1
|
Chakraborty S, Guan Z, Kostrzewa CE, Shen R, Begg CB. Identifying somatic fingerprints of cancers defined by germline and environmental risk factors. Genet Epidemiol 2024; 48:455-467. [PMID: 38686586 PMCID: PMC11522022 DOI: 10.1002/gepi.22565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Numerous studies over the past generation have identified germline variants that increase specific cancer risks. Simultaneously, a revolution in sequencing technology has permitted high-throughput annotations of somatic genomes characterizing individual tumors. However, examining the relationship between germline variants and somatic alteration patterns is hugely challenged by the large numbers of variants in a typical tumor, the rarity of most individual variants, and the heterogeneity of tumor somatic fingerprints. In this article, we propose statistical methodology that frames the investigation of germline-somatic relationships in an interpretable manner. The method uses meta-features embodying biological contexts of individual somatic alterations to implicitly group rare mutations. Our team has used this technique previously through a multilevel regression model to diagnose with high accuracy tumor site of origin. Herein, we further leverage topic models from computational linguistics to achieve interpretable lower-dimensional embeddings of the meta-features. We demonstrate how the method can identify distinctive somatic profiles linked to specific germline variants or environmental risk factors. We illustrate the method using The Cancer Genome Atlas whole-exome sequencing data to characterize somatic tumor fingerprints in breast cancer patients with germline BRCA1/2 mutations and in head and neck cancer patients exposed to human papillomavirus.
Collapse
Affiliation(s)
| | - Zoe Guan
- Mass General Research Institute, Boston, Massachusetts, USA
| | | | - Ronglai Shen
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Colin B Begg
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Devenport JM, Tran T, Harris BR, Fingerman DF, DeWeerd RA, Elkhidir L, LaVigne D, Fuh K, Sun L, Bednarski JJ, Drapkin R, Mullen M, Green AM. APOBEC3A drives metastasis of high-grade serous ovarian cancer by altering epithelial-to-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620297. [PMID: 39553968 PMCID: PMC11565781 DOI: 10.1101/2024.10.25.620297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive histological subtype of ovarian cancer, and often presents with metastatic disease. The drivers of metastasis in HGSOC remain enigmatic. APOBEC3A (A3A), an enzyme that generates mutations across various cancers, has been proposed as a mediator of tumor heterogeneity and disease progression. However, the role of A3A in HGSOC has not been explored. Through analysis of genome sequencing from primary HGSOC, we observed an association between high levels of APOBEC3 mutagenesis and poor overall survival. We experimentally addressed this correlation by modeling A3A activity in HGSOC cell lines and mouse models which resulted in increased metastatic behavior of HGSOC cells in culture and distant metastatic spread in vivo . A3A activity in both primary and cultured HGSOC cells yielded consistent alterations in expression of epithelial-mesenchymal-transition (EMT) genes resulting in hybrid EMT and mesenchymal signatures, and providing a mechanism for their increased metastatic potential. Our findings define the prevalence of A3A mutagenesis in HGSOC and implicate A3A as a driver of HGSOC metastasis via EMT, underscoring its clinical relevance as a potential prognostic biomarker. Our study lays the groundwork for the development of targeted therapies aimed at mitigating the deleterious impact of A3A-driven EMT in HGSOC.
Collapse
|
3
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Niavarani A. The role of distinct APOBEC/ADAR mRNA levels in mutational signatures linked to aging and ultraviolet radiation. Sci Rep 2024; 14:15395. [PMID: 38965255 PMCID: PMC11224270 DOI: 10.1038/s41598-024-64986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
The APOBEC/AID family is known for its mutator activity, and recent evidence also supports the potential impact of ADARs. Furthermore, the mutator impacts of APOBEC/ADAR mutations have not yet been investigated. Assessment of pancancer TCGA exomes identified enriched somatic variants among exomes with nonsynonymous APOBEC1, APOBEC3B, APOBEC3C, ADAR, and ADARB1 mutations, compared to exomes with synonymous ones. Principal component (PC) analysis reduced the number of potential players to eight in cancer exomes/genomes, and to five in cancer types. Multivariate regression analysis was used to assess the impact of the PCs on each COSMIC mutational signature among pancancer exomes/genomes and particular cancers, identifying several novel links, including SBS17b, SBS18, and ID7 mainly determined by APOBEC1 mRNA levels; SBS40, ID1, and ID2 by age; SBS3 and SBS16 by APOBEC3A/APOBEC3B mRNA levels; ID5 and DBS9 by DNA repair/replication (DRR) defects; and SBS7a-d, SBS38, ID4, ID8, ID13, and DBS1 by ultraviolet (UV) radiation/ADARB1 mRNA levels. APOBEC/ADAR mutations appeared to potentiate the impact of DRR defects on several mutational signatures, and some factors seemed to inversely affect certain signatures. These findings potentially implicate certain APOBEC/ADAR mutations/mRNA levels in distinct mutational signatures, particularly APOBEC1 mRNA levels in aging-related signatures and ADARB1 mRNA levels in UV radiation-related signatures.
Collapse
Affiliation(s)
- Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
McCool MA, Bryant CJ, Abriola L, Surovtseva YV, Baserga SJ. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLoS Biol 2024; 22:e3002718. [PMID: 38976757 PMCID: PMC11257408 DOI: 10.1371/journal.pbio.3002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
6
|
Liu YT, Meng XY. The underexplored role of APOBEC3 enzymes in autoimmune diseases. Rheumatology (Oxford) 2024; 63:e166-e167. [PMID: 38060252 DOI: 10.1093/rheumatology/kead663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Yi-Tong Liu
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Xiang-Yu Meng
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
- Health Science Center, Hubei Minzu University, Enshi, China
| |
Collapse
|
7
|
Schloissnig S, Pani S, Rodriguez-Martin B, Ebler J, Hain C, Tsapalou V, Söylev A, Hüther P, Ashraf H, Prodanov T, Asparuhova M, Hunt S, Rausch T, Marschall T, Korbel JO. Long-read sequencing and structural variant characterization in 1,019 samples from the 1000 Genomes Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590093. [PMID: 38659906 PMCID: PMC11042266 DOI: 10.1101/2024.04.18.590093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Structural variants (SVs) contribute significantly to human genetic diversity and disease 1-4 . Previously, SVs have remained incompletely resolved by population genomics, with short-read sequencing facing limitations in capturing the whole spectrum of SVs at nucleotide resolution 5-7 . Here we leveraged nanopore sequencing 8 to construct an intermediate coverage resource of 1,019 long-read genomes sampled within 26 human populations from the 1000 Genomes Project. By integrating linear and graph-based approaches for SV analysis via pangenome graph-augmentation, we uncover 167,291 sequence-resolved SVs in these samples, considerably advancing SV characterization compared to population-wide short-read sequencing studies 3,4 . Our analysis details diverse SV classes-deletions, duplications, insertions, and inversions-at population-scale. LINE-1 and SVA retrotransposition activities frequently mediate transductions 9,10 of unique sequences, with both mobile element classes transducing sequences at either the 3'- or 5'-end, depending on the source element locus. Furthermore, analyses of SV breakpoint junctions suggest a continuum of homology-mediated rearrangement processes are integral to SV formation, and highlight evidence for SV recurrence involving repeat sequences. Our open-access dataset underscores the transformative impact of long-read sequencing in advancing the characterisation of polymorphic genomic architectures, and provides a resource for guiding variant prioritisation in future long-read sequencing-based disease studies.
Collapse
|
8
|
Qi J, Wu W, Chen J, Han X, Hao Z, Han Y, Xu Y, Lai J, Chen J. Development and validation of a novel prognostic lncRNA signature based on the APOBEC3 family genes in gastric cancer. Heliyon 2024; 10:e28307. [PMID: 38560679 PMCID: PMC10979227 DOI: 10.1016/j.heliyon.2024.e28307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Gastric Cancer (GC) refers to a prevalent malignant cancer accompanied by a weak prognosis. The APOBEC3 family genes and lncRNAs are linked with cancer progression. Nevertheless, there is still a scarcity of data concerning the prognostic value of APOBEC3-related lncRNAs in GC. Methods We extracted the data from GC samples, including transcriptome as well as clinical data, obtained from the TCGA database. Then, we screened for lncRNAs that were correlated with the APOBEC3 family genes and constructed an APOBEC3-related lncRNA prognostic signature (LPS) by utilizing univariate Cox and lasso regression analysis. Furthermore, we validated our constructed signature and evaluated it thoroughly, including analysis of its function, immunity, mutations, and clinical applications via multiple methods, including Metascape, GSEA, and analyses including TIC and TME, immune checkpoints, CNV and SNPs, Kaplan-Meier survival curves, nomogram, decision tree and drug prediction analysis. Finally, we overexpressed LINC01094 to evaluate the impacts on the proliferation as well as migration with regards to KATO-2 cells. Results We selected eight lncRNAs for our APOBEC3-related LPS, which is demonstrated as a valuable tool in predicting the individual GC patients' prognosis. Subsequently, we segregated the samples into subgroups of high-as well as low-risk relying on the risk score with regards to APOBEC3-related LPS. By performing functional analysis, we have shown that immune-as well as tumor-related pathways were enriched in high- and low-risk GC patients. Furthermore, immune analysis revealed a robust correlation between the APOBEC3-related LPS and immunity. We found that immune checkpoints were significantly associated with the APOBEC3-related LPS and were greatly exhibited in GC tumor and high-risk samples. Mutational analysis suggested that the mutational rate was greater in low-risk samples. Furthermore, we predicted small molecular drugs displayed greater sensitivity in patients categorized as high-risk. Moreover, the immune response was also better in high-risk patients. Of these drugs, dasatinib was significant in both methods and might be considered a potential novel drug for treating high-risk GC patients. Finally, we found that LINC01094 has the potential to enhance the migration, proliferation as well as inhibit apoptosis of KATO-2 in GC cells. And Dasatinib has an inhibitory effect on the migration as well as proliferation in GC cells. Conclusion We created a novel APOBEC3-related LPS in predicting the prognosis with regards to individual GC patients. Importantly, this APOBEC3-related LPS was closely associated with immunity and might guide clinical treatment.
