1
|
O’Halloran K, Hakimjavadi H, Bootwalla M, Ostrow D, Kerawala R, Cotter JA, Yellapantula V, Kaneva K, Wadhwani NR, Treece A, Foreman NK, Alexandrescu S, Vega JV, Biegel JA, Gai X. Pediatric Chordoma: A Tale of Two Genomes. Mol Cancer Res 2024; 22:721-729. [PMID: 38691518 PMCID: PMC11296893 DOI: 10.1158/1541-7786.mcr-23-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Little is known about the genomic alterations in chordoma, with the exception of loss of SMARCB1, a core member of the SWI/SNF complex, in poorly differentiated chordomas. A TBXT duplication and rs2305089 polymorphism, located at 6q27, are known genetic susceptibility loci. A comprehensive genomic analysis of the nuclear and mitochondrial genomes in pediatric chordoma has not yet been reported. In this study, we performed WES and mtDNA genome sequencing on 29 chordomas from 23 pediatric patients. Findings were compared with that from whole-genome sequencing datasets of 80 adult patients with skull base chordoma. In the pediatric chordoma cohort, 81% of the somatic mtDNA mutations were observed in NADH complex genes, which is significantly enriched compared with the rest of the mtDNA genes (P = 0.001). In adult chordomas, mtDNA mutations were also enriched in the NADH complex genes (P < 0.0001). Furthermore, a progressive increase in heteroplasmy of nonsynonymous mtDNA mutations was noted in patients with multiple tumors (P = 0.0007). In the nuclear genome, rare likely germline in-frame indels in ARID1B, a member of the SWI/SNF complex located at 6q25.3, were observed in five pediatric patients (22%) and four patients in the adult cohort (5%). The frequency of rare ARID1B indels in the pediatric cohort is significantly higher than that in the adult cohort (P = 0.0236, Fisher's exact test), but they were both significantly higher than that in the ethnicity-matched populations (P < 5.9e-07 and P < 0.0001174, respectively). Implications: germline ARID1B indels and mtDNA aberrations seem important for chordoma genesis, especially in pediatric chordoma.
Collapse
Affiliation(s)
- Katrina O’Halloran
- Department of Hematology, Oncology and Blood & Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Hesamedin Hakimjavadi
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Moiz Bootwalla
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Rhea Kerawala
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer A. Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venkata Yellapantula
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Nitin R Wadhwani
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Amy Treece
- Division of Pathology, Children’s Hospital Colorado, Denver, CO, USA
| | - Nicholas K. Foreman
- Division of Hematology, Oncology, Children’s Hospital Colorado, Denver, CO, USA
| | | | | | - Jaclyn A. Biegel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Vagher J, Mehrhoff CJ, Florou V, Maese LD. Genetic Predisposition to Sarcoma: What Should Clinicians Know? Curr Treat Options Oncol 2024; 25:769-783. [PMID: 38713268 DOI: 10.1007/s11864-024-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 05/08/2024]
Abstract
OPINION STATEMENT Pathogenic germline variants in the setting of several associated cancer predisposition syndromes (CPS) may lead to the development of sarcoma. We would consider testing for a CPS in patients with a strong family history of cancer, multiple primary malignancies, and/or pediatric/adolescent/young adult patients diagnosed with other malignancies strongly associated with CPS. When a CPS is diagnosed in a patient with sarcoma, additional treatment considerations and imaging options for those patients are required. This applies particularly to the use of radiation therapy, ionizing radiation with diagnostic imaging, and the use of alkylating chemotherapy. As data and guidelines are currently lacking for many of these scenarios, we have adopted a shared decision-making process with patients and their families. If the best chance for cure in a patient with CPS requires utilization of radiation therapy or alkylating chemotherapy, we discuss the risks with the patient but do not omit these modalities. However, if there are treatment options that yield equivalent survival rates, yet avoid these modalities, we elect for those options. Considering staging imaging and post-therapy evaluation for sarcoma recurrence, we avoid surveillance techniques that utilize ionizing radiation when possible but do not completely omit them when their use is indicated.
Collapse
Affiliation(s)
- Jennie Vagher
- Department of Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Casey J Mehrhoff
- Department of Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Hematology/Oncology, Primary Children's Hospital, University of Utah, 100 Mario Capecchi Dr, Salt Lake City, UT, 84113, USA
| | - Vaia Florou
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Luke D Maese
- Department of Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
- Division of Hematology/Oncology, Primary Children's Hospital, University of Utah, 100 Mario Capecchi Dr, Salt Lake City, UT, 84113, USA.
| |
Collapse
|
3
|
Raygada M, John L, Liu A, Schultz J, Thomas BJ, Bernstein D, Miettinen M, Raffeld M, Xi L, Tyagi M, Aldape K, Glod J, Reilly KM, Widemann BC, Wedekind MF. Germline findings in cancer predisposing genes from a small cohort of chordoma patients. J Cancer Res Clin Oncol 2024; 150:227. [PMID: 38700789 PMCID: PMC11068663 DOI: 10.1007/s00432-024-05706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Chordoma is a rare slow-growing tumor that occurs along the length of the spinal axis and arises from primitive notochordal remnants (Stepanek et al., Am J Med Genet 75:335-336, 1998). Most chordomas are sporadic, but a small percentage of cases are due to hereditary cancer syndromes (HCS) such as tuberous sclerosis 1 and 2 (TSC1/2), or constitutional variants in the gene encoding brachyury T (TBXT) (Pillay et al., Nat Genet 44:1185-1187, 2012; Yang et al., Nat Genet 41:1176-1178, 2009). PURPOSE The genetic susceptibility of these tumors is not well understood; there are only a small number of studies that have performed germline genetic testing in this population. METHODS We performed germline genetic in chordoma patients using genomic DNA extracted by blood or saliva. CONCLUSION We report here a chordoma cohort of 24 families with newly found germline genetic mutations in cancer predisposing genes. We discuss implications for genetic counseling, clinical management, and universal germline genetic testing for cancer patients with solid tumors.
Collapse
Affiliation(s)
- Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- NIH Clinical Center (Building 10), 10 Center Drive, Room 1-3750, Bethesda, MD, 20892, USA.
| | - Liny John
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anne Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julianne Schultz
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - B J Thomas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manoj Tyagi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karlyne M Reilly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mary Frances Wedekind
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Salle H, Durand S, Durand K, Bourthoumieu S, Lemnos L, Robert S, Pollet J, Passeri T, Khalil W, Froelich S, Adle-Biassette H, Labrousse F. Comparative analysis of histopathological parameters, genome-wide copy number alterations, and variants in genes involved in cell cycle regulation in chordomas of the skull base and sacrum. J Neuropathol Exp Neurol 2023; 82:312-323. [PMID: 36779322 DOI: 10.1093/jnen/nlad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Chordomas are rare tumors of the axial skeleton that are refractory to conventional therapy. Few studies have compared the morphological and molecular characteristics of chordomas according to the skull base and sacral locations. Histopathological data and changes revealed by array comparative genomic hybridization (CGH) and next-generation sequencing (NGS) of cell cycle regulation genes were analyzed for 28 skull base (SBCs) and 15 sacral (SC) chordomas. All cases were conventional chordomas. SBCs were significantly more frequent in patients aged <40 years and SCs predominated in patients aged >60 years. Mitotic indices ≥2 mitoses/10 high-power fields were correlated with high degrees of nuclear atypia and Ki67 labeling indices ≥6%. We identified 321 genomic positions, and copy number variation losses were more frequent than gain. Moreover, we report a panel of 85 genetic variants of cell cycle genes and the presence of molecular clusters for chordoma as well in CGH as in NGS. These new data strengthen the view that the chordoma should not be considered as a single molecular entity.
Collapse
Affiliation(s)
- Henri Salle
- Department of Neurosurgery, CHU Limoges, Limoges, France
- Inserm, CAPTuR (Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance; Thérapeutique), Faculty of Medicine, Limoges University, Limoges, France
| | - Stéphanie Durand
- Inserm, CAPTuR, GEIST Institute, University of Limoges, Limoges, France
| | - Karine Durand
- Inserm, CAPTuR (Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance; Thérapeutique), Faculty of Medicine, Limoges University, Limoges, France
| | | | - Leslie Lemnos
- Department of Neurosurgery, CHU Limoges, Limoges, France
| | - Sandrine Robert
- Inserm, CAPTuR (Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance; Thérapeutique), Faculty of Medicine, Limoges University, Limoges, France
| | - Justine Pollet
- Plateforme Technique BISCEm US 42 INSERM/UMS 2015 CNRS, Limoges, France
| | - Thibault Passeri
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - Wassim Khalil
- Department of Neurosurgery, CHU Limoges, Limoges, France
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - Homa Adle-Biassette
- AP-HP, Hôpital Lariboisière, Service Anatomie Pathologique and Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - François Labrousse
- Inserm, CAPTuR (Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance; Thérapeutique), Faculty of Medicine, Limoges University, Limoges, France
- Department of Pathology, Limoges University Hospital, Limoges, France
| |
Collapse
|
5
|
Halvorsen SC, Benita Y, Hopton M, Hoppe B, Gunnlaugsson HO, Korgaonkar P, Vanderburg CR, Nielsen GP, Trepanowski N, Cheah JH, Frosch MP, Schwab JH, Rosenberg AE, Hornicek FJ, Sassi S. Transcriptional Profiling Supports the Notochordal Origin of Chordoma and Its Dependence on a TGFΒ1-TBXT Network. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:532-547. [PMID: 36804377 DOI: 10.1016/j.ajpath.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Chordoma is a rare malignant tumor demonstrating notochordal differentiation. It is dependent on brachyury (TBXT), a hallmark notochordal gene and transcription factor, and shares histologic features and the same anatomic location as the notochord. In this study, we perform a molecular comparison of chordoma and notochord to identify dysregulated cellular pathways. The lack of a molecular reference from appropriate control tissue limits our understanding of chordoma and its relationship to notochord. Accordingly, we conducted an unbiased comparison of chordoma, human notochord, and an atlas of normal and cancerous tissue using gene expression profiling to clarify the chordoma/notochord relationship and potentially identify novel drug targets. We found striking consistency in gene expression profiles between chordoma and notochord, supporting the hypothesis that chordoma develops from notochordal remnants. We identified a 12-gene diagnostic chordoma signature and found that the TBXT/transforming growth factor (TGF)-β/SOX6/SOX9 pathway is hyperactivated in the tumor, suggesting that pathways associated with chondrogenesis are a central driver of chordoma development. Experimental validation in chordoma cells confirms these findings and emphasizes the dependence of chordoma proliferation and survival on TGF-β. Our computational and experimental evidence provides the first molecular connection between notochord and chordoma and identifies core members of a chordoma regulatory pathway involving TBXT. This pathway provides new therapeutic targets for this unique malignant neoplasm and highlights TGF-β as a prime druggable candidate.
