1
|
Peyret H, Shah SN, Meshcheriakova Y, Saunders K, Lomonossoff GP. How do RNA viruses select which RNA to package? The plant virus experience. Virology 2025; 604:110435. [PMID: 39893746 DOI: 10.1016/j.virol.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The process whereby viral RNA is specifically selected for packaging within viral particles has been extensively studied over many years. As a result, two broad hypotheses have emerged to explain this specificity, though these are not mutually exclusive. The first proposes that the viral RNA contains specific sequences or "packaging signals" that enable it to be recognised from a mixture of RNAs within an infected cell. The second suggests that there is a functional coupling between RNA replication and packaging that leads to only replicating, viral RNA being packaged. This review is aimed at analysing the evidence for the two hypotheses from both in vitro and in vivo studies on positive-strand RNA plant viruses. Overall, it seems probable that the selectivity of packaging results from replication of the viral RNAs rather than the presence of any specific RNA sequence. However, it is also likely that the presence of packaging signals with high affinity for the viral coat protein is involved in the efficient incorporation of RNA into particles, thereby favouring the correct assembly of fully formed and infectious particles.
Collapse
Affiliation(s)
- Hadrien Peyret
- University of Nottingham, School of Biosciences, Division of Crop and Plant Sciences. Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Sachin N Shah
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Yulia Meshcheriakova
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Keith Saunders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
2
|
González-Gamboa I, Caparco AA, McCaskill J, Fuenlabrada-Velázquez P, Hays SS, Jin Z, Jokerst JV, Pokorski JK, Steinmetz NF. Inter-coat protein loading of active ingredients into Tobacco mild green mosaic virus through partial dissociation and reassembly of the virion. Sci Rep 2024; 14:7168. [PMID: 38532056 DOI: 10.1038/s41598-024-57200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Chemical pesticide delivery is a fundamental aspect of agriculture. However, the extensive use of pesticides severely endangers the ecosystem because they accumulate on crops, in soil, as well as in drinking and groundwater. New frontiers in nano-engineering have opened the door for precision agriculture. We introduced Tobacco mild green mosaic virus (TMGMV) as a viable delivery platform with a high aspect ratio and favorable soil mobility. In this work, we assess the use of TMGMV as a chemical nanocarrier for agriculturally relevant cargo. While plant viruses are usually portrayed as rigid/solid structures, these are "dynamic materials," and they "breathe" in solution in response to careful adjustment of pH or bathing media [e.g., addition of solvent such as dimethyl sulfoxide (DMSO)]. Through this process, coat proteins (CPs) partially dissociate leading to swelling of the nucleoprotein complexes-allowing for the infusion of active ingredients (AI), such as pesticides [e.g., fluopyram (FLP), clothianidin (CTD), rifampicin (RIF), and ivermectin (IVM)] into the macromolecular structure. We developed a "breathing" method that facilitates inter-coat protein cargo loading, resulting in up to ~ 1000 AIs per virion. This is of significance since in the agricultural setting, there is a need to develop nanoparticle delivery strategies where the AI is not chemically altered, consequently avoiding the need for regulatory and registration processes of new compounds. This work highlights the potential of TMGMV as a pesticide nanocarrier in precision farming applications; the developed methods likely would be applicable to other protein-based nanoparticle systems.
Collapse
Affiliation(s)
- Ivonne González-Gamboa
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Adam A Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
| | - Justin McCaskill
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Samuel S Hays
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Saunders K, Thuenemann EC, Peyret H, Lomonossoff GP. The Tobacco Mosaic Virus Origin of Assembly Sequence is Dispensable for Specific Viral RNA Encapsidation but Necessary for Initiating Assembly at a Single Site. J Mol Biol 2022; 434:167873. [PMID: 36328231 DOI: 10.1016/j.jmb.2022.167873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
We have investigated whether the presence of the origin of assembly sequence (OAS) of tobacco mosaic virus (TMV) is necessary for the specific encapsidation of replicating viral RNA. To this end TMV coat protein was expressed from replicating RNA constructs with or without the OAS in planta. In both cases the replicating RNA was specifically encapsidated to give nucleoprotein nanorods, though the yield in the absence of the OAS was reduced to about 60% of that in its presence. Moreover, the nanorods generated in the absence of the OAS were more heterogeneous in length and contained frequent structural discontinuities. These results strongly suggest that the function of the OAS is to provide a unique site for the initiation of viral assembly, leading to a one-start helix, rather than the selection of virus RNA for packaging.
Collapse
Affiliation(s)
- Keith Saunders
- Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eva C Thuenemann
- Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hadrien Peyret
- Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - George P Lomonossoff
- Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
4
|
King J. Using T4 Genetics and Laemmli's Development of High Resolution SDS Gel Electrophoresis to Reveal Structural Protein Interactions Controlling Protein Folding and Phage Self-Assembly. J Biol Chem 2022; 298:102463. [PMID: 36067882 PMCID: PMC9576892 DOI: 10.1016/j.jbc.2022.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/03/2022] Open
Abstract
One of the most transformative experimental techniques in the rise of modern molecular biology and biochemistry was the development of high resolution Sodium Dodecyl Sulfate (SDS) poly acrylamide gel electrophoresis, which allowed separation of proteins - including structural proteins - in complex mixtures according to their molecular weights. Its development was intimately tied to investigations of the control of virus assembly within phage-infected cells. The method was developed by Ulrich K. Laemmli working in the virus structural group led by Aaron Klug at the famed Medical Research Council Laboratory for Molecular Biology (LMB) at Cambridge, UK. While Laemmli was tackling T4 head assembly, I sat at the next bench working on T4 tail assembly. To date, Laemmli's original paper has been cited almost 300,000 times. His gel procedure and our cooperation allowed us to sort out the sequential protein-protein interactions controlling the viral self-assembly pathways. It is still not fully appreciated that this control involved protein conformational change induced by interaction with an edge of the growing structure. Subsequent efforts of my students and I to understand how temperature sensitive mutations interfered with assembly were important in revealing the intracellular off-pathway aggregation processes competing with productive protein folding. These misfolding processes slowed the initial productivity of the biotechnology industry. The article below describes the scientific origin, context and sociology that supported these advances in protein biochemistry, protein expression, and virus assembly. The cooperation and collaboration that was integral to both the LMB culture and phage genetics fields were key to these endeavors.