Collapse
Affiliation(s)
- Jia Qi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Wenxuan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xiaying Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Zhixing Hao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yaxuan Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yewei Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jun Lai
- Department of Cardiology Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Jian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
9
|
Chi ZC. Progress in understanding of relationship between inflammation and tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:23-40. [DOI: 10.11569/wcjd.v32.i1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past decade, there has been clear evidence that inflammation plays a key role in tumorigenesis. Tumor extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, smoking, excessive alcohol consumption, etc., all of which can increase cancer risk and stimulate malignant progression. Conversely, inflammation inherent in cancer or caused by cancer can be triggered by cancer-initiating mutations and can promote malignant progression through recruitment and activation of inflammatory cells. Both exogenous and endogenous inflammation can lead to immunosuppression, thus providing a preferred opportunity for tumor development. Studies have confirmed that chronic inflammation is involved in various steps of tumorigenesis, including cell transformation, promotion, survival, prolifer-ation, invasion, angiogenesis, and metastasis. Recent research has shed new light on the molecular and cellular circuits between inflammation and cancer. Two pathways have been preliminarily identified: Intrinsic and extrinsic. In the intrinsic pathway, genetic events leading to tumors initiate the expression of inflammatory related programs and guide the construction of the inflammatory microenvironment. In the extrinsic pathway, inflammatory conditions promote the development of cancer. This article reviews the recent progress in the understanding of the relationship between inflammation and tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
10
|
Chou WC, Chen WT, Kuo CT, Chang YM, Lu YS, Li CW, Hung MC, Shen CY. Genetic insights into carbohydrate sulfotransferase 8 and its impact on the immunotherapy efficacy of cancer. Cell Rep 2024; 43:113641. [PMID: 38165805 DOI: 10.1016/j.celrep.2023.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
Immune checkpoint blockade (ICB) is a promising therapy for solid tumors, but its effectiveness depends on biomarkers that are not precise. Here, we utilized genome-wide association study to investigate the association between genetic variants and tumor mutation burden to interpret ICB response. We identified 16 variants (p < 5 × 10-8) probed to 17 genes on 9 chromosomes. Subsequent analysis of one of the most significant loci in 19q13.11 suggested that the rs111308825 locus at the enhancer is causal, as its A allele impairs KLF2 binding, leading to lower carbohydrate sulfotransferase 8 (CHST8) expression. Breast cancer cells expressing CHST8 suppress T cell activation, and Chst8 loss attenuates tumor growth in a syngeneic mouse model. Further investigation revealed that programmed death-ligand 1 (PD-L1) and its homologs could be sulfated by CHST8, resulting in M2-like macrophage enrichment in the tumor microenvironment. Finally, we confirmed that low-CHST8 tumors have better ICB response, supporting the genetic effect and clinical value of rs111308825 for ICB efficacy prediction.
Collapse
Affiliation(s)
- Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Wei-Ting Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Tse Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Dananberg A, Striepen J, Rozowsky JS, Petljak M. APOBEC Mutagenesis in Cancer Development and Susceptibility. Cancers (Basel) 2024; 16:374. [PMID: 38254863 PMCID: PMC10814203 DOI: 10.3390/cancers16020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
APOBEC cytosine deaminases are prominent mutators in cancer, mediating mutations in over 50% of cancers. APOBEC mutagenesis has been linked to tumor heterogeneity, persistent cell evolution, and therapy responses. While emerging evidence supports the impact of APOBEC mutagenesis on cancer progression, the understanding of its contribution to cancer susceptibility and malignant transformation is limited. We examine the existing evidence for the role of APOBEC mutagenesis in carcinogenesis on the basis of the reported associations between germline polymorphisms in genes encoding APOBEC enzymes and cancer risk, insights into APOBEC activities from sequencing efforts of both malignant and non-malignant human tissues, and in vivo studies. We discuss key knowledge gaps and highlight possible ways to gain a deeper understanding of the contribution of APOBEC mutagenesis to cancer development.
Collapse
Affiliation(s)
- Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (J.S.)
| | - Josefine Striepen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (J.S.)
| | - Jacob S. Rozowsky
- Medical Scientist Training Program, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mia Petljak
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Chen Z, Liang H, Wei P. Data-adaptive and pathway-based tests for association studies between somatic mutations and germline variations in human cancers. Genet Epidemiol 2023; 47:617-636. [PMID: 37822029 DOI: 10.1002/gepi.22537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/22/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Cancer is a disease driven by a combination of inherited genetic variants and somatic mutations. Recently available large-scale sequencing data of cancer genomes have provided an unprecedented opportunity to study the interactions between them. However, previous studies on this topic have been limited by simple, low statistical power tests such as Fisher's exact test. In this paper, we design data-adaptive and pathway-based tests based on the score statistic for association studies between somatic mutations and germline variations. Previous research has shown that two single-nucleotide polymorphism (SNP)-set-based association tests, adaptive sum of powered score (aSPU) and data-adaptive pathway-based (aSPUpath) tests, increase the power in genome-wide association studies (GWASs) with a single disease trait in a case-control study. We extend aSPU and aSPUpath to multi-traits, that is, somatic mutations of multiple genes in a cohort study, allowing extensive information aggregation at both SNP and gene levels.p $p$ -values from different parameters assuming varying genetic architecture are combined to yield data-adaptive tests for somatic mutations and germline variations. Extensive simulations show that, in comparison with some commonly used methods, our data-adaptive somatic mutations/germline variations tests can be applied to multiple germline SNPs/genes/pathways, and generally have much higher statistical powers while maintaining the appropriate type I error. The proposed tests are applied to a large-scale real-world International Cancer Genome Consortium whole genome sequencing data set of 2583 subjects, detecting more significant and biologically relevant associations compared with the other existing methods on both gene and pathway levels. Our study has systematically identified the associations between various germline variations and somatic mutations across different cancer types, which potentially provides valuable utility for cancer risk prediction, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Zhongyuan Chen
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
14
|
Rao N, Starrett GJ, Piaskowski ML, Butler KE, Golubeva Y, Yan W, Lawrence SM, Dean M, Garcia-Closas M, Baris D, Johnson A, Schwenn M, Malats N, Real FX, Kogevinas M, Rothman N, Silverman DT, Dyrskjøt L, Buck CB, Koutros S, Prokunina-Olsson L. Analysis of Several Common APOBEC-type Mutations in Bladder Tumors Suggests Links to Viral Infection. Cancer Prev Res (Phila) 2023; 16:561-570. [PMID: 37477495 PMCID: PMC10592262 DOI: 10.1158/1940-6207.capr-23-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
FGFR3 and PIK3CA are among the most frequently mutated genes in bladder tumors. We hypothesized that recurrent mutations in these genes might be caused by common carcinogenic exposures such as smoking and other factors. We analyzed 2,816 bladder tumors with available data on FGFR3 and/or PIK3CA mutations, focusing on the most recurrent mutations detected in ≥10% of tumors. Compared to tumors with other FGFR3/PIK3CA mutations, FGFR3-Y375C was more common in tumors from smokers than never-smokers (P = 0.009), while several APOBEC-type driver mutations were enriched in never-smokers: FGFR3-S249C (P = 0.013) and PIK3CA-E542K/PIK3CA-E545K (P = 0.009). To explore possible causes of these APOBEC-type mutations, we analyzed RNA sequencing (RNA-seq) data from 798 bladder tumors and detected several viruses, with BK polyomavirus (BKPyV) being the most common. We then performed IHC staining for polyomavirus (PyV) Large T-antigen (LTAg) in an independent set of 211 bladder tumors. Overall, by RNA-seq or IHC-LTAg, we detected PyV in 26 out of 1,010 bladder tumors with significantly higher detection (P = 4.4 × 10-5), 25 of 554 (4.5%) in non-muscle-invasive bladder cancers (NMIBC) versus 1 of 456 (0.2%) of muscle-invasive bladder cancers (MIBC). In the NMIBC subset, the FGFR3/PIK3CA APOBEC-type driver mutations were detected in 94.7% (18/19) of PyV-positive versus 68.3% (259/379) of PyV-negative tumors (P = 0.011). BKPyV tumor positivity in the NMIBC subset with FGFR3- or PIK3CA-mutated tumors was also associated with a higher risk of progression to MIBC (P = 0.019). In conclusion, our results support smoking and BKPyV infection as risk factors contributing to bladder tumorigenesis in the general patient population through distinct molecular mechanisms. PREVENTION RELEVANCE Tobacco smoking likely causes one of the most common mutations in bladder tumors (FGFR3-Y375C), while viral infections might contribute to three others (FGFR3-S249C, PIK3CA-E542K, and PIK3CA-E545K). Understanding the causes of these mutations may lead to new prevention and treatment strategies, such as viral screening and vaccination.