Collapse
Affiliation(s)
- Stefan C Halvorsen
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yair Benita
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Megan Hopton
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Brooke Hoppe
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hilmar Orn Gunnlaugsson
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Parimal Korgaonkar
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Charles R Vanderburg
- Harvard NeuroDiscovery Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - G Petur Nielsen
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Nicole Trepanowski
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jaime H Cheah
- High Throughput Sciences Facility, Koch Institute of MIT, Cambridge, Massachusetts
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Joseph H Schwab
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew E Rosenberg
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.
| | - Slim Sassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
6
|
Gersey ZC, Zenonos GA, Gardner PA. Malignant Brain and Spinal Tumors Originating from Bone or Cartilage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:477-506. [PMID: 37452950 DOI: 10.1007/978-3-031-23705-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Malignant bone tumors affecting the brain and spine are a rare and exceedingly difficult-to-treat group of diseases. Most commonly consisting of chordoma and chondrosarcoma, these tumors also include giant-cell tumors and osteosarcomas. This chapter will cover the background, epidemiology, genetics, molecular biology, histopathology, radiographic features, clinical manifestations, therapeutic approaches, and clinical management of each entity.
Collapse
Affiliation(s)
- Zachary C Gersey
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Georgios A Zenonos
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Paul A Gardner
- UPMC Center for Cranial Base Surgery, 200 Lothrop Street, PUH B-400, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Zhao C, Tan T, Zhang E, Wang T, Gong H, Jia Q, Liu T, Yang X, Zhao J, Wu Z, Wei H, Xiao J, Yang C. A chronicle review of new techniques that facilitate the understanding and development of optimal individualized therapeutic strategies for chordoma. Front Oncol 2022; 12:1029670. [PMID: 36465398 PMCID: PMC9708744 DOI: 10.3389/fonc.2022.1029670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 09/01/2023] Open
Abstract
Chordoma is a rare malignant bone tumor that mainly occurs in the sacrum and the clivus/skull base. Surgical resection is the treatment of choice for chordoma, but the local recurrence rate is high with unsatisfactory prognosis. Compared with other common tumors, there is not much research and individualized treatment for chordoma, partly due to the rarity of the disease and the lack of appropriate disease models, which delay the discovery of therapeutic strategies. Recent advances in modern techniques have enabled gaining a better understanding of a number of rare diseases, including chordoma. Since the beginning of the 21st century, various chordoma cell lines and animal models have been reported, which have partially revealed the intrinsic mechanisms of tumor initiation and progression with the use of next-generation sequencing (NGS) techniques. In this study, we performed a systematic overview of the chordoma models and related sequencing studies in a chronological manner, from the first patient-derived chordoma cell line (U-CH1) to diverse preclinical models such as the patient-derived organoid-based xenograft (PDX) and patient-derived organoid (PDO) models. The use of modern sequencing techniques has discovered mutations and expression signatures that are considered potential treatment targets, such as the expression of Brachyury and overactivated receptor tyrosine kinases (RTKs). Moreover, computational and bioinformatics techniques have made drug repositioning/repurposing and individualized high-throughput drug screening available. These advantages facilitate the research and development of comprehensive and personalized treatment strategies for indicated patients and will dramatically improve their prognoses in the near feature.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tao Tan
- Department of Orthopedics, 905 Hospital of People’s Liberation Army Navy, Shanghai, China
| | - E. Zhang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Ting Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haiyi Gong
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Qi Jia
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tielong Liu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Xinghai Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jian Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Zhipeng Wu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Cheng Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| |
Collapse
|
8
|
Update of pediatric bone tumors-notochordal tumors, chondrogenic tumors, and vascular tumors of the bone. Skeletal Radiol 2022; 52:1101-1117. [PMID: 36369290 DOI: 10.1007/s00256-022-04235-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
Abstract
There are numerous bone tumors in the pediatric population, with imaging playing an essential role in diagnosis and management. Our understanding of certain bone tumors has rapidly evolved over the past decade with advancements in next-generation genetic sequencing techniques. This increased level of understanding has altered the nomenclature, management approach, and prognosis of certain lesions. We provide a detailed update of bone tumors that occur in the pediatric population with emphasis on the recently released nomenclature provided in the 5th edition of the World Health Organization Classification of Soft Tissue and Bone Tumours. In the current manuscript, we address notochordal tumors, chondrogenic tumors, and vascular tumors of the bone.
Collapse
|
9
|
Advances in the development of chordoma models for drug discovery and precision medicine. Biochim Biophys Acta Rev Cancer 2022; 1877:188812. [DOI: 10.1016/j.bbcan.2022.188812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
|
10
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
11
|
Xia B, Biswas K, Foo TK, Torres T, Riedel-Topper M, Southon E, Kang Z, Huo Y, Reid S, Stauffer S, Zhou W, Zhu B, Koka H, Yepes S, Brodie SA, Jones K, Vogt A, Zhu B, Cater B, Freedman ND, Hicks B, Yeager M, Chanock SJ, Couch F, Parry DM, Monteiro AN, Goldstein AM, Carvalho MA, Sharan SK, Yang XR. Rare germline variants in PALB2 and BRCA2 in familial and sporadic chordoma. Hum Mutat 2022; 43:1396-1407. [PMID: 35762214 PMCID: PMC9444938 DOI: 10.1002/humu.24427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Chordoma is a rare bone tumor with genetic risk factors largely unknown. We conducted a whole-exome sequencing (WES) analysis of germline DNA from 19 familial chordoma cases in five pedigrees and 137 sporadic chordoma patients and identified 17 rare germline variants in PALB2 and BRCA2, whose products play essential roles in homologous recombination (HR) and tumor suppression. One PALB2 variant showed disease cosegregation in a family with four affected people or obligate gene carrier. Chordoma cases had a significantly increased burden of rare variants in both genes when compared to population-based controls. Four of the six PALB2 variants identified from chordoma patients modestly affected HR function and three of the 11 BRCA2 variants caused loss of function in experimental assays. These results, together with previous reports of abnormal morphology and Brachyury expression of the notochord in Palb2 knockout mouse embryos and genomic signatures associated with HR defect and HR gene mutations in advanced chordomas, suggest that germline mutations in PALB2 and BRCA2 may increase chordoma susceptibility. Our data shed light on the etiology of chordoma and support the previous finding that PARP-1 inhibitors may be a potential therapy for some chordoma patients.
Collapse
Affiliation(s)
- Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Thiago Torres
- Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro 20230-130, Brazil
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Zhihua Kang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yanying Huo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Sally Yepes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Seth A. Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Aurelie Vogt
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Brian Cater
- American Cancer Society, Inc, Atlanta, GA 30303, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Fergus Couch
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dilys M. Parry
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Alvaro N. Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Marcelo A. Carvalho
- Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro 20230-130, Brazil
- Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro 20270-021, Brazil
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
12
|
Hang J, Ouyang H, Wei F, Zhong Q, Yuan W, Jiang L, Liu Z. Proteomics and phosphoproteomics of chordoma biopsies reveal alterations in multiple pathways and aberrant kinases activities. Front Oncol 2022; 12:941046. [PMID: 36248973 PMCID: PMC9563620 DOI: 10.3389/fonc.2022.941046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background Chordoma is a slow-growing but malignant subtype of bone sarcoma with relatively high recurrence rates and high resistance to chemotherapy. It is urgent to understand the underlying regulatory networks to determine more effective potential targets. Phosphorylative regulation is currently regarded as playing a significant role in tumorigenesis, and the use of tyrosine kinase inhibitors in clinical practice has yielded new promise for the treatment of a variety of sarcoma types. Materials and methods We performed comprehensive proteomic and phosphoproteomic analyses of chordoma using four-dimensional label-free liquid chromatography–tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis. The potential aberrantly expressed kinases and their functions were validated using western blotting and CCK-8 assays. Results Compared with paired normal muscle tissues, 1,139 differentially expressed proteins (DEPs) and 776 differentially phosphorylated proteins (DPPs) were identified in chordoma tumor tissues. The developmentally significant Wnt-signaling pathway and oxidative phosphorylation were aberrant in chordoma. Moreover, we predicted three kinases (AURA, CDK9, and MOK) with elevated activity by kinase-pathway network analysis (KiPNA) and verified their increased expression levels. The knockdown of these kinases markedly suppressed chordoma cell growth, and this was also the case for cells treated with the CDK9 inhibitor AZD4573. We additionally examined 208 proteins whose expression and phosphorylation levels were synergetically altered. Conclusions We herein depicted the collective protein profiles of chordomas, providing insight into chordomagenesis and the potential development of new therapeutic targets.
