1
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
2
|
Johnson AC, Tsitsikov EN, Phan KP, Zuccato JA, Bauer AM, Graffeo CS, Hameed S, Stephens TM, Liu Y, Dunn GP, Tsytsykova AV, Jones PS, Dunn IF. GSTM1 null genotype underpins recurrence of NF2 meningiomas. Front Oncol 2024; 14:1506708. [PMID: 39726707 PMCID: PMC11669715 DOI: 10.3389/fonc.2024.1506708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Meningiomas are the most common primary central nervous system (CNS) tumor in adults, comprising one-third of all primary adult CNS tumors. Although several recent publications have identified molecular alterations in meningioma including characteristic mutations, copy number alterations, and gene expression signatures, our understanding of the drivers of meningioma recurrence is limited. Objective To identify gene expression signatures of 1p-22q-NF2- meningioma recurrence, with concurrent biallelic inactivation of NF2 and loss of chr1p that are heterogenous but enriched for recurrent meningiomas. Methods Transcriptomic alterations present in recurrent versus primary 1p-22q-NF2- meningiomas were identified using RNA sequencing (RNA-seq) data in a clinically annotated cohort. Results Recurrent 1p-22q-NF2- meningiomas were enriched for a newly identified GSTM1 null genotype compared to primary meningiomas that showed variable GSTM1 expression and independent external validation was performed. Conclusions The GSTM1 null genotype is a novel biomarker of 1p-22q-NF2- meningioma recurrence that resolves heterogeneity in existing meningioma subtypes and may be used to guide future clinical management decisions on extent of treatment to improve patient outcomes.
Collapse
Affiliation(s)
- Anthony C. Johnson
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Erdyni N. Tsitsikov
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jeffrey A. Zuccato
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andrew M. Bauer
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christopher S. Graffeo
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tressie M. Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Gavin P. Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alla V. Tsytsykova
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Pamela S. Jones
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Ge Y, Zhang T. SNAP25 as a prognostic marker in transcriptome analysis of meningioma. Lab Med 2024:lmae085. [PMID: 39514545 DOI: 10.1093/labmed/lmae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Meningiomas are the most common intracranial tumors and their diagnosis relies mostly on neuroimaging and histology. However, the histology grades cannot predict the outcome exactly and some meningiomas tend to recur after resection of even benign tumors. Therefore, it is necessary to explore prognostic and diagnostic molecular targets. METHODS Differential expression analysis between meningiomas and meninges was performed based on the merged data of GSE43290 and GSE84263. Next, we performed gene set enrichment analysis (GSEA), immune cell infiltration analysis, protein-protein interaction analysis, and survival analysis using public data. The expression level of Synaptosome-associated-protein-25kDa (SNAP25) was verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting in meningioma tissues. RESULTS There were 263 upregulated and 592 downregulated genes identified in meningiomas by differential expression analysis. GSEA results revealed that meningiomas were negatively related to the pathway of soluble N-ethylmaleimide sensitive factor attachment protein receptor interactions in vascular transport and chemokine signaling. SNAP25 was characterized as a hub gene and downregulated in meningiomas. The Kaplan-Meier plot indicated that high expression of SNAP25 is a favorable factor. CONCLUSION SNAP25 was downregulated and identified as a potential prognostic marker in meningioma.
Collapse
Affiliation(s)
- Yu Ge
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200011, China
| |
Collapse
|
4
|
Nandoliya KR, Congivaram H, Youngblood MW, Chen WC, Chaliparambil RK, Horbinski CM, Choudhury A, Brat DJ, Chandler JP, Magill ST, Wolinsky JP. Clinical and methylomic features of spinal meningiomas. J Neurooncol 2024; 170:277-287. [PMID: 39254813 DOI: 10.1007/s11060-024-04736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/01/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE The objective of our study was to analyze methylomic and clinical features of a cohort of spinal meningiomas (SMs) resected at our institution. METHODS This is a retrospective study of patients undergoing SM resection at our institution between 2010 and 2023. Clinical and radiographic characteristics were reviewed and analyzed with standard statistical methods. A Partitioning Around Medoids approach was used to cluster SMs with methylation data in a combined cohort from our institution and a publicly available dataset by methylation profiles. Clinical variables and pathway analyses were compared for the resulting clusters. RESULTS Sixty-five SMs were resected in 53 patients with median radiographic follow-up of 34 months. Forty-six (87%) patients were female. The median age at surgery was 65 years and median tumor diameter was 1.9 cm. The five-year progression-free survival rate was 90%, with subtotal resection being associated with recurrence or progression (p = .017). SMs clustered into hypermethylation, intermediate methylation, and hypomethylation subgroups. Tumors in the hypermethylated subgroup were associated with higher WHO grade (p = .046) and higher risk histological subtypes (p <.001), while tumors in the hypomethylated subgroup were least likely to present with copy-number loss in chromosome 22q (p <.0001). SMs classified as immune-enriched under a previously developed intracranial meningioma classifier did not have increased leukocyte fractions or hypomethylation of genes typically hypomethylated in immune-enriched tumors. CONCLUSION SMs are more benign than their intracranial counterparts, and gross-total resection results in long term PFS. Methylation profiling identifies subgroups with differences in clinical variables.
Collapse
Affiliation(s)
- Khizar R Nandoliya
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Harrshavasan Congivaram
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - William C Chen
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Rahul K Chaliparambil
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Craig M Horbinski
- Department of Pathology, Division of Neuropathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Daniel J Brat
- Department of Pathology, Division of Neuropathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James P Chandler
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Jean-Paul Wolinsky
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Soni N, Ora M, Bathla G, Szekeres D, Desai A, Pillai JJ, Agarwal A. Meningioma: Molecular Updates from the 2021 World Health Organization Classification of CNS Tumors and Imaging Correlates. AJNR Am J Neuroradiol 2024:ajnr.A8368. [PMID: 38844366 DOI: 10.3174/ajnr.a8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 11/02/2024]
Abstract
Meningiomas, the most common primary intracranial neoplasms, account for more than one-third of primary CNS tumors. While traditionally viewed as benign, meningiomas can be associated with considerable morbidity, and specific meningioma subgroups display more aggressive behavior with higher recurrence rates. The risk stratification for recurrence has been primarily associated with the World Health Organization (WHO) histopathologic grade and extent of resection. However, a growing body of literature has highlighted the value of molecular characteristics in assessing recurrence risk. While maintaining the previous classification system, the 5th edition of the 2021 WHO Classification of Central Nervous System tumors (CNS5) book expands upon the molecular information in meningiomas to help guide management. The WHO CNS5 stratifies meningioma into 3 grades (1-3) based on histopathology criteria and molecular profile. The telomerase reverse transcriptase promoter mutations and cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions now signify a grade 3 meningioma with increased recurrence risk. Tumor location also correlates with underlying mutations. Cerebral convexity and most spinal meningiomas carry a 22q deletion and/or NF2 mutations, while skull base meningiomas have AKT1, TRAF7, SMO, and/or PIK3CA mutations. MRI is the primary imaging technique for diagnosing and treatment-planning of meningiomas, while DOTATATE PET imaging offers supplementary information beyond anatomic imaging. Herein, we review the evolving molecular landscape of meningiomas, emphasizing imaging/genetic biomarkers and treatment strategies relevant to neuroradiologists.
Collapse
Affiliation(s)
- Neetu Soni
- From the Department of Radiology (N.S., J.J.P., A.D., A.A.), Mayo Clinic, Jacksonville, Florida
| | - Manish Ora
- Department of Nuclear Medicine (M.O.), Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Girish Bathla
- Department of Radiology (G.B., J.P.), Mayo Clinic, Rochester, Minnesota
| | - Denes Szekeres
- University of Rochester School of Medicine and Dentistry (D.S.), Rochester, New York
| | - Amit Desai
- From the Department of Radiology (N.S., J.J.P., A.D., A.A.), Mayo Clinic, Jacksonville, Florida
| | - Jay J Pillai
- From the Department of Radiology (N.S., J.J.P., A.D., A.A.), Mayo Clinic, Jacksonville, Florida
- Department of Radiology (G.B., J.P.), Mayo Clinic, Rochester, Minnesota
| | - Amit Agarwal
- From the Department of Radiology (N.S., J.J.P., A.D., A.A.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
6
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Eaton CD, Avalos L, Liu SJ, Chen Z, Zakimi N, Casey-Clyde T, Bisignano P, Lucas CHG, Stevenson E, Choudhury A, Vasudevan HN, Magill ST, Young JS, Krogan NJ, Villanueva-Meyer JE, Swaney DL, Raleigh DR. Merlin S13 phosphorylation regulates meningioma Wnt signaling and magnetic resonance imaging features. Nat Commun 2024; 15:7873. [PMID: 39251601 PMCID: PMC11383945 DOI: 10.1038/s41467-024-52284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
Meningiomas are associated with inactivation of NF2/Merlin, but approximately one-third of meningiomas with favorable clinical outcomes retain Merlin expression. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that may be used to guide treatment de-escalation or imaging surveillance are lacking. Here, we use single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma xenografts and patients to define biochemical mechanisms and an imaging biomarker that underlie Merlin-intact meningiomas. We find Merlin serine 13 (S13) dephosphorylation drives meningioma Wnt signaling and tumor growth by attenuating inhibitory interactions with β-catenin and activating the Wnt pathway. MRI analyses show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC). These results define mechanisms underlying a potential imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with Merlin-intact meningiomas.
Collapse
Affiliation(s)
- Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Lauro Avalos
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Zhenhong Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Paola Bisignano
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Erica Stevenson
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Jacob S Young
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Periasamy P, Joseph C, Campos A, Rajandran S, Batho C, Hudson JE, Sivakumaran H, Kore H, Datta K, Yeong J, Gowda H. Regulation of non-canonical proteins from diverse origins through the nonsense-mediated mRNA decay pathway. Proteomics 2024; 24:e2300361. [PMID: 38350726 DOI: 10.1002/pmic.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.
Collapse
Affiliation(s)
- Parthiban Periasamy
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Craig Joseph
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Adrian Campos
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Sureka Rajandran
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Flow Cytometry Department, Covance Central Laboratory Services, Singapore, 609917, Singapore
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hitesh Kore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Keshava Datta
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joe Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Harsha Gowda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Teranishi Y, Yurchenko A, Tran S, Sievers P, Rajabi F, Ruchith S, Abi-Jaoude S, Blouin A, Bielle F, Cazals-Hatem D, Sahm F, Nikolaev S, Kalamarides M, Peyre M. Correlation between natural history and multi-omics profiling of meningiomas in NF2-related schwannomatosis suggests role of methylation group and immune microenvironment in tumor growth rate. Acta Neuropathol 2024; 148:30. [PMID: 39192083 DOI: 10.1007/s00401-024-02791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Affiliation(s)
- Yu Teranishi
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225,, 75013, Paris, France
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, 47-91 bvd de l'Hopital, 75013, Paris, France
| | - Andrey Yurchenko
- Translational Cancer Genomics Lab, B2M, Gustave Roussy, INSERM U981, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Suzanne Tran
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225,, 75013, Paris, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, 75013, Paris, France
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Fatemeh Rajabi
- Translational Cancer Genomics Lab, B2M, Gustave Roussy, INSERM U981, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Singhabahu Ruchith
- Alztheimer's Disease and Prion Diseases, Paris Brain Institute, Paris, France
| | - Samiya Abi-Jaoude
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225,, 75013, Paris, France
| | - Antoine Blouin
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225,, 75013, Paris, France
| | - Franck Bielle
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225,, 75013, Paris, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, 75013, Paris, France
| | | | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Sergey Nikolaev
- Translational Cancer Genomics Lab, B2M, Gustave Roussy, INSERM U981, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Michel Kalamarides
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225,, 75013, Paris, France
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, 47-91 bvd de l'Hopital, 75013, Paris, France
| | - Matthieu Peyre
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225,, 75013, Paris, France.