Collapse
Affiliation(s)
- Nina Rao
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriel J Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Mary L Piaskowski
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kelly E Butler
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yelena Golubeva
- Molecular Digital Pathology Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wusheng Yan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Scott M Lawrence
- Molecular Digital Pathology Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Dalsu Baris
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | | | | - Francisco X Real
- CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
15
|
Meng XY, Wang QL, Shi MJ, Zhang HY. Historical Pathogen-Driven Selection May Contribute to Contemporary Ethnic Difference in Bladder Cancer Susceptibility. Bladder Cancer 2023; 9:211-216. [PMID: 38993187 PMCID: PMC11181760 DOI: 10.3233/blc-230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND The rationale for ethnic differences in bladder cancer (BCa) susceptibility is an important open question. In this study, we raised the hypothesis that the APOBEC3-rs1014971 variant associated with BCa risk and APOBEC-mutagenesis probably contribute to ethnic differences. METHODS We calculated the ethnicity-stratified 5-year age-adjusted incidence rates of BCa using the US SEER database. We performed somatic mutational-signature analyses and compared the APOBEC-related mutational contribution across BCa tumors in patients of different ethnicities. We analyzed the allele frequency distribution of APOBEC3-related rs1014971 in contemporary populations of different ethnicities and in ancient human genomes. We also analyzed the natural selection profiles and ages of the investigated SNPs. RESULTS We validated the ethnic difference in BCa risk using US SEER data, revealing Caucasians to be at >2-fold greater risk than Asians / Pacific islanders. In contemporary populations, we observed a coherent ethnic distribution in terms not only of the allele frequency of APOBEC3-related rs1014971, but also the mutational contribution of APOBEC-mediated mutagenesis in BCa tumors. Population genetics and ancient genome analyses further suggested that the diverse ethnic distribution of rs1014971 could be rooted in human evolution. CONCLUSIONS It is possible that APOBEC3-related rs1014971 is involved in the different BCa incidence across ethnic groups, and this difference is potentially derived from human evolution. Our findings suggested an evolutionary link between contemporary population-level variations in malignancy susceptibility and pathogen-driven selection in the past, not unlike previously reported cases of certain autoimmune and metabolic disorders.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Health Science Center, Hubei Minzu University, Enshi, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Qiao-Li Wang
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Ming-Jun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Yao Z, Xu N, Shang G, Wang H, Tao H, Wang Y, Qin Z, Tan S, Feng J, Zhu J, Ma F, Tian S, Zhang Q, Qu Y, Hou J, Guo J, Zhao J, Hou Y, Ding C. Proteogenomics of different urothelial bladder cancer stages reveals distinct molecular features for papillary cancer and carcinoma in situ. Nat Commun 2023; 14:5670. [PMID: 37704624 PMCID: PMC10499981 DOI: 10.1038/s41467-023-41139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
The progression of urothelial bladder cancer (UC) is a complicated multi-step process. We perform a comprehensive multi-omics analysis of 448 samples from 190 UC patients, covering the whole spectrum of disease stages and grades. Proteogenomic integration analysis indicates the mutations of HRAS regulated mTOR signaling to form urothelial papilloma rather than papillary urothelial cancer (PUC). DNA damage is a key signaling pathway in the progression of carcinoma in situ (CIS) and related to APOBEC signature. Glucolipid metabolism increase and lower immune cell infiltration are associated with PUC compared to CIS. Proteomic analysis distinguishes the origins of invasive tumors (PUC-derived and CIS-derived), related to distinct clinical prognosis and molecular features. Additionally, loss of RBPMS, associated with CIS-derived tumors, is validated to increase the activity of AP-1 and promote metastasis. This study reveals the characteristics of two distinct branches (PUC and CIS) of UC progression and may eventually benefit clinical practice.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2022YFA1303200 [C.D.], 2022YFA1303201 [C.D.], 2020YFE0201600 [C.D.], 2018YFE0201600 [C.D.], 2018YFE0201603 [C.D.], 2018YFA0507500 [C.D.], 2018YFA0507501 [C.D.], 2017YFA0505100 [C.D.], 2017YFA0505102 [C.D.], 2017YFA0505101 [C.D.], 2017YFC0908404 [C.D.], and 2016YFA0502500 [C.D.]), Program of Shanghai Academic/Technology Research Leader (22XD1420100 [C.D.]), Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (19SG02 [C.D.]),the Major Project of Special Development Funds of Zhangjiang National Independent Innovation Demonstration Zone (ZJ2019‐ZD‐004 [C.D.]), the Science and Technology Commission of Shanghai Municipality (2017SHZDZX01 [C.D.]).
Collapse
Affiliation(s)
- Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Guoguo Shang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hui Tao
- Department of Cardiothoracic Surgery, Second Hospital of Anhui Medical University, and Cardiovascular Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jun Hou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jianming Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Mertz TM, Rice-Reynolds E, Nguyen L, Wood A, Cordero C, Bray N, Harcy V, Vyas RK, Mitchell D, Lobachev K, Roberts SA. Genetic inhibitors of APOBEC3B-induced mutagenesis. Genome Res 2023; 33:1568-1581. [PMID: 37532520 PMCID: PMC10620048 DOI: 10.1101/gr.277430.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The cytidine deaminases APOBEC3A (A3A) and APOBEC3B (A3B) are prominent mutators of human cancer genomes. However, tumor-specific genetic modulators of APOBEC-induced mutagenesis are poorly defined. Here, we used a screen to identify 61 gene deletions that increase A3B-induced mutations in yeast. We also determined whether each deletion was epistatic with Ung1 loss, which indicated whether the encoded factors participate in the homologous recombination (HR)-dependent bypass of A3B/Ung1-dependent abasic sites or suppress A3B-catalyzed deamination by protecting against aberrant formation of single-stranded DNA (ssDNA). We found that the mutation spectra of A3B-induced mutations revealed genotype-specific patterns of strand-specific ssDNA formation and nucleotide incorporation across APOBEC-induced lesions. Combining these three metrics, we were able to establish a multifactorial signature of APOBEC-induced mutations specific to (1) failure to remove H3K56 acetylation, (2) defective CTF18-RFC complex function, and (3) defective HR-mediated bypass of APOBEC-induced lesions. We extended these results by analyzing mutation data for human tumors and found BRCA1/2-deficient breast cancers display three- to fourfold more APOBEC-induced mutations. Mirroring our results in yeast, Rev1-mediated C-to-G substitutions are mainly responsible for increased APOBEC-signature mutations in BRCA1/2-deficient tumors, and these mutations associate with lagging strand synthesis during replication. These results identify important factors that influence DNA replication dynamics and likely the abundance of APOBEC-induced mutation during tumor progression. They also highlight a novel role for BRCA1/2 during HR-dependent lesion bypass of APOBEC-induced lesions during cancer cell replication.