Collapse
|
5
|
Cui H, Zhang T, Kong Y, Xing H, Wei B. Controllable assembly of synthetic constructs with programmable ternary DNA interaction. Nucleic Acids Res 2022; 50:7188-7196. [PMID: 35713533 PMCID: PMC9262601 DOI: 10.1093/nar/gkac478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Compared with the dual binding components in a binary interaction, the third component of a ternary interaction often serves as modulator or regulator in biochemical processes. Here, we presented a programmable ternary interaction strategy based on the natural DNA triplex structure. With the DNA triplex-based ternary interaction, we have successfully demonstrated controllable hierarchical assemblies from nanometer scale synthetic DNA nanostructure units to micrometer scale live bacteria. A selective signaling system responsive to orthogonal nucleic acid signals via ternary interaction was also demonstrated. This assembly method could further enrich the diversified design schemes of DNA nanotechnology.
Collapse
Affiliation(s)
- Huangchen Cui
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Creager ANH. Tobacco Mosaic Virus and the History of Molecular Biology. Annu Rev Virol 2022; 9:39-55. [PMID: 35704746 DOI: 10.1146/annurev-virology-100520-014520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The history of tobacco mosaic virus (TMV) includes many firsts in science, beginning with its being the first virus identified. This review offers an overview of a history of research on TMV, with an emphasis on its close connections to the emergence and development of molecular biology. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Angela N H Creager
- Department of History, Princeton University, Princeton, New Jersey; USA;
| |
Collapse
|
7
|
Martínez-Turiño S, García JA. Potyviral coat protein and genomic RNA: A striking partnership leading virion assembly and more. Adv Virus Res 2020; 108:165-211. [PMID: 33837716 DOI: 10.1016/bs.aivir.2020.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Potyvirus genus clusters a significant and expanding number of widely distributed plant viruses, responsible for large losses impacting most crops of economic interest. The potyviral genome is a single-stranded, linear, positive-sense RNA of around 10kb that is encapsidated in flexuous rod-shaped filaments, mostly made up of a helically arranged coat protein (CP). Beyond its structural role of protecting the viral genome, the potyviral CP is a multitasking protein intervening in practically all steps of the virus life cycle. In particular, interactions between the CP and the viral RNA must be tightly controlled to allow the correct assignment of the RNA to each of its functions through the infection process. This review attempts to bring together the most relevant available information regarding the architecture and modus operandi of potyviral CP and virus particles, highlighting significant discoveries, but also substantial gaps in the existing knowledge on mechanisms orchestrating virion assembly and disassembly. Biotechnological applications based on potyvirus nanoparticles is another important topic addressed here.
Collapse
|
8
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
10
|
Comas-Garcia M. Packaging of Genomic RNA in Positive-Sense Single-Stranded RNA Viruses: A Complex Story. Viruses 2019; 11:v11030253. [PMID: 30871184 PMCID: PMC6466141 DOI: 10.3390/v11030253] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The packaging of genomic RNA in positive-sense single-stranded RNA viruses is a key part of the viral infectious cycle, yet this step is not fully understood. Unlike double-stranded DNA and RNA viruses, this process is coupled with nucleocapsid assembly. The specificity of RNA packaging depends on multiple factors: (i) one or more packaging signals, (ii) RNA replication, (iii) translation, (iv) viral factories, and (v) the physical properties of the RNA. The relative contribution of each of these factors to packaging specificity is different for every virus. In vitro and in vivo data show that there are different packaging mechanisms that control selective packaging of the genomic RNA during nucleocapsid assembly. The goals of this article are to explain some of the key experiments that support the contribution of these factors to packaging selectivity and to draw a general scenario that could help us move towards a better understanding of this step of the viral infectious cycle.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Research Center for Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí (UASLP), Av. Sierra Leona 550 Lomas 2da Seccion, 72810 San Luis Potosi, Mexico.
- Department of Sciences, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosi, Mexico.
| |
Collapse
|
11
|
Vahey MD, Fletcher DA. Low-Fidelity Assembly of Influenza A Virus Promotes Escape from Host Cells. Cell 2018; 176:281-294.e19. [PMID: 30503209 DOI: 10.1016/j.cell.2018.10.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses inhabit a wide range of host environments using a limited repertoire of protein components. Unlike viruses with stereotyped shapes, influenza produces virions with significant morphological variability even within clonal populations. Whether this tendency to form pleiomorphic virions is coupled to compositional heterogeneity and whether it affects replicative fitness remains unclear. Here, we address these questions by developing a strain of influenza A virus amenable to rapid compositional characterization through quantitative, site-specific labeling of viral proteins. Using this strain, we find that influenza A produces virions with broad variations in size and composition from even single infected cells. This phenotypic variability contributes to virus survival during environmental challenges, including exposure to antivirals. Complementing genetic adaptations that act over larger populations and longer times, this "low-fidelity" assembly of influenza A virus allows small populations to survive environments that fluctuate over individual replication cycles.
Collapse
Affiliation(s)
- Michael D Vahey
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; University of California, Berkeley/University of California, San Francisco Graduate Group in Bioengineering, Berkeley, CA 94720, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Bravo JPK, Borodavka A, Barth A, Calabrese AN, Mojzes P, Cockburn JJB, Lamb DC, Tuma R. Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Res 2018; 46:7924-7937. [PMID: 29796667 PMCID: PMC6125681 DOI: 10.1093/nar/gky394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.
Collapse
Affiliation(s)
- Jack P K Bravo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Anders Barth
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Peter Mojzes
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Joseph J B Cockburn
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
13
|
Lomonossoff GP, Wege C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Adv Virus Res 2018; 102:149-176. [PMID: 30266172 PMCID: PMC7112118 DOI: 10.1016/bs.aivir.2018.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has played a prominent role in the development of modern virology and molecular biology. In particular, research on the three-dimensional structure of the virus particles and the mechanism by which these assemble from their constituent protein and RNA components has made TMV a paradigm for our current view of the morphogenesis of self-assembling structures, including viral particles. More recently, this knowledge has been applied to the development of novel reagents and structures for applications in biomedicine and bionanotechnology. In this article, we review how fundamental science has led to TMV being at the vanguard of these new technologies.
Collapse
Affiliation(s)
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Abstract
The discovery of a new class of pathogen, viruses, in the late 19th century, ushered in a period of study of the biochemical and structural properties of these entities in which plant viruses played a prominent role. This was, in large part, due to the relative ease with which sufficient quantities of material could be produced for such analyses. As analytical techniques became increasingly sensitive, similar studies could be performed on the viruses from other organisms. However, plant viruses continued to play an important role in the development of molecular biology, including the demonstration that RNA can be infectious, the determination of the genetic code, the mechanism by which viral RNAs are translated, and some of the early studies on gene silencing. Thus, the study of plant viruses should not be considered a "niche" subject but rather part of the mainstream of virology and molecular biology.