Collapse
Affiliation(s)
- Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Hanqiang Ouyang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Qihang Zhong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| | - Liang Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| |
Collapse
|
13
|
Huo X, Wang K, Song L, Yang Y, Zhu S, Ma J, Tian K, Fan Y, Wang L, Wu Z. Bibliometric analysis of publication trends in chordoma research (1992−2021). INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Usher I, Ligammari L, Ahrabi S, Hepburn E, Connolly C, Bond GL, Flanagan AM, Cottone L. Optimizing CRISPR/Cas9 Editing of Repetitive Single Nucleotide Variants. Front Genome Ed 2022; 4:932434. [PMID: 35865001 PMCID: PMC9294353 DOI: 10.3389/fgeed.2022.932434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas9, base editors and prime editors comprise the contemporary genome editing toolbox. Many studies have optimized the use of CRISPR/Cas9, as the original CRISPR genome editing system, in substituting single nucleotides by homology directed repair (HDR), although this remains challenging. Studies describing modifications that improve editing efficiency fall short of isolating clonal cell lines or have not been validated for challenging loci or cell models. We present data from 95 transfections using a colony forming and an immortalized cell line comparing the effect on editing efficiency of donor template modifications, concentration of components, HDR enhancing agents and cold shock. We found that in silico predictions of guide RNA efficiency correlated poorly withactivity in cells. Using NGS and ddPCR we detected editing efficiencies of 5–12% in the transfected populations which fell to 1% on clonal cell line isolation. Our data demonstrate the variability of CRISPR efficiency by cell model, target locus and other factors. Successful genome editing requires a comparison of systems and modifications to develop the optimal protocol for the cell model and locus. We describe the steps in this process in a flowchart for those embarking on genome editing using any system and incorporate validated HDR-boosting modifications for those using CRISPR/Cas9.
Collapse
Affiliation(s)
- Inga Usher
- Department of Pathology (Research), UCL Cancer Institute, University College London, London, United Kingdom
| | - Lorena Ligammari
- Department of Pathology (Research), UCL Cancer Institute, University College London, London, United Kingdom
| | - Sara Ahrabi
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Emily Hepburn
- UCL Medical School, University College London, London, United Kingdom
| | - Calum Connolly
- UCL Medical School, University College London, London, United Kingdom
| | - Gareth L. Bond
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adrienne M. Flanagan
- Department of Pathology (Research), UCL Cancer Institute, University College London, London, United Kingdom
- Department of Histopathology, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Lucia Cottone
- Department of Pathology (Research), UCL Cancer Institute, University College London, London, United Kingdom
- *Correspondence: Lucia Cottone,
| |
Collapse
|
15
|
Cooper F, Tsakiridis A. Towards clinical applications of in vitro-derived axial progenitors. Dev Biol 2022; 489:110-117. [PMID: 35718236 DOI: 10.1016/j.ydbio.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
The production of the tissues that make up the mammalian embryonic trunk takes place in a head-tail direction, via the differentiation of posteriorly-located axial progenitor populations. These include bipotent neuromesodermal progenitors (NMPs), which generate both spinal cord neurectoderm and presomitic mesoderm, the precursor of the musculoskeleton. Over the past few years, a number of studies have described the derivation of NMP-like cells from mouse and human pluripotent stem cells (PSCs). In turn, these have greatly facilitated the establishment of PSC differentiation protocols aiming to give rise efficiently to posterior mesodermal and neural cell types, which have been particularly challenging to produce using previous approaches. Moreover, the advent of 3-dimensional-based culture systems incorporating distinct axial progenitor-derived cell lineages has opened new avenues toward the functional dissection of early patterning events and cell vs non-cell autonomous effects. Here, we provide a brief overview of the applications of these cell types in disease modelling and cell therapy and speculate on their potential uses in the future.
Collapse
Affiliation(s)
- Fay Cooper
- Centre for Stem Cell Biology, School of Bioscience, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Bioscience, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
16
|
Guinebretière JM, de Pinieux G. Les tumeurs notochordales : de la notochorde au chordome. Ann Pathol 2022; 42:249-258. [DOI: 10.1016/j.annpat.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
|
17
|
Xu Z, Zhang L, Wen L, Chao H, Wang Q, Sun M, Shen H, Chen S, Wang Z, Lu J. Clinical and molecular features of sacrum chordoma in Chinese patients. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:61. [PMID: 35282040 PMCID: PMC8848402 DOI: 10.21037/atm-21-6617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
Background Chordoma is a rare malignant bone tumor with high recurrence and metastasis rates. Little is known about the mutational process of this incurable disease. The aim of our research was to explore the potential driver genes and signal pathways in the pathogenesis of chordoma and provide a new idea for the study of molecular biological therapy of chordoma. Methods We performed whole-exome-sequencing (WES) on 8 sacrum chordoma tissue samples (matched to peripheral blood samples that had been drawn from patients before surgery) to identify genetic alterations in Chinese patients. We analyzed the sequencing data from known driver genes, pathway enrichment analysis and significantly mutated genes (SMGs) after quality control of sequencing, comparison of reference genomes, analysis of mutations and identification of somatic mutations. Immunohistochemistry staining, Sanger sequencing and GeneChip were used to verify the related genes obtained from the analysis of sequencing data. Results The driver genes Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA), Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), and Phosphatase And Tensin Homolog (PTEN) were enriched in the Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway and could be potential therapeutic targets for the treatment of sacrum chordoma. The significantly mutated gene Claudin 9 (CLDN9) may play a critical role in the development and progression of sacrum chordoma. Conclusions Collectively, our results identified the genetic signature of sacrum chordoma and could be used to develop a potential promising therapeutic strategy for the treatment of sacrum chordoma in Chinese patients.
Collapse
Affiliation(s)
- Zonghan Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hongying Chao
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Qinrong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Miao Sun
- Department of Hematology, Jingjiang People's Hospital, Jingjiang, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Suzhou Jsuniwell Medical Laboratory, Suzhou, China
| | - Jian Lu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
18
|
Jalessi M, Gholami MS, Razmara E, Hassanzadeh S, Sadeghipour A, Jahanbakhshi A, Tabibkhooei A, Bahrami E, Falah M. Association between TBXT rs2305089 polymorphism and chordoma in Iranian patients identified by a developed T-ARMS-PCR assay. J Clin Lab Anal 2021; 36:e24150. [PMID: 34837714 PMCID: PMC8761424 DOI: 10.1002/jcla.24150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chordoma is a locally aggressive bone tumor with a high capability of recurrence. Because chordoma often occurs at critical locations next to neurovascular structures, there is an urgent need to introduce validated biomarkers. T‐box transcription factor T (TBXT; OMIM: 601397) plays an important role in the pathogenesis and survival of chordoma cells. Methods Herein, we aimed to show whether rs2305089 polymorphism is correlated with chordoma in the Iranian population. In order to detect rs2305089, tetra‐primer amplification refractory mutation system‐polymerase chain reaction (T‐ARMS‐PCR) was used. In total, 19 chordoma patients and 108 normal healthy individuals were recruited and screened using T‐ARMS‐PCR. The results were subsequently validated by Sanger sequencing. Results The genotype distributions and allele frequencies were significantly different among the patient and healthy groups (p‐value <0.05). The A allele of rs2305089 showed a significant positive association with chordoma risk (p‐value <0.05). DNA sequencing verified the T‐ARMS‐PCR results as well. This study demonstrated the association between TBXT rs2305089 and chordoma in an Iranian population using a simple, accurate, and cost‐effective T‐ARMS‐PCR assay. Conclusions Our results were in line with those of previous studies showing that TBXT rs2305089 is associated with chordoma development. We also developed an efficient T‐ARMS‐PCR assay to determine the genotype of rs2305089.
Collapse
Affiliation(s)
- Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Gholami
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,Department of Hematology and Blood Transfusion, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Sajad Hassanzadeh
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadeghipour
- Pathology Department, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Jahanbakhshi
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibkhooei
- Department of Neurosurgery, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Eshagh Bahrami
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,Department of Neurosurgery, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Falah
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Abstract
This review provides an overview of the spectrum of tumors showing notochordal differentiation. This spectrum encompasses benign entities that are mostly discovered incidentally on imaging, reported as benign notochordal cell tumor, usually not requiring surgical intervention; slowly growing and histologically low-grade tumors referred to as conventional chordoma but associated with a significant metastatic potential and mortality; and more aggressive disease represented by histologically higher-grade tumors including dedifferentiated chordoma, a high-grade biphasic tumor characterized by a conventional chordoma juxtaposed to a high-grade sarcoma, usually with a spindle or pleomorphic cell morphology, and associated with a poor prognosis and poorly differentiated chordoma.