Collapse
Affiliation(s)
- Tony M Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA;
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont 05405, USA
| | - Elizabeth Rice-Reynolds
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - Ly Nguyen
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - Anna Wood
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - Cameron Cordero
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont 05405, USA
| | - Nicholas Bray
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - Victoria Harcy
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - Rudri K Vyas
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont 05405, USA
| | - Debra Mitchell
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - Kirill Lobachev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Steven A Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA;
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
18
|
Ding YC, Song H, Adamson AW, Schmolze D, Hu D, Huntsman S, Steele L, Patrick CS, Tao S, Hernandez N, Adams CD, Fejerman L, Gardner K, Nápoles AM, Pérez-Stable EJ, Weitzel JN, Bengtsson H, Huang FW, Neuhausen SL, Ziv E. Profiling the Somatic Mutational Landscape of Breast Tumors from Hispanic/Latina Women Reveals Conserved and Unique Characteristics. Cancer Res 2023; 83:2600-2613. [PMID: 37145128 PMCID: PMC10390863 DOI: 10.1158/0008-5472.can-22-2510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Somatic mutational profiling is increasingly being used to identify potential targets for breast cancer. However, limited tumor-sequencing data from Hispanic/Latinas (H/L) are available to guide treatment. To address this gap, we performed whole-exome sequencing (WES) and RNA sequencing on 146 tumors and WES of matched germline DNA from 140 H/L women in California. Tumor intrinsic subtype, somatic mutations, copy-number alterations, and expression profiles of the tumors were characterized and compared with data from tumors of non-Hispanic White (White) women in The Cancer Genome Atlas (TCGA). Eight genes were significantly mutated in the H/L tumors including PIK3CA, TP53, GATA3, MAP3K1, CDH1, CBFB, PTEN, and RUNX1; the prevalence of mutations in these genes was similar to that observed in White women in TCGA. Four previously reported Catalogue of Somatic Mutations in Cancer (COSMIC) mutation signatures (1, 2, 3, 13) were found in the H/L dataset, along with signature 16 that has not been previously reported in other breast cancer datasets. Recurrent amplifications were observed in breast cancer drivers including MYC, FGFR1, CCND1, and ERBB2, as well as a recurrent amplification in 17q11.2 associated with high KIAA0100 gene expression that has been implicated in breast cancer aggressiveness. In conclusion, this study identified a higher prevalence of COSMIC signature 16 and a recurrent copy-number amplification affecting expression of KIAA0100 in breast tumors from H/L compared with White women. These results highlight the necessity of studying underrepresented populations. SIGNIFICANCE Comprehensive characterization of genomic and transcriptomic alterations in breast tumors from Hispanic/Latina patients reveals distinct genetic alterations and signatures, demonstrating the importance of inclusive studies to ensure equitable care for patients. See related commentary by Schmit et al., p. 2443.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Aaron W. Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Daniel Schmolze
- Department of Pathology, City of Hope Medical Center, Duarte, California
| | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Carmina S. Patrick
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Shu Tao
- Integrative Genomics Shared Resource, Beckman Research Institute of City of Hope, Duarte, California
| | - Natalie Hernandez
- Western University of Health Sciences College of Graduate Nursing, Pomona, California
| | | | - Laura Fejerman
- Department of Public Health Sciences and Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, New York
| | - Anna María Nápoles
- Division of Intramural Research, National Institute on Minority and Health Disparities, National Institutes of Health, Bethesda, Maryland
| | | | | | - Henrik Bengtsson
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Franklin W. Huang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
19
|
Niyazi M, Han L, Husaiyin S, Aishanjiang A, Guo M, Muhaimati G, Rozi H, Sun H, Lu J, Ma C, Rouzi N, Liu X, Zhu K. Analysis of somatic mutations and key driving factors of cervical cancer progression. Open Med (Wars) 2023; 18:20230759. [PMID: 37533736 PMCID: PMC10390753 DOI: 10.1515/med-2023-0759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
We investigated the somatic mutations and key driving factors of cervical cancer by whole exome sequencing . We found 22,183 somatic single nucleotide variations (SNVs) in 52 paired samples. Somatic SNVs in cervical cancer were significantly higher than those in high-grade intraepithelial lesion and low-grade squamous intraepithelial lesion groups (P < 0.05). C → T/G accounted for 44.12% of base substitution. Copy number variation (false discovery rate < 0.05) was found in 57 chromosome regions. The three regions with significant differences between cervical cancer and non-cervical cancer groups were 1q21.1, 3q26.33, and 13q33.1, covering genes related to tumor proliferation, differentiation, and apoptosis. The frequency of human papillomavirus (HPV) insertion/integration and the number of "tCw" mutations in the cervical cancer group were significantly higher than those in the non-cervical cancer group (P < 0.05). The total number of mutations was positively correlated with the number of "tCw" mutations (R 2 = 0.7967). HPV insertion/integration (OR = 2.302, CI = 1.523-3.589, P = 0.0005), APOBEC enrichment (OR = 17.875, CI = 2.117-150.937, P = 0.001), and HLA-B*39 in HLA-I (OR = 6.435, CI = 0.823-48.919, P = 0.0042) were risk factors for cervical cancer, while HLA-DQB1*05 in HLA-II was a protective factor (OR = 0.426, CI = 0.197-0.910, P = 0.032). Conclusively, HPV insertion/integration, APOBEC mutagenesis, and HLA polymorphisms are high-risk factors for cervical cancer and may be causes of genome instability and somatic mutations. This study provides experimental data for revealing the molecular mechanism of cervical cancer.
Collapse
Affiliation(s)
- Mayinuer Niyazi
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Lili Han
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Sulaiya Husaiyin
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Ayimila Aishanjiang
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Min Guo
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Gulibanu Muhaimati
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Hankez Rozi
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Haiyan Sun
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Jing Lu
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Chunhua Ma
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Nuermangul Rouzi
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Xiaowan Liu
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Kaichun Zhu
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi830001, China
| |
Collapse
|
20
|
Pužar Dominkuš P, Hudler P. Mutational Signatures in Gastric Cancer and Their Clinical Implications. Cancers (Basel) 2023; 15:3788. [PMID: 37568604 PMCID: PMC10416847 DOI: 10.3390/cancers15153788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gastric cancer is characterised by high inter- and intratumour heterogeneity. The majority of patients are older than 65 years and the global burden of this disease is increasing due to the aging of the population. The disease is usually diagnosed at advanced stages, which is a consequence of nonspecific symptoms. Few improvements have been made at the level of noninvasive molecular diagnosis of sporadic gastric cancer, and therefore the mortality rate remains high. A new field of mutational signatures has emerged in the past decade with advances in the genome sequencing technology. These distinct mutational patterns in the genome, caused by exogenous and endogenous mutational processes, can be associated with tumour aetiology and disease progression, and could provide novel perception on the treatment possibilities. This review assesses the mutational signatures found in gastric cancer and summarises their potential for use in clinical setting as diagnostic or prognostic biomarkers. Associated treatment options and biomarkers already implemented in clinical use are discussed, together with those that are still being explored or are in clinical studies.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Koutros S, Kiemeney LA, Pal Choudhury P, Milne RL, Lopez de Maturana E, Ye Y, Joseph V, Florez-Vargas O, Dyrskjøt L, Figueroa J, Dutta D, Giles GG, Hildebrandt MAT, Offit K, Kogevinas M, Weiderpass E, McCullough ML, Freedman ND, Albanes D, Kooperberg C, Cortessis VK, Karagas MR, Johnson A, Schwenn MR, Baris D, Furberg H, Bajorin DF, Cussenot O, Cancel-Tassin G, Benhamou S, Kraft P, Porru S, Carta A, Bishop T, Southey MC, Matullo G, Fletcher T, Kumar R, Taylor JA, Lamy P, Prip F, Kalisz M, Weinstein SJ, Hengstler JG, Selinski S, Harland M, Teo M, Kiltie AE, Tardón A, Serra C, Carrato A, García-Closas R, Lloreta J, Schned A, Lenz P, Riboli E, Brennan P, Tjønneland A, Otto T, Ovsiannikov D, Volkert F, Vermeulen SH, Aben KK, Galesloot TE, Turman C, De Vivo I, Giovannucci E, Hunter DJ, Hohensee C, Hunt R, Patel AV, Huang WY, Thorleifsson G, Gago-Dominguez M, Amiano P, Golka K, Stern MC, Yan W, Liu J, Li SA, Katta S, Hutchinson A, Hicks B, Wheeler WA, Purdue MP, McGlynn KA, Kitahara CM, Haiman CA, Greene MH, Rafnar T, Chatterjee N, Chanock SJ, Wu X, Real FX, Silverman DT, Garcia-Closas M, Stefansson K, Prokunina-Olsson L, Malats N, Rothman N. Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights. Eur Urol 2023; 84:127-137. [PMID: 37210288 PMCID: PMC10330197 DOI: 10.1016/j.eururo.2023.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology. OBJECTIVE To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data. DESIGN, SETTING, AND PARTICIPANTS Data from 32 studies that includes 13,790 bladder cancer cases and 343,502 controls of European ancestry were used for meta-analysis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSES Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking. RESULTS AND LIMITATIONS Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p < 5 × 10-8) to 24. The 4p16.3 (FGFR3/TACC3) locus was associated with a stronger risk for women than for men (p-interaction = 0.002). Bladder cancer risk was increased by interactions between smoking status and genetic variants at 8p22 (NAT2; multiplicative p value for interaction [pM-I] = 0.004), 8q21.13 (PAG1; pM-I = 0.01), and 9p21.3 (LOC107987026/MTAP/CDKN2A; pM-I = 0.02). The PRS based on the 24 independent GWAS markers (odds ratio per standard deviation increase 1.49, 95% confidence interval 1.44-1.53), which also showed comparable results in two prospective cohorts (UK Biobank, PLCO trial), revealed an approximately fourfold difference in the lifetime risk of bladder cancer according to the PRS (e.g., 1st vs 10th decile) for both smokers and nonsmokers. CONCLUSIONS We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer. PATIENT SUMMARY We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer.
