West China Hospital
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer
| | - Yingyi Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zihuai Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Nan Chen
- Department of Thoracic Surgery, West China Hospital
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer
| |
Collapse
|
15
|
Farzam P, Johansson J, Mireles M, Jiménez-Valerio G, Martínez-Lozano M, Choe R, Casanovas O, Durduran T. Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics. BIOMEDICAL OPTICS EXPRESS 2017; 8:2563-2582. [PMID: 28663891 PMCID: PMC5480498 DOI: 10.1364/boe.8.002563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 05/20/2023]
Abstract
The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.
Collapse
Affiliation(s)
- Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129,
USA
| | - Johannes Johansson
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Department of Biomedical Engineering, Linköping University, 58185 Linköping,
Sweden
| | - Miguel Mireles
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
| | - Gabriela Jiménez-Valerio
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Mar Martínez-Lozano
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08015, Barcelona,
Spain
| |
Collapse
|
16
|
Wang Y, Zhou Z, Wang W, Liu M, Bao Y. Differential effects of sulforaphane in regulation of angiogenesis in a co-culture model of endothelial cells and pericytes. Oncol Rep 2017; 37:2905-2912. [DOI: 10.3892/or.2017.5565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
|
17
|
Abstract
The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Bao X, Wang MW, Luo JM, Wang SY, Zhang YP, Zhang YJ. Optimization of Early Response Monitoring and Prediction of Cancer Antiangiogenesis Therapy via Noninvasive PET Molecular Imaging Strategies of Multifactorial Bioparameters. Theranostics 2016; 6:2084-2098. [PMID: 27698942 PMCID: PMC5039682 DOI: 10.7150/thno.13917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/30/2016] [Indexed: 12/13/2022] Open
Abstract
Objective: Antiangiogenesis therapy (AAT) has provided substantial benefits regarding improved outcomes and survival for suitable patients in clinical settings. Therefore, the early definition of therapeutic effects is urgently needed to guide cancer AAT. We aimed to optimize the early response monitoring and prediction of AAT efficacy, as indicated by the multi-targeted anti-angiogenic drug sunitinib in U87MG tumors, using noninvasive positron emission computed tomography (PET) molecular imaging strategies of multifactorial bioparameters. Methods: U87MG tumor mice were treated via intragastric injections of sunitinib (80 mg/kg) or vehicle for 7 consecutive days. Longitudinal MicroPET/CT scans with 18F-FDG, 18F-FMISO, 18F-ML-10 and 18F-Alfatide II were acquired to quantitatively measure metabolism, hypoxia, apoptosis and angiogenesis on days 0, 1, 3, 7 and 13 following therapy initiation. Tumor tissues from a dedicated group of mice were collected for immunohistochemical (IHC) analysis of key biomarkers (Glut-1, CA-IX, TUNEL, ανβ3 and CD31) at the time points of PET imaging. The tumor sizes and mouse weights were measured throughout the study. The tumor uptake (ID%/gmax), the ratios of the tumor/muscle (T/M) for each probe, and the tumor growth ratios (TGR) were calculated and used for statistical analyses of the differences and correlations. Results: Sunitinib successfully inhibited U87MG tumor growth with significant differences in the tumor size from day 9 after sunitinib treatment compared with the control group (P < 0.01). The uptakes of 18F-FMISO (reduced hypoxia), 18F-ML-10 (increased apoptosis) and 18F-Alfatide II (decreased angiogenesis) in the tumor lesions significantly changed during the early stage (days 1 to 3) of sunitinib treatment; however, the uptake of 18F-FDG (increased glucose metabolism) was significantly different during the late stage. The PET imaging data of each probe were all confirmed via ex vivo IHC of the relevant biomarkers. Notably, the PET imaging of 18F-Alfatide II and 18F-FMISO was significantly correlated (all P < 0.05) with TGR, whereas the imaging of 18F-FDG and 18F-ML-10 was not significantly correlated with TGR. Conclusion: Based on the tumor uptake of the PET probes and their correlations with MVD and TGR, 18F-Alfatide II PET may not only monitor the early response but also precisely predict the therapeutic efficacy of the multi-targeted, anti-angiogenic drug sunitinib in U87MG tumors. In conclusion, it is feasible to optimize the early response monitoring and efficacy prediction of cancer AAT using noninvasive PET molecular imaging strategies of multifactorial bioparameters, such as angiogenesis imaging with 18F-Alfatide II, which represents an RGD-based probe.
Collapse
|
19
|
Blood-based biomarkers for monitoring antiangiogenic therapy in non-small cell lung cancer. Med Oncol 2016; 33:105. [PMID: 27568331 DOI: 10.1007/s12032-016-0824-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/20/2016] [Indexed: 12/30/2022]
Abstract
Tumor angiogenesis pathways have been identified as important therapeutic targets in non-small cell lung cancer. However, no biomarkers have been described as predictors of response to antiangiogenic therapy in these patients. In this study, plasma levels of VEGF, bFGF, E-selectin, and S-ICAM and gene expression profiles of peripheral blood mononuclear cells from non-small cell lung cancer patients treated with chemotherapy plus bevacizumab were analyzed before and after treatment. Values were correlated with clinicopathological characteristics and treatment response. Plasma factor levels were measured using commercially available ELISA kits. The TaqMan(®) human angiogenesis array was used to investigate the effect of treatment on gene expression profiles. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis was performed for differentially expressed genes using WEB-based GEne SeT AnaLysis Toolkit. Our results suggest a benefit for patients with increased plasma levels of VEGF, E-selectin, and S-ICAM in the course of bevacizumab treatment. Also, we identified differentially expressed genes between paired blood samples from patients before and after treatment, and significantly perturbed pathways were predicted. These changes in gene expression and levels of plasma factors could be used to assess the effectiveness of antiangiogenic therapy, in addition to standard clinical and radiological evaluations.