Collapse
Affiliation(s)
- Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK.
| | - Paul O'Donnell
- Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK; UCL Cancer Institute, University College London, 72 Huntley Street, London WC1 E 6DD, UK
| |
Collapse
|
20
|
Seeling C, Lechel A, Svinarenko M, Möller P, Barth TFE, Mellert K. Molecular features and vulnerabilities of recurrent chordomas. J Exp Clin Cancer Res 2021; 40:244. [PMID: 34330313 PMCID: PMC8325178 DOI: 10.1186/s13046-021-02037-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Background Tumor recurrence is one of the major challenges in clinical management of chordoma. Despite R0-resection, approximately 50% of chordomas recur within ten years after initial surgery. The underlying molecular processes are poorly understood resulting in the lack of associated therapeutic options. This is not least due to the absence of appropriate cell culture models of this orphan disease. Methods The intra-personal progression model cell lines U-CH11 and U-CH11R were compared using array comparative genomic hybridization, expression arrays, RNA-seq, and immunocytochemistry. Cell line origin was confirmed by short tandem repeat analysis. Inter-personal cell culture models (n = 6) were examined to validate whether the new model is representative. Cell viability after HOX/PBX complex inhibition with small peptides was determined by MTS assays. Results Using whole genome microarray analyses, striking differences in gene expression between primary and recurrent chordomas were identified. These expression differences were confirmed in the world’s first intra-personal model of chordoma relapse consisting of cell lines established from a primary (U-CH11) and the corresponding recurrent tumor (U-CH11R). Array comparative genomic hybridization and RNA-sequencing analyses revealed profound genetic similarities between both cell lines pointing to transcriptomic reprogramming as a key mechanism of chordoma progression. Network analysis of the recurrence specific genes highlighted HOX/PBX signaling as a common dysregulated event. Hence, HOX/PBX complexes were used as so far unknown therapeutic targets in recurrent chordomas. Treating chordoma cell lines with the complex formation inhibiting peptide HXR9 induced cFOS mediated apoptosis in all chordoma cell lines tested. This effect was significantly stronger in cell lines established from chordoma relapses. Conclusion Clearly differing gene expression patterns and vulnerabilities to HOX/PBX complex inhibition in highly therapy resistant chordoma relapses were identified using the first intra-personal loco-regional and further inter-personal chordoma progression models. For the first time, HOX/PBX interference was used to induce cell death in chordoma and might serve as the basic concept of an upcoming targeted therapy for chordomas of all progression stages. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02037-y.
Collapse
Affiliation(s)
- Carolin Seeling
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081, Ulm, Germany
| | - Michael Svinarenko
- Department of Internal Medicine I, University Hospital Ulm, 89081, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Thomas F E Barth
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
21
|
Abstract
CONTEXT.— Chordomas are uncommon malignant neoplasms with notochordal differentiation encountered by neuropathologists, bone/soft tissue pathologists, and general surgical pathologists. These lesions most commonly arise in the axial skeleton. Optimal therapy typically involves complete surgical resection, which is often technically difficult owing to the anatomic location, leading to a high rate of recurrence. Lesions have been generally resistant to radiation and chemotherapy; however, experimental studies involving targeted therapy and immunotherapy are currently underway. OBJECTIVE.— To summarize the clinical and pathologic findings of the various types of chordoma (conventional chordoma, dedifferentiated chordoma, and poorly differentiated chordoma), the differential diagnosis, and recent advances in molecular pathogenesis and therapeutic modalities that are reliant on accurate diagnosis. DATA SOURCES.— Literature review based on PubMed searches containing the term "chordoma" that address novel targeted and immunomodulatory therapeutic modalities; ongoing clinical trials involved in treating chordoma with novel therapeutic modalities identified through the Chordoma Foundation and ClinicalTrials.gov; and the authors' practice experience combined with various authoritative texts concerning the subject. CONCLUSIONS.— Chordoma is a clinically and histologically unique malignant neoplasm, and numerous diagnostic considerations must be excluded to establish the correct diagnosis. Treatment options have largely been centered on surgical excision with marginal results; however, novel therapeutic options including targeted therapy and immunotherapy are promising means to improve prognosis.
Collapse
Affiliation(s)
- Veronica Ulici
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| | - Jesse Hart
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| |
Collapse
|
22
|
Yepes S, Shah NN, Bai J, Koka H, Li C, Gui S, McMaster ML, Xiao Y, Jones K, Wang M, Vogt A, Zhu B, Zhu B, Hutchinson A, Yeager M, Hicks B, Carter B, Freedman ND, Beane-Freeman L, Chanock SJ, Zhang Y, Parry DM, Yang XR, Goldstein AM. Rare Germline Variants in Chordoma-Related Genes and Chordoma Susceptibility. Cancers (Basel) 2021; 13:cancers13112704. [PMID: 34070849 PMCID: PMC8197919 DOI: 10.3390/cancers13112704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Chordoma is an extremely rare bone cancer that has not been fully characterized and few risk factors have been identified, highlighting the need for improving our understanding of the disease biology. Our study aims to identify chordoma susceptibility genes by investigating 265 genes involved in chordoma-related signaling pathways and other biological processes on germline DNA of 138 chordoma patients of European ancestry compared to internal control datasets and general population databases. Results were intersected with whole genome sequencing data from 80 skull-base chordoma patients of Chinese ancestry. Several rare loss-of-function and predicted deleterious missense variants were enriched in chordoma cases in both datasets, suggesting a complex model of pathways potentially involved in chordoma development and susceptibility, warranting further investigation in larger studies. Abstract Background: Chordoma is a rare bone cancer with an unknown etiology. TBXT is the only chordoma susceptibility gene identified to date; germline single nucleotide variants and copy number variants in TBXT have been associated with chordoma susceptibility in familial and sporadic chordoma. However, the genetic susceptibility of chordoma remains largely unknown. In this study, we investigated rare germline genetic variants in genes involved in TBXT/chordoma-related signaling pathways and other biological processes in chordoma patients from North America and China. Methods: We identified variants that were very rare in general population and internal control datasets and showed evidence for pathogenicity in 265 genes in a whole exome sequencing (WES) dataset of 138 chordoma patients of European ancestry and in a whole genome sequencing (WGS) dataset of 80 Chinese patients with skull base chordoma. Results: Rare and likely pathogenic variants were identified in 32 of 138 European ancestry patients (23%), including genes that are part of notochord development, PI3K/AKT/mTOR, Sonic Hedgehog, SWI/SNF complex and mesoderm development pathways. Rare pathogenic variants in COL2A1, EXT1, PDK1, LRP2, TBXT and TSC2, among others, were also observed in Chinese patients. Conclusion: We identified several rare loss-of-function and predicted deleterious missense variants in germline DNA from patients with chordoma, which may influence chordoma predisposition and reflect a complex susceptibility, warranting further investigation in large studies.
Collapse
Affiliation(s)
- Sally Yepes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Correspondence: (S.Y.); (A.M.G.)
| | - Nirav N. Shah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Jiwei Bai
- Beijing Tiantan Hospital, Beijing 100070, China; (J.B.); (C.L.); (S.G.); (Y.Z.)
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Chuzhong Li
- Beijing Tiantan Hospital, Beijing 100070, China; (J.B.); (C.L.); (S.G.); (Y.Z.)
| | - Songbai Gui
- Beijing Tiantan Hospital, Beijing 100070, China; (J.B.); (C.L.); (S.G.); (Y.Z.)
| | - Mary Lou McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Brian Carter
- American Cancer Society, Inc, Atlanta, GA 30303, USA;
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Yazhuo Zhang
- Beijing Tiantan Hospital, Beijing 100070, China; (J.B.); (C.L.); (S.G.); (Y.Z.)
| | - Dilys M. Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Correspondence: (S.Y.); (A.M.G.)
| |
Collapse
|
23
|
Traylor JI, Pernik MN, Plitt AR, Lim M, Garzon-Muvdi T. Immunotherapy for Chordoma and Chondrosarcoma: Current Evidence. Cancers (Basel) 2021; 13:2408. [PMID: 34067530 PMCID: PMC8156915 DOI: 10.3390/cancers13102408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Chordomas and chondrosarcomas are rare but devastating neoplasms that are characterized by chemoradiation resistance. For both tumors, surgical resection is the cornerstone of management. Immunotherapy agents are increasingly improving outcomes in multiple cancer subtypes and are being explored in chordoma and chondrosarcoma alike. In chordoma, brachyury has been identified as a prominent biomarker and potential molecular immunotherapy target as well as PD-1 inhibition. While studies on immunotherapy in chondrosarcoma are sparse, there is emerging evidence and ongoing clinical trials for PD-1 as well as IDH inhibitors. This review highlights potential biomarkers and targets for immunotherapy in chordoma and chondrosarcoma, as well as current clinical evidence and ongoing trials.
Collapse
Affiliation(s)
- Jeffrey I. Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Mark N. Pernik
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Aaron R. Plitt
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Michael Lim
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94305, USA;
| | - Tomas Garzon-Muvdi
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| |
Collapse
|
24
|
Akinduro OO, Suarez-Meade P, Garcia D, Brown DA, Sarabia-Estrada R, Attia S, Gokaslan ZL, Quiñones-Hinojosa A. Targeted Therapy for Chordoma: Key Molecular Signaling Pathways and the Role of Multimodal Therapy. Target Oncol 2021; 16:325-337. [PMID: 33893940 DOI: 10.1007/s11523-021-00814-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chordoma is a rare but devastating tumor that arises in the cranial skull base or spine. There are currently no US Food and Drug Administration-approved targeted therapies for chordoma, and little understanding of whether using more than one therapy has benefit over monotherapy. OBJECTIVE The objective of this study was to systematically review the current status of clinical trials completed for patients with chordoma to determine if multimodal therapy offers a benefit in progression-free survival over monomodal therapy. METHODS We performed a systematic review of the literature according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to review the available clinical trials of targeted therapy for chordoma. We compiled the clinical data to determine if there is a benefit of multimodal therapy over monotherapy. RESULTS Our search resulted in 11 clinical trials including 270 patients with advanced chordoma who were treated with targeted therapies. The most commonly employed targeted therapies acted within the following pathways: platelet-derived growth factor receptor (187 patients), vascular endothelial growth factor (66 patients), and mammalian target of rapamycin (43 patients). Reported progression-free survival for included studies ranged from 2.5 to 58 months, with the longest progression-free survival in a trial that included a platelet-derived growth factor receptor inhibitor, nilotinib, and concurrent radiotherapy (58.2 months). There was a higher range of progression-free survival for trials treating patients with multimodal therapy (10.2-14 months vs 2.5-9.2 months, except for a monotherapy trial published in 2020 with a progression-free survival of 18 months), and those published in 2018 or later (14-58.2 months vs 2.5-10.2 months). Only 23% of patients with chordoma in published clinical trials have been treated with multimodal therapy. CONCLUSIONS Progression-free survival may be enhanced by the use of targeted therapy with concurrent radiotherapy, use of multimodal therapy, and use of newer targeted therapy. Future clinical trials should consider use of concurrent radiotherapy and multimodal therapy for patients with advanced chordoma.