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, 47-91 bvd de l'Hopital, 75013, Paris, France.
| |
Collapse
|
10
|
Okano A, Miyawaki S, Teranishi Y, Hongo H, Dofuku S, Ohara K, Sakai Y, Shin M, Nakatomi H, Saito N. POLR2A Mutation is a Poor Prognostic Marker of Cerebellopontine Angle Meningioma. Neurosurgery 2024; 95:275-283. [PMID: 38380947 DOI: 10.1227/neu.0000000000002873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/19/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent molecular analyses have shown that the driver genetic mutations of meningiomas were associated with the anatomic location. Among these, POLR2A mutation is common among lesions in the skull base, mainly in the cerebellopontine angle (CPA). The objective of this study was to investigate the efficacy of POLR2A mutation as a prognostic marker for CPA meningiomas. METHODS We retrospectively analyzed the clinical data of 70 patients who had World Health Organization grade I CPA meningiomas. Somatic DNA was analyzed by Sanger sequencing and microsatellite array to examine for NF2 , AKT1 , KLF4 , SMO , and POLR2A mutations and 22q loss. Genetic and clinical parameters were analyzed to identify the factors related with tumor recurrence. RESULTS We detected clearly the clinical features of the CPA cases with POLR2A mutation. Compared with cases without POLR2A mutation, cases with POLR2A mutation had more meningothelial type ( P = 6.9 × 10 -4 ), and higher rate of recurrence ( P = .04). We found that the poor prognostic factors associated with the recurrence of CPA meningiomas were POLR2A mutation ( P = .03, hazard ratio [HR] 9.38, 95% CI 1.26-70.0) and subtotal resection (STR) ( P = 5.1 × 10 -4 , HR 63.1, 95% CI 6.09-655.0). In addition, in the group that underwent STR, POLR2A mutation was a poor prognostic factor associated with tumor recurrence ( P = .03, HR 11.1, 95% CI 1.19-103.7). CONCLUSION POLR2A mutation and STR were the poor prognostic markers associated with the recurrence of CPA meningioma. For CPA meningioma cases that underwent STR, only POLR2A mutation was a poor prognostic factor. Detecting POLR2A mutation may be a cost-effective, easy, and useful marker for prognostication.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hsieh AL, Bi WL, Ramesh V, Brastianos PK, Plotkin SR. Evolving concepts in meningioma management in the era of genomics. Cancer 2024; 130:2586-2600. [PMID: 38753473 PMCID: PMC11260245 DOI: 10.1002/cncr.35279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 05/18/2024]
Abstract
Meningioma is the most common type of primary brain tumor. Surgical resection followed by surveillance is the first-line treatment for the majority of symptomatic meningiomas; however, recent advances in molecular sequencing, DNA methylation, proteomics, and single-cell sequencing provide insights into further characterizing this heterogeneous group of tumors with a wide range of prognoses. A subset of these tumors are highly aggressive and cause severe morbidity and mortality. Therefore, identifying those individuals with a poor prognosis and intervening are critical. This review aims to help readers interpret the molecular profiling of meningiomas to identify patients with worse prognoses and guide the management and strategy for surveillance.
Collapse
Affiliation(s)
- Annie L. Hsieh
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vijaya Ramesh
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Priscilla K Brastianos
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Central Nervous System Metastasis Program, Massachusetts General Hospital, Boston, MA, United States
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott R. Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Graillon T, Romanet P, Camilla C, Gélin C, Appay R, Roche C, Lagarde A, Mougel G, Farah K, Le Bras M, Engelhardt J, Kalamarides M, Peyre M, Amelot A, Emery E, Magro E, Cebula H, Aboukais R, Bauters C, Jouanneau E, Berhouma M, Cuny T, Dufour H, Loiseau H, Figarella-Branger D, Bauchet L, Binquet C, Barlier A, Goudet P. A Cohort Study of CNS Tumors in Multiple Endocrine Neoplasia Type 1. Clin Cancer Res 2024; 30:2835-2845. [PMID: 38630553 DOI: 10.1158/1078-0432.ccr-23-3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Multiple endocrine neoplasia type 1 (MEN1) is thought to increase the risk of meningioma and ependymoma. Thus, we aimed to describe the frequency, incidence, and specific clinical and histological features of central nervous system (CNS) tumors in the MEN1 population (except pituitary tumors). EXPERIMENTAL DESIGN The study population included patients harboring CNS tumors diagnosed with MEN1 syndrome after 1990 and followed up in the French MEN1 national cohort. The standardized incidence ratio (SIR) was calculated based on the French Gironde CNS Tumor Registry. Genomic analyses were performed on somatic DNA from seven CNS tumors, including meningiomas and ependymomas from patients with MEN1, and then on 50 sporadic meningiomas and ependymomas. RESULTS A total of 29 CNS tumors were found among the 1,498 symptomatic patients (2%; incidence = 47.4/100,000 person-years; SIR = 4.5), including 12 meningiomas (0.8%; incidence = 16.2/100,000; SIR = 2.5), 8 ependymomas (0.5%; incidence = 10.8/100,000; SIR = 17.6), 5 astrocytomas (0.3%; incidence = 6.7/100,000; SIR = 5.8), and 4 schwannomas (0.3%; incidence = 5.4/100,000; SIR = 12.7). Meningiomas in patients with MEN1 were benign, mostly meningothelial, with 11 years earlier onset compared with the sporadic population and an F/M ratio of 1/1. Spinal and cranial ependymomas were mostly classified as World Health Organization grade 2. A biallelic MEN1 inactivation was observed in 4/5 ependymomas and 1/2 meningiomas from patients with MEN1, whereas MEN1 deletion in one allele was present in 3/41 and 0/9 sporadic meningiomas and ependymomas, respectively. CONCLUSIONS The incidence of each CNS tumor was higher in the MEN1 population than in the French general population. Meningiomas and ependymomas should be considered part of the MEN1 syndrome, but somatic molecular data are missing to conclude for astrocytomas and schwannomas.
Collapse
Affiliation(s)
- Thomas Graillon
- Neurosurgery Departement, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Timone Hospital, Marseille, France
| | - Pauline Romanet
- Laboratory of Molecular Biology, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception Hospital, Marseille, France
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Clara Camilla
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Camille Gélin
- INSERM, U1231, Epidemiology and Clinical Research in Digestive Cancers Team, University of Burgundy-Franche-Comte, Dijon, France
- Dijon-Bourgogne University Hospital, Inserm, University of Burgundy-Franche-Comté, CIC1432, Clinical Epidemiology Unit, Dijon, France
| | - Romain Appay
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Catherine Roche
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Arnaud Lagarde
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Grégory Mougel
- Laboratory of Molecular Biology, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception Hospital, Marseille, France
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Kaissar Farah
- Neurosurgery Departement, Aix-Marseille Univ, APHM, La Timone Hospital, Marseille, France
| | - Maëlle Le Bras
- CHU de Nantes PHU2 Institut du Thorax et du Système Nerveux, Service d'Endocrinologie, Diabétologie et Nutrition, Nantes, France
| | - Julien Engelhardt
- CNRS UMR5293, Université de Bordeaux, Bordeaux, France
- Service de Neurochirurgie B - CHU de Bordeaux, Bordeaux, France
| | - Michel Kalamarides
- Department of Neurosurgery, Pitie-Salpetriere Hospital, AP-HP Sorbonne Université, Paris, France
| | - Matthieu Peyre
- Department of Neurosurgery, Pitie-Salpetriere Hospital, AP-HP Sorbonne Université, Paris, France
| | - Aymeric Amelot
- Service de Neurochirurgie, Hôpital Bretonneau, CHU Tours, Tours, France
| | - Evelyne Emery
- Department of Neurosurgery, CHU de Caen, Caen, France
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
- Medical School, Université Caen Normandie, Caen, France
| | | | - Hélène Cebula
- Service de Neurochirurgie CHRU Hôpital de Hautepierre, Strasbourg, France
| | - Rabih Aboukais
- Univ. Lille, INSERM, CHU Lille, U1189-ONCO-THAI-Image Assisted Laser Therapy for Oncology, Lille, France
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Catherine Bauters
- Service d'Endocrinologie, Hôpital Huriez, CHU de Lille, Lille, France
| | - Emmanuel Jouanneau
- Département de Neurochirurgie de la base du crâne et de l'hypophyse, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
- Université Lyon 1, Lyon, France
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Lyon, Lyon, France
- CREATIS Lab, CNRS UMR 5220, INSERM U1206, University of Lyon, Lyon, France
| | - Thomas Cuny
- Endocrinology Departement, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception Hospital, Marseille, France
| | - Henry Dufour
- Neurosurgery Departement, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Timone Hospital, Marseille, France
| | - Hugues Loiseau
- CNRS UMR5293, Université de Bordeaux, Bordeaux, France
- Service de Neurochirurgie B - CHU de Bordeaux, Bordeaux, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Christine Binquet
- INSERM, U1231, Epidemiology and Clinical Research in Digestive Cancers Team, University of Burgundy-Franche-Comte, Dijon, France
- Dijon-Bourgogne University Hospital, Inserm, University of Burgundy-Franche-Comté, CIC1432, Clinical Epidemiology Unit, Dijon, France
| | - Anne Barlier
- Laboratory of Molecular Biology, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception Hospital, Marseille, France
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Pierre Goudet
- Department of Digestive and Endocrine Surgery, Dijon University Hospital, Dijon, France
- INSERM, U1231, EPICAD Team UMR "Lipids, Nutrition, Cancer", Dijon, France
- INSERM, CIC1432, Clinical Epidemiology, Dijon, France
| |
Collapse
|
13
|
Shetty A, Wang S, Khan AB, English CW, Nouri SH, Magill ST, Raleigh DR, Klisch TJ, Harmanci AO, Patel AJ, Harmanci AS. Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data. J Neurooncol 2024; 168:515-524. [PMID: 38811523 DOI: 10.1007/s11060-024-04710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies. METHODS Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk (n = 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model. RESULTS While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on n = 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data (n = 711 samples). CONCLUSION Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.
Collapse
Affiliation(s)
- Arya Shetty
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- McGovern Medical School, Houston, TX, USA
| | - Su Wang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - A Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Collin W English
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Stephen T Magill
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tiemo J Klisch
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Arif O Harmanci
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA.