Collapse
|
20
|
Ait-Oudhia S, Mager DE, Pokuri V, Tomaszewski G, Groman A, Zagst P, Fetterly G, Iyer R. Bridging Sunitinib Exposure to Time-to-Tumor Progression in Hepatocellular Carcinoma Patients With Mathematical Modeling of an Angiogenic Biomarker. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:297-304. [PMID: 27300260 PMCID: PMC5131886 DOI: 10.1002/psp4.12084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) is third in cancer-related causes of death worldwide and its treatment is a significant unmet medical need. Sunitinib is a selective tyrosine kinase inhibitor of the angiogenic biomarker: soluble vascular endothelial growth factor receptor-2 (sVEGFR2 ). Sunitinib failed its primary overall survival endpoint in patients with advanced HCC in a phase III trial compared to sorafenib. In the present study, pharmacokinetic-pharmacodynamic modeling was used to link drug-exposure to tumor-growth-inhibition (TGI) and time-to-tumor progression (TTP) through sVEGFR2 dynamics. The results suggest that 1) active drug concentration (i.e., sunitinib and its metabolite) inhibits the release of sVEGFR2 and that such inhibition is associated with TGI, and 2) daily sVEGFR2 exposure is likely a reliable predictor for the TTP in HCC patients. Moreover, the model quantitatively links the dynamics of an angiogenesis biomarker to TTP and accurately predicts observed literature-reported results of placebo treatment.
Collapse
Affiliation(s)
- S Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - D E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - V Pokuri
- Department of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - G Tomaszewski
- Department of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - A Groman
- Department of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - P Zagst
- Department of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - G Fetterly
- Clinical Pharmacology and Regulatory Affairs, Buffalo, New York, USA
| | - R Iyer
- Department of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
21
|
Xue C, Tian Y, Zhang J, Zhao Y, Zhan J, Fang W, Zhang L. Efficacy of BIBF 1120 or BIBF 1120 plus chemotherapy on nasopharyngeal carcinoma in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1173-80. [PMID: 27042009 PMCID: PMC4801128 DOI: 10.2147/dddt.s96634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose BIBF 1120 is a potent triple angiokinase inhibitor now being evaluated in many types of tumors. We examine the antitumor effects of BIBF 1120 on nasopharyngeal carcinoma (NPC) in vitro and in vivo. Materials and methods The effect of BIBF 1120 on NPC cell proliferation was evaluated using the Cell Counting Kit 8 assay. The activities of BIBF 1120 as a single agent and in combination with cisplatin (DDP) in NPC tumor xenografts were evaluated by measuring microvessel density and expression of vascular endothelial growth factor signaling. Results BIBF 1120 exhibited limited inhibition of the growth of three NPC cell lines. Concurrent administration of BIBF 1120 and DDP provided greater antitumor effects compared to that observed with the use of either inhibitor as a single agent in the NPC xenograft model. Microvessel density and expression of vascular endothelial growth factor signaling were significantly reduced. Conclusion BIBF 1120, either as a single agent or in combination with DDP, demonstrates significant antitumor and antiangiogenic effects in the NPC xenograft model. Our results indicate that BIBF 1120 administered in conjunction with chemotherapy might provide an effective treatment method for NPC.
Collapse
Affiliation(s)
- Cong Xue
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Ying Tian
- Department of Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jing Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Guangzhou Traditional Chinese Medicine University, Guangzhou, People's Republic of China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jianhua Zhan
- Department of Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
22
|
Fleetwood F, Güler R, Gordon E, Ståhl S, Claesson-Welsh L, Löfblom J. Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling. Cell Mol Life Sci 2016; 73:1671-83. [PMID: 26552422 PMCID: PMC11108507 DOI: 10.1007/s00018-015-2088-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Abstract
Angiogenesis denotes the formation of new blood vessels from pre-existing vasculature. Progression of diseases such as cancer and several ophthalmological disorders may be promoted by excess angiogenesis. Novel therapeutics to inhibit angiogenesis and diagnostic tools for monitoring angiogenesis during therapy, hold great potential for improving treatment of such diseases. We have previously generated so-called biparatopic Affibody constructs with high affinity for the vascular endothelial growth factor receptor-2 (VEGFR2), which recognize two non-overlapping epitopes in the ligand-binding site on the receptor. Affibody molecules have previously been demonstrated suitable for imaging purposes. Their small size also makes them attractive for applications where an alternative route of administration is beneficial, such as topical delivery using eye drops. In this study, we show that decreasing linker length between the two Affibody domains resulted in even slower dissociation from the receptor. The new variants of the biparatopic Affibody bound to VEGFR2-expressing cells, blocked VEGFA binding, and inhibited VEGFA-induced signaling of VEGFR2 over expressing cells. Moreover, the biparatopic Affibody inhibited sprout formation of endothelial cells in an in vitro angiogenesis assay with similar potency as the bivalent monoclonal antibody ramucirumab. This study demonstrates that the biparatopic Affibody constructs show promise for future therapeutic as well as in vivo imaging applications.
Collapse
Affiliation(s)
- Filippa Fleetwood
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Rezan Güler
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Emma Gordon
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| |
Collapse
|
23
|
Barral M, Raballand A, Dohan A, Soyer P, Pocard M, Bonnin P. Preclinical Assessment of the Efficacy of Anti-Angiogenic Therapies in Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:438-446. [PMID: 26626491 DOI: 10.1016/j.ultrasmedbio.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/11/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Diffuse hepatocellular carcinoma (HCC) is a complex affliction in which comorbidities can bias global outcome of cancer therapy. Better methods are thus warranted to directly assess effects of therapy on tumor angiogenesis and growth. As tumor angiogenesis is invariably associated with changes in local blood flow, we assessed the utility of ultrasound imaging in evaluation of the efficacy of anti-angiogenic therapy in a spontaneous transgenic mouse model of HCC. Blood flow velocities were measured monthly in the celiac trunk before and after administration of sorafenib or bevacizumab at doses corresponding to those currently used in clinical practice. Concordant with clinical experience, sorafenib, but not bevacizumab, reduced microvascular density and suppressed tumor growth relative to controls. Evolution of blood flow velocities correlated with microvascular density and with the evolution of tumor size. Ultrasound imaging thus provides a useful non-invasive tool for preclinical evaluation of new anti-angiogenic therapies for HCC.
Collapse
Affiliation(s)
- Matthias Barral
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Annemilaï Raballand
- Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Beaujon Hospital, INSERM U728, Clichy, France
| | - Anthony Dohan
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Philippe Soyer
- Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Marc Pocard
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Digestive and Cancer Surgery, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Philippe Bonnin
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Clinical Physiology- Functional Investigations, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France.
| |
Collapse
|
24
|
Coelho AL, Araújo AM, Gomes MP, Catarino RJ, Andrade EB, Lopes AM, Medeiros RM. Combined Ang-2 and VEGF serum levels: holding hands as a new integral biomarker in non-small-cell lung cancers. Future Oncol 2015; 11:3233-42. [PMID: 26562248 DOI: 10.2217/fon.15.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Evaluate if serum levels of VEGF and Ang-2 are correlated in non-small-cell lung cancers (NSCLCs) and its implications in the diagnostic and prognostic of the disease. PATIENTS & METHODS Unselected cohort of 145 NSCLC patients and 30 control individuals. The serum levels of Ang-2 and VEGF of each patient were measured by ELISA prior to treatment. RESULTS & CONCLUSIONS Serum levels of Ang-2 and VEGF are correlated (p < 0.0001). High serum levels of Ang-2 and VEGF isolated and both combined (high(Ang-2/VEGF)) correlate with likelihood of presenting NSCLC (p = 0.016; p = 0.003; p < 0.0001, respectively). Serum levels of Ang-2 and high(Ang-2/VEGF) but not VEGF alone are independent prognostic factors (p = 0.001; p = 0.619; p = 0.005). High(Ang-2/VEGF) serum levels could be exploited as a new valuable integral biomarker in NSCLC.