Collapse
Affiliation(s)
- Oluwaseun O Akinduro
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Paola Suarez-Meade
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Diogo Garcia
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | | | - Rachel Sarabia-Estrada
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Steven Attia
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alfredo Quiñones-Hinojosa
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
25
|
Samarasinghe KTG, Jaime-Figueroa S, Burgess M, Nalawansha DA, Dai K, Hu Z, Bebenek A, Holley SA, Crews CM. Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chem Biol 2021; 28:648-661.e5. [PMID: 33836141 DOI: 10.1016/j.chembiol.2021.03.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
Many diseases, including cancer, stem from aberrant activation or overexpression of oncoproteins that are associated with multiple signaling pathways. Although proteins with catalytic activity can be successfully drugged, the majority of other protein families, such as transcription factors, remain intractable due to their lack of ligandable sites. In this study, we report the development of TRAnscription Factor TArgeting Chimeras (TRAFTACs) as a generalizable strategy for targeted transcription factor degradation. We show that TRAFTACs, which consist of a chimeric oligonucleotide that simultaneously binds to the transcription factor of interest (TOI) and to HaloTag-fused dCas9 protein, can induce degradation of the former via the proteasomal pathway. Application of TRAFTACs to two oncogenic TOIs, NF-κB and brachyury, suggests that TRAFTACs can be successfully employed for the targeted degradation of other DNA-binding proteins. Thus, TRAFTAC technology is potentially a generalizable strategy to induce degradation of other transcription factors both in vitro and in vivo.
Collapse
Affiliation(s)
- Kusal T G Samarasinghe
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Saul Jaime-Figueroa
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michael Burgess
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Dhanusha A Nalawansha
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Katherine Dai
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Zhenyi Hu
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Adrian Bebenek
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Scott A Holley
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
26
|
Barber SM, Sadrameli SS, Lee JJ, Fridley JS, Teh BS, Oyelese AA, Telfeian AE, Gokaslan ZL. Chordoma-Current Understanding and Modern Treatment Paradigms. J Clin Med 2021; 10:jcm10051054. [PMID: 33806339 PMCID: PMC7961966 DOI: 10.3390/jcm10051054] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/23/2022] Open
Abstract
Chordoma is a low-grade notochordal tumor of the skull base, mobile spine and sacrum which behaves malignantly and confers a poor prognosis despite indolent growth patterns. These tumors often present late in the disease course, tend to encapsulate adjacent neurovascular anatomy, seed resection cavities, recur locally and respond poorly to radiotherapy and conventional chemotherapy, all of which make chordomas challenging to treat. Extent of surgical resection and adequacy of surgical margins are the most important prognostic factors and thus patients with chordoma should be cared for by a highly experienced, multi-disciplinary surgical team in a quaternary center. Ongoing research into the molecular pathophysiology of chordoma has led to the discovery of several pathways that may serve as potential targets for molecular therapy, including a multitude of receptor tyrosine kinases (e.g., platelet-derived growth factor receptor [PDGFR], epidermal growth factor receptor [EGFR]), downstream cascades (e.g., phosphoinositide 3-kinase [PI3K]/protein kinase B [Akt]/mechanistic target of rapamycin [mTOR]), brachyury—a transcription factor expressed ubiquitously in chordoma but not in other tissues—and the fibroblast growth factor [FGF]/mitogen-activated protein kinase kinase [MEK]/extracellular signal-regulated kinase [ERK] pathway. In this review article, the pathophysiology, diagnosis and modern treatment paradigms of chordoma will be discussed with an emphasis on the ongoing research and advances in the field that may lead to improved outcomes for patients with this challenging disease.
Collapse
Affiliation(s)
- Sean M. Barber
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (S.M.B.); (S.S.S.); (J.J.L.)
| | - Saeed S. Sadrameli
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (S.M.B.); (S.S.S.); (J.J.L.)
| | - Jonathan J. Lee
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (S.M.B.); (S.S.S.); (J.J.L.)
| | - Jared S. Fridley
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA; (J.S.F.); (A.A.O.); (A.E.T.)
| | - Bin S. Teh
- Department of Radiation Oncology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Adetokunbo A. Oyelese
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA; (J.S.F.); (A.A.O.); (A.E.T.)
| | - Albert E. Telfeian
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA; (J.S.F.); (A.A.O.); (A.E.T.)
| | - Ziya L. Gokaslan
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA; (J.S.F.); (A.A.O.); (A.E.T.)
- Correspondence: ; Tel.: +1-(401)-793-9132
| |
Collapse
|
27
|
Levine AB, Wong D, Fatehi M, Yip S. Ependymoma and Chordoma. Neurosurgery 2021; 87:860-870. [PMID: 33057707 DOI: 10.1093/neuros/nyaa329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/31/2020] [Indexed: 11/14/2022] Open
Abstract
Ependymoma and chordoma are 2 tumors that occur throughout the craniospinal axis, and for which the extent of neurosurgical resection has a key prognostic role. Both tumors have distinctive pathologic features, yet can present significant diagnostic challenges to pathologists in cases without classical histology. The molecular understanding of ependymoma has had significant advances in the past decade, with the identification of 9 molecular groups with significant prognostic and clinical implications, while a comprehensive study of chordoma further emphasized the key role of brachyury overexpression in its pathogenesis. In this review, we discuss the pathogenesis, radiology and gross pathology, histology, and molecular features of these 2 tumors, as well as active research into targeted therapies, with an emphasis on practical diagnostic challenges, and the use of immunohistochemical and molecular tests in routine diagnostic practice.
Collapse
Affiliation(s)
- Adrian B Levine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek Wong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mostafa Fatehi
- Department of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Bai J, Shi J, Li C, Wang S, Zhang T, Hua X, Zhu B, Koka H, Wu HH, Song L, Wang D, Wang M, Zhou W, Ballew BJ, Zhu B, Hicks B, Mirabello L, Parry DM, Zhai Y, Li M, Du J, Wang J, Zhang S, Liu Q, Zhao P, Gui S, Goldstein AM, Zhang Y, Yang XR. Whole genome sequencing of skull-base chordoma reveals genomic alterations associated with recurrence and chordoma-specific survival. Nat Commun 2021; 12:757. [PMID: 33536423 PMCID: PMC7859411 DOI: 10.1038/s41467-021-21026-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Chordoma is a rare bone tumor with an unknown etiology and high recurrence rate. Here we conduct whole genome sequencing of 80 skull-base chordomas and identify PBRM1, a SWI/SNF (SWItch/Sucrose Non-Fermentable) complex subunit gene, as a significantly mutated driver gene. Genomic alterations in PBRM1 (12.5%) and homozygous deletions of the CDKN2A/2B locus are the most prevalent events. The combination of PBRM1 alterations and the chromosome 22q deletion, which involves another SWI/SNF gene (SMARCB1), shows strong associations with poor chordoma-specific survival (Hazard ratio [HR] = 10.55, 95% confidence interval [CI] = 2.81-39.64, p = 0.001) and recurrence-free survival (HR = 4.30, 95% CI = 2.34-7.91, p = 2.77 × 10-6). Despite the low mutation rate, extensive somatic copy number alterations frequently occur, most of which are clonal and showed highly concordant profiles between paired primary and recurrence/metastasis samples, indicating their importance in chordoma initiation. In this work, our findings provide important biological and clinical insights into skull-base chordoma.
Collapse
Affiliation(s)
- Jiwei Bai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuai Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Ho-Hsiang Wu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bari J Ballew
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Dilys M Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yixuan Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxuan Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiang Du
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Junmei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuheng Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Anshan Central Hospital, Anshan, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China.
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
29
|
Sheppard HE, Dall’Agnese A, Park WD, Shamim MH, Dubrulle J, Johnson HL, Stossi F, Cogswell P, Sommer J, Levy J, Sharifnia T, Wawer MJ, Nabet B, Gray NS, Clemons PA, Schreiber SL, Workman P, Young RA, Lin CY. Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. CELL REPORTS MEDICINE 2021; 2:100188. [PMID: 33521702 PMCID: PMC7817874 DOI: 10.1016/j.xcrm.2020.100188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Chordomas are rare spinal tumors addicted to expression of the developmental transcription factor brachyury. In chordomas, brachyury is super-enhancer associated and preferentially downregulated by pharmacologic transcriptional CDK inhibition, leading to cell death. To understand the underlying basis of this sensitivity, we dissect the brachyury transcription regulatory network and compare the consequences of brachyury degradation with transcriptional CDK inhibition. Brachyury defines the chordoma super-enhancer landscape and autoregulates through binding its super-enhancer, and its locus forms a transcriptional condensate. Transcriptional CDK inhibition and brachyury degradation disrupt brachyury autoregulation, leading to loss of its transcriptional condensate and transcriptional program. Compared with transcriptional CDK inhibition, which globally downregulates transcription, leading to cell death, brachyury degradation is much more selective, inducing senescence and sensitizing cells to anti-apoptotic inhibition. These data suggest that brachyury downregulation is a core tenet of transcriptional CDK inhibition and motivates developing strategies to target brachyury and its autoregulatory feedback loop. Brachyury defines the chordoma super-enhancer landscape Brachyury autoregulates through a transcriptional condensate CDK7/12/13i and brachyury degradation target the brachyury transcriptional condensate Brachyury degradation inhibits chordoma identity genes and induces senescence
Collapse
Affiliation(s)
- Hadley E. Sheppard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Woojun D. Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Hamza Shamim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julien Dubrulle
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hannah L. Johnson
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Joan Levy
- Chordoma Foundation, Durham, NC 27713, USA
| | - Tanaz Sharifnia
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Behnam Nabet
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paul A. Clemons
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Stuart L. Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Therapeutic Innovation Center, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author
| |
Collapse
|
30
|
Konieczkowski DJ, DeLaney TF, Yamada YJ. Radiation Strategies for Spine Chordoma: Proton Beam, Carbon Ions, and Stereotactic Body Radiation Therapy. Neurosurg Clin N Am 2020; 31:263-288. [PMID: 32147017 DOI: 10.1016/j.nec.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surgery alone provides suboptimal local control of spine and sacral chordomas. Radiotherapy (RT) may improve local control in patients undergoing surgery and be used as definitive-intent treatment in patients not undergoing surgery. Although conventional-dose RT is inadequate for these radioresistant tumors, newer techniques allow treatment of the tumor to higher, more effective doses while limiting spinal cord dose to safe levels. The best local control is achieved when RT is delivered in the primary setting; RT dose is a critical determinant of local control. RT should be considered for all spine and sacral chordoma patients.