Collapse
Affiliation(s)
- Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Parichoy Pal Choudhury
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA; American Cancer Society, Atlanta, GA, USA
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Evangelina Lopez de Maturana
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | | | - Vijai Joseph
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lars Dyrskjøt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonine Figueroa
- Usher Institute, University of Edinburgh, Edinburgh, UK; Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | | | - Kenneth Offit
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Victoria K Cortessis
- Department of Population and Public Health Sciences, Epidemiology and Genetics, University of Southern California, Los Angeles, CA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | - Dalsu Baris
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Helena Furberg
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques, Paris, France
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques, Paris, France; GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Simone Benhamou
- INSERM U1018, Research Centre on Epidemiology and Population Health, Villejuif, France
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stefano Porru
- Department of Diagnostics and Public Health, Section of Occupational Medicine, University of Verona, Verona, Italy
| | - Angela Carta
- Department of Diagnostics and Public Health, Section of Occupational Medicine, University of Verona, Verona, Italy
| | - Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Jack A Taylor
- Epidemiology Branch and Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Frederik Prip
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Silvia Selinski
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Mark Teo
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Anne E Kiltie
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Adonina Tardón
- Department of Preventive Medicine, Universidad de Oviedo, ISPA and CIBERESP, Spain
| | - Consol Serra
- Center for Research in Occupational Health, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institut, CIBERESP, Barcelona, Spain
| | - Alfredo Carrato
- Department of Medicine, Alcalá University, IRYCIS, CIBERONC, Madrid, Spain
| | | | - Josep Lloreta
- Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alan Schned
- Department of Pathology, Dartmouth Medical School, Hanover, NH, USA
| | - Petra Lenz
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | | | - Thomas Otto
- Department of Urology, Rheinland Klinikum, Lukaskrankenhaus, Neuss, Germany
| | | | - Frank Volkert
- Department of Urology, Evangelic Hospital, Paul Gerhardt Foundation, Lutherstadt Wittenberg, Germany
| | - Sita H Vermeulen
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katja K Aben
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands; Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | - Tessel E Galesloot
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Chancellor Hohensee
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rebecca Hunt
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alpa V Patel
- Population Science, American Cancer Society, Atlanta, GA, USA
| | - Wen-Yi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saude, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wusheng Yan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shengchao Alfred Li
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shilpa Katta
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Stephen J Chanock
- Office of the Director, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Xifeng Wu
- Zhejiang University, Hangzhou, China
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Montserrat Garcia-Closas
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
22
|
Granadillo Rodríguez M, Wong L, Chelico L. Similar deamination activities but different phenotypic outcomes induced by APOBEC3 enzymes in breast epithelial cells. Front Genome Ed 2023; 5:1196697. [PMID: 37324648 PMCID: PMC10267419 DOI: 10.3389/fgeed.2023.1196697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
APOBEC3 (A3) enzymes deaminate cytosine to uracil in viral single-stranded DNA as a mutagenic barrier for some viruses. A3-induced deaminations can also occur in human genomes resulting in an endogenous source of somatic mutations in multiple cancers. However, the roles of each A3 are unclear since few studies have assessed these enzymes in parallel. Thus, we developed stable cell lines expressing A3A, A3B, or A3H Hap I using non-tumorigenic MCF10A and tumorigenic MCF7 breast epithelial cells to assess their mutagenic potential and cancer phenotypes in breast cells. The activity of these enzymes was characterized by γH2AX foci formation and in vitro deamination. Cell migration and soft agar colony formation assays assessed cellular transformation potential. We found that all three A3 enzymes had similar γH2AX foci formation, despite different deamination activities in vitro. Notably, in nuclear lysates, the in vitro deaminase activity of A3A, A3B, and A3H did not require digestion of cellular RNA, in contrast to that of A3B and A3H in whole-cell lysates. Their similar activities in cells, nonetheless, resulted in distinct phenotypes where A3A decreased colony formation in soft agar, A3B decreased colony formation in soft agar after hydroxyurea treatment, and A3H Hap I promoted cell migration. Overall, we show that in vitro deamination data do not always reflect cell DNA damage, all three A3s induce DNA damage, and the impact of each is different.
Collapse
|
23
|
Roelofs PA, Martens JW, Harris RS, Span PN. Clinical Implications of APOBEC3-Mediated Mutagenesis in Breast Cancer. Clin Cancer Res 2023; 29:1658-1669. [PMID: 36478188 PMCID: PMC10159886 DOI: 10.1158/1078-0432.ccr-22-2861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Over recent years, members of the APOBEC3 family of cytosine deaminases have been implicated in increased cancer genome mutagenesis, thereby contributing to intratumor and intertumor genomic heterogeneity and therapy resistance in, among others, breast cancer. Understanding the available methods for clinical detection of these enzymes, the conditions required for their (dysregulated) expression, the clinical impact they have, and the clinical implications they may offer is crucial in understanding the current impact of APOBEC3-mediated mutagenesis in breast cancer. Here, we provide a comprehensive review of recent developments in the detection of APOBEC3-mediated mutagenesis and responsible APOBEC3 enzymes, summarize the pathways that control their expression, and explore the clinical ramifications and opportunities they pose. We propose that APOBEC3-mediated mutagenesis can function as a helpful predictive biomarker in several standard-of-care breast cancer treatment plans and may be a novel target for treatment.
Collapse
Affiliation(s)
- Pieter A. Roelofs
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - John W.M. Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul N. Span
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
24
|
Castilha EP, Curti RRDJ, de Oliveira JN, Vitiello GAF, Guembarovski RL, Couto-Filho JD, Oliveira KBD. APOBEC3A/B Polymorphism Is Not Associated with Human Papillomavirus Infection and Cervical Carcinogenesis. Pathogens 2023; 12:pathogens12050636. [PMID: 37242306 DOI: 10.3390/pathogens12050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The persistence of a high-risk Human papillomavirus (HPV-HR) infection of the cervix results in different manifestations of lesions depending on the immunologic capacity of the host. Variations in apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC)-like genes, such as the APOBEC3A/B deletion hybrid polymorphism (A3A/B), may contribute to cervical malignancy in the presence of HPV. The aim of this study was to investigate the association between the A3A/B polymorphism and HPV infection and the development of cervical intraepithelial lesions and cervical cancer in Brazilian women. The study enrolled 369 women, who were categorized according to the presence of infection and subdivided according to the degree of intraepithelial lesion and cervical cancer. APOBEC3A/B was genotyped by allele-specific polymerase chain reaction (PCR). As for the A3A/B polymorphism, the distribution of genotypes was similar between groups and among the analyzed subgroups. There were no significant differences in the presence of infection or development of lesions, even after exclusion of confounding factors. This is the first study to show that the A3A/B polymorphism is not associated with HPV infection and the development of intraepithelial lesions and cervical cancer in Brazilian women.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Rafaela Roberta de Jaime Curti
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Janaina Nicolau de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | | | - Roberta Losi Guembarovski
- Department of Biological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | | | - Karen Brajão de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
25
|
Liu Y, Gusev A, Kraft P. Germline Cancer Gene Expression Quantitative Trait Loci Are Associated with Local and Global Tumor Mutations. Cancer Res 2023; 83:1191-1202. [PMID: 36745477 PMCID: PMC10106413 DOI: 10.1158/0008-5472.can-22-2624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/13/2022] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Somatic mutations drive cancer development and are relevant to patient responses to treatment. Emerging evidence shows that variations in the somatic genome can be influenced by the germline genetic background. However, the mechanisms underlying these germline-somatic associations remain largely obscure. We hypothesized that germline variants can influence somatic mutations in a nearby cancer gene ("local impact") or a set of recurrently mutated cancer genes across the genome ("global impact") through their regulatory effect on gene expression. To test this hypothesis, tumor targeted sequencing data from 12,413 patients across 11 cancer types in the Dana-Farber Profile cohort were integrated with germline cancer gene expression quantitative trait loci (eQTL) from the Genotype-Tissue Expression Project. Variants that upregulate ATM expression were associated with a decreased risk of somatic ATM mutations across 8 cancer types. GLI2, WRN, and CBFB eQTL were associated with global tumor mutational burden of cancer genes in ovarian cancer, glioma, and esophagogastric carcinoma, respectively. An EPHA5 eQTL was associated with mutations in cancer genes specific to colorectal cancer, and eQTL related to expression of APC, WRN, GLI1, FANCA, and TP53 were associated with mutations in genes specific to endometrial cancer. These findings provide evidence that germline-somatic associations are mediated through expression of specific cancer genes, opening new avenues for research on the underlying biological processes. SIGNIFICANCE Analysis of associations between the germline genetic background and somatic mutations in patients with cancer suggests that germline variants can influence local and global tumor mutations by altering expression of cancer-related genes. See related commentary by Kar, p. 1165.
Collapse
Affiliation(s)
- Yuxi Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
26
|
Mertz TM, Rice-Reynolds E, Nguyen L, Wood A, Bray N, Mitchell D, Lobachev K, Roberts SA. Genetic modifiers of APOBEC-induced mutagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535598. [PMID: 37066362 PMCID: PMC10104050 DOI: 10.1101/2023.04.05.535598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The cytidine deaminases APOBEC3A and APOBEC3B (A3B) are prominent mutators of human cancer genomes. However, tumor-specific genetic modulators of APOBEC-induced mutagenesis are poorly defined. Here, we utilized a screen to identify 61 gene deletions that increase A3B-induced mutations in yeast. Also, we determined whether each deletion was epistatic with UNG1 loss, which indicated whether the encoded factors participate in the error-free bypass of A3B/Ung1-dependent abasic sites or suppress A3B-catalyzed deamination by protecting against aberrant formation of single stranded DNA (ssDNA). Additionally, we determined that the mutation spectra of A3B-induced mutations revealed genotype-specific patterns of strand-specific ssDNA formation and nucleotide incorporation across APOBEC-induced lesions. Combining these three metrics we were able to establish a multifactorial signature of APOBEC-induced mutations specific to (1) failure to remove H3K56 acetylation, which results in extremely high A3B-induced mutagenesis, (2) defective CTF18-RFC complex function, which results in high levels of A3B induced mutations specifically on the leading strand template that synergistically increase with loss of UNG1, and (3) defective HR-mediated bypass of APOBEC-induced lesions, which were epistatic with Ung1 loss and result from increased Rev1-mediated C-to-G substitutions. We extended these results by analyzing mutation data for human tumors and found BRCA1/2-deficient breast cancer tumors display 3- to 4-fold more APOBEC-induced mutations. Mirroring our results in yeast, for BRCA1/2 deficient tumors Rev1-mediated C-to-G substitutions are solely responsible for increased APOBEC-signature mutations and these mutations occur on the lagging strand during DNA replication. Together these results identify important factors that influence the dynamics of DNA replication and likely the abundance of APOBEC-induced mutation during tumor progression as well as a novel mechanistic role for BRCA1/2 during HR-dependent lesion bypass of APOBEC-induced lesions during cancer cell replication.