Collapse
|
15
|
Saunders K, Lomonossoff GP. In Planta Synthesis of Designer-Length Tobacco Mosaic Virus-Based Nano-Rods That Can Be Used to Fabricate Nano-Wires. FRONTIERS IN PLANT SCIENCE 2017; 8:1335. [PMID: 28878782 PMCID: PMC5572394 DOI: 10.3389/fpls.2017.01335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/17/2017] [Indexed: 05/11/2023]
Abstract
We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes.
Collapse
|
16
|
Koch C, Eber FJ, Azucena C, Förste A, Walheim S, Schimmel T, Bittner AM, Jeske H, Gliemann H, Eiben S, Geiger FC, Wege C. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:613-29. [PMID: 27335751 PMCID: PMC4901926 DOI: 10.3762/bjnano.7.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/03/2016] [Indexed: 05/22/2023]
Abstract
The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.
Collapse
Affiliation(s)
- Claudia Koch
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fabian J Eber
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Carlos Azucena
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Alexander Förste
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Stefan Walheim
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Thomas Schimmel
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Alexander M Bittner
- CIC Nanogune, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain, and Ikerbasque, Maria Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Sabine Eiben
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fania C Geiger
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| |
Collapse
|
17
|
Adigun OO, Freer AS, Miller JT, Loesch-Fries LS, Kim BS, Harris MT. Mechanistic study of the hydrothermal reduction of palladium on the Tobacco mosaic virus. J Colloid Interface Sci 2015; 450:1-6. [DOI: 10.1016/j.jcis.2015.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
18
|
Newburn LR, White KA. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology 2015; 479-480:434-43. [PMID: 25759098 DOI: 10.1016/j.virol.2015.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
Abstract
Positive-strand RNA viruses are the most common type of plant virus. Many aspects of the reproductive cycle of this group of viruses have been studied over the years and this has led to the accumulation of a significant amount of insightful information. In particular, the identification and characterization of cis-acting RNA elements within these viral genomes have revealed important roles in many fundamental viral processes such as virus disassembly, translation, genome replication, subgenomic mRNA transcription, and packaging. These functional cis-acting RNA elements include primary sequences, secondary and tertiary structures, as well as long-range RNA-RNA interactions, and they typically function by interacting with viral or host proteins. This review provides a general overview and update on some of the many roles played by cis-acting RNA elements in positive-strand RNA plant viruses.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
19
|
Zhou K, Li F, Dai G, Meng C, Wang Q. Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods. Biomacromolecules 2013; 14:2593-600. [DOI: 10.1021/bm400445m] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kun Zhou
- Suzhou Key Laboratory of Nanomedical
Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Biological Science
and Technology, Fuzhou University, Fuzhou,
350108, China
| | - Feng Li
- Suzhou Key Laboratory of Nanomedical
Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Gaole Dai
- Suzhou Key Laboratory of Nanomedical
Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Biological Science
and Technology, Fuzhou University, Fuzhou,
350108, China
| | - Chun Meng
- College of Biological Science
and Technology, Fuzhou University, Fuzhou,
350108, China
| | - Qiangbin Wang
- Suzhou Key Laboratory of Nanomedical
Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
20
|
Kadri A, Wege C, Jeske H. In vivo self-assembly of TMV-like particles in yeast and bacteria for nanotechnological applications. J Virol Methods 2013; 189:328-40. [DOI: 10.1016/j.jviromet.2013.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/16/2022]
|
21
|
Kraft DJ, Kegel WK, van der Schoot P. A kinetic Zipper model and the assembly of tobacco mosaic virus. Biophys J 2012; 102:2845-55. [PMID: 22735535 DOI: 10.1016/j.bpj.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022] Open
Abstract
We put forward a modified Zipper model inspired by the statics and dynamics of the spontaneous reconstitution of rodlike tobacco mosaic virus particles in solutions containing the coat protein and the single-stranded RNA of the virus. An important ingredient of our model is an allosteric switch associated with the binding of the first protein unit to the origin-of-assembly domain of the viral RNA. The subsequent addition and conformational switching of coat proteins to the growing capsid we believe is catalyzed by the presence of the helical arrangement of bound proteins to the RNA. The model explains why the formation of complete viruses is favored over incomplete ones, even though the process is quasi-one-dimensional in character. We numerically solve the relevant kinetic equations and show that time evolution is different for the assembly and disassembly of the virus, the former exhibiting a time lag even if all forward rate constants are equal. We find the late-stage assembly kinetics in the presence of excess protein to be governed by a single-exponential relaxation, which agrees with available experimental data on TMV reconstruction.
Collapse
Affiliation(s)
- Daniela J Kraft
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for NanoMaterials Science, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
22
|
Abstract
Virtually all studies of structure and assembly of viral filaments have been made on plant and bacterial viruses. Structures have been determined using fiber diffraction methods at high enough resolution to construct reliable molecular models or several of the rigid plant tobamoviruses (related to tobacco mosaic virus, TMV) and the filamentous bacteriophages including Pf1 and fd. Lower-resolution structures have been determined for a number of flexible filamentous plant viruses using fiber diffraction and cryo-electron microscopy. Virions of filamentous viruses have numerous mechanical functions, including cell entry, viral disassembly, viral assembly, and cell exit. The plant viruses, which infect multicellular organisms, also use virions or virion-like assemblies for transport within the host. Plant viruses are generally self-assembling; filamentous bacteriophage assembly is combined with secretion from the host cell, using a complex molecular machine. Tobamoviruses and other plant viruses disassemble concomitantly with translation, by various mechanisms and involving various viral and host assemblies. Plant virus movement within the host also makes use of a variety of viral proteins and modified host assemblies.
Collapse
|
23
|
Meng X, Zhao G, Zhang P. Structure of HIV-1 capsid assemblies by cryo-electron microscopy and iterative helical real-space reconstruction. J Vis Exp 2011:3041. [PMID: 21860371 PMCID: PMC3211131 DOI: 10.3791/3041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy1 and two-dimensional (2D) electron crystallography2 have become relatively routine methodologies and a large number of structures have been solved using these methods. At the same time, image processing and three-dimensional (3D) reconstruction of helical objects has rapidly developed, especially, the iterative helical real-space reconstruction (IHRSR) method3, which uses single particle analysis tools in conjunction with helical symmetry. Many biological entities function in filamentous or helical forms, including actin filaments4, microtubules5, amyloid fibers6, tobacco mosaic viruses7, and bacteria flagella8, and, because a 3D density map of a helical entity can be attained from a single projection image, compared to the many images required for 3D reconstruction of a non-helical object, with the IHRSR method, structural analysis of such flexible and disordered helical assemblies is now attainable. In this video article, we provide detailed protocols for obtaining a 3D density map of a helical protein assembly (HIV-1 capsid9 is our example), including protocols for cryo-EM specimen preparation, low dose data collection by cryo-EM, indexing of helical diffraction patterns, and image processing and 3D reconstruction using IHRSR. Compared to other techniques, cryo-EM offers optimal specimen preservation under near native conditions. Samples are embedded in a thin layer of vitreous ice, by rapid freezing, and imaged in electron microscopes at liquid nitrogen temperature, under low dose conditions to minimize the radiation damage. Sample images are obtained under near native conditions at the expense of low signal and low contrast in the recorded micrographs. Fortunately, the process of helical reconstruction has largely been automated, with the exception of indexing the helical diffraction pattern. Here, we describe an approach to index helical structure and determine helical symmetries (helical parameters) from digitized micrographs, an essential step for 3D helical reconstruction. Briefly, we obtain an initial 3D density map by applying the IHRSR method. This initial map is then iteratively refined by introducing constraints for the alignment parameters of each segment, thus controlling their degrees of freedom. Further improvement is achieved by correcting for the contrast transfer function (CTF) of the electron microscope (amplitude and phase correction) and by optimizing the helical symmetry of the assembly.