Collapse
Affiliation(s)
- David J Konieczkowski
- Harvard Radiation Oncology Program, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Thomas F DeLaney
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Yoshiya Josh Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
31
|
Rustagi T, Schwab JH, Iwenofu H, Mendel E. Overview of the management of primary tumors of the spine. Int J Neurosci 2020; 132:543-557. [PMID: 32942943 DOI: 10.1080/00207454.2020.1825423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
STUDY DESIGN Narrative review. OBJECTIVE To provide a narrative review for diagnosis and management of Primary spine tumors. METHODS A detailed review of literature was done to identify relevant and well cited manuscripts to construct this narrative review. RESULTS Primary tumors of the spine are rare with some racial differences reported. There are numerous adjuvant technologies and developments that influence the way we currently manage these tumors. Collimated radiation allows for heavy dosage to be delivered and have been reported to give good local control both as an adjuvant and neoadjuvant setting. These have made surgical decision making even more intricate needing a multicentric approach. Dedicated care has been shown to significantly improve health quality of life measures and survival. CONCLUSION While, it is beyond the scope of this paper to discuss all primary tumors subtypes individually, this review highlights the developments and approach to primary spine tumors.
Collapse
Affiliation(s)
- Tarush Rustagi
- Department of Neurosurgery, The Ohio State University and Wexner Medical Center, The James Cancer Hospital and Solvo Research Institute, Columbus, OH, USA.,Department of Orthopedics and Spine Surgery, Indian Spinal Injuries Centre, New Delhi, India
| | - Joseph H Schwab
- Department of Orthopedic Oncology, Massachusetts General Hospital, Boston, MA, USA.,Department of Orthopedics, Harvard Medical School, Boston, MA, USA
| | - Hans Iwenofu
- Division of Soft Tissue & Bone Pathology, Department of Pathology & Laboratory Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solvo Research Institute, Columbus, OH, USA
| | - Ehud Mendel
- Department of Neurosurgery, The Ohio State University and Wexner Medical Center, The James Cancer Hospital and Solvo Research Institute, Columbus, OH, USA
| |
Collapse
|
32
|
Gill CM, Fowkes M, Shrivastava RK. Emerging Therapeutic Targets in Chordomas: A Review of the Literature in the Genomic Era. Neurosurgery 2020; 86:E118-E123. [PMID: 31504814 DOI: 10.1093/neuros/nyz342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Chordomas are rare primary malignant tumors of the bones that occur along the skull base, spine, and sacrum. Long-term survival and neurological outcome continue to be challenging with continued low percentages of long-term survival. Recent studies have used genome, exome, transcriptome, and proteome sequencing to assess the mutational profile of chordomas. Most notably, Brachyury, or T-protein, has been shown to be an early mutational event in chordoma evolution. Clinically actionable mutations, including in the PI3K pathway, were identified. Preliminary evidence suggests that there may be mutational differences associated with primary tumor location. In this study, we review the therapeutic landscape of chordomas and discuss emerging targets in the genomic era.
Collapse
Affiliation(s)
- Corey M Gill
- Department of Neurosurgery, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mary Fowkes
- Department of Pathology, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
33
|
Anderson E, Havener TM, Zorn KM, Foil DH, Lane TR, Capuzzi SJ, Morris D, Hickey AJ, Drewry DH, Ekins S. Synergistic drug combinations and machine learning for drug repurposing in chordoma. Sci Rep 2020; 10:12982. [PMID: 32737414 PMCID: PMC7395084 DOI: 10.1038/s41598-020-70026-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Chordoma is a devastating rare cancer that affects one in a million people. With a mean-survival of just 6 years and no approved medicines, the primary treatments are surgery and radiation. In order to speed new medicines to chordoma patients, a drug repurposing strategy represents an attractive approach. Drugs that have already advanced through human clinical safety trials have the potential to be approved more quickly than de novo discovered medicines on new targets. We have taken two strategies to enable this: (1) generated and validated machine learning models of chordoma inhibition and screened compounds of interest in vitro. (2) Tested combinations of approved kinase inhibitors already being individually evaluated for chordoma. Several published studies of compounds screened against chordoma cell lines were used to generate Bayesian Machine learning models which were then used to score compounds selected from the NIH NCATS industry-provided assets. Out of these compounds, the mTOR inhibitor AZD2014, was the most potent against chordoma cell lines (IC50 0.35 µM U-CH1 and 0.61 µM U-CH2). Several studies have shown the importance of the mTOR signaling pathway in chordoma and suggest it as a promising avenue for targeted therapy. Additionally, two currently FDA approved drugs, afatinib and palbociclib (EGFR and CDK4/6 inhibitors, respectively) demonstrated synergy in vitro (CI50 = 0.43) while AZD2014 and afatanib also showed synergy (CI50 = 0.41) against a chordoma cell in vitro. These findings may be of interest clinically, and this in vitro- and in silico approach could also be applied to other rare cancers.
Collapse
Affiliation(s)
- Edward Anderson
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tammy M Havener
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Stephen J Capuzzi
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dave Morris
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony J Hickey
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RTI International, Research Triangle Park, NC, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sean Ekins
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA.
| |
Collapse
|
34
|
Chen M, Wu Y, Zhang H, Li S, Zhou J, Shen J. The Roles of Embryonic Transcription Factor BRACHYURY in Tumorigenesis and Progression. Front Oncol 2020; 10:961. [PMID: 32695672 PMCID: PMC7338565 DOI: 10.3389/fonc.2020.00961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Transcription factor brachyury, with a DNA-binding T-domain, regulates posterior mesoderm formation and notochord development through binding with highly conserved palindromic consensus sequence in a variety of organisms. The absence of brachyury expression in majority of adult normal tissues and exclusive tumor-specific expression provides the potential to be developed into a novel and promising diagnostic and therapeutic target in cancer. As a sensitive and specific marker in the diagnosis of chordoma, brachyury protein has been verified to involve in the process of carcinogenesis and progression of chordoma and several epithelial carcinomas in various studies, but the mechanism by which brachyury promotes tumor cells migrate, invade and metastasis still remains less clear. To this end, we attempt to summarize the literature on the upstream regulatory pathway of brachyury transcription and downstream controlling network by brachyury activation, all of which involve in both the embryonic development and tumor progression. We present the respective correlation of brachyury expression with tumor progression, distant metastasis, survival rate and prognosis in several types of tumor samples (including chordoma, lung cancer, breast carcinoma, and prostate cancer), and various brachyury gain-of-function and loss-of-function experiments are summarized to explore its specific role in respective tumor cell line in vitro. In addition, we also discuss another two programs relating to brachyury function: epithelial-to-mesenchymal transition (EMT) and cell cycle control, both of which implicate in the regulation of brachyury on biological behavior of tumor cells. This review will provide an overview of the function of master transcriptional factor brachyury, compare the similarities and differences of its role between embryonic development and carcinogenesis, and list the evidence on which brachyury-target therapies have the potential to help control advanced cancer populations.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Department of Orthopeadic Surgery, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi, China
| | - Yinghui Wu
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Hong Zhang
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Suoyuan Li
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Shen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
35
|
Chordomas: A review with emphasis on their pathophysiology, pathology, molecular biology, and genetics. Pathol Res Pract 2020; 216:153089. [PMID: 32825957 DOI: 10.1016/j.prp.2020.153089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Chordomas are uncommon, bone, axial, or (rarely) extra-axial tumors that are malignant and frequently recur but less commonly metastasize. They usually affect adults, with a very small proportion being pediatric tumors. For children, such tumors present a different biology, since they are more common as scull rather than sacral tumors, with aggressive histological features, including a loss of SMARCB1/INI1 and a dismal prognosis. Histologically, chordomas, believed to derive from notochordal tissue, characteristically show physaliphorous cells in a myxoid or chondroid matrix. Dedifferentiated and poorly differentiated forms can be observed. Moreover, a grading scale for chordomas has been proposed. Cytokeratin, EMA, S100, and brachyury are expressed by most chordomas. These are chemo-resistant tumors, for which surgical resection and/or radiotherapy are the treatments of choice. In this review, the histological, immunohistochemical, molecular, and clinical data of chordomas are discussed.