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Thirimanne HN, Almiron-Bonnin D, Nuechterlein N, Arora S, Jensen M, Parada CA, Qiu C, Szulzewsky F, English CW, Chen WC, Sievers P, Nassiri F, Wang JZ, Klisch TJ, Aldape KD, Patel AJ, Cimino PJ, Zadeh G, Sahm F, Raleigh DR, Shendure J, Ferreira M, Holland EC. Meningioma transcriptomic landscape demonstrates novel subtypes with regional associated biology and patient outcome. CELL GENOMICS 2024; 4:100566. [PMID: 38788713 PMCID: PMC11228955 DOI: 10.1016/j.xgen.2024.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Meningiomas, although mostly benign, can be recurrent and fatal. World Health Organization (WHO) grading of the tumor does not always identify high-risk meningioma, and better characterizations of their aggressive biology are needed. To approach this problem, we combined 13 bulk RNA sequencing (RNA-seq) datasets to create a dimension-reduced reference landscape of 1,298 meningiomas. The clinical and genomic metadata effectively correlated with landscape regions, which led to the identification of meningioma subtypes with specific biological signatures. The time to recurrence also correlated with the map location. Further, we developed an algorithm that maps new patients onto this landscape, where the nearest neighbors predict outcome. This study highlights the utility of combining bulk transcriptomic datasets to visualize the complexity of tumor populations. Further, we provide an interactive tool for understanding the disease and predicting patient outcomes. This resource is accessible via the online tool Oncoscape, where the scientific community can explore the meningioma landscape.
Collapse
Affiliation(s)
| | - Damian Almiron-Bonnin
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Matt Jensen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Carolina A Parada
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Collin W English
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - William C Chen
- Departments of Radiation Oncology, Neurological Surgery, and Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Farshad Nassiri
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Justin Z Wang
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Tiemo J Klisch
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gelareh Zadeh
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David R Raleigh
- Departments of Radiation Oncology, Neurological Surgery, and Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
15
|
Ning D, Xue J, Lou X, Shao R, Liu Y, Chen G. Transforming toxins into treatments: the revolutionary role of α-amanitin in cancer therapy. Arch Toxicol 2024; 98:1705-1716. [PMID: 38555326 DOI: 10.1007/s00204-024-03727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Amanita phalloides is the primary species responsible for fatal mushroom poisoning, as its main toxin, α-amanitin, irreversibly and potently inhibits eukaryotic RNA polymerase II (RNAP II), leading to cell death. There is no specific antidote for α-amanitin, which hinders its clinical application. However, with the advancement of precision medicine in oncology, including the development of antibody-drug conjugates (ADCs), the potential value of various toxic small molecules has been explored. These ADCs ingeniously combine the targeting precision of antibodies with the cytotoxicity of small-molecule payloads to precisely kill tumor cells. We searched PubMed for studies in this area using these MeSH terms "Amanitins, Alpha-Amanitin, Therapeutic use, Immunotherapy, Immunoconjugates, Antibodies" and did not limit the time interval. Recent studies have conducted preclinical experiments on ADCs based on α-amanitin, showing promising therapeutic effects and good tolerance in primates. The current challenges include the not fully understood toxicological mechanism of α-amanitin and the lack of clinical studies to evaluate the therapeutic efficacy of ADCs developed based on α-amanitin. In this article, we will discuss the role and therapeutic efficacy of α-amanitin as an effective payload in ADCs for the treatment of various cancers, providing background information for the research and application strategies of current and future drugs.
Collapse
Affiliation(s)
- Deyuan Ning
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, No 157 Jinbi Road, Xishan District, Kunming, 650032, China.
| |
Collapse
|
16
|
Pacult MA, Przybylowski CJ, Raza SM, DeMonte F. Surgical Management of High-Grade Meningiomas. Cancers (Basel) 2024; 16:1978. [PMID: 38893100 PMCID: PMC11171173 DOI: 10.3390/cancers16111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Maximal resection with the preservation of neurological function are the mainstays of the surgical management of high-grade meningiomas. Surgical morbidity is strongly associated with tumor size, location, and invasiveness, whereas patient survival is strongly associated with the extent of resection, tumor biology, and patient health. A versatile microsurgical skill set combined with a cogent multimodality treatment plan is critical in order to achieve optimal patient outcomes. Continued refinement in surgical techniques in conjunction with directed radiotherapeutic and medical therapies will define future treatment.
Collapse
Affiliation(s)
- Mark A. Pacult
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Colin J. Przybylowski
- Division of Neurosurgery, Fukushima Brain Tumor Center, Raleigh Neurosurgical Clinic, Raleigh, NC 27609, USA;
| | - Shaan M. Raza
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Franco DeMonte
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
17
|
Trybula SJ, Youngblood MW, Karras CL, Murthy NK, Heimberger AB, Lukas RV, Sachdev S, Kalapurakal JA, Chandler JP, Brat DJ, Horbinski CM, Magill ST. The Evolving Classification of Meningiomas: Integration of Molecular Discoveries to Inform Patient Care. Cancers (Basel) 2024; 16:1753. [PMID: 38730704 PMCID: PMC11083836 DOI: 10.3390/cancers16091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Meningioma classification and treatment have evolved over the past eight decades. Since Bailey, Cushing, and Eisenhart's description of meningiomas in the 1920s and 1930s, there have been continual advances in clinical stratification by histopathology, radiography and, most recently, molecular profiling, to improve prognostication and predict response to therapy. Precise and accurate classification is essential to optimizing management for patients with meningioma, which involves surveillance imaging, surgery, primary or adjuvant radiotherapy, and consideration for clinical trials. Currently, the World Health Organization (WHO) grade, extent of resection (EOR), and patient characteristics are used to guide management. While these have demonstrated reliability, a substantial number of seemingly benign lesions recur, suggesting opportunities for improvement of risk stratification. Furthermore, the role of adjuvant radiotherapy for grade 1 and 2 meningioma remains controversial. Over the last decade, numerous studies investigating the molecular drivers of clinical aggressiveness have been reported, with the identification of molecular markers that carry clinical implications as well as biomarkers of radiotherapy response. Here, we review the historical context of current practices, highlight recent molecular discoveries, and discuss the challenges of translating these findings into clinical practice.
Collapse
Affiliation(s)
- S. Joy Trybula
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark W. Youngblood
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Constantine L. Karras
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nikhil K. Murthy
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A. Kalapurakal
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - James P. Chandler
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel J. Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephen T. Magill
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Dang DD, Mugge LA, Awan OK, Gong AD, Fanous AA. Spinal Meningiomas: A Comprehensive Review and Update on Advancements in Molecular Characterization, Diagnostics, Surgical Approach and Technology, and Alternative Therapies. Cancers (Basel) 2024; 16:1426. [PMID: 38611105 PMCID: PMC11011121 DOI: 10.3390/cancers16071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Spinal meningiomas are the most common intradural, extramedullary tumor in adults, yet the least common entity when accounting for all meningiomas spanning the neuraxis. While traditionally considered a benign recapitulation of their intracranial counterpart, a paucity of knowledge exists regarding the differences between meningiomas arising from these two anatomic compartments in terms of histopathologic subtypes, molecular tumor biology, surgical principles, long-term functional outcomes, and recurrence rates. To date, advancements at the bench have largely been made for intracranial meningiomas, including the discovery of novel gene targets, DNA methylation profiles, integrated diagnoses, and alternative systemic therapies, with few exceptions reserved for spinal pathology. Likewise, evolving clinical research offers significant updates to our understanding of guiding surgical principles, intraoperative technology, and perioperative patient management for intracranial meningiomas. Nonetheless, spinal meningiomas are predominantly relegated to studies considering non-specific intradural extramedullary spinal tumors of all histopathologic types. The aim of this review is to comprehensively report updates in both basic science and clinical research regarding intraspinal meningiomas and to provide illustrative case examples thereof, thereby lending a better understanding of this heterogenous class of central nervous system tumors.
Collapse
Affiliation(s)
- Danielle D. Dang
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Luke A. Mugge
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Omar K. Awan
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Andrew D. Gong
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Andrew A. Fanous
- Department of Neurosurgery, Inova Alexandria Hospital, Alexandria, VA 22304, USA
| |
Collapse
|
19
|
Szulzewsky F, Thirimanne HN, Holland EC. Meningioma: current updates on genetics, classification, and mouse modeling. Ups J Med Sci 2024; 129:10579. [PMID: 38571886 PMCID: PMC10989216 DOI: 10.48101/ujms.v129.10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
Meningiomas, the most common primary brain tumors in adults, are often benign and curable by surgical resection. However, a subset is of higher grade, shows aggressive growth behavior as well as brain invasion, and often recurs even after several rounds of surgery. Increasing evidence suggests that tumor classification and grading primarily based on histopathology do not always accurately predict tumor aggressiveness and recurrence behavior. The underlying biology of aggressive treatment-resistant meningiomas and the impact of specific genetic aberrations present in these high-grade tumors is still only insufficiently understood. Therefore, an in-depth research into the biology of this tumor type is warranted. More recent studies based on large-scale molecular data such as whole exome/genome sequencing, DNA methylation sequencing, and RNA sequencing have provided new insights into the biology of meningiomas and have revealed new risk factors and prognostic subtypes. The most common genetic aberration in meningiomas is functional loss of NF2 and occurs in both low- and high-grade meningiomas, whereas NF2-wildtype meningiomas are enriched for recurrent mutations in TRAF7, KLF4, AKT1, PI3KCA, and SMO and are more frequently benign. Most meningioma mouse models are based on patient-derived xenografts and only recently have new genetically engineered mouse models of meningioma been developed that will aid in the systematic evaluation of specific mutations found in meningioma and their impact on tumor behavior. In this article, we review recent advances in the understanding of meningioma biology and classification and highlight the most common genetic mutations, as well as discuss new genetically engineered mouse models of meningioma.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
20
|
Nguyen MP, Almiron Bonnin D, Mirchia K, Chen WC, Goldschmidt E, Braunstein SE, Perry A, Raleigh DR, Oberheim Bush NA. Response to immune checkpoint inhibition in a meningioma with DNA mismatch repair deficiency. Neurooncol Adv 2024; 6:vdae092. [PMID: 38957162 PMCID: PMC11217898 DOI: 10.1093/noajnl/vdae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Affiliation(s)
- Minh P Nguyen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Damian Almiron Bonnin
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Kanish Mirchia
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Ezequiel Goldschmidt
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Nadeem A, Khan A, Habib A, Tariq R, Ahsan A, Basaria AAA, Raufi N, Chughtai A. Intracranial intricacies: Comprehensive analysis of rare skull base meningiomas-A single-center case series. Clin Case Rep 2024; 12:e8376. [PMID: 38161648 PMCID: PMC10753638 DOI: 10.1002/ccr3.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
This study paper's main goal is to report rare cases of skull base meningiomas that exemplify the complexities of diagnosis, therapy, and postoperative care. By describing these rare cases, we hope to advance knowledge of the clinical signs, difficulties, and prognoses of skull base meningiomas in a challenging anatomical setting. In the posterior cranial fossa, our investigation reveals a unique example of skull base meningioma that involved numerous cranial nerves and complex vasculature. A variety of visual abnormalities were present in the patient's clinical presentations, highlighting the wide range of symptoms that these tumors might cause depending on their precise positions. These cases highlight the critical importance of preoperative imaging, including high-resolution MRI and angiography, as well as the diagnostic difficulties these tumors pertain. By reporting these instances, our research adds to the body of knowledge about skull base meningiomas and offers insightful information about the nuances of their therapies. Our findings highlight the importance of individualized treatment plans, interdisciplinary cooperation, and the demand for continued study to better comprehend these convoluted tumors. Such studies are essential for advancing our knowledge of these enigmatic tumors, guiding clinical judgment, and eventually improving patient outcomes. These findings are important because they can fill information gaps, improve treatment plans, and encourage additional research in neuro-oncology. Abstract This study presents a series of three rare cases of skull base meningiomas, emphasizing the complexities in diagnosis, treatment, and postoperative care. The patients' clinical presentations and imaging highlighted the diverse symptoms and challenges associated with these tumors, found in intricate anatomical locations. The cases underscore the crucial role of preoperative high-resolution imaging and angiography in diagnostic accuracy. Surgical intervention, guided by a multidisciplinary approach, is pivotal in managing these demanding cases. Histopathological examinations confirmed atypical meningiomas. The postoperative phases involved meticulous care to ensure optimal recovery and functional outcomes. Our findings contribute to the understanding of skull base meningiomas, emphasizing the need for personalized treatment plans and ongoing research to improve patient outcomes in neuro-oncology.