Collapse
Affiliation(s)
- Xin Meng
- Department of Structural Biology, University of Pittsburgh School of Medicine, USA
| | | | | |
Collapse
|
24
|
den Hartog JAJ, Wille G, van Boom JH. Synthesis of oligoribonucleotides with sequences identical to the nucleation region of Tobacco Mosaic Virus RNA: Preparation of AAG, AAGAAG and AAGAAGUUG via
phosphotriester methods. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19811000907] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Fukuda M, Meshi T, Okada Y, Otsuki Y, Takebe I. Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group. Proc Natl Acad Sci U S A 2010; 78:4231-5. [PMID: 16593057 PMCID: PMC319763 DOI: 10.1073/pnas.78.7.4231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The initiation site for reconstitution on genome RNA was determined by electron microscopic serology for a watermelon strain of cucumber green mottle mosaic virus (CGMMV-W), which is chemically and serologically related to tobacco mosaic virus (TMV). The initiation site was located at the same position as that of the cowpea strain, a virus that produces short rods of encapsidated subgenomic messenger RNA for the coat protein (a two-component TMV), being about 320 nucleotides away from the 3' terminus, and hence within the coat protein cistron. Although CGMMV-W was until now believed to be a single-component TMV, the location of the initiation site indicated the presence of short rods containing coat protein messenger RNA in CGMMV-W-infected tissue, as in the case for the cowpea strain. We found such short rods in CGMMV-W-infected tissue. The results confirmed our previous hypothesis that the site of the initiation region for reconstitution determines the rod multiplicity of TMV. The finding of the second two-component TMV, CGMMV, indicates that the cowpea strain of TMV is not unique in being a two-component virus and that the location of the assembly initiation site on the genome RNA can be a criterion for grouping of viruses.
Collapse
Affiliation(s)
- M Fukuda
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
26
|
Fukuda M, Okada Y. Elongation in the major direction of tobacco mosaic virus assembly. Proc Natl Acad Sci U S A 2010; 82:3631-4. [PMID: 16593565 PMCID: PMC397839 DOI: 10.1073/pnas.82.11.3631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Butler and Lomonossoff [Butler, P. J. G. & Lomonossoff, G. P. (1978) J. Mol. Biol. 126, 877-882] claim that the elongation in the major direction (3'-->5') proceeds by incorporation of disk protein in tobacco mosaic virus (TMV) assembly. The strongest argument they have for this theory is the periodicity of 50 or 100 nucleotides that they observed in the banding pattern of the protected RNAs during the first few minutes of the assembly reaction. We repeated their experiment using TMV-OM (a common Japanese strain) disk protein and TMV-OM RNA. We observed a banding pattern similar to theirs, but we found the long protected RNA at 6 min to be from the 260-nm intermediate particle rather than from the full-length TMV RNA. We also carried out the assembly reaction between TMV-OM disk protein, as well as cucumber green mottle mosaic virus (CGMMV) protein, and three strains of TMV RNAs. During the course of each assembly reaction, we examined the banding patterns. We demonstrated that the banding pattern of the protected RNA differs depending on what kind of RNA is used, rather than on what kind of aggregational state the protein is in. Specifically, the similar banding pattern observed for CGMMV subunit protein was also observed for TMV disk protein in the assembly reaction with TMV (OM) RNA. We showed previously that the assembly reaction between CGMMV protein and TMV RNA proceeds by incorporation of CGMMV subunit protein. This strongly indicates that the banding pattern of the protected RNA does not arise from the stepwise addition of the 20S disk protein.
Collapse
Affiliation(s)
- M Fukuda
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Tokyo 113, Japan
| | | |
Collapse
|
27
|
Nucleotide sequence of the coat protein cistron and the 3' noncoding region of cucumber green mottle mosaic virus (watermelon strain) RNA. Virology 2008; 127:54-64. [PMID: 18638996 DOI: 10.1016/0042-6822(83)90370-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1982] [Accepted: 01/31/1983] [Indexed: 11/21/2022]
Abstract
Double-stranded cDNA copies of cucumber green mottle mosaic virus (watermelon strain, CGMMV-W) RNA polyadenylated in vitro were cloned into the pBR322 at the PstI site. The sequence of 1071 nucleotides from the Tend of the genomic RNA was determined using two recombinant plasmids and the genomic RNA. The coat protein cistron was located in residues 176-661 from the 3' end. The coat protein was composed of 160 amino acid residues with the molecular weight of 17,261. The 3' noncoding region of the CGMMVW genome was 175 nucleotides long and highly homologous to that of the common strain of TMV. The assembly origin of reconstitution is positioned within the coat protein cistron as predicted previously. In the 5' flanking region of the coat protein cistron a long open frame, probably of 30K protein, was found. The predicted 30K and the coat protein cistron would overlap each other as is the case of the cowpea strain of TMV.
Collapse
|
28
|
Abstract
Tobacco mosaic virus (TMV) particles are rod-like, 300 nm long and 18 nm in diameter. TMV consists of 2140 protein subunits, each with a relative molecular mass of 17420 (158 residues), arranged on a helix of pitch 2.3 nm with 16 1/3 subunits per turn. Winding through this helix is a single strand of RNA 6400 nucleotides long. Three bases are bound to each protein subunit. TMV has a central hole of diameter 4.0 nm. Assembly of TMV occurs by the threading of the RNA through the central hole of the growing rodlet of viral coat protein and involves a preassembled double disk as intermediate. Given the structure of the subunit, such a mechanism requires that the segment of polypeptide chain which separates the nucleic acid binding site from the lumen of the cylinder should be able to move out of the way during the assembly process. Evidence from diffraction studies and from proton nuclear magnetic resonance spectroscopy points to a segment of about 20 amino acid residues being very flexible in the disk. In the helical virus these residues take on a well-defined conformation which completely shields the nucleic acid from the central channel.