Collapse
|
36
|
Rotunno M, Barajas R, Clyne M, Hoover E, Simonds NI, Lam TK, Mechanic LE, Goldstein AM, Gillanders EM. A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1519-1534. [PMID: 32467344 DOI: 10.1158/1055-9965.epi-19-1551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The application of next-generation sequencing (NGS) technologies in cancer research has accelerated the discovery of somatic mutations; however, progress in the identification of germline variation associated with cancer risk is less clear. We conducted a systematic literature review of cancer genetic susceptibility studies that used NGS technologies at an exome/genome-wide scale to obtain a fuller understanding of the research landscape to date and to inform future studies. The variability across studies on methodologies and reporting was considerable. Most studies sequenced few high-risk (mainly European) families, used a candidate analysis approach, and identified potential cancer-related germline variants or genes in a small fraction of the sequenced cancer cases. This review highlights the importance of establishing consensus on standards for the application and reporting of variants filtering strategies. It also describes the progress in the identification of cancer-related germline variation to date. These findings point to the untapped potential in conducting studies with appropriately sized and racially diverse families and populations, combining results across studies and expanding beyond a candidate analysis approach to advance the discovery of genetic variation that accounts for the unexplained cancer heritability.
Collapse
Affiliation(s)
- Melissa Rotunno
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland.
| | - Rolando Barajas
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mindy Clyne
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elise Hoover
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | | | - Tram Kim Lam
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Leah E Mechanic
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alisa M Goldstein
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elizabeth M Gillanders
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
37
|
Scheipl S, Igrec J, Leithner A, Smolle M, Haybäck J, Liegl B. [Chordoma: is there a molecular basis for diagnosis and treatment?]. DER PATHOLOGE 2020; 41:153-162. [PMID: 32100085 DOI: 10.1007/s00292-020-00761-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chordomas are malignant bone tumours with a reported annual incidence of 0.08 per 100,000 cases. They show a notochordal differentiation and are characterised by their nuclear expression of brachyury (TBXT). Chordomas are localised in the axial skeleton, where they occur from the clivus to the sacrococcygeal region. They are slow growing, locally destructive tumours, and are often not diagnosed until they have reached an advanced stage. Putative precursor-lesions are benign notochordal cell lesions, which are microscopically small and intraosseous. Different histological chordoma subtypes exist, which differ in their prognosis. To date, there are no known recurrent genetic drivers for this disease. Brachyury seems to play a key role in the pathogenesis of chordoma, though the detailed mechanism still needs to be elucidated. Surgical en bloc resection with negative margins is the only curative treatment for this disease. High-dose irradiation, particularly with protons and carbon ions, is a therapeutic alternative in cases of inoperable tumours. Currently, there is no approved medical treatment for chordoma. Clinical trials exploring additional therapeutic modalities are ongoing.
Collapse
Affiliation(s)
- Susanne Scheipl
- Univ.-Klinik für Orthopädie und Traumatologie, Medizinische Universität Graz, Auenbruggerplatz 5, 8036, Graz, Österreich.
| | - Jasminka Igrec
- Univ.-Klinik für Radiologie, Medizinische Universität Graz, Auenbruggerplatz 9, 8036, Graz, Österreich
| | - Andreas Leithner
- Univ.-Klinik für Orthopädie und Traumatologie, Medizinische Universität Graz, Auenbruggerplatz 5, 8036, Graz, Österreich
| | - Maria Smolle
- Univ.-Klinik für Orthopädie und Traumatologie, Medizinische Universität Graz, Auenbruggerplatz 5, 8036, Graz, Österreich
| | - Johannes Haybäck
- Institut für Pathologie, Neuropathologie und Molekularpathologie, Medizinische Universität Innsbruck, Müllerstraße 44, 6020, Innsbruck, Österreich
- Institut für Pathologie, Univ.-Klinikum Magdeburg A.ö.R., Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Deutschland
- Diagnostik- und Forschungsinstitut für Pathologie, Medizinische Universität Graz, Neue Stiftingtalstraße 6, 8010, Graz, Österreich
| | - Bernadette Liegl
- Diagnostik- und Forschungsinstitut für Pathologie, Medizinische Universität Graz, Neue Stiftingtalstraße 6, 8010, Graz, Österreich
| |
Collapse
|
38
|
Hu F, Zhang W, Meng W, Ma Y, Zhang X, Xu Y, Wang P, Gu Y. Ferrocene-labeled and purification-free electrochemical biosensor based on ligase chain reaction for ultrasensitive single nucleotide polymorphism detection. Anal Chim Acta 2020; 1109:9-18. [PMID: 32252909 DOI: 10.1016/j.aca.2020.02.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are crucial during the early diagnosis of a given disease as well as in evaluating their response to certain drugs. Thus, this study sought the development of ferrocene (Fc)-labeled electrochemical biosensor for SNP detection. This proposed system involves the ligation of four short probes (e.g., A, B, A', and B', where B' is labeled with an Fc-tag) in the presence of target DNA via ligase chain reaction (LCR), resulting in the formation of Fc-tagged duplex AB-A'B' in 2n. Subsequently, immobilization of the Fc-tagged duplex AB-A'B' on a single-stranded DNA capture probe (SC-DNA)-carboxyl multi-wall carbon nanotube (MWCNT-COOH) modified glassy carbon electrode (GCE) was accomplished through hybridization. Owing to the specificity of hybridization, and the use of Fc as electrochemical probe for detection of duplex AB-A'B', such strategy realized directly analysis of LCR products without the need for purification. By taking advantage of the thermal stability and high-discrimination ability of HiFi Taq DNA ligase for single-base differences, the specificity of hybridization, the EGFR T790 M mutant DNA (MT-DNA) biosensor was developed to offer a low limit of detection (0.75 aM), a high discrimination of single-base mismatches [as low as 0.01% (molar fraction)], a wide linear range of more than 7 orders of magnitude (1 aM-10 pM), and the recovery rates (95.3%-107.8%) from human serum samples. Thus, the biosensor under development was found to be economical, highly-sensitive, and exceptionally selective for detection of SNPs, and as well as extending the versatile applications of LCR to offer great potential for diagnosis and individual clinical regimens.
Collapse
Affiliation(s)
- Fang Hu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxiang Ma
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xianwei Zhang
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Ying Xu
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
39
|
Ozair MZ, Shah PP, Mathios D, Lim M, Moss NS. New Prospects for Molecular Targets for Chordomas. Neurosurg Clin N Am 2020; 31:289-300. [PMID: 32147018 DOI: 10.1016/j.nec.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chordomas are malignant, highly recurrent tumors of the midline skeleton that arise from the remnants of the notochord. The development of systemic therapy is critically important to ultimately managing this tumor. Several ongoing trials are attempting to use molecular targeted therapies for mutated pathways in recurrent and advanced chordomas and have shown promise. In addition, immunotherapies, including brachyury-directed vaccination and checkpoint inhibition, have also been attempted with encouraging results. This article discusses the major pathways that have been implicated in the pathogenesis of chordoma with an emphasis on molecular vulnerabilities that future therapies are attempting to exploit.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pavan Pinkesh Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
40
|
Abstract
Clinically, radiologically, and pathologically, chondroid neoplasms of the skull can be diagnostically challenging due to overlapping features in each of these domains. Compounding the problem for the pathologist, there is also significant morphologic, immunophenotypic, and molecular genetic overlap between benign and malignant cartilaginous lesions, and the majority of these lesions are encountered quite rarely in routine surgical pathology practice. Each of these factors contribute to the diagnostic difficulty posed by these lesions, highlighting the importance of radiologic-pathologic correlation in the diagnosis. This review is intended to provide an update for surgical pathologists on some of the most commonly encountered chondroid neoplasms in the skull, and includes the following lesions: chondromyxoid fibroma, synovial chondromatosis, chondrosarcoma and variants, and chordoma and variants. For each of these lesions, the differential diagnosis and useful ancillary tests will be discussed in the context of a broad range of additional primary and secondary lesions.
Collapse
|
41
|
Kaltsas GA, Kolomodi D, Randeva H, Grossman A. Nonneuroendocrine Neoplasms of the Pituitary Region. J Clin Endocrinol Metab 2019; 104:3108-3123. [PMID: 30779850 DOI: 10.1210/jc.2018-01871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
CONTEXT Although most sellar lesions are related to pituitary adenomas, the region gives rise to a variety of neoplasms that can be associated with substantial morbidity and/or mortality. DESIGN Information from reviews and guidelines of relevant societies dealing with such neoplasms, as well as articles that have provided new developments that made important contributions to their pathogenesis and treatment up to 2018, were obtained: public indexes such as PubMed/MEDLINE were used with the relevant search items. RESULTS Sellar neoplasms have a worse outcome than pituitary adenomas that is related not only to their natural history but also to side effects of therapies and evolving endocrine and/or hypothalamic deficiencies. Recent imaging advances have established the radiological fingerprint of some of these neoplasms, and several chromosomal aberrations have also been identified. Although established approaches along with new surgical and radiotherapeutic approaches remain the main treatment modalities, recent evidence has provided insight into their molecular pathogenesis involving, other than chemotherapy, treatments with targeted agents as in gliomas and craniopharyngiomas bearing BRAF mutations. Development of predictive markers of recurrences may also identify high-risk patients, including proliferative markers and expression of the progesterone receptor in meningiomas, and lead to less aggressive surgery. Owing to the rarity and complexity of these neoplasms, patients should be managed in dedicated centers. CONCLUSIONS The diagnosis and management of sellar neoplasms necessitate a multidisciplinary approach. Following evolving recent advances in their diagnosis and therapy, such a multidisciplinary approach needs to be extended to establish evidence-based diagnostic and management plans.