Collapse
Affiliation(s)
- Ana Luísa Coelho
- Instituto Português de Oncologia - Porto, Molecular Oncology Group, Portugal.,Faculdade de Medicina - University of Porto, Porto, Portugal
| | - António Manuel Araújo
- Centro Hospitalar do Porto - Medical Oncology Department, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar - University of Porto, Porto, Portugal
| | - Mónica Patrícia Gomes
- Instituto Português de Oncologia - Porto, Molecular Oncology Group, Portugal.,Instituto de Ciências Biomédicas Abel Salazar - University of Porto, Porto, Portugal
| | - Raquel Jorge Catarino
- Instituto Português de Oncologia - Porto, Molecular Oncology Group, Portugal.,Instituto de Ciências Biomédicas Abel Salazar - University of Porto, Porto, Portugal
| | - Elva Bonifácio Andrade
- Instituto de Biologia Molecular e Celular - Immunobiology Research Group, Porto, Portugal
| | - Agostinho Marques Lopes
- Faculdade de Medicina - University of Porto, Porto, Portugal.,Centro Hospitalar de S. João - Pulmonology Department, Porto, Portugal
| | - Rui Manuel Medeiros
- Instituto Português de Oncologia - Porto, Molecular Oncology Group, Portugal.,Instituto de Ciências Biomédicas Abel Salazar - University of Porto, Porto, Portugal.,Liga Portuguesa Contra o Cancro (NRNorte) - Research Department, Porto, Portugal
| |
Collapse
|
25
|
Bouattour M, Payancé A, Wassermann J. Evaluation of antiangiogenic efficacy in advanced hepatocellular carcinoma: Biomarkers and functional imaging. World J Hepatol 2015; 7:2245-2263. [PMID: 26380650 PMCID: PMC4568486 DOI: 10.4254/wjh.v7.i20.2245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/15/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Many years after therapeutic wilderness, sorafenib finally showed a clinical benefit in patients with advanced hepatocellular carcinoma. After the primary general enthusiasm worldwide, some disappointments emerged particularly since no new treatment could exceed or at least match sorafenib in this setting. Without these new drugs, research focused on optimizing care of patients treated with sorafenib. One challenging research approach deals with identifying prognostic and predictive biomarkers of sorafenib in this population. The task still seems difficult; however appropriate investigations could resolve this dilemma, as observed for some malignancies where other drugs were used.
Collapse
|
26
|
An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models. Angiogenesis 2015; 18:327-45. [PMID: 26021306 DOI: 10.1007/s10456-015-9470-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/18/2015] [Indexed: 12/18/2022]
Abstract
Tumor growth depends on the formation of new blood vessels (tumor angiogenesis) either from preexisting vessels or by the recruitment of bone marrow-derived cells. Despite encouraging results obtained with preclinical cancer models, the therapeutic targeting of tumor angiogenesis has thus far failed to deliver an enduring clinical response in cancer patients. One major obstacle for improving anti-angiogenic therapy is the lack of validated biomarkers, which allow patient stratification for suitable treatment and a rapid assessment of therapy response. Toward these goals, we have employed several mouse models of tumor angiogenesis to identify cell populations circulating in their blood that correlated with the extent of tumor angiogenesis and therapy response. Flow cytometry analyses of different combinations of cell surface markers that define subsets of bone marrow-derived cells were performed on peripheral blood mononuclear cells from tumor-bearing and healthy mice. We identified one cell population, CD45(dim)VEGFR1(-)CD31(low), that was increased in levels during active tumor angiogenesis in a variety of transgenic and syngeneic transplantation mouse models of cancer. Treatment with various anti-angiogenic drugs did not affect CD45(dim)VEGFR1(-)CD31(low) cells in healthy mice, whereas in tumor-bearing mice, a consistent reduction in their levels was observed. Gene expression profiling of CD45(dim)VEGFR1(-)CD31(low) cells characterized these cells as an immature B cell population. These immature B cells were then directly validated as surrogate marker for tumor angiogenesis and of pharmacologic responses to anti-angiogenic therapies in various mouse models of cancer.
Collapse
|
27
|
Glass K, Quackenbush J, Spentzos D, Haibe-Kains B, Yuan GC. A network model for angiogenesis in ovarian cancer. BMC Bioinformatics 2015; 16:115. [PMID: 25888305 PMCID: PMC4408593 DOI: 10.1186/s12859-015-0551-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 12/31/2022] Open
Abstract
Background We recently identified two robust ovarian cancer subtypes, defined by the expression of genes involved in angiogenesis, with significant differences in clinical outcome. To identify potential regulatory mechanisms that distinguish the subtypes we applied PANDA, a method that uses an integrative approach to model information flow in gene regulatory networks. Results We find distinct differences between networks that are active in the angiogenic and non-angiogenic subtypes, largely defined by a set of key transcription factors that, although previously reported to play a role in angiogenesis, are not strongly differentially-expressed between the subtypes. Our network analysis indicates that these factors are involved in the activation (or repression) of different genes in the two subtypes, resulting in differential expression of their network targets. Mechanisms mediating differences between subtypes include a previously unrecognized pro-angiogenic role for increased genome-wide DNA methylation and complex patterns of combinatorial regulation. Conclusions The models we develop require a shift in our interpretation of the driving factors in biological networks away from the genes themselves and toward their interactions. The observed regulatory changes between subtypes suggest therapeutic interventions that may help in the treatment of ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0551-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly Glass
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard School of Public Health, Boston, MA, USA. .,Brigham and Women's Hospital, Boston, MA, USA.
| | - John Quackenbush
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard School of Public Health, Boston, MA, USA.
| | - Dimitrios Spentzos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9, Canada.