Collapse
|
29
|
|
30
|
Klug A. The polymorphism of tobacco mosaic virus protein and its significance for the assembly of the virus. CIBA FOUNDATION SYMPOSIUM 2008; 7:207-15. [PMID: 4490170 DOI: 10.1002/9780470719909.ch12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Garcia BH, Goodman RM. Use of surface plasmon resonance imaging to study viral RNA:protein interactions. J Virol Methods 2008; 147:18-25. [PMID: 17875327 DOI: 10.1016/j.jviromet.2007.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 05/16/2007] [Accepted: 08/01/2007] [Indexed: 11/29/2022]
Abstract
Surface plasmon resonance imaging (SPRi) is an emerging microarray technology that is label-free, rapid and extremely flexible. Here the capabilities of SPRi are demonstrated in results of proof-of-concept experiments detailing a method for studying viral genomic RNA:protein interactions in array format. The principal RNA is the well-characterized origin of assembly (OAS) containing region of Tobacco mosaic virus (TMV) RNA, whereas the principal protein is the primary subunit for TMV virion assembly, the 20S capsid protein aggregate. DNA probes complementary to TMV and non-TMV RNA fragments were covalently attached to a thin gold layer deposited on glass. These DNA probes were used to discreetly capture in vitro transcribed TMV and Red clover necrotic mosaic virus (RCNMV) RNA2 (used as a negative control for the subsequent protein binding). The 4S TMV capsid protein monomers were isolated from TMV particles purified from infected plants of Nicotiana tabacum L. and were induced to form 20S stacked disc aggregates. These 20S stacked disc aggregates were then injected onto the array containing the RNA fragments captured by the DNA probes immobilized on the microarray surface. The discrete and preferential binding of the 20S stacked disc aggregates to the array locations containing the TMV OAS RNA sequence was observed. The results demonstrate that SPRi can be used to monitor binding of large RNA molecules to immobilized DNA capture probes which can then be used to monitor the subsequent binding of complex protein structures to the RNA molecules in a single real-time, label-free microarray experiment. The results further demonstrate that SPRi can distinguish between RNA species that have or do not have an origin of assembly sequence specific for a particular viral capsid protein or protein complex. The broader implications of these results in virology research are found in other systems where the research goals include characterizing the specificity and kinetics of viral or host protein or protein complex interactions with viral nucleic acids.
Collapse
Affiliation(s)
- Bradley H Garcia
- Department of Plant Pathology, University of Wisconsin-Madison, USA
| | | |
Collapse
|
32
|
Smith ML, Corbo T, Bernales J, Lindbo JA, Pogue GP, Palmer KE, McCormick AA. Assembly of trans-encapsidated recombinant viral vectors engineered from Tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. Virology 2006; 358:321-33. [PMID: 17014881 DOI: 10.1016/j.virol.2006.08.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/06/2006] [Accepted: 08/23/2006] [Indexed: 11/17/2022]
Abstract
RNA virus vectors are attractive vaccine delivery agents capable of directing high-level gene expression without integration into host cell DNA. However, delivery of non-encapsidated RNA viral vectors into animal cells is relatively inefficient. By introducing the tobacco mosaic virus (TMV) origin of assembly into the RNA genome of Semliki Forest virus (SFV), we generated an SFV expression vector that could be efficiently packaged (trans-encapsidated) in vitro by purified TMV coat protein (CP). Using cellular assays, pseudovirus disassembly, RNA replication and reporter gene expression were demonstrated. We also evaluated the immune response to trans-encapsidated recombinant SFV carrying a model antigen gene (beta-galactosidase) in C57/B6 mice. Relative to RNA alone, vector encapsidation significantly improved the humoral and cellular immune responses. Furthermore, reassembly with recombinant TMV CPs permitted the display of peptide epitopes on the capsid surface as either genetic fusions or through chemical conjugation, to complement the immunoreactivity of the encapsidated RNA genetic payload. The SFV vector/TMV CP system described provides an alternative nucleic acid delivery mechanism that is safe, easy to manufacture in vitro and that also facilitates the generation of unique nucleic acid/protein antigen compositions.
Collapse
Affiliation(s)
- Mark L Smith
- Large Scale Biology Corporation, 3333 Vaca Valley Parkway, Suite 1000, Vacaville, CA 95688, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Briggs JAG, Wilk T, Welker R, Kräusslich HG, Fuller SD. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 2003; 22:1707-15. [PMID: 12660176 PMCID: PMC152888 DOI: 10.1093/emboj/cdg143] [Citation(s) in RCA: 366] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 02/03/2003] [Accepted: 02/04/2003] [Indexed: 11/13/2022] Open
Abstract
Mature, infectious HIV-1 particles contain a characteristic cone-shaped core that encases the viral RNA and replication proteins. The architectures of mature virions and isolated cores were studied using cryo-electron microscopy. The average size ( approximately 145 nm) of the virion was unchanged during maturation. Most virions contained a single core but roughly one-third contained two or more cores. Consideration of the capsid protein concentration during core assembly indicated that core formation in vivo is template-mediated rather than concentration-driven. Although most cores were conical, 7% were tubular. These displayed a stacked-disc arrangement with 7-, 8-, 9- or 10-fold axial symmetry. Layer line filtration of these images showed that the capsid subunit arrangement is consistent with a 9.6 nm hexamer resembling that previously seen in the helical tubes assembled from purified capsid protein. A common reflection (1/3.2 nm) shared between the tubular and conical cores suggested they share a similar organization. The extraordinary flexibility observed in the assembly of the mature core appears to be well suited to accommodating variation and hence there may be no single structure for the infectious virion.
Collapse
Affiliation(s)
- John A G Briggs
- The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | | | | | | | |
Collapse
|
36
|
Alzhanova DV, Napuli AJ, Creamer R, Dolja VV. Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J 2001; 20:6997-7007. [PMID: 11742977 PMCID: PMC125784 DOI: 10.1093/emboj/20.24.6997] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diverse animal and plant viruses are able to translocate their virions between neighboring cells via intercellular connections. In this work, we analyze the virion assembly and cell-to-cell movement of a plant closterovirus and reveal a strong correlation between these two processes. The filamentous virions of a closterovirus possess a long body formed by the major capsid protein (CP) and a short tail formed by the minor capsid protein (CPm). Genetic and biochemical analyses show that the functions of these virion components are distinct. A virion body is required primarily for genome protection, whereas a tail represents a specialized device for cell-to-cell movement. Furthermore, tail assembly is mediated by the viral Hsp70 homolog (Hsp70h) that becomes an integral part of the virion. Inactivation of the ATPase domain of Hsp70h results in assembly of tailless virions that are incapable of translocation. A dual role for the viral molecular chaperone Hsp70h in virion assembly and transport, combined with the previous finding of this protein in intercellular channels, allowed us to propose a model of closteroviral movement from cell to cell.