Collapse
Affiliation(s)
- Abdullah Nadeem
- Department of MedicineDow University of Health SciencesKarachiPakistan
| | - Afsheen Khan
- Department of MedicineDow University of Health SciencesKarachiPakistan
| | - Ashna Habib
- Dow University of Health SciencesKarachiPakistan
| | - Rabeea Tariq
- Department of MedicineDow University of Health SciencesKarachiPakistan
| | - Areeba Ahsan
- Department of MedicineDow University of Health SciencesKarachiPakistan
| | | | - Nahid Raufi
- Department of MedicineKabul Medical UniversityKabulAfghanistan
| | - Abir Chughtai
- Department of MedicineDow University of Health SciencesKarachiPakistan
| |
Collapse
|
22
|
Garrido-Godino AI, Gupta I, Pelechano V, Navarro F. RNA Pol II Assembly Affects ncRNA Expression. Int J Mol Sci 2023; 25:507. [PMID: 38203678 PMCID: PMC10778713 DOI: 10.3390/ijms25010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
RNA pol II assembly occurs in the cytoplasm before translocation of the enzyme to the nucleus. Affecting this assembly influences mRNA transcription in the nucleus and mRNA decay in the cytoplasm. However, very little is known about the consequences on ncRNA synthesis. In this work, we show that impairment of RNA pol II assembly leads to a decrease in cryptic non-coding RNAs (preferentially CUTs and SUTs). This alteration is partially restored upon overcoming the assembly defect. Notably, this drop in ncRNAs is only partially dependent on the nuclear exosome, which suggests a major specific effect of enzyme assembly. Our data also point out a defect in transcription termination, which leads us to propose that CTD phosphatase Rtr1 could be involved in this process.
Collapse
Affiliation(s)
- Ana I. Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain;
| | - Ishaan Gupta
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain;
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva (INUO), Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
23
|
van de Weijer LL, Ercolano E, Zhang T, Shah M, Banton MC, Na J, Adams CL, Hilton D, Kurian KM, Hanemann CO. A novel patient-derived meningioma spheroid model as a tool to study and treat epithelial-to-mesenchymal transition (EMT) in meningiomas. Acta Neuropathol Commun 2023; 11:198. [PMID: 38102708 PMCID: PMC10725030 DOI: 10.1186/s40478-023-01677-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
Meningiomas are the most common intracranial brain tumours. These tumours are heterogeneous and encompass a wide spectrum of clinical aggressivity. Treatment options are limited to surgery and radiotherapy and have a risk of post-operative morbidities and radiation neurotoxicity, reflecting the need for new therapies. Three-dimensional (3D) patient-derived cell culture models have been shown to closely recapitulate in vivo tumour biology, including microenvironmental interactions and have emerged as a robust tool for drug development. Here, we established a novel easy-to-use 3D patient-derived meningioma spheroid model using a scaffold-free approach. Patient-derived meningioma spheroids were characterised and compared to patient tissues and traditional monolayer cultures by histology, genomics, and transcriptomics studies. Patient-derived meningioma spheroids closely recapitulated morphological and molecular features of matched patient tissues, including patient histology, genomic alterations, and components of the immune microenvironment, such as a CD68 + and CD163 + positive macrophage cell population. Comprehensive transcriptomic profiling revealed an increase in epithelial-to-mesenchymal transition (EMT) in meningioma spheroids compared to traditional monolayer cultures, confirming this model as a tool to elucidate EMT in meningioma. Therefore, as proof of concept study, we developed a treatment strategy to target EMT in meningioma. We found that combination therapy using the MER tyrosine kinase (MERTK) inhibitor UNC2025 and the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) effectively decreased meningioma spheroid viability and proliferation. Furthermore, we demonstrated this combination therapy significantly increased the expression of the epithelial marker E-cadherin and had a repressive effect on WHO grade 2-derived spheroid invasion, which is suggestive of a partial reversal of EMT in meningioma spheroids.
Collapse
Affiliation(s)
- Laurien L van de Weijer
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Emanuela Ercolano
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Ting Zhang
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Maryam Shah
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Matthew C Banton
- Faculty of Health: School of Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Juri Na
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Claire L Adams
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - David Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, PL6 8DH, Devon, UK
| | - Kathreena M Kurian
- University of Bristol Medical School & North Bristol Trust, Southmead Hospital, Bristol, BS1 0NB, UK
| | - C Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK.
| |
Collapse
|
24
|
Sadagopan NS, Nandoliya KR, Youngblood MW, Horbinski CM, Ahrendsen JT, Magill ST. A novel BRAF::PTPRN2 fusion in meningioma: a case report. Acta Neuropathol Commun 2023; 11:194. [PMID: 38066633 PMCID: PMC10704634 DOI: 10.1186/s40478-023-01668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gene fusion events have been linked to oncogenesis in many cancers. However, gene fusions in meningioma are understudied compared to somatic mutations, chromosomal gains/losses, and epigenetic changes. Fusions involving B-raf proto-oncogene, serine/threonine kinase (BRAF) are subtypes of oncogenic BRAF genetic abnormalities that have been reported in certain cases of brain tumors, such as pilocytic astrocytomas. However, BRAF fusions have not been recognized in meningioma. We present the case of an adult female presenting with episodic partial seizures characterized by déjà vu, confusion, and cognitive changes. Brain imaging revealed a cavernous sinus and sphenoid wing mass and she underwent resection. Histopathology revealed a World Health Organization (WHO) grade 1 meningioma. Genetic profiling with next generation sequencing and microarray analysis revealed an in-frame BRAF::PTPRN2 fusion affecting the BRAF kinase domain as well as chromothripsis of chromosome 7q resulting in multiple segmental gains and losses including amplifications of cyclin dependent kinase 6 (CDK6), tyrosine protein-kinase Met (MET), and smoothened (SMO). Elevated pERK staining in tumor cells provided evidence of activated mitogen-activated protein kinase (MAPK) signaling. This report raises the possibility that gene fusion events may be involved in meningioma pathogenesis and warrant further investigation.
Collapse
Affiliation(s)
- Nishanth S Sadagopan
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Khizar R Nandoliya
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
25
|
Boetto J, Plu I, Ducos Y, Blouin A, Teranishi Y, Bizzotto S, Kalamarides M, Peyre M. Normal meninges harbor oncogenic somatic mutations in meningioma-driver genes. Acta Neuropathol 2023; 146:833-835. [PMID: 37750907 DOI: 10.1007/s00401-023-02635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Julien Boetto
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
- Department of Neurosurgery, Gui de Chauliac Hospital, CHU de Montpellier, 34090, Montpellier, France
| | - Isabelle Plu
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, 75013, Paris, France
| | - Yohan Ducos
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
| | - Antoine Blouin
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
| | - Yu Teranishi
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
| | - Sara Bizzotto
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
| | - Michel Kalamarides
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
- Department of Neurosurgery, APHP, Hopital Pitié Salpêtrière, 47-91 Bvd de l'Hopital, 75013, Paris, France
| | - Matthieu Peyre
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France.
- Department of Neurosurgery, APHP, Hopital Pitié Salpêtrière, 47-91 Bvd de l'Hopital, 75013, Paris, France.
| |
Collapse
|
26
|
Sescu D, Chansiriwongs A, Minta KJ, Vasudevan J, Kaliaperumal C. Early Preventive Strategies and CNS Meningioma - Is This Feasible? A Comprehensive Review of the Literature. World Neurosurg 2023; 180:123-133. [PMID: 37774783 DOI: 10.1016/j.wneu.2023.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Meningiomas are one of the most common benign primary brain tumors; however, there is a paucity of literature on potential preventability. This comprehensive review aimed to explore the existing evidence for the potential risk factors that may contribute to meningioma development and to discuss early prevention strategies. METHODS Literature search was conducted via MEDLINE, Embase, Web of Science, and Cochrane Database to retrieve existing literature on various environmental exposures and lifestyle behaviors that are potential risk factors for the development of meningiomas. RESULTS Significant risk factors included exposure to ionizing radiation and certain environmental chemicals. Notably, this study also identified that cigarette smoking and obesity are associated with the development of meningiomas. To date, wireless phone usage, hormonal exposures, dietary factors, and traumatic brain injury remain inconclusive. Early prevention strategies should primarily be family-driven, community-based, and public health-endorsed strategies. Targeting unhealthy behaviors through healthcare organizations could execute a pivotal role in the maintenance of an optimum lifestyle, reducing the development of risk factors pertinent to meningiomas. CONCLUSIONS To our knowledge, this is the first study that offers a perspective on prevention of meningiomas. A causal relationship of risk factors in developing meningiomas cannot be directly established with the current evidence. We are aware of the limitations of the hypothesis, but we believe that this study will raise more awareness and our findings could potentially be endorsed by organizations promoting health across the globe. Further prospective and retrospective studies will shed more light on this topic and help establish a definitive relationship.