| | - Guo-Cheng Yuan
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
28
|
Kim E, Lee E, Plummer C, Gil S, Popel AS, Pathak AP. Vasculature-specific MRI reveals differential anti-angiogenic effects of a biomimetic peptide in an orthotopic breast cancer model. Angiogenesis 2015; 18:125-36. [PMID: 25408417 PMCID: PMC4366284 DOI: 10.1007/s10456-014-9450-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/09/2014] [Indexed: 12/31/2022]
Abstract
Translational vasculature-specific MRI biomarkers were used to measure the effects of a novel anti-angiogenic biomimetic peptide in an orthotopic MDA-MB-231 human triple-negative breast cancer model at an early growth stage. In vivo diffusion-weighted and steady-state susceptibility contrast (SSC) MRI was performed pre-treatment and 2 weeks post-treatment in tumor volume-matched treatment and control groups (n = 5/group). Treatment response was measured by changes in tumor volume; baseline transverse relaxation time (T2); apparent diffusion coefficient (ADC); and SSC-MRI metrics of blood volume, vessel size, and vessel density. These vasculature-specific SSC-MRI biomarkers were compared to the more conventional, non-vascular biomarkers (tumor growth, ADC, and T2) in terms of their sensitivity to anti-angiogenic treatment response. After 2 weeks of peptide treatment, tumor growth inhibition was evident but not yet significant, and the changes in ADC or T2 were not significantly different between treated and control groups. In contrast, the vascular MRI biomarkers revealed a significant anti-angiogenic response to the peptide after 2 weeks—blood volume and vessel size decreased, and vessel density increased in treated tumors; the opposite was seen in control tumors. The MRI results were validated with histology—H&E staining showed no difference in tumor viability between groups, while peptide-treated tumors exhibited decreased vascularity. These results indicate that translational SSC-MRI biomarkers are able to detect the differential effects of anti-angiogenic therapy on the tumor vasculature before significant tumor growth inhibition or changes in tumor viability.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Esak Lee
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlesa Plummer
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stacy Gil
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg., Baltimore, MD 21205, USA
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg., Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Fleetwood F, Klint S, Hanze M, Gunneriusson E, Frejd FY, Ståhl S, Löfblom J. Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity. Sci Rep 2014; 4:7518. [PMID: 25515662 PMCID: PMC4268634 DOI: 10.1038/srep07518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis plays an important role in cancer and ophthalmic disorders such as age-related macular degeneration and diabetic retinopathy. The vascular endothelial growth factor (VEGF) family and corresponding receptors are regulators of angiogenesis and have been much investigated as therapeutic targets. The aim of this work was to generate antagonistic VEGFR2-specific affinity proteins having adjustable pharmacokinetic properties allowing for either therapy or molecular imaging. Two antagonistic Affibody molecules that were cross-reactive for human and murine VEGFR2 were selected by phage and bacterial display. Surprisingly, although both binders independently blocked VEGF-A binding, competition assays revealed interaction with non-overlapping epitopes on the receptor. Biparatopic molecules, comprising the two Affibody domains, were hence engineered to potentially increase affinity even further through avidity. Moreover, an albumin-binding domain was included for half-life extension in future in vivo experiments. The best-performing of the biparatopic constructs demonstrated up to 180-fold slower dissociation than the monomers. The new Affibody constructs were also able to specifically target VEGFR2 on human cells, while simultaneously binding to albumin, as well as inhibit VEGF-induced signaling. In summary, we have generated small antagonistic biparatopic Affibody molecules with high affinity for VEGFR2, which have potential for both future therapeutic and diagnostic purposes in angiogenesis-related diseases.
Collapse
Affiliation(s)
- Filippa Fleetwood
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Susanne Klint
- Affibody AB, Gunnar Asplunds Allé 24, 171 63 Solna, Sweden
| | - Martin Hanze
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | | | - Fredrik Y Frejd
- 1] Affibody AB, Gunnar Asplunds Allé 24, 171 63 Solna, Sweden [2] Unit of Biomedical Radiation Sciences, Uppsala University
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
30
|
Sharan S, Woo S. Quantitative insight in utilizing circulating angiogenic factors as biomarkers for antiangiogenic therapy: systems pharmacology approach. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e139. [PMID: 25295574 PMCID: PMC4474166 DOI: 10.1038/psp.2014.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
Circulating angiogenic factors (CAF) like vascular endothelial growth factor (VEGF), placental growth factor (PlGF), and sVEGFR2 have potential as biomarkers for antiangiogenic therapy. The interpretation of changes in CAF is complicated by the dynamic nature of the tumor and host cells emanating CAF in response to VEGF pathway inhibition. We developed a systems pharmacology model of anti-VEGF agents to investigate CAF modulation by tumor and host cells, and the relationship between overall CAF changes in response to sunitinib and antitumor efficacy. This model distinguishes between the tumor cells' contributions from tumor-independent response to therapy and total plasma CAF correlating with antitumor activity. Altered VEGF is more likely to serve as a useful biomarker reflecting tumor responses in cancer patients whose pretreatment VEGF is higher than baseline VEGF in healthy subjects. Our findings provide a mechanistic insight into tumor modulation of angiogenic molecules, and may explain the inconsistent results found in previous biomarker studies.
Collapse
Affiliation(s)
- S Sharan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - S Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
31
|
Multitarget inhibitors derived from crosstalk mechanism involving VEGFR2. Future Med Chem 2014; 6:1771-89. [DOI: 10.4155/fmc.14.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Seven VEGFR small-molecule inhibitors have been approved by the US FDA as anticancer drugs, which confirms the therapeutic value of angiogenesis inhibitors. However, much more evidence indicates that VEGFR inhibition alone is usually not sufficient to block the tumor progress. The potential of some agents targeting VEGFR owes partially to the simultaneous inhibition of additional targets in other signaling pathways. In this review, the crosstalk between VEGFR2 and the additional targets in other signaling pathways, such as EGFR, MET, FGFR, PDGFR, c-Kit, Raf, PI3K and HDAC, and the synergistic effects derived from multitarget activities against these crosstalks are discussed. We also briefly describe the multitarget inhibitors in clinical trials or reported in the literature and patents under the different multitarget categories involving VEGFR2.