Collapse
Affiliation(s)
| | | | - Rebecca Creamer
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97331 and
Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA Corresponding author e-mail:
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97331 and
Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA Corresponding author e-mail:
| |
Collapse
|
37
|
Abstract
From genes to cells there are many steps of hierarchical increments in building up complex frameworks that provide intricate networks of macromolecular interactions, through which cellular activities such as gene expression, signal processing, energy transduction and material conversion are dynamically organized and regulated. The self-assembly of macromolecules into large complexes is one such important step, but this process is by no means a simple aggregation of macromolecules with predefined, rigid complementary structures. In many cases the component molecules undergo either domain rearrangements or folding of disordered portions, which occurs only following binding to their correct partners. The partial disorder is used in some cases to prevent spontaneous assembly at inappropriate times or locations. It is also often used for finely tuning the equilibrium and activation energy of reversible binding. In other cases, such as protein translocation across membranes, an unfolded terminus appears to be the prerequisite for the process as an initiation signal, as well as the physical necessity to be taken into narrow channels. Self-assembly processes of viruses and bacterial flagella are typical examples where the induced folding of disordered chains plays a key role in regulating the addition of new components to a growing assembly. Various aspects of mechanistic roles of natively unfolded conformations of proteins are overviewed and discussed in this short review.
Collapse
Affiliation(s)
- K Namba
- Protonic NanoMachine Project, ERATO, JST, and Advanced Technology Research Laboratories, Matsushita Electric Industrial Co. Ltd, 3-4 Hikaridai, Seika, Kyoto 619-0237 Japan.
| |
Collapse
|
38
|
Diaz-Avalos R, Caspar DL. Hyperstable stacked-disk structure of tobacco mosaic virus protein: electron cryomicroscopy image reconstruction related to atomic models. J Mol Biol 2000; 297:67-72. [PMID: 10704307 DOI: 10.1006/jmbi.1999.3481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The stacked disk aggregate of tobacco mosaic virus protein is an intriguing object due to its high degree of stability, in spite of indications that the aggregate is held together to a great extent by water-mediated interactions between adjacent protein rings. Here, we present a set of models that were constructed using the atomic coordinates of the four-layer aggregate, and compare these with a three-dimensional reconstruction of the stacked disk obtained by means of cryoelectron microscopy and helical image processing. The comparison of the four possible models of the stacked disk with the data shows that there is a better correlation of the data with the left-handed model built from the A-A ring pair coordinates than with the two models involving the A-B ring pair, or with the right-handed model of the A-A ring pair. This establishes that the packing of the protein subunits in the stacked disk is different from that previously believed. We also note some differences between the observed structure and A-A ring pair model in the region of the flexible loop at small radius that might be an indication of conformational differences that give rise to the stability of the aggregate.
Collapse
Affiliation(s)
- R Diaz-Avalos
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA.
| | | |
Collapse
|
39
|
Abstract
A short account is given of the physical and chemical studies that have led to an understanding of the structure of the tobacco mosaic virus particle and how it is assembled from its constituent coat protein and RNA. The assembly is a much more complex process than might have been expected from the simplicity of the helical design of the particle. The protein forms an obligatory intermediate (a cylindrical disk composed of two layers of protein units), which recognizes a specific RNA hairpin sequence. This extraordinary mechanism simultaneously fulfils the physical requirement for nucleating the growth of the helical particle and the biological requirement for specific recognition of the viral DNA.
Collapse
Affiliation(s)
- A Klug
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
40
|
Butler PJ. Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philos Trans R Soc Lond B Biol Sci 1999; 354:537-50. [PMID: 10212933 PMCID: PMC1692540 DOI: 10.1098/rstb.1999.0405] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tobacco mosaic virus (TMV) particle was the first macromolecular structure to be shown to self-assemble in vitro, allowing detailed studies of the mechanism. Nucleation of TMV self-assembly is by the binding of a specific stem-loop of the single-stranded viral RNA into the central hole of a two-ring sub-assembly of the coat protein, known as the 'disk'. Binding of the loop onto its specific binding site, between the two rings of the disk, leads to melting of the stem so more RNA is available to bind. The interaction of the RNA with the protein subunits in the disk cause this to dislocate into a proto-helix, rearranging the protein subunits in such a way that the axial gap between the rings at inner radii closes, entrapping the RNA. Assembly starts at an internal site on TMV RNA, about 1 kb from its 3'-terminus, and the elongation in the two directions is different. Elongation of the nucleated rods towards the 5'-terminus occurs on a 'travelling loop' of the RNA and, predominantly, still uses the disk sub-assembly of protein subunits, consequently incorporating approximately 100 further nucleotides as each disk is added, while elongation towards the 3'-terminus uses smaller protein aggregates and does not show this 'quantized' incorporation.
Collapse
Affiliation(s)
- P J Butler
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
41
|
Harrison BD, Wilson TM. Milestones in the research on tobacco mosaic virus. Philos Trans R Soc Lond B Biol Sci 1999; 354:521-9. [PMID: 10212931 PMCID: PMC1692547 DOI: 10.1098/rstb.1999.0403] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beijerinck's (1898) recognition that the cause of tobacco mosaic disease was a novel kind of pathogen became the breakthrough which eventually led to the establishment of virology as a science. Research on this agent, tobacco mosaic virus (TMV), has continued to be at the forefront of virology for the past century. After an initial phase, in which numerous biological properties of TMV were discovered, its particles were the first shown to consist of RNA and protein, and X-ray diffraction analysis of their structure was the first of a helical nucleoprotein. In the molecular biological phase of research, TMV RNA was the first plant virus genome to be sequenced completely, its genes were found to be expressed by cotranslational particle disassembly and the use of subgenomic mRNA, and the mechanism of assembly of progeny particles from their separate parts was discovered. Molecular genetical and cell biological techniques were then used to clarify the roles and modes of action of the TMV non-structural proteins: the 126 kDa and 183 kDa replicase components and the 30 kDa cell-to-cell movement protein. Three different TMV genes were found to act as avirulence genes, eliciting hypersensitive responses controlled by specific, but different, plant genes. One of these (the N gene) was the first plant gene controlling virus resistance to be isolated and sequenced. In the biotechnological sphere, TMV has found several applications: as the first source of transgene sequences conferring virus resistance, in vaccines consisting of TMV particles genetically engineered to carry foreign epitopes, and in systems for expressing foreign genes. TMV owes much of its popularity as a research mode to the great stability and high yield of its particles. Although modern methods have much decreased the need for such properties, and TMV may have a less dominant role in the future, it continues to occupy a prominent position in both fundamental and applied research.