Collapse
|
27
|
Butler K, Banday AR. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol 2023; 16:31. [PMID: 36978147 PMCID: PMC10044795 DOI: 10.1186/s13045-023-01425-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs) are cytosine deaminases involved in innate and adaptive immunity. However, some APOBEC family members can also deaminate host genomes to generate oncogenic mutations. The resulting mutations, primarily signatures 2 and 13, occur in many tumor types and are among the most common mutational signatures in cancer. This review summarizes the current evidence implicating APOBEC3s as major mutators and outlines the exogenous and endogenous triggers of APOBEC3 expression and mutational activity. The review also discusses how APOBEC3-mediated mutagenesis impacts tumor evolution through both mutagenic and non-mutagenic pathways, including by inducing driver mutations and modulating the tumor immune microenvironment. Moving from molecular biology to clinical outcomes, the review concludes by summarizing the divergent prognostic significance of APOBEC3s across cancer types and their therapeutic potential in the current and future clinical landscapes.
Collapse
Affiliation(s)
- Kelly Butler
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
de Sousa Pereira N, Vitiello GAF, Amarante MK. Involvement of APOBEC3A/B Deletion in Mouse Mammary Tumor Virus (MMTV)-like Positive Human Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13061196. [PMID: 36980505 PMCID: PMC10047902 DOI: 10.3390/diagnostics13061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The association between mouse mammary tumor virus (MMTV)-like sequences and human breast cancer (BC) is largely documented in the literature, but further research is needed to determine how they influence carcinogenesis. APOBEC3 cytidine deaminases are viral restriction factors that have been implicated in cancer mutagenesis, and a germline deletion that results in the fusion of the APOBEC3A coding region with the APOBEC3B 3'-UTR has been linked to increased mutagenic potential, enhanced risk of BC development, and poor prognosis. However, little is known about factors influencing APOBEC3 family activation in cancer. Thus, we hypothesized that MMTV infection and APOBEC3-mediated mutagenesis may be linked in the pathogenesis of BC. We investigated APOBEC3A/B genotyping, MMTV-like positivity, and clinicopathological parameters of 209 BC patients. We show evidence for active APOBEC3-mediated mutagenesis in human-derived MMTV sequences and comparatively investigate the impact of APOBEC3A/B germline deletion in MMTV-like env positive and negative BC in a Brazilian cohort. In MMTV-like negative samples, APOBEC3A/B deletion was negatively correlated with tumor stage while being positively correlated with estrogen receptor expression. Although APOBEC3A/B was not associated with MMTV-like positivity, samples carrying both MMTV-like positivity and APOBEC3A/B deletion had the lowest age-at-diagnosis of all study groups, with all patients being less than 50 years old. These results indicate that APOBEC3 mutagenesis is active against MMTV-like sequences, and that APOBEC3A/B deletion might act along with the MMTV-like presence to predispose people to early-onset BC.
Collapse
Affiliation(s)
- Nathália de Sousa Pereira
- Oncology Laboratory, Department of Pathology, Clinical and Toxicological Analyses, Health Sciences Center, Londrina State University, Londrina 86057-970, PR, Brazil
| | | | - Marla Karine Amarante
- Oncology Laboratory, Department of Pathology, Clinical and Toxicological Analyses, Health Sciences Center, Londrina State University, Londrina 86057-970, PR, Brazil
| |
Collapse
|
29
|
Shen A, Ye Y, Chen F, Xu Y, Zhang Z, Zhao Q, Zeng ZL. Integrated multi-omics analysis identifies CD73 as a prognostic biomarker and immunotherapy response predictor in head and neck squamous cell carcinoma. Front Immunol 2022; 13:969034. [PMID: 36466881 PMCID: PMC9708745 DOI: 10.3389/fimmu.2022.969034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Advances in tumor immunotherapy have been developed for patients with advanced recurrent or metastatic (R/M) HNSCC. However, the response of most HNSCC patients to immune checkpoint inhibitors (ICI) remains unsatisfactory. CD73 is a promising target for tumor immunotherapy, but its role in HNSCC remains insufficient. In this study, we aim to explore the function of CD73 in HNSCC. METHODS Transcriptomic and clinical data of TCGA-HNSC were downloaded from UCSC Xena for analysis of CD73 mRNA expression and prognosis. Immunohistochemical assay were performed to validate the expression of CD73 in tumor tissues and its relationship with CD8+ T cells. GSEA analysis was performed with the "clusterProfiler" R package. Immune infiltration analysis was calculated with ESTIMATE, CIBERSORT and MCP-counter algorithms. Single-cell transcriptomic data was originated from GSE103322. Cell clustering, annotation and CD73 expression were from the TISCH database. Correlation data between CD73 and tumor signatures were obtained from the CancerSEA database. Somatic mutation data were obtained from TCGA-HNSC and analyzed by "maftools" R package. Immune efficacy prediction was performed using TIDE algorithm and validated with the IMvigor210 cohort. RESULTS Compared with normal tissues, both mRNA and protein expressions of CD73 were elevated in tumor tissues (P = 9.7×10-10, P = 7.6×10-5, respectively). Kaplan-Meier analysis revealed that patients with high expression of CD73 had worse overall survival (log-rank P = 0.0094), and CD73 could be used as a diagnostic factor for HNSCC (AUC = 0.778). Both bulk RNA-seq and single-cell RNA-seq analysis showed that high CD73 expression can promote EMT and metastasis, samples with high CD73 expression had reduced CD8+ T cells. Furthermore, it was found that CD73-high group was more prone to have mutations in TP53, HRAS and CDKN2A, and were negatively correlated with TMB (P = 0.0055) and MSI (P = 0.00034). Mutational signature analysis found that CD73 was associated with APOBEC signature. Immunotherapy efficacy analysis showed that CD73-high group was less sensitive to immune efficacy. CONCLUSIONS Our results demonstrate that CD73 has an inhibitory effect on the tumor microenvironment, and is more likely to be unresponsive to ICI therapy. Collectively, targeting CD73 may provide new insights for tumor targeted therapy and/or immunotherapy.
Collapse
Affiliation(s)
- Ao Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yafen Ye
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute for Diabetes, Shanghai, China
| | - Fan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunyun Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhao-lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
30
|
Sofiyeva N, Krakstad C, Halle MK, O'Mara TA, Romundstad P, Hveem K, Vatten L, Lønning PE, Gansmo LB, Knappskog S.
APOBEC3A
/B
deletion polymorphism and endometrial cancer risk. Cancer Med 2022; 12:6659-6667. [PMID: 36394079 PMCID: PMC10067079 DOI: 10.1002/cam4.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A common 30 kb deletion affecting the APOBEC3A and APOBEC3B genes has been linked to increased APOBEC activity and APOBEC-related mutational signatures in human cancers. The role of this deletion as a cancer risk factor remains controversial. MATERIALS AND METHODS We genotyped the APOBEC3A/B deletion in a sample of 1,470 Norwegian endometrial cancer cases and compared to 1,918 healthy controls. For assessment across Caucasian populations, we mined genotypes of the SNP rs12628403, which is in strong linkage disequilibrium with the deletion, in a GWAS dataset of 4,274 cases and 18,125 healthy controls, through the ECAC consortium. RESULTS We found the APOBEC3A/B deletion variant to be significantly associated with reduced risk of endometrial cancer among Norwegian women (OR = 0.75; 95% CI = 0.62-0.91; p = 0.003; dominant model). Similar results were found in the subgroup of endometrioid endometrial cancer (OR = 0.64; 95% CI = 0.51-0.79; p = 3.6 × 10-5 ; dominant model). The observed risk reduction was particularly strong among individuals in the range of 50-60 years of age (OR = 0.51; 95% CI = 0.33-0.78; p = 0.002; dominant model). In the different populations included in the ECAC dataset, the ORs varied from 0.85 to 1.05. Although five out of six populations revealed ORs <1.0, the overall estimate was nonsignificant and, as such, did not formally validate the findings in the Norwegian cohort. CONCLUSION The APOBEC3A/B deletion polymorphism is associated with a decreased risk of endometrial cancer in the Norwegian population.