Collapse
|
32
|
De Luca A, D’Alessio A, Maiello MR, Gallo M, Bevilacqua S, Frezzetti D, Morabito A, Perrone F, Normanno N. Vandetanib as a potential treatment for breast cancer. Expert Opin Investig Drugs 2014; 23:1295-303. [DOI: 10.1517/13543784.2014.942034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Ara MN, Hyodo M, Ohga N, Akiyama K, Hida K, Hida Y, Shinohara N, Harashima H. Identification and expression of troponin T, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand. Cancer Med 2014; 3:825-34. [PMID: 24810801 PMCID: PMC4303150 DOI: 10.1002/cam4.260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022] Open
Abstract
The identification of a specific biomarker involves the development of new clinical diagnostic tools, and an in-depth understanding of the disease at the molecular level. When new blood vessels form in tumor cells, endothelial cell production is induced, a process that plays a key role in disease progression and metastasis to distinct organs for solid tumor types. The present study reports on the identification of a new biomarker on primary cultured mouse tumor endothelial cells (mTECs) using our recently developed high-affinity DNA aptamer AraHH001 (Kd = 43 nmol/L) assisted proteomics approach. We applied a strategy involving aptamer-facilitated biomarker discovery. Biotin-tagged AraHH001 was incubated with lysates of mTECs and the aptamer-proteins were then conjugated with streptavidin magnetic beads. Finally, the bound proteins were separated by sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. We identified troponin T via matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, the molecular target of aptamer AraHH001, and its presence was confirmed by measuring mRNA, protein levels, western blot, immunostaining, a gel shift assay of AraHH001 with troponin T. We first report here on the discovery of troponin T on mTECs, a promising and interesting diagnostic tool in the development of antiangiogenic therapy techniques the involves the targeting of the tumor vasculature.
Collapse
Affiliation(s)
- Mst Naznin Ara
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Early monitoring antiangiogenesis treatment response of Sunitinib in U87MG Tumor Xenograft by (18)F-FLT MicroPET/CT imaging. BIOMED RESEARCH INTERNATIONAL 2014; 2014:218578. [PMID: 24860813 PMCID: PMC4000939 DOI: 10.1155/2014/218578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/19/2014] [Indexed: 11/17/2022]
Abstract
AIM It was aimed to monitor early treatment response of Sunitinib in U87MG models mimicking glioblastoma multiforme by longitudinal (18)F-FLT microPET/CT imaging in this study. METHODS U87MG tumor mice were intragastrically injected with Sunitinib at a dose of 80 mg/kg for consecutive 7 days. (18)F-FLT microPET/CT scans were acquired on days 0, 1, 3, 7, and 13 after therapy. Tumor sizes and body weight were measured. Tumor samples were collected for immunohistochemical analysis of proliferation and microvessel density (MVD) with anti-Ki67 and anti-CD31, respectively. RESULTS The uptake ratios of tumor to the contralateral muscle (T/M) of (18)F-FLT in the Sunitinib group decreased from baseline to day 3 (T/M0 = 2.98 ± 0.33; T/M3 = 2.23 ± 0.36; P < 0.001), reached the bottom on day 7 (T/M7 = 1.96 ± 0.35; P < 0.001), and then recovered on day 13. The T/M of (18)F-FLT uptake in the control group remained around 3.0. There was no difference for the tumor size between both groups until day 11. (18)F-FLT uptakes of tumor were correlated with Ki67 staining index and MVD. CONCLUSION Early therapy response to Sunitinib could be predicted via (18)F-FLT PET, which will contribute to monitoring antiangiogenesis treatment.
Collapse
|
35
|
Heymach JV, Cascone T. Tumor Microenvironment, Angiogenesis Biology, and Targeted Therapy. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Malyshev IY, Manukhina EB, Malyshev YI. Physiological organization of immune response based on the homeostatic mechanism of matrix reprogramming: implication in tumor and biotechnology. Med Hypotheses 2014; 82:754-65. [PMID: 24735846 DOI: 10.1016/j.mehy.2014.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/08/2014] [Accepted: 03/16/2014] [Indexed: 12/21/2022]
Abstract
It is accepted that the immune system responds to pathogens with activation of antigen-independent innate and antigen-dependent adaptive immunity. However many immune events do not fit or are even inconsistent with this notion. We developed a new homeostatic model of the immune response. This model consists of four units: a sensor, a regulator, an effector and a rehabilitator. The sensor, macrophages or lymphocytes, recognize pathogenic cells and generate alarm signals. The regulator, antigen-presenting cells, Тregs and myeloid-derived suppressor cells, evaluate the signals and together with sensor cells program the effector. The effector, programmed macrophages and lymphocytes, eliminate the pathogenic cells. The rehabilitator, M2 macrophages, restrict inflammation, provide angiogenesis and reparation of tissue damage, and restore the homeostasis. We suggest the terms "immune matrix" for a biological template of immune responses to pathogens and "matrix reprogramming" for the interdependent reprogramming of different cells in the matrix. In an adequate immune response, the matrix forms a negative feedback mechanism to support the homeostasis. We defined the cellular and phenotypic composition of a tumor immune matrix. A tumor reprograms the homeostatic negative feedback mechanism of matrix into a pathogenic positive feedback mechanism. M2 macrophages play a key role in this transformation. Therefore, macrophages are an attractive target for biotechnology. Based on our hypotheses, we are developing a cell biotechnology method for creation of macrophages with a stable antitumor phenotype. We have shown that such macrophages almost doubled the survival time of mice with tumor.