Collapse
Affiliation(s)
- Gregory A Kaltsas
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
- WISDEM Centre, University Hospital of Coventry and Warwickshire, Coventry, United Kingdom
| | - Dionysia Kolomodi
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal Randeva
- WISDEM Centre, University Hospital of Coventry and Warwickshire, Coventry, United Kingdom
| | - Ashley Grossman
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
42
|
Azad TD, Jiang B, Bettegowda C. Molecular foundations of primary spinal tumors-implications for surgical management. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:222. [PMID: 31297387 DOI: 10.21037/atm.2019.04.46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Primary spinal tumors are rare lesions that require careful clinical management due to their intimate relationship with critical neurovascular structures and the significant associated risk of morbidity. While the advent of molecular and genomic profiling is beginning to impact the management of the cranial counterparts, translation for spinal tumors has lagged behind. Maximal safe surgical resection remains the mainstay of patients with primary spinal tumors, with extent of resection and histology the only consistently identified independent predictors of survival. Adjuvant therapy has had limited impact. To develop targeted neoadjuvant and adjuvant therapies, improve prognostication, and enhance patient selection in spinal oncology, a thorough understanding of the current molecular and genomic landscape of spinal tumors is required. In this review, we detail the epidemiology, current standard-of-care, and molecular features of the most commonly encountered intramedullary spinal cord tumors (IMSCT), intradural extramedullary (IDEM) tumors, and primary spinal column malignancies (PSCM). We further discuss current efforts and future opportunities for integrating molecular advances in spinal oncology with clinical management.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bowen Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Hamilton K, Rebsamen S, Salamat S, Ahmed R. Pediatric extraosseous sacral chordoma: case report and literature review of embryonic derivation and clinical implications. J Neurosurg Pediatr 2019; 23:628-633. [PMID: 30797212 DOI: 10.3171/2018.12.peds18544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/04/2018] [Indexed: 01/03/2023]
Abstract
An extraosseous intradural presentation for a sacral chordoma in the pediatric age group has not been reported to date. This is a report on an 11-year-old boy who presented with an extraosseous, intradural sacral chordoma. He underwent gross-total resection and received adjuvant proton beam therapy. Neoplastic transformation of the notochord is reviewed to illustrate the developmental basis for the surgical anatomy and pathogenesis of the classic chordoma variant. Clinical and pathological features are reviewed to differentiate this chordoma presentation from classic osseous chordomas and ecchordosis physaliphora, a related benign developmental notochordal lesion. Finally, the role of developmental signaling in the pathogenesis of chordomas from postembryonic notochordal tissue is discussed.
Collapse
Affiliation(s)
| | | | - Shahriar Salamat
- Departments of1Neurological Surgery
- 3Pathology, University of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|
44
|
Sharifnia T, Wawer MJ, Chen T, Huang QY, Weir BA, Sizemore A, Lawlor MA, Goodale A, Cowley GS, Vazquez F, Ott CJ, Francis JM, Sassi S, Cogswell P, Sheppard HE, Zhang T, Gray NS, Clarke PA, Blagg J, Workman P, Sommer J, Hornicek F, Root DE, Hahn WC, Bradner JE, Wong KK, Clemons PA, Lin CY, Kotz JD, Schreiber SL. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med 2019; 25:292-300. [PMID: 30664779 PMCID: PMC6633917 DOI: 10.1038/s41591-018-0312-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers.
Collapse
Affiliation(s)
| | | | - Ting Chen
- New York University Langone Medical Center, New York, NY, USA
| | - Qing-Yuan Huang
- New York University Langone Medical Center, New York, NY, USA
- Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Barbara A Weir
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Janssen R&D, Cambridge, MA, USA
| | - Ann Sizemore
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew A Lawlor
- Dana-Farber Cancer Institute, Boston, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Amy Goodale
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Glenn S Cowley
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Janssen R&D, Spring House, PA, USA
| | | | - Christopher J Ott
- Dana-Farber Cancer Institute, Boston, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Joshua M Francis
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Gritstone Oncology, Cambridge, MA, USA
| | - Slim Sassi
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | | | - Francis Hornicek
- Massachusetts General Hospital, Boston, MA, USA
- UCLA Medical Center, Santa Monica, CA, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - James E Bradner
- Dana-Farber Cancer Institute, Boston, MA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kwok K Wong
- New York University Langone Medical Center, New York, NY, USA
| | | | | | - Joanne D Kotz
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Jnana Therapeutics, Boston, MA, USA.
| | - Stuart L Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
45
|
Liu F, Cheng J, Feng X, Yang K, Zhang H, Hu J, Wang M, Yu Y, Zhang Q, Zou G. Sensitive discrimination of single nucleotide variants using a PDA microtube waveguide platform with heterogeneous CHA amplification and competitive inhibition strategy. Chem Commun (Camb) 2019; 55:7105-7108. [DOI: 10.1039/c9cc03065d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The CHA system preferentially amplifies the target signal while the competitive system preferentially inhibits the SNV signal using PDA microtubes.
Collapse
|
46
|
Baumhoer D, Amary F, Flanagan AM. An update of molecular pathology of bone tumors. Lessons learned from investigating samples by next generation sequencing. Genes Chromosomes Cancer 2018; 58:88-99. [PMID: 30582658 DOI: 10.1002/gcc.22699] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
The last decade has seen the majority of primary bone tumor subtypes become defined by molecular genetic alteration. Examples include giant cell tumour of bone (H3F3A p.G34W), chondroblastoma (H3F3B p.K36M), mesenchymal chondrosarcoma (HEY1-NCOA2), chondromyxoid fibroma (GRM1 rearrangements), aneurysmal bone cyst (USP6 rearrangements), osteoblastoma/osteoid osteoma (FOS/FOSB rearrangements), and synovial chondromatosis (FN1-ACVR2A and ACVR2A-FN1). All such alterations are mutually exclusive. Many of these have been translated into clinical service using immunohistochemistry or FISH. 60% of central chondrosarcoma is characterised by either isocitrate dehydrogenase (IDH) 1 or IDH2 mutations distinguishing them from other cartilaginous tumours. In contrast, recurrent alterations which are clinically helpful have not been found in high grade osteosarcoma. High throughput next generation sequencing has also proved valuable in identifying germ line alterations in a significant proportion of young patients with primary malignant bone tumors. These findings will play an increasing role in reaching a diagnosis and in patient management.
Collapse
Affiliation(s)
- Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fernanda Amary
- Department of Pathology, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom.,Department of Pathology, Cancer Institute, University College London, London, United Kingdom
| | - Adrienne M Flanagan
- Department of Pathology, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom.,Department of Pathology, Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
47
|
Liang WS, Dardis C, Helland A, Sekar S, Adkins J, Cuyugan L, Enriquez D, Byron S, Little AS. Identification of therapeutic targets in chordoma through comprehensive genomic and transcriptomic analyses. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a003418. [PMID: 30322893 PMCID: PMC6318766 DOI: 10.1101/mcs.a003418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023] Open
Abstract
Chordoma is a rare, orphan cancer arising from embryonal precursors of bone. Surgery and radiotherapy (RT) provide excellent local control, often at the price of significant morbidity because of the structures involved and the need for relatively high doses of RT; however, recurrence remains high. Although our understanding of the genetic changes that occur in chordoma is evolving rapidly, this knowledge has yet to translate into treatments. We performed comprehensive DNA (paired tumor/normal whole-exome and shallow whole-genome) and RNA (tumor whole-transcriptome) next-generation sequencing analyses of archival sacral and clivus chordoma specimens. Incorporation of transcriptomic data enabled the identification of gene overexpression and expressed DNA alterations, thus providing additional support for potential therapeutic targets. In three patients, we identified alterations that may be amenable to off-label FDA-approved treatments for other tumor types. These alterations include FGFR1 overexpression (ponatinib, pazopanib) and copy-number duplication of CDK4 (palbociclib) and ERBB3 (gefitinib). In a third patient, germline DNA demonstrated predicted pathogenic changes in CHEK2 and ATM, which may have predisposed the patient to developing chordoma at a young age and may also be associated with potential sensitivity to PARP inhibitors because of homologous recombination repair deficiency. Last, in the fourth patient, a missense mutation in IGF1R was identified, suggesting potential activity for investigational anti-IGF1R strategies. Our findings demonstrate that chordoma patients present with aberrations in overlapping pathways. These results provide support for targeting the IGF1R/FGFR/EGFR and CDK4/6 pathways as treatment strategies for chordoma patients. This study underscores the value of comprehensive genomic and transcriptomic analysis in the development of rational, individualized treatment plans for chordoma.
Collapse
Affiliation(s)
- Winnie S Liang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Christopher Dardis
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - Adrienne Helland
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Shobana Sekar
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Jonathan Adkins
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Lori Cuyugan
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Daniel Enriquez
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Sara Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Andrew S Little
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| |
Collapse
|
48
|
Brito da Silva H, Sekhar LN. In Reply: Cranial Chordoma: A New Preoperative Grading System. Neurosurgery 2018; 83:E52-E53. [DOI: 10.1093/neuros/nyy130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Zhong H, Zhou Z, Lv GH, Li J, Zou MX. Letter to the Editor. Brachyury as prognostic biomarker in chordoma. J Neurosurg 2018; 129:273-275. [PMID: 29701545 DOI: 10.3171/2017.9.jns172108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hua Zhong
- 1Central Hospital of Yi Yang, Yiyang, China; and
| | - Zhihong Zhou
- 1Central Hospital of Yi Yang, Yiyang, China; and
| | - Guo-Hua Lv
- 2The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- 2The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xiang Zou
- 2The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis. Oncotarget 2018; 9:18607-18626. [PMID: 29719630 PMCID: PMC5915097 DOI: 10.18632/oncotarget.24719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. Methods We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. Results We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2, rs231775 of CTLA4, and rs454006 of PRKCG) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies.Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. Conclusions We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology.
Collapse
|