Collapse
Affiliation(s)
- Nigar Sofiyeva
- K.G. Jebsen Center for Genome‐Directed Cancer Therapy, Department of Clinical Science University of Bergen Bergen Norway
- Department of Oncology Haukeland University Hospital Bergen Norway
| | - Camilla Krakstad
- Department of Clinical Science, Centre for Cancer Biomarkers University of Bergen Bergen Norway
- Department of Obstetrics and Gynaecology Haukeland University Hospital Bergen Norway
| | - Mari K. Halle
- Department of Clinical Science, Centre for Cancer Biomarkers University of Bergen Bergen Norway
- Department of Obstetrics and Gynaecology Haukeland University Hospital Bergen Norway
| | - Tracy A. O'Mara
- Cancer Program QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Pål Romundstad
- Department of Public Health, Faculty of Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Faculty of Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Lars Vatten
- Department of Public Health, Faculty of Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Per E. Lønning
- K.G. Jebsen Center for Genome‐Directed Cancer Therapy, Department of Clinical Science University of Bergen Bergen Norway
- Department of Oncology Haukeland University Hospital Bergen Norway
| | - Liv B. Gansmo
- K.G. Jebsen Center for Genome‐Directed Cancer Therapy, Department of Clinical Science University of Bergen Bergen Norway
- Department of Oncology Haukeland University Hospital Bergen Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome‐Directed Cancer Therapy, Department of Clinical Science University of Bergen Bergen Norway
- Department of Oncology Haukeland University Hospital Bergen Norway
| |
Collapse
|
31
|
Petljak M, Green AM, Maciejowski J, Weitzman MD. Addressing the benefits of inhibiting APOBEC3-dependent mutagenesis in cancer. Nat Genet 2022; 54:1599-1608. [PMID: 36280735 PMCID: PMC9700387 DOI: 10.1038/s41588-022-01196-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC)3 cytosine deaminase activity have been found in over half of cancer types, including some therapy-resistant and metastatic tumors. Driver mutations can occur in APOBEC3-favored sequence contexts, suggesting that mutagenesis by APOBEC3 enzymes may drive cancer evolution. The APOBEC3-mediated signatures are often detected in subclonal branches of tumor phylogenies and are acquired in cancer cell lines over long periods of time, indicating that APOBEC3 mutagenesis can be ongoing in cancer. Collectively, these and other observations have led to the proposal that APOBEC3 mutagenesis represents a disease-modifying process that could be inhibited to limit tumor heterogeneity, metastasis and drug resistance. However, critical aspects of APOBEC3 biology in cancer and in healthy tissues have not been clearly defined, limiting well-grounded predictions regarding the benefits of inhibiting APOBEC3 mutagenesis in different settings in cancer. We discuss the relevant mechanistic gaps and strategies to address them to investigate whether inhibiting APOBEC3 mutagenesis may confer clinical benefits in cancer.
Collapse
Affiliation(s)
- Mia Petljak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
32
|
Chen CH, Wei KC, Liao WC, Lin YY, Chen HC, Feng LY, Liu CH, Huang CY, Chen KT, Wu CS, Chang YS, Yu JS, Chang IYF. Prognostic value of an APOBEC3 deletion polymorphism for glioma patients in Taiwan. J Neurosurg 2022; 138:1325-1337. [PMID: 36152319 DOI: 10.3171/2022.7.jns2250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The molecular pathogenesis of malignant gliomas, characterized by diverse tumor histology with differential prognosis, remains largely unelucidated. An APOBEC3 deletion polymorphism, with a deletion in APOBEC3B, has been correlated to risk and prognosis in several cancers, but its role in glioma is unclear. The authors aimed to examine the clinical relevance of the APOBEC3 deletion polymorphism to glioma risk and survival in a glioma patient cohort in Taiwan. METHODS The authors detected deletion genotypes in 403 glioma patients and 1365 healthy individuals in Taiwan and correlated the genotypes with glioma risk, clinicopathological factors, patient survival, and patient sex. APOBEC3 gene family expression was measured and correlated to the germline deletion. A nomogram model was constructed to predict patient survival in glioma. RESULTS The proportion of APOBEC3B-/- and APOBEC3B+/- genotypes was higher in glioblastoma (GBM) patients than healthy individuals and correlated with higher GBM risk in males. A higher percentage of cases with APOBEC3B- was observed in male than female glioma patients. The presence of APOBEC3B-/- was correlated with better overall survival (OS) in male astrocytic glioma patients. No significant correlation of the genotypes to glioma risk and survival was observed in the female patient cohort. Lower APOBEC3B expression was observed in astrocytic glioma patients with APOBEC3B-/- and was positively correlated with better OS. A 5-factor nomogram model was constructed based on male patients with astrocytic gliomas in the study cohort and worked efficiently for predicting patient OS. CONCLUSIONS The germline APOBEC3 deletion was associated with increased GBM risk and better OS in astrocytic glioma patients in the Taiwan male population. The APOBEC3B deletion homozygote was a potential independent prognostic factor predicting better survival in male astrocytic glioma patients.
Collapse
Affiliation(s)
| | - Kuo-Chen Wei
- 2School of Medicine, and.,5Department of Neurosurgery.,7Neuroscience Research Center, and.,11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Wei-Chao Liao
- 1Molecular Medicine Research Center.,4Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Taoyuan
| | - You-Yu Lin
- 9Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei.,10Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei
| | | | - Li-Ying Feng
- 11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Chiung-Hui Liu
- 12Department of Post-Baccalaureate Medicine and.,13PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Chiung-Yin Huang
- 7Neuroscience Research Center, and.,11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Ko-Ting Chen
- 2School of Medicine, and.,5Department of Neurosurgery.,7Neuroscience Research Center, and
| | - Chi-Sheng Wu
- 1Molecular Medicine Research Center.,6Department of Otolaryngology-Head & Neck Surgery
| | | | - Jau-Song Yu
- 1Molecular Medicine Research Center.,3Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan.,8Liver Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
| | | |
Collapse
|
33
|
Prognostic Value of HPV E6 and APOBEC3B in Upper Urinary Tract Urothelial Carcinoma. DISEASE MARKERS 2022; 2022:2147494. [PMID: 35903294 PMCID: PMC9325345 DOI: 10.1155/2022/2147494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
Background APOBEC mutation signature is common in upper urinary tract urothelial carcinoma (UTUC). When virus infection occurs, upregulated APOBEC plays an antiviral role by deoxycytidine deaminase activity. However, the carcinogenic roles of HPV E6 protein and APOBEC mutation signature in UTUC have not been investigated. Aims This study explored the relationship among HPV E6, APOBEC, and clinicopathological characteristics in patients with UTUC and impacts of their expression on the prognosis. Methods The expression of HPV E6 and APOBEC3B of 78 patients with UTUC was detected by immunohistochemistry. Correlation of HPV E6 and APOBEC3B expression levels with clinicopathological characteristics was statistically analyzed. Univariate and multivariate Cox regression analyses were used to evaluate the prognosis of HPV E6 and APOBEC3B for disease-free survival (DFS); survival analysis was performed using Kaplan-Meier methods. Results The expression of APOBEC3B was positively correlated with the expression of HPV E6 (r = 0.383, P = 0.001). HPV E6 was significantly increased in patients with stage I (χ2 = 4.938, P = 0.026) and low-grade urothelial carcinoma (χ2 = 3.939, P = 0.047), as well as in patients without LVI (χ2 = 4.064, P = 0.044). Meanwhile, APOBEC3B was highly expressed in patients with stage I (χ2 = 4.057, P = 0.044) and low-grade urothelial carcinoma (χ2 = 7.153, P = 0.007). Multivariate Cox regression analysis revealed the APOBEC3B expression was the independent prognostic factor for DFS, Kaplan-Meier survival analysis showed that low expression of APOBEC3B and HPV E6 was significantly associated with the poor prognosis of UTUC patients. Conclusion HPV E6 expression is positively associated with APOBEC3B expression, and the high expression of HPV E6 and APOBEC3B is associated with favorable prognosis of patients with UTUC.
Collapse
|
34
|
Pan-Cancer Analysis for Immune Cell Infiltration and Mutational Signatures Using Non-Negative Canonical Correlation Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutational signatures indicate the mutational processes and substitution patterns in cancer cell genomes. However, the functional consequences of mutational signatures remain unclear, and there have been no comprehensive systematic studies to examine the relationships between the mutational signatures and the immune cell infiltration. Here, the relationship between mutational signatures and immune cell infiltration using non-negative canonical correlation analysis based on 8927 patients across 25 tumor types was investigated. By inspecting mutational signatures with the maximal coefficients determined by the non-negative canonical correlation analysis, the study identified mutational signatures related to immune cell infiltration composed of tumor microenvironments. The analysis was validated by showing that the genes associated with the identified mutational signatures were linked to overall survival by a Kaplan–Meier curve and a log-rank test and were mainly related to immunity by gene set enrichment analysis. These results will help expand our knowledge of tumor biology and recognize the functional roles and associations of immune systems with mutational signatures.
Collapse
|
35
|
Vali-Pour M, Park S, Espinosa-Carrasco J, Ortiz-Martínez D, Lehner B, Supek F. The impact of rare germline variants on human somatic mutation processes. Nat Commun 2022; 13:3724. [PMID: 35764656 PMCID: PMC9240060 DOI: 10.1038/s41467-022-31483-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations are an inevitable component of ageing and the most important cause of cancer. The rates and types of somatic mutation vary across individuals, but relatively few inherited influences on mutation processes are known. We perform a gene-based rare variant association study with diverse mutational processes, using human cancer genomes from over 11,000 individuals of European ancestry. By combining burden and variance tests, we identify 207 associations involving 15 somatic mutational phenotypes and 42 genes that replicated in an independent data set at a false discovery rate of 1%. We associate rare inherited deleterious variants in genes such as MSH3, EXO1, SETD2, and MTOR with two phenotypically different forms of DNA mismatch repair deficiency, and variants in genes such as EXO1, PAXIP1, RIF1, and WRN with deficiency in homologous recombination repair. In addition, we identify associations with other mutational processes, such as APEX1 with APOBEC-signature mutagenesis. Many of the genes interact with each other and with known mutator genes within cellular sub-networks. Considered collectively, damaging variants in the identified genes are prevalent in the population. We suggest that rare germline variation in diverse genes commonly impacts mutational processes in somatic cells.