Collapse
Affiliation(s)
- Igor Yu Malyshev
- Moscow State University of Medicine and Dentistry, Delegatskaya Str. 20/1, Moscow 127473, Russia; Institute of General Pathology and Pathophysiology, Baltijskaya 8, Moscow 125315, Russia; University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| | - Eugenia B Manukhina
- Institute of General Pathology and Pathophysiology, Baltijskaya 8, Moscow 125315, Russia; University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Yuri I Malyshev
- Moscow State University, GSP-1, Leninskie Gory Str., Moscow 119991, Russia
| |
Collapse
|
37
|
Specific active immunotherapy with a VEGF vaccine in patients with advanced solid tumors. results of the CENTAURO antigen dose escalation phase I clinical trial. Vaccine 2014; 32:2241-50. [PMID: 24530151 DOI: 10.1016/j.vaccine.2013.11.102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/28/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED CIGB-247 is a novel cancer therapeutic vaccine that uses a human VEGF variant molecule as antigen, in combination with a bacterial adjuvant. In mice, CIGB-247 has anti-tumor and anti-metastatic effects. The vaccine induces anti-VEGF blocking antibodies and a cellular response targeting tumor cells producing VEGF, and has proven to be safe in mice, rats, rabbits and non-human primates. Herein we report the results of a Phase I clinical trial (code name CENTAURO) where safety, tolerance, and immunogenicity of CIGB-247 were studied in 30 patients with advanced solid tumors, at three antigen dose levels. Individuals were subcutaneously immunized for 8 consecutive weeks with 50, 100 or 400 μg of antigen, and re-immunized on week twelve. On week sixteen, evaluations of safety, tolerance, clinical status, and immunogenicity (seroconversion for anti-VEGF IgG, serum VEGF/KDR-Fc blocking ability, and gamma-IFN ELISPOT with blood cells stimulated in vitro with mutated VEGF) were done. Surviving patients were eligible for off-trial additional 4-week re-immunizations with 400 μg of antigen. Immunogenicity and clinical status were again studied on weeks 25 and 49. Vaccination was shown to be safe at the three dose levels, with only grade 1-2 adverse events. CIGB-247 was immunogenic and higher numbers of individuals positive to the three immune response tests were seen with increasing antigen dose. Off-protocol long-term vaccination produced no additional adverse events or negative changes in immunogenicity. Eleven patients are still alive, with overall survivals ranging from 20 to 24 months. Twelve of the thirty patients exhibited objective clinical benefits, and two individuals have complete responses. Most patients with higher survivals are positive in the three immune response tests. In summary, this is the first clinical testing report of a cancer therapeutic vaccine based on a human VEGF related molecule as antigen. The CIGB-247 vaccine is safe, immunogenic, and merits further clinical development. REGISTRATION NUMBER AND NAME OF TRIAL REGISTRY RPCEC00000102. Cuban Public Clinical Trial Registry (WHO accepted Primary Registry). Available from: http://registroclinico.sld.cu/.
Collapse
|
38
|
Joo I, Kim JH, Lee JM, Choi JW, Han JK, Choi BI. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors. Ultrasonography 2013; 33:18-25. [PMID: 24936491 PMCID: PMC4058966 DOI: 10.14366/usg.13006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/01/2013] [Accepted: 11/15/2013] [Indexed: 01/17/2023] Open
Abstract
Purpose: To evaluate the usefulness of dynamic contrast-enhanced ultrasonography
(DCE-US) in the early quantification of hemodynamic change following
administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit
VX2 liver tumor model. Methods: This study was approved by our institutional animal care and use committee.
Eight VX2 liver-tumor-bearing rabbits were treated with intravenous CKD-516,
and all underwent DCE-US using SonoVue before and again 2, 4, 6, and 24
hours following their treatment. The tumor perfusion parameters were
obtained from the time-intensity curve of the DCE-US data. Repeated measures
analysis of variance was performed to assess any significant change in tumor
perfusion over time. Relative changes in the DCE-US parameters between the
baseline and follow-up assessments were correlated with the relative changes
in tumor size over the course of seven days using Pearson correlation. Results: CKD-516 treatment resulted in significant changes in the DCE-US parameters,
including the peak intensity, total area under the time-intensity curve
(AUCtotal), and AUC during wash-out (AUCout) over
time (P<0.05). Pairwise comparison tests revealed that the
AUCtotal and AUC during wash-in (AUCin) seen on
the two-hour follow-up were significantly lower than the baseline values
(P<0.05). However, none of early changes in the DCE-US parameters until
24-hour follow-up showed a significant correlation with the relative changes
in tumor size during seven days after CKD-516 treatment. Conclusion: Our results suggest that a novel VDA (CKD-516) can cause disruption of tumor
perfusion as early as two hours after treatment and that the therapeutic
effect of CKD-516 treatment can be effectively quantified using DCE-US.
Collapse
Affiliation(s)
- Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Woo Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Korea ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Ihn Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Bottos A, Bardelli A. Oncogenes and angiogenesis: a way to personalize anti-angiogenic therapy? Cell Mol Life Sci 2013; 70:4131-40. [PMID: 23685900 PMCID: PMC11113350 DOI: 10.1007/s00018-013-1331-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/10/2013] [Accepted: 03/25/2013] [Indexed: 01/06/2023]
Abstract
The acquisition of oncogenic mutations and promotion of angiogenesis are key hallmarks of cancer. These features are often thought of as separate events in tumor progression and the two fields of research have frequently been considered as independent. However, as we highlight in this review, activated oncogenes and deregulated angiogenesis are tightly associated, as mutations in cancer cells can lead to perturbation of the pro- and anti-angiogenic balance thereby causing aberrant angiogenesis. We propose that normalization of the vascular network by targeting oncogenes in the tumor cells might lead to more efficient and sustained therapeutic effects compared to therapies targeting tumor vessels. We discuss how pharmacological inhibition of oncogenes in tumor cells restores a functional vasculature by bystander anti-angiogenic effect. As genetic alterations are tumor-specific, targeted therapy, which potentially blocks the angiogenic program activated by individual oncogenes may lead to personalized anti-angiogenic therapy.
Collapse
Affiliation(s)
- Alessia Bottos
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, PO Box 2543, 4058, Basel, Switzerland,
| | | |
Collapse
|
40
|
Yu HK, Lee HJ, Choi HN, Ahn JH, Choi JY, Song HS, Lee KH, Yoon Y, Yi LSH, Kim JS, Kim SJ, Kim TJ. Characterization of CD45-/CD31+/CD105+ circulating cells in the peripheral blood of patients with gynecologic malignancies. Clin Cancer Res 2013; 19:5340-50. [PMID: 23922300 DOI: 10.1158/1078-0432.ccr-12-3685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Circulating endothelial cells (CEC) have been widely used as a prognostic biomarker and regarded as a promising strategy for monitoring the response to treatment in several cancers. However, the presence and biologic roles of CECs have remained controversial for decades because technical standards for the identification and quantification of CECs have not been established. Here, we hypothesized that CECs detected by flow cytometry might be monocytes rather than endothelial cells. EXPERIMENTAL DESIGN The frequency of representative CEC subsets (i.e., CD45(-)/CD31(+), CD45(-)/CD31(+)/CD146(+), CD45(-)/CD31(+)/CD105(+)) was analyzed in the peripheral blood of patients with gynecologic cancer (n = 56) and healthy volunteers (n = 44). CD45(-)/CD31(+) cells, which are components of CECs, were isolated and the expression of various markers (CD146, CD105, vWF, and CD144 for endothelial cells; CD68 and CD14 for monocytes) was examined by immunocytochemistry. RESULTS CD45(-)/CD31(+)/CD105(+) cells were significantly increased in the peripheral blood of patients with cancer, whereas evaluation of CD45(-)/CD31(+)/CD146(+) cells was not possible both in patients with cancer and healthy controls due to the limited resolution of the flow cytometry. Immunocytochemistry analyses showed that these CD45(-)/CD31(+)/CD105(+) cells did not express vWF and CD146 but rather CD144. Furthermore, CD45(-)/CD31(+)/CD105(+) cells uniformly expressed the monocyte-specific markers CD14 and CD68. These results suggest that CD45(-)/CD31(+)/CD105(+) cells carry the characteristics of monocytes rather than endothelial cells. CONCLUSIONS Our data indicate that CD45(-)/CD31(+)/CD105(+) circulating cells, which are significantly increased in the peripheral blood of patients with gynecologic cancer, are monocytes rather than endothelial cells. Further investigation is required to determine the biologic significance of their presence and function in relation with angiogenesis.