Collapse
Affiliation(s)
- Daniel Sescu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| | - Aminta Chansiriwongs
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Katarzyna Julia Minta
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Jyothi Vasudevan
- Department of Community Medicine, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Bahour, Puducherry, India
| | | |
Collapse
|
27
|
Hatano Y. The Pathology according to p53 Pathway. Pathobiology 2023; 91:230-243. [PMID: 37963443 PMCID: PMC11313058 DOI: 10.1159/000535203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Observations play a pivotal role in the progress of science, including in pathology. The cause of a disease such as cancer is analyzed by breaking it down into smaller organs, tissues, cells, and molecules. The current standard cancer diagnostic procedure, microscopic observation, relies on preserved morphological characteristics. In contrast, molecular analyses explore oncogenic pathway activation that leads to genetic mutations and aberrant protein expression. Such molecular analyses could potentially identify therapeutic targets and has gained considerable attention in clinical oncology. SUMMARY This review summarizes the cardinal biomarkers of the p53 pathway, p53, p16, and mouse double minute 2 (MDM2), in the context of traditional surgical pathology and emerging genomic oncology. The p53 pathway, which is dysregulated in more than a half of all cancers, can be applied in several diagnostic settings. A four-classification model of immunophenotype for p53 pathway gene status, tumor types with a high frequency of abnormalities for each p53 pathway gene, and a minimal p53 pathway immunohistochemical panel is also described. KEY MESSAGES Immunohistochemistry of oncogenic signals should be interpreted according to molecular findings based on genomic oncology, in addition to the microscopic findings of diagnostic pathology.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
28
|
Halabi R, Dakroub F, Haider MZ, Patel S, Amhaz NA, Reslan MA, Eid AH, Mechref Y, Darwiche N, Kobeissy F, Omeis I, Shaito AA. Unveiling a Biomarker Signature of Meningioma: The Need for a Panel of Genomic, Epigenetic, Proteomic, and RNA Biomarkers to Advance Diagnosis and Prognosis. Cancers (Basel) 2023; 15:5339. [PMID: 38001599 PMCID: PMC10670806 DOI: 10.3390/cancers15225339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Meningiomas are the most prevalent primary intracranial tumors. The majority are benign but can undergo dedifferentiation into advanced grades classified by World Health Organization (WHO) into Grades 1 to 3. Meningiomas' tremendous variability in tumor behavior and slow growth rates complicate their diagnosis and treatment. A deeper comprehension of the molecular pathways and cellular microenvironment factors implicated in meningioma survival and pathology is needed. This review summarizes the known genetic and epigenetic aberrations involved in meningiomas, with a focus on neurofibromatosis type 2 (NF2) and non-NF2 mutations. Novel potential biomarkers for meningioma diagnosis and prognosis are also discussed, including epigenetic-, RNA-, metabolomics-, and protein-based markers. Finally, the landscape of available meningioma-specific animal models is overviewed. Use of these animal models can enable planning of adjuvant treatment, potentially assisting in pre-operative and post-operative decision making. Discovery of novel biomarkers will allow, in combination with WHO grading, more precise meningioma grading, including meningioma identification, subtype determination, and prediction of metastasis, recurrence, and response to therapy. Moreover, these biomarkers may be exploited in the development of personalized targeted therapies that can distinguish between the 15 diverse meningioma subtypes.
Collapse
Affiliation(s)
- Reem Halabi
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut 1105, Lebanon;
| | - Fatima Dakroub
- Department of Experimental Pathology, Microbiology and Immunology and Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.Z.H.); (A.H.E.)
| | - Stuti Patel
- Department of Biology, University of Florida, Gainesville, FL 32601, USA; (S.P.); (N.A.A.)
| | - Nayef A. Amhaz
- Department of Biology, University of Florida, Gainesville, FL 32601, USA; (S.P.); (N.A.A.)
| | - Mohammad A. Reslan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.Z.H.); (A.H.E.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Ibrahim Omeis
- Hammoud Hospital University Medical Center, Saida 652, Lebanon
- Division of Neurosurgery, Penn Medicine, Lancaster General Health, Lancaster, PA 17601, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, College of Medicine, and Department of Biomedical Sciences at College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
29
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
30
|
Wang J, Zhang A, Wang B, Yuan J, Zhu J, Li M, Liu H, Cheng L, Kong P. Multiple ossified intracranial and spinal meningiomas: a rare case report and literature review. Front Neurol 2023; 14:1253915. [PMID: 37885473 PMCID: PMC10598861 DOI: 10.3389/fneur.2023.1253915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023] Open
Abstract
Ossified intracranial meningiomas (OIM) and ossified spinal meningiomas (OSM) are rare neoplasms of mesenchymal origin that predominantly manifest in the spinal cord and infrequently in the cranial region, accounting for ~0. 7-5.5% of all meningiomas. It is extremely rare to have multiple intracranial and spinal lesions accompanied by ossification. Herein, we report this rare case for the first time. A 34-year-old woman presented with paresthesia and limb weakness in the right lower limb and gradually worsened. Approximately half a year later, she could only walk with crutches. Magnetic resonance imaging of the brain and spinal cord showed multiple meningiomas, and histopathological examination confirmed multiple OIM and OSM (WHO grade 1). Multiple OIM and OSM are extremely rare with diverse imaging features, and it is easily confused with other tumors. Histopathological examination is the final diagnostic method.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Anbang Zhang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Boya Wang
- Department of Neurology, People's Hospital of Fenggang County, Zunyi, Guizhou, China
| | - Jingmeng Yuan
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Junchi Zhu
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Mengjiao Li
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Henli Liu
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lijuan Cheng
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ping Kong
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
31
|
Youngblood MW, Erson-Omay Z, Li C, Najem H, Coșkun S, Tyrtova E, Montejo JD, Miyagishima DF, Barak T, Nishimura S, Harmancı AS, Clark VE, Duran D, Huttner A, Avşar T, Bayri Y, Schramm J, Boetto J, Peyre M, Riche M, Goldbrunner R, Amankulor N, Louvi A, Bilgüvar K, Pamir MN, Özduman K, Kilic T, Knight JR, Simon M, Horbinski C, Kalamarides M, Timmer M, Heimberger AB, Mishra-Gorur K, Moliterno J, Yasuno K, Günel M. Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas. Nat Commun 2023; 14:6279. [PMID: 37805627 PMCID: PMC10560290 DOI: 10.1038/s41467-023-41926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Hedgehog signaling mediates embryologic development of the central nervous system and other tissues and is frequently hijacked by neoplasia to facilitate uncontrolled cellular proliferation. Meningiomas, the most common primary brain tumor, exhibit Hedgehog signaling activation in 6.5% of cases, triggered by recurrent mutations in pathway mediators such as SMO. In this study, we find 35.6% of meningiomas that lack previously known drivers acquired various types of somatic structural variations affecting chromosomes 2q35 and 7q36.3. These cases exhibit ectopic expression of Hedgehog ligands, IHH and SHH, respectively, resulting in Hedgehog signaling activation. Recurrent tandem duplications involving IHH permit de novo chromatin interactions between super-enhancers within DIRC3 and a locus containing IHH. Our work expands the landscape of meningioma molecular drivers and demonstrates enhancer hijacking of Hedgehog ligands as a route to activate this pathway in neoplasia.
Collapse
Affiliation(s)
- Mark W Youngblood
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zeynep Erson-Omay
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Chang Li
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Hinda Najem
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Süleyman Coșkun
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Evgeniya Tyrtova
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Julio D Montejo
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Danielle F Miyagishima
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Tanyeri Barak
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sayoko Nishimura
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Akdes Serin Harmancı
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Victoria E Clark
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Duran
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Anita Huttner
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Timuçin Avşar
- Department of Neurosurgery, Bahcesehir University, School of Medicine, Istanbul, Turkey
| | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, 34854, Istanbul, Turkey
| | | | - Julien Boetto
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Matthieu Peyre
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Maximilien Riche
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Roland Goldbrunner
- Center for Neurosurgery, University Hospital of Cologne, 50937, Cologne, Germany
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Angeliki Louvi
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kaya Bilgüvar
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University West Campus, Orange, CT, USA
- Department of Medical Genetics Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - M Necmettin Pamir
- Department of Neurosurgery, Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - Koray Özduman
- Department of Neurosurgery, Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - Türker Kilic
- Department of Neurosurgery, Bahcesehir University, School of Medicine, Istanbul, Turkey
| | - James R Knight
- Yale Center for Genome Analysis, Yale University West Campus, Orange, CT, USA
| | - Matthias Simon
- University of Bonn Medical School, 53105, Bonn, Germany
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Craig Horbinski
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michel Kalamarides
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Marco Timmer
- Center for Neurosurgery, University Hospital of Cologne, 50937, Cologne, Germany
| | - Amy B Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ketu Mishra-Gorur
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer Moliterno
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Katsuhito Yasuno
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
| | - Murat Günel
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
32
|
Safari Yazd H, Bazargani SF, Fitzpatrick G, Yost RA, Kresak J, Garrett TJ. Metabolomic and Lipidomic Characterization of Meningioma Grades Using LC-HRMS and Machine Learning. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2187-2198. [PMID: 37708056 DOI: 10.1021/jasms.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Meningiomas are among the most common brain tumors that arise from the leptomeningeal cover of the brain and spinal cord and account for around 37% of all central nervous system tumors. According to the World Health Organization, meningiomas are classified into three histological subtypes: benign, atypical, and anaplastic. Sometimes, meningiomas with a histological diagnosis of benign tumors show clinical characteristics and behavior of aggressive tumors. In this study, we examined the metabolomic and lipidomic profiles of meningioma tumors, focusing on comparing low-grade and high-grade tumors and identifying potential markers that can discriminate between benign and malignant tumors. High-resolution mass spectrometry coupled to liquid chromatography was used for untargeted metabolomics and lipidomics analyses of 85 tumor biopsy samples with different meningioma grades. We then applied feature selection and machine learning techniques to find the features with the highest information to aid in the diagnosis of meningioma grades. Three biomarkers were identified to differentiate low- and high-grade meningioma brain tumors. The use of mass-spectrometry-based metabolomics and lipidomics combined with machine learning analyses to prospect and characterize biomarkers associated with meningioma grades may pave the way for elucidating potential therapeutic and prognostic targets.
Collapse
Affiliation(s)
- Hoda Safari Yazd
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | | | - Garrett Fitzpatrick
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Jesse Kresak
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
33
|
Herrgott GA, Snyder JM, She R, Malta TM, Sabedot TS, Lee IY, Pawloski J, Podolsky-Gondim GG, Asmaro KP, Zhang J, Cannella CE, Nelson K, Thomas B, deCarvalho AC, Hasselbach LA, Tundo KM, Newaz R, Transou A, Morosini N, Francisco V, Poisson LM, Chitale D, Mukherjee A, Mosella MS, Robin AM, Walbert T, Rosenblum M, Mikkelsen T, Kalkanis S, Tirapelli DPC, Weisenberger DJ, Carlotti CG, Rock J, Castro AV, Noushmehr H. Detection of diagnostic and prognostic methylation-based signatures in liquid biopsy specimens from patients with meningiomas. Nat Commun 2023; 14:5669. [PMID: 37704607 PMCID: PMC10499807 DOI: 10.1038/s41467-023-41434-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Recurrence of meningiomas is unpredictable by current invasive methods based on surgically removed specimens. Identification of patients likely to recur using noninvasive approaches could inform treatment strategy, whether intervention or monitoring. In this study, we analyze the DNA methylation levels in blood (serum and plasma) and tissue samples from 155 meningioma patients, compared to other central nervous system tumor and non-tumor entities. We discover DNA methylation markers unique to meningiomas and use artificial intelligence to create accurate and universal models for identifying and predicting meningioma recurrence, using either blood or tissue samples. Here we show that liquid biopsy is a potential noninvasive and reliable tool for diagnosing and predicting outcomes in meningioma patients. This approach can improve personalized management strategies for these patients.
Collapse
Affiliation(s)
- Grayson A Herrgott
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - James M Snyder
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Ruicong She
- Department of Public Health, Biostatistics, Henry Ford Health, Detroit, MI, USA
| | - Tathiane M Malta
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Thais S Sabedot
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Ian Y Lee
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Jacob Pawloski
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Guilherme G Podolsky-Gondim
- Department of Neurosurgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Karam P Asmaro
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Jiaqi Zhang
- Department of Public Health, Biostatistics, Henry Ford Health, Detroit, MI, USA
| | - Cara E Cannella
- Department of Public Health, Biostatistics, Henry Ford Health, Detroit, MI, USA
| | - Kevin Nelson
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Bartow Thomas
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Ana C deCarvalho
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Laura A Hasselbach
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Kelly M Tundo
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Rehnuma Newaz
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Andrea Transou
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Natalia Morosini
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Victor Francisco
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Laila M Poisson
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
- Department of Public Health, Biostatistics, Henry Ford Health, Detroit, MI, USA
| | | | - Abir Mukherjee
- Department of Pathology, Henry Ford Health, Detroit, MI, USA
| | - Maritza S Mosella
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Adam M Robin
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Tobias Walbert
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Mark Rosenblum
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Steven Kalkanis
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Daniela P C Tirapelli
- Department of Neurosurgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Carlos G Carlotti
- Department of Neurosurgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jack Rock
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA.