Collapse
Affiliation(s)
- B D Harrison
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | |
Collapse
|
42
|
Okada Y. Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation. Philos Trans R Soc Lond B Biol Sci 1999; 354:569-82. [PMID: 10212936 PMCID: PMC1692538 DOI: 10.1098/rstb.1999.0408] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early in the development of molecular biology, TMV RNA was widely used as a mRNA [corrected] that could be purified easily, and it contributed much to research on protein synthesis. Also, in the early stages of elucidation of the genetic code, artificially produced TMV mutants were widely used and provided the first proof that the genetic code was non-overlapping. In 1982, Goelet et al. determined the complete TMV RNA base sequence of 6395 nucleotides. The four genes (130K, 180K, 30K and coat protein) could then be mapped at precise locations in the TMV genome. Furthermore it had become clear, a little earlier, that genes located internally in the genome were expressed via subgenomic mRNAs. The initiation site for assembly of TMV particles was also determined. However, although TMV contributed so much at the beginning of the development of molecular biology, its influence was replaced by that of Escherichia coli and its phages in the next phase. As recombinant DNA technology developed in the 1980s, RNA virus research became more detached from the frontier of molecular biology. To recover from this setback, a gene-manipulation system was needed for RNA viruses. In 1986, two such systems were developed for TMV, using full-length cDNA clones, by Dawson's group and by Okada's group. Thus, reverse genetics could be used to elucidate the basic functions of all proteins encoded by the TMV genome. Identification of the function of the 30K protein was especially important because it was the first evidence that a plant virus possesses a cell-to-cell movement function. Many other plant viruses have since been found to encode comparable 'movement proteins'. TMV thus became the first plant virus for which structures and functions were known for all its genes. At the birth of molecular plant pathology, TMV became a leader again. TMV has also played pioneering roles in many other fields. TMV was the first virus for which the amino acid sequence of the coat protein was determined and first virus for which cotranslational disassembly was demonstrated both in vivo and in vitro. It was the first virus for which activation of a resistance gene in a host plant was related to the molecular specificity of a product of a viral gene. Also, in the field of plant biotechnology, TMV vectors are among the most promising. Thus, for the 100 years since Beijerinck's work, TMV research has consistently played a leading role in opening up new areas of study, not only in plant pathology, but also in virology, biochemistry, molecular biology, RNA genetics and biotechnology.
Collapse
Affiliation(s)
- Y Okada
- Department of Bioscience, Teikyo University, Utsunomiya, Japan
| |
Collapse
|
43
|
Abstract
The coat protein of tobacco mosaic virus is known to form three different classes of aggregate, depending on environmental conditions, namely helical, disk, and A-protein. Among the disk aggregates, there are four-layer, six-layer, and long stacks, which can be obtained by varying the ionic strength and temperature conditions during the association process. The four-layer aggregate has been crystallized, and its structure solved to atomic resolution. The stacked disk aggregate had been presumed to be built of a polar two-layer disk related to the crystalline A and B rings. A study using monoclonal antibodies specific to the bottom surface of TMV protein demonstrated that the stacked disk aggregate is bipolar, and suggested that the repeating two-layer unit might be similar to the dihedrally symmetrical A-ring pair in the disk crystal. In this paper we present a three-dimensional reconstruction of the stacked disk aggregate obtained by electron microscopy of ice-embedded samples. After modeling of the structure, we found the ring pairs to have the same quaternary structure as the A-ring pair of the four-layer aggregate. The resolution achieved in the image processing of the electron micrographs is on the order of 9 A in the meridional direction and 12 A in the equatorial. The identification of the structure of the stacked disk with the A-ring pair of the disk crystal provides an explanation of the observation that the axial periodicity of the disk pair, which is approximately 53 A when fully hydrated, can shrink to approximately 43 A in the dry state.
Collapse
Affiliation(s)
- R Díaz-Avalos
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32306, USA.
| | | |
Collapse
|
44
|
Bhyravbhatla B, Watowich SJ, Caspar DL. Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-A resolution. Biophys J 1998; 74:604-15. [PMID: 9449361 PMCID: PMC1299413 DOI: 10.1016/s0006-3495(98)77819-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous x-ray studies (2.8-A resolution) on crystals of tobacco mosaic virus coat protein grown from solutions containing high salt have characterized the structure of the protein aggregate as a dimer of a bilayered cylindrical disk formed by 34 chemically identical subunits. We have determined the crystal structure of the disk aggregate at 2.4-A resolution using x-ray diffraction from crystals maintained at cryogenic temperatures. Two regions of interest have been extensively refined. First, residues of the low-radius loop region, which were not modeled previously, have been traced completely in our electron density maps. Similar to the structure observed in the virus, the right radial helix in each protomer ends around residue 87, after which the protein chain forms an extended chain that extends to the left radial helix. The left radial helix appears as a long alpha-helix with high temperature factors for the main-chain atoms in the inner portion. The side-chain atoms in this region (residues 90-110) are not visible in the electron density maps and are assumed to be disordered. Second, interactions between subunits in the symmetry-related central A pair have been determined. No direct protein-protein interactions are observed in the major overlap region between these subunits; all interactions are mediated by two layers of ordered solvent molecules. The current structure emphasizes the importance of water in biological macromolecular assemblies.
Collapse
Affiliation(s)
- B Bhyravbhatla
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32306-3015, USA.
| | | | | |
Collapse
|
45
|
Abstract
An essential step in the initiation of a virus infection is the release of the viral genome from the other constituents of the virus particle, a process referred to as uncoating. We have used reverse transcription and polymerase chain reaction amplification procedures to determine the rate and direction of in vivo uncoating of the rod-shaped tobacco mosaic virus. The virus particles contain a single 6.4-kb RNA molecule that lies between successive turns of a helical arrangement of coat protein subunits. When the particles are introduced into plant cells, the subunits are removed via a bidirectional uncoating mechanism. Within 2-3 min, the part of the viral RNA from the 5' end to a position >70% toward the 3' end has been freed of coat protein subunits. This is followed by removal of subunits from the 3' end of the RNA and sequential uncoating of the RNA in a 3'-to-5' direction. An internal region of the viral RNA is the final part to be uncoated. Progeny virus particles are detected in the cells 35-40 min after inoculation.