Collapse
Affiliation(s)
- Hyun-Kyung Yu
- Authors' Affiliations: Mogam Biotechnology Research Institute, Yongin; Department of Biological Science, Sungkyunkwan University, Suwon; Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul; Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tysome JR, Lemoine NR, Wang Y. Update on oncolytic viral therapy - targeting angiogenesis. Onco Targets Ther 2013; 6:1031-40. [PMID: 23940420 PMCID: PMC3737009 DOI: 10.2147/ott.s46974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) have the ability to selectively replicate in and lyse cancer cells. Angiogenesis is an essential requirement for tumor growth. Like OVs, the therapeutic effect of many angiogenesis inhibitors has been limited, leading to the development of more effective approaches to combine antiangiogenic therapy with OVs. Angiogenesis can be targeted either directly by OV infection of vascular endothelial cells, or by arming OVs with antiangiogenic transgenes, which are subsequently expressed locally in the tumor microenvironment. In this review, we describe the development and targeting of OVs, the role of angiogenesis in cancer, and the progress made in arming viruses with antiangiogenic transgenes. Future developments required to optimize this approach are addressed.
Collapse
Affiliation(s)
- James R Tysome
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom ; Department of Otolaryngology, Cambridge University Hospitals, Cambridge, United Kingdom ; Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, People's Republic of China
| | | | | |
Collapse
|
42
|
Ino Y, Yamazaki-Itoh R, Oguro S, Shimada K, Kosuge T, Zavada J, Kanai Y, Hiraoka N. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS One 2013; 8:e55146. [PMID: 23424623 PMCID: PMC3570471 DOI: 10.1371/journal.pone.0055146] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 12/19/2012] [Indexed: 01/05/2023] Open
Abstract
An adequate level of arginine in the tissue microenvironment is essential for T cell activity and survival. Arginine levels are regulated by the arginine-catabolizing enzyme, arginase (ARG). It has been reported that arginase II (ARG2), one of two ARGs, is aberrantly expressed in prostate cancer cells, which convert arginine into ornithine, resulting in a lack of arginine that weakens tumor-infiltrating lymphocytes and renders them dysfunctional. However, immune suppression mediated by ARG2-expressing cancer cells in lung cancer has not been observed. Here we studied the expression of ARG2 in pancreatic ductal carcinoma (PDC) tissue clinicopathologically by examining over 200 cases of PDC. In contrast to prostate cancer, ARG2 expression was rarely demonstrated in PDC cells by immunohistochemistry, and instead ARG2 was characteristically expressed in α-smooth muscle actin-positive cancer-associated fibroblasts (CAFs), especially those located within and around necrotic areas in PDC. The presence of ARG2-expressing CAFs was closely correlated with shorter overall survival (OS; P = 0.003) and disease-free survival (DFS; P = 0.0006). Multivariate Cox regression analysis showed that the presence of ARG2-expressing CAFs in PDC tissue was an independent predictor of poorer OS (hazard ratio [HR] = 1.582, P = 0.007) and DFS (HR = 1.715, P = 0.001) in PDC patients. In addition to the characteristic distribution of ARG2-expressing CAFs, such CAFs co-expressed carbonic anhydrase IX, SLC2A1, or HIF-1α, markers of hypoxia, in PDC tissue. Furthermore, in vitro experiments revealed that cultured fibroblasts extracted from PDC tissue expressed the ARG2 transcript after exposure to hypoxia, which had arginase activity. These results indicate that cancer cell-mediated immune suppression through ARG2 expression is not a general event and that the presence of ARG2-expressing CAFs is an indicator of poor prognosis, as well as hypoxia, in PDC tissue.
Collapse
Affiliation(s)
- Yoshinori Ino
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rie Yamazaki-Itoh
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Seiji Oguro
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuaki Shimada
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoo Kosuge
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Jan Zavada
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| |
Collapse
|
43
|
Phase I dose-escalation study of oral vinflunine administered once daily for 6 weeks every 8 weeks in patients with advanced/metastatic solid tumours. Cancer Chemother Pharmacol 2013; 71:647-56. [DOI: 10.1007/s00280-012-2051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
|
44
|
Scoazec JY. Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology 2013; 97:45-56. [PMID: 22538258 DOI: 10.1159/000338371] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/18/2012] [Indexed: 01/21/2023]
Abstract
The considerable research efforts devoted to the understanding of the mechanisms of tumor angiogenesis have resulted in the development of targeted anti-angiogenic therapies and finally in their introduction in clinical practice. Neuroendocrine tumors (NETs), which are characterized by a high vascular supply and a strong expression of VEGF-A, one of the most potent pro-angiogenic factors, are an attractive indication for these new treatments. However, several lines of evidence show that the dense vascular networks associated with low-grade NETs are more likely to be a marker of differentiation than a marker of aggressiveness, as in other epithelial tumors. These observations form the basis for the so-called 'neuroendocrine paradox', according to which the most vascularized are the most differentiated and the less angiogenic NETs. This must be kept in mind when discussing the role of anti-angiogenic strategies in the treatment of NETs. Nevertheless, several targeted therapies, with direct or indirect anti-angiogenic properties, including anti-VEGF antibodies, tyrosine kinase inhibitors (sunitinib) and mTOR inhibitors (everolimus), have recently proven to be of clinical benefit. In addition, some drugs already used in NET treatment, such as somatostatin analogues and interferon-α, may also have anti-angiogenic properties. The main challenges for the next future are to validate biomarkers for the selection of patients and the prediction of their response to refine the indications of anti-angiogenic targeted therapies and to overcome the mechanisms of resistance, which explain the limited duration of action of most of these treatments.