- Department of Physiology, Michigan State University, E. Lansing, MI, USA.
| | - Houtan Noushmehr
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA.
- Department of Physiology, Michigan State University, E. Lansing, MI, USA.
| |
Collapse
|
34
|
Caruso G, Ferrarotto R, Curcio A, Metro L, Pasqualetti F, Gaviani P, Barresi V, Angileri FF, Caffo M. Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications. Cancers (Basel) 2023; 15:4521. [PMID: 37760490 PMCID: PMC10526192 DOI: 10.3390/cancers15184521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Meningiomas are the most frequent histotypes of tumors of the central nervous system. Their incidence is approximately 35% of all primary brain tumors. Although they have the status of benign lesions, meningiomas are often associated with a decreased quality of life due to focal neurological deficits that may be related. The optimal treatment is total resection. Histological grading is the most important prognostic factor. Recently, molecular alterations have been identified that are specifically related to particular phenotypes and, probably, are also responsible for grading, site, and prognostic trend. Meningiomas recur in 10-25% of cases. In these cases, and in patients with atypical or anaplastic meningiomas, the methods of approach are relatively insufficient. To date, data on the molecular biology, genetics, and epigenetics of meningiomas are insufficient. To achieve an optimal treatment strategy, it is necessary to identify the mechanisms that regulate tumor formation and progression. Combination therapies affecting multiple molecular targets are currently opening up and have significant promise as adjuvant therapeutic options. We review the most recent literature to identify studies investigating recent therapeutic treatments recently used for meningiomas.
Collapse
Affiliation(s)
- Gerardo Caruso
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Rosamaria Ferrarotto
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Antonello Curcio
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Luisa Metro
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | | | - Paola Gaviani
- Neuro Oncology Unit, IRCCS Foundation Carlo Besta Neurological Institute, 20133 Milan, Italy;
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy;
| | - Filippo Flavio Angileri
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| |
Collapse
|
35
|
Hergalant S, Casse JM, Oussalah A, Houlgatte R, Helle D, Rech F, Vallar L, Guéant JL, Vignaud JM, Battaglia-Hsu SF, Gauchotte G. MicroRNAs miR-16 and miR-519 control meningioma cell proliferation via overlapping transcriptomic programs shared with the RNA-binding protein HuR. Front Oncol 2023; 13:1158773. [PMID: 37601663 PMCID: PMC10433742 DOI: 10.3389/fonc.2023.1158773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Meningiomas are the most common type of primary central nervous system tumors. In about 80% cases, these tumors are benign and grow very slowly, but the remainder 20% can unlock higher proliferation rates and become malignant. In this study we examined two miRs, miR-16 and miR-519, and evaluated their role in tumorigenesis and cell growth in human meningioma. Methods A cohort of 60 intracranial grade 1 and grade 2 human meningioma plus 20 healthy meningeal tissues was used to quantify miR-16 and miR-519 expressions. Cell growth and dose-response assays were performed in two human meningioma cell lines, Ben-Men-1 (benign) and IOMM-Lee (aggressive). Transcriptomes of IOMM-lee cells were measured after both miR-mimics transfection, followed by integrative bioinformatics to expand on available data. Results In tumoral tissues, we detected decreased levels of miR-16 and miR-519 when compared with arachnoid cells of healthy patients (miR-16: P=8.7e-04; miR-519: P=3.5e-07). When individually overexpressing these miRs in Ben-Men-1 and IOMM-Lee, we observed that each showed reduced growth (P<0.001). In IOMM-Lee cell transcriptomes, downregulated genes, among which ELAVL1/HuR (miR-16: P=6.1e-06; miR-519:P=9.38e-03), were linked to biological processes such as mitotic cell cycle regulation, pre-replicative complex, and brain development (FDR<1e-05). Additionally, we uncovered a specific transcriptomic signature of miR-16/miR-519-dysregulated genes which was highly enriched in HuR targets (>6-fold; 79.6% of target genes). Discussion These results were confirmed on several public transcriptomic and microRNA datasets of human meningiomas, hinting that the putative tumor suppressor effect of these miRs is mediated, at least in part, via HuR direct or indirect inhibition.
Collapse
Affiliation(s)
- Sébastien Hergalant
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jean-Matthieu Casse
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Abderrahim Oussalah
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
- Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
| | - Rémi Houlgatte
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Déborah Helle
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Fabien Rech
- Department of Neurosurgery, University Hospital of Nancy (CHRU), Nancy, France
- CNRS, UMR7039, CRAN - Centre de Recherche en Automatique de Nancy, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Laurent Vallar
- Genomics and Proteomics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jean-Louis Guéant
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
- Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
| | - Jean-Michel Vignaud
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Biopathology Institut De Cancérologie de Lorraine (CHRU-ICL), University Hospital of Nancy (CHRU), Nancy, France
- Centre de Ressources Biologiques BB-0033-00035, University Hospital of Nancy (CHRU), Nancy, France
| | - Shyue-Fang Battaglia-Hsu
- Department of Molecular Medicine and Personalized Therapeutics, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
- Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
- CNRS, UMR7039, CRAN - Centre de Recherche en Automatique de Nancy, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Guillaume Gauchotte
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Biopathology Institut De Cancérologie de Lorraine (CHRU-ICL), University Hospital of Nancy (CHRU), Nancy, France
- Centre de Ressources Biologiques BB-0033-00035, University Hospital of Nancy (CHRU), Nancy, France
| |
Collapse
|
36
|
Cômes PC, Le Van T, Tran S, Huard S, Abi-Jaoude S, Venot Q, Marijon P, Boetto J, Blouin A, Bielle F, Ducos Y, Teranishi Y, Kalamarides M, Peyre M. Respective roles of Pik3ca mutations and cyproterone acetate impregnation in mouse meningioma tumorigenesis. Cancer Gene Ther 2023; 30:1114-1123. [PMID: 37188724 DOI: 10.1038/s41417-023-00621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Despite their rarity, PIK3CA mutations in meningiomas have raised interest as potentially targetable, ubiquitous mutations owing to their presence in sporadic benign and malignant tumors but also in hormone-related cases. Using new genetically engineered mouse models, we here demonstrate that Pik3ca mutations in postnatal meningeal cells are sufficient to promote meningioma formation but also tumor progression in mice. Conversely, hormone impregnation, whether alone or in association with Pik3ca and Nf2 mutations, fails to induce meningioma tumorigenesis while promoting breast tumor formation. We then confirm in vitro the effect of Pik3ca mutations but not hormone impregnation on the proliferation of primary cultures of mouse meningeal cells. Finally, we show by exome analysis of breast tumors and meninges that hormone impregnation promotes breast tumor formation without additional somatic oncogenic mutation but is associated with an increased mutational burden on Pik3ca-mutant background. Taken together, these results tend to suggest a prominent role of Pik3ca mutations over hormone impregnation in meningioma tumorigenesis, the exact effect of the latter is still to be discovered.
Collapse
Affiliation(s)
- Pierre-Cyril Cômes
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Tuan Le Van
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Suzanne Tran
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, Paris, 75013, France
| | - Solène Huard
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Samiya Abi-Jaoude
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Quitterie Venot
- Université de Paris, Paris, 75006, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, 75015, France
| | - Pauline Marijon
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Julien Boetto
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Antoine Blouin
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Franck Bielle
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, Paris, 75013, France
| | - Yohan Ducos
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Yu Teranishi
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Michel Kalamarides
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Matthieu Peyre
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France.
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
37
|
Caccese M, Busato F, Guerriero A, Padovan M, Cerretti G, Gardiman MP, Zagonel V, Lombardi G. The role of radiation therapy and systemic treatments in meningioma: The present and the future. Cancer Med 2023; 12:16041-16053. [PMID: 37366279 PMCID: PMC10469847 DOI: 10.1002/cam4.6254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Meningiomas are the most prevalent tumors of the central nervous system. Their standard treatment is surgery, which can be curative. Adjuvant radiotherapy treatment is reserved for newly diagnosed cases of grade II and grade III meningiomas in cases of recurrent disease or when surgery is not radical or feasible. However, around 20% of these patients cannot undergo further surgical and/or radiotherapy treatment. Systemic oncological therapy can find its place in this setting. Several tyrosine kinase inhibitors have been tested (gefitinib, erlotinib, sunitinib) with unsatisfactory or negative results. Bevacizumab has shown encouraging results in these settings of patients. Immunotherapy with immune checkpoint inhibitors has reported interesting results with modest objective response rates. Several ongoing studies are assessing different target therapies and multimodal therapies; the results are to be disclosed. Not only a better understanding of the molecular characteristics in meningiomas has allowed the gathering of more information regarding pathogenesis and prognosis, but in addition, the availability of new target therapy, immunotherapy, and biological drugs has widened the scope of potentially effective treatments in this patient population. The aim of this review was to explore the radiotherapy and systemic treatments of meningioma with an analysis of ongoing trials and future therapeutic perspectives.