Collapse
Affiliation(s)
- X Wu
- Department of Plant Pathology, University of Kentucky, Lexington, 40546, USA
| | | |
Collapse
|
46
|
Culver JN, Dawson WO, Plonk K, Stubbs G. Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology 1995; 206:724-30. [PMID: 7831832 DOI: 10.1016/s0042-6822(95)80096-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Electrostatic repulsion between carboxylate groups across subunit interfaces has for many years been recognized as important in the disassembly of simple plant viruses. In the coat protein of tobacco mosaic virus (TMV), the amino acids Glu50 and Asp77 have been proposed as examples of such carboxylate groups. Site-directed mutagenesis has been used to replace these amino acids by Gln and Asn, respectively. Increased virion stability, together with reduced infectivity and reduced capacity for long-distance transport within the host plant confirms that the negative charges on the side chains of these amino acids are involved in the disassembly of TMV. Mixing purified mutant coat proteins with wild-type virions under appropriate conditions stabilizes the virions to alkaline disassembly and reduces their infectivity. It is suggested that transgenic plants expressing such mutant coat proteins could have enhanced resistance to virus infection.
Collapse
Affiliation(s)
- J N Culver
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park 20742
| | | | | | | |
Collapse
|
47
|
Hwang DJ, Roberts IM, Wilson TM. Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proc Natl Acad Sci U S A 1994; 91:9067-71. [PMID: 8090770 PMCID: PMC44748 DOI: 10.1073/pnas.91.19.9067] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The bidirectional self-assembly of tobacco mosaic virus (TMV, common or U1 strain) has been studied extensively in vitro. Foreign single-stranded RNA molecules containing the TMV origin-of-assembly sequence (OAS, 75-432 nt in length) are also packaged by TMV coat protein (CP) in vitro to form helical pseudovirus particles. To study virus assembly in vivo requires an easily manipulated model system, independent of replication in plants. The TMV assembly machinery also provides a convenient means to protect and recover chimeric gene transcripts of almost any length or sequence for a variety of applications. Native TMV CP expressed in and purified from Escherichia coli formed nonhelical, stacked aggregates after dialysis into pH 5 buffer and was inactive for in vitro assembly with TMV RNA. U1 CP derivatives in which the second amino acid was changed from Ser to Ala or Pro, nonacetylated N termini found in two natural strains of the virus, failed to remediate these anomalous properties. However, in vivo coexpression of CP and single-stranded RNAs (up to approximately 2 kb) containing the TMV OAS gave high yields of helical pseudovirus particles of the predicted length (up to 7.4 +/- 1.4 micrograms/mg of total bacterial protein). If the OAS-containing RNA was first recruited into bacterial polyribosomes, elongation of pseudovirus assembly was blocked. In vivo, E. coli expression of a full-length cDNA clone of the TMV genome (6.4 kb) resulted in high, immunodetectable levels of CP and assembly of sufficient intact genomic RNA to initiate systemic infection of susceptible tobacco plants.
Collapse
Affiliation(s)
- D J Hwang
- AgBiotech Center, Cook College, Rutgers University, New Brunswick, NJ 08903
| | | | | |
Collapse
|
48
|
Prevelige PE, Thomas D, King J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J 1993; 64:824-35. [PMID: 8471727 PMCID: PMC1262396 DOI: 10.1016/s0006-3495(93)81443-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The polymerization of protein subunits into precursor shells empty of DNA is a critical process in the assembly of double-stranded DNA viruses. For the well-characterized icosahedral procapsid of phage P22, coat and scaffolding protein subunits do not assemble separately but, upon mixing, copolymerize into double-shelled procapsids in vitro. The polymerization reaction displays the characteristics of a nucleation limited reaction: a paucity of intermediate assembly states, a critical concentration, and kinetics displaying a lag phase. Partially formed shell intermediates were directly visualized during the growth phase by electron microscopy of the reaction mixture. The morphology of these intermediates suggests that assembly is a highly directed process. The initial rate of this reaction depends on the fifth power of the coat subunit concentration and the second or third power of the scaffolding concentration, suggesting that pentamer of coat protein and dimers or trimers of scaffolding protein, respectively, participate in the rate-limiting step.
Collapse
Affiliation(s)
- P E Prevelige
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
49
|
Affiliation(s)
- A Lustig
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, New Jersey 08544-1014
| | | |
Collapse
|
50
|
Butler PJ, Bloomer AC, Finch JT. Direct visualization of the structure of the "20 S" aggregate of coat protein of tobacco mosaic virus. The "disk" is the major structure at pH 7.0 and the Proto-helix at lower pH. J Mol Biol 1992; 224:381-94. [PMID: 1560458 DOI: 10.1016/0022-2836(92)91002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have employed the rapid-freeze technique to prepare specimens for electron microscopy of a coat protein solution of tobacco mosaic virus at equilibrium at pH 7.0 and 6.8, ionic strength 0.1 M and 20 degrees C. The former are the conditions for the most rapid assembly of the virus from its isolated protein and RNA. At both pH values, the equilibrium mixture contains approximately 80% of a "20 S" aggregate and 20% of a "4 S" aggregate (the so-called A-protein). The specimens were prepared either totally unstained or positively stained with methyl mercury nitrate, which binds to an amino acid residue (Cys27) internally located within the subunit, which we show not to affect the virus assembly. The images in the electron microscope are compatible only with the major structure for the "20 S" aggregate at pH 7.0 containing two rings of subunits and these aggregates display the same binding contacts as those seen between the aggregate that forms the asymmetric unit in the crystal, which has been shown by X-ray crystallography to be a disk containing two rings, each of 17 subunits, oriented in the same direction. In contrast, the images from specimens prepared at pH 6.8 show the major structure to be a proto-helix at this slightly lower pH, demonstrating that the technique of cryo-electron microscopy is capable of distinguishing between these aggregates of tobacco mosaic virus coat protein. The main structure in solution at pH 7.0 must therefore be very similar to that in the crystal, although slight differences could occur and there are probably other, minor, components in a mixture of species sedimenting around 20 S under these conditions. The equilibrium between aggregates is extremely sensitive to conditions, with a drop of 0.2 pH unit tipping the disk to proto-helix ratio from approximately 10:1 at pH 7.0 to 1:10 at pH 6.8. This direct determination of the structure of the "20 S" aggregate in solution, under conditions for virus assembly, contradicts some recent speculation that it must be helical, and establishes that, at pH 7.0, it is in fact predominantly a two-layer disk as it had been modelled before.
Collapse
Affiliation(s)
- P J Butler
- MRC Laboratory of Molecular Biology, Cambridge, England
| | | | | |
Collapse
|