Collapse
Affiliation(s)
- Jean-Yves Scoazec
- Service d'Anatomie Pathologique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
45
|
Raja FA, Hook JM, Ledermann JA. Biomarkers in the development of anti-angiogenic therapies for ovarian cancer. Cancer Treat Rev 2012; 38:662-72. [DOI: 10.1016/j.ctrv.2011.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/24/2022]
|
46
|
McNamara MG, Mason WP. Antiangiogenic therapies in glioblastoma multiforme. Expert Rev Anticancer Ther 2012; 12:643-54. [PMID: 22594899 DOI: 10.1586/era.12.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal of adult gliomas. The prognosis for the great majority of patients with GBM is poor as almost all tumors recur following optimal surgical resection, radiation and standard chemotherapy, resulting in rapid disease-related death. The standard of care for recurrent GBM has not been clearly established. GBMs are highly vascularized brain tumors and growth has been shown to be angiogenesis dependent, thus stimulating interest in developing antiangiogenic therapeutic strategies. Antiangiogenic agents are the most promising novel agents in development for GBM but to date have not substantially changed overall survival. Future antiangiogenic strategies designed to overcome limitations of current antiangiogenic agents will likely involve the use of agent combinations that target pathways mediating resistance to antiangiogenic agents and tumor invasion.
Collapse
Affiliation(s)
- Mairéad G McNamara
- Pencer Brain Tumor Centre, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
47
|
Baselga J, Mita AC, Schöffski P, Dumez H, Rojo F, Tabernero J, DiLea C, Mietlowski W, Low C, Huang J, Dugan M, Parker K, Walk E, van Oosterom A, Martinelli E, Takimoto CH. Using pharmacokinetic and pharmacodynamic data in early decision making regarding drug development: a phase I clinical trial evaluating tyrosine kinase inhibitor, AEE788. Clin Cancer Res 2012; 18:6364-72. [PMID: 23014528 DOI: 10.1158/1078-0432.ccr-12-1499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In this first-in-human study of AEE788, a tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR), HER-2, and VEGFR-2, a comprehensive pharmacodynamic program was implemented in addition to the evaluation of safety, pharmacokinetics, and preliminary efficacy of AEE788 in cancer patients. EXPERIMENTAL DESIGN Patients with advanced, solid tumors received escalating doses of oral AEE788 once daily. Primary endpoints were to determine dose-limiting toxicities (DLTs) and maximum-tolerated dose (MTD). A nonlinear model (Emax model) was used to describe the relationship between AEE788 exposure and target-pathway modulation in skin and tumor tissues. RESULTS Overall, 111 patients were treated (25 to 550 mg/day). DLTs included rash and diarrhea; MTD was 450 mg/day. Effects on biomarkers correlated to serum AEE788 concentrations. The concentration at 50% inhibition (IC(50)) for EGFR in skin (0.033 μmol/L) and tumor (0.0125 μmol/L) were similar to IC(50) in vitro suggesting skin may be surrogate tissue for estimating tumor EGFR inhibition. No inhibition of p-MAPK and Ki67 was observed in skin vessels at ≤ MTD. Hence, AEE788 inhibited EGFR, but not VEGFR, at doses ≤ MTD. A total of 16 of 96 evaluable patients showed a >10% shrinkage of tumor size; one partial response was observed. CONCLUSION Our pharmacodynamic-based study showed effective inhibition of EGFR, but not of VEGFR at tolerable AEE788 doses. Emax modeling integrated with biomarker data effectively guided real-time decision making in the early development of AEE788. Despite clinical activity, target inhibition of only EGFR led to discontinuation of further AEE788 development.
Collapse
Affiliation(s)
- José Baselga
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Novel antiangiogenic therapies against advanced hepatocellular carcinoma (HCC). Clin Transl Oncol 2012; 14:564-74. [PMID: 22855137 DOI: 10.1007/s12094-012-0842-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/13/2012] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a cornerstone in the process of hepatocarcinogenesis. In the sorafenib era, other antiangiogenic targeted drugs, such as monoclonal antibodies and a new generation of tyrosine kinase inhibitors, have been shown in phase II trials to be safe and effective in the treatment of advanced hepatocellular carcinoma. Several currently active phase III trials are testing these drugs, both in first- and second-line settings. Strategies to overcome primary and acquired resistance to antiangiogenic therapy are urgently needed. Novel biomarkers may help in improving the efficacy of drugs targeting angiogenesis.
Collapse
|
49
|
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy despite several decades of progress in diagnosis and treatment. Taking advantage of the robust development of discovery and utility of prognostic biomarkers, clinicians and researchers are developing personalized and targeted treatment strategies. This review encompasses recently discovered biomarkers of ovarian cancer, the utility of published prognostic biomarkers for EOC (especially biomarkers related to angiogenesis and key signaling pathways), and their integration into clinical practice.
Collapse
Affiliation(s)
- Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
50
|
Wu JM, Staton CA. Anti-angiogenic drug discovery: lessons from the past and thoughts for the future. Expert Opin Drug Discov 2012; 7:723-43. [PMID: 22716277 DOI: 10.1517/17460441.2012.695774] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Since the pioneering work of Judah Folkman, the discovery of bevacizumab has introduced the use of anti-angiogenic agents as a new modality for the treatment of cancer. Currently, hundreds of clinical trials involving anti-angiogenic agents, targeting different elements of the tumour angiogenesis pathway, are underway. However, thus far, the benefits of anti-angiogenic therapy in unselected patient populations are often marginal with harmful side effects. AREAS COVERED This article presents a detailed discussion of the lessons learnt from the use of bevacizumab and other VEGF pathway inhibitors in the clinical setting. Specifically, this article provides a review of the literature on anti-VEGF agents and other angiogenesis inhibitors used in pre-clinical and clinical trials for cancer treatment. EXPERT OPINION Future anti-angiogenic drug design centres on multiple protein targets and combinations including: growth factors, hypoxia-inducible factor and tumour endothelial cell markers unique to the tumour vasculature. Furthermore, treatment dosing, scheduling and combination with radiation and chemotherapy require further investigation, as does the potential of treating early disease, and the development of biomarkers which accurately predict response to therapy. These are essential for the future development of these drugs with individualised therapy likely to be the ultimate goal.
Collapse
Affiliation(s)
- Jessie M Wu
- University of Sheffield, School of Medicine and Biomedical Sciences, CR-UK/YCR Sheffield Cancer Research Centre, Academic Unit of Surgical Oncology, Microcirculation Research Group, Beech Hill Road, Sheffield, South Yorkshire, S10 2RX, UK
| | | |
Collapse
|