Collapse
Affiliation(s)
- Mario Caccese
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Fabio Busato
- Department of Radiation OncologyAbano Terme HospitalPaduaItaly
| | - Angela Guerriero
- General Pathology and Cytopathology Unit, Department of Medicine‐DMEDUniversity of PaduaPaduaItaly
| | - Marta Padovan
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Giulia Cerretti
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Marina Paola Gardiman
- General Pathology and Cytopathology Unit, Department of Medicine‐DMEDUniversity of PaduaPaduaItaly
| | - Vittorina Zagonel
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Giuseppe Lombardi
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| |
Collapse
|
38
|
Li Z, Gao Y, Zhang J, Han L, Zhao H. DNA methylation meningioma biomarkers: attributes and limitations. Front Mol Neurosci 2023; 16:1182759. [PMID: 37492524 PMCID: PMC10365284 DOI: 10.3389/fnmol.2023.1182759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
Meningioma, one of the most common primary central nervous system tumors, are classified into three grades by the World Health Organization (WHO) based on histopathology. The gold-standard treatment, surgical resection, is hampered by issues such as incomplete resection in some cases and a high recurrence rate. Alongside genetic alterations, DNA methylation, plays a crucial role in progression of meningiomas in the occurrence and development of meningiomas. The epigenetic landscape of meningioma is instrumental in refining tumor classification, identifying robust molecular markers, determining prognosis, guiding treatment selection, and innovating new therapeutic strategies. Existing classifications lack comprehensive accuracy, and effective therapies are limited. Methylated DNA markers, exhibiting differential characteristics across varying meningioma grades, serve as invaluable diagnostic tools. Particularly, combinatorial methylated markers offer insights into meningioma pathogenesis, tissue origin, subtype classification, and clinical outcomes. This review integrates current research to highlight some of the most promising DNA and promoter methylation markers employed in meningioma diagnostics. Despite their promise, the development and application of DNA methylation biomarkers for meningioma diagnosis and treatment are still in their infancy, with only a handful of DNA methylation inhibitors currently clinically employed for meningioma treatment. Future studies are essential to validate these markers and ascertain their clinical utility. Combinatorial methylated DNA markers for meningiomas have broad implications for understanding tumor development and progression, signaling a paradigm shift in therapeutic strategies for meningiomas.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hang Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Cucu AI, Costea CF, Turliuc Ş, Blaj LA, Prutianu I, Dumitrescu GF, Dascălu CG, Poeată I, Coşman M, Istrate AC, Macovei G, Tătăranu LG. Predictor factors for recurrence in atypical meningiomas. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:333-342. [PMID: 37867351 PMCID: PMC10720934 DOI: 10.47162/rjme.64.3.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Atypical meningiomas (AMs), World Health Organization (WHO) grade 2, are a group of tumors with uneven and unpredictable clinical behavior. Our aim was to analyze possible tumor recurrence predictors, and to identify factors that improve progression-free survival (PFS). PATIENTS, MATERIALS AND METHODS Our retrospective study included 81 patients followed up in the Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania, between 1 January 2010 and 31 December 2020. The histopathological specimens were reviewed according to the WHO 2021 criteria. Analyses included clinical, imaging, pathological and surgical factors. RESULTS The tumor recurred in 53.1% of the 81 cases within 60 months of surgery. Tumor location (p<0.000), tumor volume (p<0.010), extent of surgical resection (p<0.000) and dural sinus invasion (p<0.001) were predictive factors of recurrence. Gross total resection (Simpson grade I and II) was achieved in 59.2% of patients. Patients with the tumors located in the brain convexity and volume <26.4 cm³ had better survival rates up to recurrence. PFS showed a significant relationship between Simpson grade I-III and biopsy (p<0.000) and was statistically influenced by tumor volume and location, and dural sinus invasion. CONCLUSIONS AMs are a heterogeneous group of tumors, and we identified posterior fossa location, volume ≥26.4 cm³, Simpson grade III and IV resection and dural sinus invasion as predictive factors for relapse and a shorter PFS. Whereas certain characteristics provide some prognostic value, future molecular characterizations of AMs are necessary, which will support the clinical decision-making process.
Collapse
Affiliation(s)
- Andrei Ionuţ Cucu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, Ştefan cel Mare University of Suceava, Romania
- Department of Neurosurgery, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
- Department of Ophthalmology, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania
| | - Şerban Turliuc
- Department of Psychiatry, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Laurenţiu Andrei Blaj
- Department of Neurosurgery, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania
- Department of Neurosurgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Iulian Prutianu
- Department of Morpho-Functional Sciences I – Histology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | | | - Cristina Gena Dascălu
- Department of Medical Informatics, Biostatistics, Computer Science, Mathematics and Modelling Simulation, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ion Poeată
- Department of Neurosurgery, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania
- Department of Neurosurgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Mihaela Coşman
- Department of Neurosurgery, Emergency County Hospital, Brăila, Romania
| | - Ana-Cristina Istrate
- Department of Radiology and Imaging, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Georgiana Macovei
- Department of Oral and Dental Diagnostics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ligia Gabriela Tătăranu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar–Arseni Clinical Emergency Hospital, Bucharest, Romania
| |
Collapse
|
40
|
Abstract
Meningiomas comprise a histologically and clinically diverse set of tumors arising from the meningothelial lining of the central nervous system. In the past decade, remarkable progress has been made in deciphering the biology of these common neoplasms. Nevertheless, effective systemic or molecular therapies for meningiomas remain elusive and are active areas of preclinical and clinical investigation. Thus, standard treatment modalities for meningiomas are limited to maximal safe resection, radiotherapy, or radiosurgery. This review examines the history, clinical rationale, and future directions of radiotherapy and radiosurgery as integral and effective treatments for meningiomas.
Collapse
Affiliation(s)
- William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
| | - C Leland Rogers
- Radiation Oncology, GammaWest Cancer Services, Salt Lake City, UT, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
41
|
Mishra-Gorur K, Barak T, Kaulen LD, Henegariu O, Jin SC, Aguilera SM, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, Rai DK, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek AG, Bilguvar K, Lifton RP, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc Natl Acad Sci U S A 2023; 120:e2214997120. [PMID: 37043537 PMCID: PMC10120005 DOI: 10.1073/pnas.2214997120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leon D. Kaulen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - Ezgi Yalbir
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Gizem Goles
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Lydia Djenoune
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Devendra K. Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Andrew Prendergast
- Department of Internal Medicine, Section of Cardiology, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT06510
| | - Cynthia Zerillo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Burcin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leman Sencar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Nukte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| | - Shiaulou Yuan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Martina Brueckner
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
42
|
Graillon T, Tabouret E, Salgues B, Horowitz T, Padovani L, Appay R, Farah K, Dufour H, Régis J, Guedj E, Barlier A, Chinot O. Innovative treatments for meningiomas. Rev Neurol (Paris) 2023; 179:449-463. [PMID: 36959063 DOI: 10.1016/j.neurol.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Multi-recurrent high-grade meningiomas remain an unmet medical need in neuro-oncology when iterative surgeries and radiation therapy sessions fail to control tumor growth. Nevertheless, the last 10years have been marked by multiple advances in the comprehension of meningioma tumorigenesis via the discovery of new driver mutations, the identification of activated intracellular signaling pathways, and DNA methylation analyses, providing multiple potential therapeutic targets. Today, Anti-VEGF and mTOR inhibitors are the most used and probably the most active drugs in aggressive meningiomas. Peptide radioactive radiation therapy aims to target SSTR2A receptors, which are strongly expressed in meningiomas, but have an insufficient effect in most aggressive meningiomas, requiring the development of new techniques to increase the dose applied to the tumor. Based on the multiple potential intracellular targets, multiple targeted therapy clinical trials targeting Pi3K-Akt-mTOR and MAP kinase pathways as well as cell cycle and particularly, cyclin D4-6 are ongoing. Recently discovered driver mutations, SMO, Akt, and PI3KCA, offer new targets but are mostly observed in benign meningiomas, limiting their clinical relevance mainly to rare aggressive skull base meningiomas. Therefore, NF2 mutation remains the most frequent mutation and main challenging target in high-grade meningioma. Recently, inhibitors of focal adhesion kinase (FAK), which is involved in tumor cell adhesion, were tested in a phase 2 clinical trial with interesting but insufficient activity. The Hippo pathway was demonstrated to interact with NF2/Merlin and could be a promising target in NF2-mutated meningiomas with ongoing multiple preclinical studies and a phase 1 clinical trial. Recent advances in immune landscape comprehension led to the proposal of the use of immunotherapy in meningiomas. Except in rare cases of MSH2/6 mutation or high tumor mass burden, the activity of PD-1 inhibitors remains limited; however, its combination with various radiation therapy modalities is particularly promising. On the whole, therapeutic management of high-grade meningiomas is still challenging even with multiple promising therapeutic targets and innovations.
Collapse
Affiliation(s)
- T Graillon
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France.
| | - E Tabouret
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - B Salgues
- Nuclear Medicine Department, Groupe Hospitalier Pitié-Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - T Horowitz
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - L Padovani
- AP-HM, Timone Hospital, Radiotherapy Department, Marseille, France
| | - R Appay
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France; Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - K Farah
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - H Dufour
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France
| | - J Régis
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - E Guedj
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - A Barlier
- Aix-Marseille University, AP-HM, Inserm, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
| | - O Chinot
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| |
Collapse
|
43
|
Cain SA, Pope B, Mangiola S, Mantamadiotis T, Drummond KJ. Somatic mutation landscape in a cohort of meningiomas that have undergone grade progression. BMC Cancer 2023; 23:216. [PMID: 36882706 PMCID: PMC9990218 DOI: 10.1186/s12885-023-10624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND A subset of meningiomas progress in histopathological grade but drivers of progression are poorly understood. We aimed to identify somatic mutations and copy number alterations (CNAs) associated with grade progression in a unique matched tumour dataset. METHODS Utilising a prospective database, we identified 10 patients with meningiomas that had undergone grade progression and for whom matched pre- and post-progression tissue (n = 50 samples) was available for targeted next-generation sequencing. RESULTS Mutations in NF2 were identified in 4/10 patients, of these 94% were non-skull base tumours. In one patient, three different NF2 mutations were identified in four tumours. NF2 mutated tumours showed large-scale CNAs, with highly recurrent losses in 1p, 10, 22q, and frequent CNAs on chromosomes 2, 3 and 4. There was a correlation between grade and CNAs in two patients. Two patients with tumours without detected NF2 mutations showed a combination of loss and high gain on chromosome 17q. Mutations in SETD2, TP53, TERT promoter and NF2 were not uniform across recurrent tumours, however did not correspond with the onset of grade progression. CONCLUSION Meningiomas that progress in grade generally have a mutational profile already detectable in the pre-progressed tumour, suggesting an aggressive phenotype. CNA profiling shows frequent alterations in NF2 mutated tumours compared to non NF2 mutated tumours. The pattern of CNAs may be associated with grade progression in a subset of cases.
Collapse
Affiliation(s)
- Sarah A Cain
- Department of Neurosurgery, The Royal Melbourne Hospital, 300 Grattan street, Parkville, VIC, Australia.
| | - Bernard Pope
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Australia.,Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.,Department of Medicine, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Monash, Australia
| | - Stefano Mangiola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Theo Mantamadiotis
- Department of Microbiology & Immunology, The University of Melbourne, Parkville, Australia.,Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, 300 Grattan street, Parkville, VIC, Australia.,Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
44
|
Franca RA, Della Monica R, Corvino S, Chiariotti L, Del Basso De Caro M. WHO grade and pathological markers of meningiomas: Clinical and prognostic role. Pathol Res Pract 2023; 243:154340. [PMID: 36738518 DOI: 10.1016/j.prp.2023.154340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
In recent years, WHO grading criteria have emerged as an inaccurate tool to correctly predict the risk of progression/recurrence for meningioma patients. Therefore, great efforts were made to find further prognostic factors that could predict the clinical course of meningiomas. Why morphological criteria are not able alone to correctly predict outcome in all patients? What are the biological parameters underlying a more aggressive behavior? Are there any molecular markers can be integrated in the risk assessment? Could new technologies, such as methylome profiling, contribute to provide additional tools in patients prognostic evaluation? We performed a literature review to find answers to these questions. Meningiomas have been demonstrated to be extremely heterogeneous neoplasms, also from the genetic and epigenetic standpoints. However, WHO Classification of Tumours of the central Nervous System 5th edition introduced only CDKN2A/B deletion and TERT promoter mutations as poor prognostic, grade 3 defining parameters. The different proposals of integrated grading, taking into account cytogenetic alterations and study of methylation profile, have not yet been incorporated in WHO grading criteria. Work in progress: this is the summary of current knowledge. Further studies are needed to expand the diagnostic and prognostic equipment to be integrated into clinical practice.
Collapse
Affiliation(s)
- Raduan Ahmed Franca
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Sergio Corvino
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, Università di Napoli Federico II, Naples 80131, Italy.
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
45
|
Boetto J, Bielle F, Tran S, Marijon P, Peyre M, Rigau V, Kalamarides M. GAB1 as a Marker of Recurrence in Anterior Skull Base Meningioma. Neurosurgery 2023; 92:391-397. [PMID: 36637273 DOI: 10.1227/neu.0000000000002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/31/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND About one-third of anterior skull base meningiomas show Hedgehog pathway activation. We have recently identified GAB1 as a surrogate marker for Hedgehog pathway-activated meningiomas. OBJECTIVE To determine the reproducibility and prognostic value of GAB1 marker in anterior skull base meningiomas. METHODS A retrospective bicentric cohort of anterior skull base meningiomas, operated from 2005 to 2015, was constituted. GAB1 immunohistochemistry was performed in 2 centers, and the GAB1 score was assessed. Clinical and pathological data were reviewed to determine the prognostic value of the GAB1 score, along with classical factors of recurrence. RESULTS One hundred forty-eight patients were included (median follow-up of 72 ± 46 months). 78% of patients had gross total resection. Eighty-four percentage of patients harbored grade 1 meningiomas. GAB1 immunohistochemistry was positive (ie, GAB1 staining score was >250) in 53 cases (35%). GAB1-positive cases were mainly at olfactory groove, of meningothelial grade 1 subtype, and showed greater recurrence (36% vs 14%, P = .002), greater requirement for multiple surgeries (17% vs 4.2%, P = .014), and more likely evolution toward diffuse skull base infiltration (15% vs 3%, P = .0017). By multivariable Cox regression analysis, incomplete surgical resection (hazard ratios [HR] = 8.3, 95% IC [3.7-18.2], P < .001), male sex (HR = 5.4, 95% IC [2.2-13.5], P < .001), GAB1 positivity (HR = 3.2, 95% CI [1.5-6.9], P = .004), and Ki67 index >4 (HR = 2.2, 95% IC [1.2-4.6], P = .035) were independent prognostic factors for recurrence. CONCLUSION GAB1 marker is an independent prognostic factor for anterior skull base meningioma and could be useful for both prognostic evaluation and identification of Hedgehog-activated meningiomas.
Collapse
Affiliation(s)
- Julien Boetto
- Department of Neurosurgery, Montpellier University Medical Center, Montpellier, France.,Institute of Functional Genomics (IGF), Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Franck Bielle
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neuropathology, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| | - Suzanne Tran
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neuropathology, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| | - Pauline Marijon
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurosurgery, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| | - Matthieu Peyre
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurosurgery, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| | - Valérie Rigau
- Department of Neurosurgery, Montpellier University Medical Center, Montpellier, France.,Department of Neuropathology, Montpellier University Medical Center, Montpellier, France
| | - Michel Kalamarides
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurosurgery, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| |
Collapse
|
46
|
Brastianos PK, Twohy EL, Gerstner ER, Kaufmann TJ, Iafrate AJ, Lennerz J, Jeyapalan S, Piccioni DE, Monga V, Fadul CE, Schiff D, Taylor JW, Chowdhary SA, Bettegowda C, Ansstas G, De La Fuente M, Anderson MD, Shonka N, Damek D, Carrillo J, Kunschner-Ronan LJ, Chaudhary R, Jaeckle KA, Senecal FM, Kaley T, Morrison T, Thomas AA, Welch MR, Iwamoto F, Cachia D, Cohen AL, Vora S, Knopp M, Dunn IF, Kumthekar P, Sarkaria J, Geyer S, Carrero XW, Martinez-Lage M, Cahill DP, Brown PD, Giannini C, Santagata S, Barker FG, Galanis E. Alliance A071401: Phase II Trial of Focal Adhesion Kinase Inhibition in Meningiomas With Somatic NF2 Mutations. J Clin Oncol 2023; 41:618-628. [PMID: 36288512 PMCID: PMC9870228 DOI: 10.1200/jco.21.02371] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/14/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Patients with progressive or recurrent meningiomas have limited systemic therapy options. Focal adhesion kinase (FAK) inhibition has a synthetic lethal relationship with NF2 loss. Given the predominance of NF2 mutations in meningiomas, we evaluated the efficacy of GSK2256098, a FAK inhibitor, as part of the first genomically driven phase II study in recurrent or progressive grade 1-3 meningiomas. PATIENTS AND METHODS Eligible patients whose tumors screened positively for NF2 mutations were treated with GSK2256098, 750 mg orally twice daily, until progressive disease. Efficacy was evaluated using two coprimary end points: progression-free survival at 6 months (PFS6) and response rate by Macdonald criteria, where PFS6 was evaluated separately within grade-based subgroups: grade 1 versus 2/3 meningiomas. Per study design, the FAK inhibitor would be considered promising in this patient population if either end point met the corresponding decision criteria for efficacy. RESULTS Of 322 patients screened for all mutation cohorts of the study, 36 eligible and evaluable patients with NF2 mutations were enrolled and treated: 12 grade 1 and 24 grade 2/3 patients. Across all grades, one patient had a partial response and 24 had stable disease as their best response to treatment. In grade 1 patients, the observed PFS6 rate was 83% (10/12 patients; 95% CI, 52 to 98). In grade 2/3 patients, the observed PFS6 rate was 33% (8/24 patients; 95% CI, 16 to 55). The study met the PFS6 efficacy end point both for the grade 1 and the grade 2/3 cohorts. Treatment was well tolerated; seven patients had a maximum grade 3 adverse event that was at least possibly related to treatment with no grade 4 or 5 events. CONCLUSION GSK2256098 was well tolerated and resulted in an improved PFS6 rate in patients with recurrent or progressive NF2-mutated meningiomas, compared with historical controls. The criteria for promising activity were met, and FAK inhibition warrants further evaluation for this patient population.
Collapse
Affiliation(s)
| | - Erin L. Twohy
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | | | | | - A. John Iafrate
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jochen Lennerz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | - David Schiff
- University of Virginia Medical Center, Charlottesville, VA
| | - Jennie W. Taylor
- University of California, San Francisco Brain Tumor Center, San Francisco, CA
| | - Sajeel A. Chowdhary
- Lynn Cancer Institute, Boca Raton Regional Hospital/Baptist Hospital South Florida, Boca Raton, FL
| | | | | | | | | | | | | | | | | | | | | | | | - Thomas Kaley
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Mary R. Welch
- Columbia University Irving Medical Center, New York, NY
| | - Fabio Iwamoto
- Columbia University Irving Medical Center, New York, NY
| | | | | | - Shivangi Vora
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Michael Knopp
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Ian F. Dunn
- College of Medicine, University of Oklahoma, Oklahoma City, OK
| | | | | | - Susan Geyer
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | - Xiomara W. Carrero
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | | | - Daniel P. Cahill
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | - Sandro Santagata
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
47
|
Wang EJ, Haddad AF, Young JS, Morshed RA, Wu JPH, Salha DM, Butowski N, Aghi MK. Recent advances in the molecular prognostication of meningiomas. Front Oncol 2023; 12:910199. [PMID: 36686824 PMCID: PMC9845914 DOI: 10.3389/fonc.2022.910199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/17/2022] [Indexed: 01/05/2023] Open
Abstract
Meningiomas are the most common primary intracranial neoplasm. While traditionally viewed as benign, meningiomas are associated with significant patient morbidity, and certain meningioma subgroups display more aggressive and malignant behavior with higher rates of recurrence. Historically, the risk stratification of meningioma recurrence has been primarily associated with the World Health Organization histopathological grade and surgical extent of resection. However, a growing body of literature has highlighted the value of utilizing molecular characteristics to assess meningioma aggressiveness and recurrence risk. In this review, we discuss preclinical and clinical evidence surrounding the use of molecular classification schemes for meningioma prognostication. We also highlight how molecular data may inform meningioma treatment strategies and future directions.
Collapse
Affiliation(s)
- Elaina J. Wang
- Department of Neurological Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Alexander F. Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Ramin A. Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Joshua P. H. Wu
- Department of Neurological Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Diana M. Salha
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Manish K. Aghi,
| |
Collapse
|
48
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
49
|
Krischek B, Goldbrunner R. Paradigm Shift in the Treatment of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:1-4. [PMID: 37432615 DOI: 10.1007/978-3-031-29750-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Meningiomas are the most common brain tumor in adults with rising incidence rates due to an aging population globally, increased availability of neuroimaging, and increased awareness of this condition by treating clinicians and primary care physicians. Surgical resection remains the mainstay of treatment, with adjuvant radiotherapy reserved for higher grade meningiomas or tumors that undergo incomplete resections. Whereas these tumors were classically defined by their histopathological features and subtypes, recent work has uncovered the molecular alterations that may lead to tumor development and have important prognostic implications. However, there remain important clinical questions regarding the management of meningiomas and current clinical guidelines continue to evolve as additional studies add onto the growing body of work that enables us to better understand these tumors.
Collapse
Affiliation(s)
- Boris Krischek
- Department of Neurosurgery, Hopitaux Robert Schuman, Luxembourg, Luxembourg
- Center for Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Center for Neurosurgery, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
50
|
Ren L, Hua L, Bao Z, Deng J, Wang D, Chen J, Chen H, Juratli TA, Wakimoto H, Gong Y. Distinct clinical outcome of microcystic meningioma as a WHO grade 1 meningioma subtype. J Neurooncol 2023; 161:193-202. [PMID: 35612696 DOI: 10.1007/s11060-022-04034-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To evaluate the clinicopathological characteristics, radiology, and long-term outcomes of microcystic meningiomas (MM) and compare it with other subtypes of meningiomas managed at a single neurosurgical center. METHODS A total of 87 consecutive patients who underwent surgical resection and were diagnosed as MM between 2005 and 2016 were enrolled for analysis. Clinicopathological, radiology, and prognostic information was collected and analyzed. Progression free survival (PFS) was compared with 659 patients with other subtypes of WHO grade 1 meningiomas and 167 patients with atypical meningiomas treated during the same period. RESULTS Fifty six females and 31 males with MM were analyzed. Peri-tumor brain edema was frequent on T2 WI (85%).12 patients (13.8%) experienced tumor progression during the mean follow-up of 101.66 ± 40.92 months. The median PFS was unavailable, and the 5, 10, and 15 year progression-free rates were 96.9%, 84.0%, and 73.9%, respectively. Univariate COX analysis demonstrated skull base location and higher Ki-67 index as significant negative prognostic factors for PFS (P < 0.05); multivariate analysis identified tumor location and Ki-67 index as independent factors (P < 0.01), as well. Of note, the PFS of MM was worse than other WHO grade 1 subtypes (P < 0.001), but better than atypical meningiomas (P < 0.001), and the PFS differences were retained even when the analysis was limited to the patients receiving GTR (P < 0.05). CONCLUSION The PFS of MM was worse than other WHO grade 1 subtypes and better than atypical meningiomas. Skull base location and higher Ki-67 index were independent negative prognostic factors in MM.
Collapse
Affiliation(s)
- Leihao Ren
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Neurosurgery, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
| | - Lingyang Hua
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Neurosurgery, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Neurosurgery, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Neurosurgery, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
| | - Jiawei Chen
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Neurosurgery, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
| | - Hong Chen
- Department of Pathology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Tareq A Juratli
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Ye Gong
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China. .,Institute of Neurosurgery, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China. .,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China. .,Department of Critical Care Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.
| |
Collapse
|