Collapse
Affiliation(s)
- Mischan Vali-Pour
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Solip Park
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Jose Espinosa-Carrasco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Ortiz-Martínez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
36
|
Barfield R, Qu C, Steinfelder RS, Zeng C, Harrison TA, Brezina S, Buchanan DD, Campbell PT, Casey G, Gallinger S, Giannakis M, Gruber SB, Gsur A, Hsu L, Huyghe JR, Moreno V, Newcomb PA, Ogino S, Phipps AI, Slattery ML, Thibodeau SN, Trinh QM, Toland AE, Hudson TJ, Sun W, Zaidi SH, Peters U. Association between germline variants and somatic mutations in colorectal cancer. Sci Rep 2022; 12:10207. [PMID: 35715570 PMCID: PMC9205954 DOI: 10.1038/s41598-022-14408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with evidence of distinct tumor types that develop through different somatically altered pathways. To better understand the impact of the host genome on somatically mutated genes and pathways, we assessed associations of germline variations with somatic events via two complementary approaches. We first analyzed the association between individual germline genetic variants and the presence of non-silent somatic mutations in genes in 1375 CRC cases with genome-wide SNPs data and a tumor sequencing panel targeting 205 genes. In the second analysis, we tested if germline variants located within previously identified regions of somatic allelic imbalance were associated with overall CRC risk using summary statistics from a recent large scale GWAS (n≃125 k CRC cases and controls). The first analysis revealed that a variant (rs78963230) located within a CNA region associated with TLR3 was also associated with a non-silent mutation within gene FBXW7. In the secondary analysis, the variant rs2302274 located in CDX1/PDGFRB frequently gained/lost in colorectal tumors was associated with overall CRC risk (OR = 0.96, p = 7.50e-7). In summary, we demonstrate that an integrative analysis of somatic and germline variation can lead to new insights about CRC.
Collapse
Affiliation(s)
- Richard Barfield
- grid.26009.3d0000 0004 1936 7961Department of Biostatistics and Bioinformatics, Duke University, 11028A Hock Plaza, 2424 Erwin Road Suite 1106, Durham, NC 27705 USA
| | - Conghui Qu
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Robert S. Steinfelder
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Chenjie Zeng
- grid.280128.10000 0001 2233 9230National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Tabitha A. Harrison
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Stefanie Brezina
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Daniel D. Buchanan
- grid.1008.90000 0001 2179 088XColorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XUniversity of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010 Australia ,grid.416153.40000 0004 0624 1200Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC Australia
| | - Peter T. Campbell
- grid.251993.50000000121791997Department of Epidemiology and Population Science, Albert Einstein College of Medicine, Bronx, NY USA
| | - Graham Casey
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Steven Gallinger
- grid.250674.20000 0004 0626 6184Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON Canada
| | - Marios Giannakis
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA ,grid.66859.340000 0004 0546 1623The Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Stephen B. Gruber
- grid.42505.360000 0001 2156 6853Department of Medical Oncology and Therapeuytic, University of Southern California, Los Angeles, CA USA
| | - Andrea Gsur
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Li Hsu
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Jeroen R. Huyghe
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Victor Moreno
- grid.418701.b0000 0001 2097 8389Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.466571.70000 0004 1756 6246CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain ,grid.418284.30000 0004 0427 2257ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A. Newcomb
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657School of Public Health, University of Washington, Seattle, WA USA
| | - Shuji Ogino
- grid.66859.340000 0004 0546 1623The Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XProgram in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Amanda I. Phipps
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Ave N, Mail Stop M4-B402, Seattle, WA 98109 USA
| | - Martha L. Slattery
- grid.223827.e0000 0001 2193 0096Department of Internal Medicine, University of Utah, Salt Lake City, UT USA
| | - Stephen N. Thibodeau
- grid.66875.3a0000 0004 0459 167XDivision of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Quang M. Trinh
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Amanda E. Toland
- grid.261331.40000 0001 2285 7943Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA
| | - Thomas J. Hudson
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Wei Sun
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA ,grid.410711.20000 0001 1034 1720Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA
| | - Syed H. Zaidi
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Ulrike Peters
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Ave N, Mail Stop M4-B402, Seattle, WA 98109 USA
| |
Collapse
|
37
|
Feng G, Feng H, Qi Y, Wang T, Ni N, Wu J, Yuan H. Interaction analysis between germline genetic variants and somatic mutations in head and neck cancer. Oral Oncol 2022; 128:105859. [DOI: 10.1016/j.oraloncology.2022.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
38
|
Baker SC, Mason AS, Slip RG, Skinner KT, Macdonald A, Masood O, Harris RS, Fenton TR, Periyasamy M, Ali S, Southgate J. Induction of APOBEC3-mediated genomic damage in urothelium implicates BK polyomavirus (BKPyV) as a hit-and-run driver for bladder cancer. Oncogene 2022; 41:2139-2151. [PMID: 35194151 PMCID: PMC8862006 DOI: 10.1038/s41388-022-02235-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 12/29/2022]
Abstract
Limited understanding of bladder cancer aetiopathology hampers progress in reducing incidence. Mutational signatures show the anti-viral apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) enzymes are responsible for the preponderance of mutations in bladder tumour genomes, but no causative viral agent has been identified. BK polyomavirus (BKPyV) is a common childhood infection that remains latent in the adult kidney, where reactivation leads to viruria. This study provides missing mechanistic evidence linking reactivated BKPyV-infection to bladder cancer risk. We used a mitotically-quiescent, functionally-differentiated model of normal human urothelium to examine BKPyV-infection. BKPyV-infection led to significantly elevated APOBEC3A and APOBEC3B protein, increased deaminase activity and greater numbers of apurinic/apyrimidinic sites in the host urothelial genome. BKPyV Large T antigen (LT-Ag) stimulated re-entry from G0 into the cell cycle through inhibition of retinoblastoma protein and activation of EZH2, E2F1 and FOXM1, with cells arresting in G2. The single-stranded DNA displacement loops formed in urothelial cells during BKPyV-infection interacted with LT-Ag to provide a substrate for APOBEC3-activity. Addition of interferon gamma (IFNγ) to infected urothelium suppressed expression of the viral genome. These results support reactivated BKPyV infections in adults as a risk factor for bladder cancer in immune-insufficient populations.
Collapse
Affiliation(s)
- Simon C Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| | - Andrew S Mason
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Raphael G Slip
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Katie T Skinner
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Andrew Macdonald
- Faculty of Biological Sciences, School of Molecular and Cellular Pathology, University of Leeds, Leeds, UK
| | - Omar Masood
- Leeds Kidney Unit, St James's University Hospital, Leeds, UK
| | - Reuben S Harris
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tim R Fenton
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Manikandan Periyasamy
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology (IMCB), 8A Biomedical Grove, Neuros/Immunos, #06-04/05, Singapore, 138648, Singapore
| | - Simak Ali
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
39
|
Shilova ON, Tsyba DL, Shilov ES. Mutagenic Activity of AID/APOBEC Deaminases in Antiviral Defense and Carcinogenesis. Mol Biol 2022; 56:46-58. [PMID: 35194245 PMCID: PMC8852905 DOI: 10.1134/s002689332201006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
Proteins of the AID/APOBEC family are capable of cytidine deamination in nucleic acids forming uracil. These enzymes are involved in mRNA editing, protection against viruses, the introduction of point mutations into DNA during somatic hypermutation, and antibody isotype switching. Since these deaminases, especially AID, are potent mutagens, their expression, activity, and specificity are regulated by several intracellular mechanisms. In this review, we discuss the mechanisms of impaired expression and activation of AID/APOBEC proteins in human tumors and their role in carcinogenesis and tumor progression. Also, the diagnostic and potential therapeutic value of increased expression of AID/APOBEC in different types of tumors is analyzed. We assume that in the case of solid tumors, increased expression of endogenous deaminases can serve as a marker of response to immunotherapy since multiple point mutations in host DNA could lead to amino acid substitutions in tumor proteins and thereby increase the frequency of neoepitopes.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - D. L. Tsyba
- Pavlov First State Medical University, 197022 St. Petersburg, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - E. S. Shilov
- Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
40
|
Liu Y, Gusev A, Heng YJ, Alexandrov LB, Kraft P. Somatic mutational profiles and germline polygenic risk scores in human cancer. Genome Med 2022; 14:14. [PMID: 35144655 PMCID: PMC8832866 DOI: 10.1186/s13073-022-01016-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The mutational profile of cancer reflects the activity of the mutagenic processes which have been operative throughout the lineage of the cancer cell. These processes leave characteristic profiles of somatic mutations called mutational signatures. Mutational signatures, including single-base substitution (SBS) signatures, may reflect the effects of exogenous or endogenous exposures. METHODS We used polygenic risk scores (PRS) to summarize common germline variation associated with cancer risk and other cancer-related traits and examined the association between somatic mutational profiles and germline PRS in 12 cancer types from The Cancer Genome Atlas. Somatic mutational profiles were constructed from whole-exome sequencing data of primary tumors. PRS were calculated for the 12 selected cancer types and 9 non-cancer traits, including cancer risk determinants, hormonal factors, and immune-mediated inflammatory diseases, using germline genetic data and published summary statistics from genome-wide association studies. RESULTS We found 17 statistically significant associations between somatic mutational profiles and germline PRS after Bonferroni correction (p < 3.15 × 10-5), including positive associations between germline inflammatory bowel disease PRS and number of somatic mutations attributed to signature SBS1 in prostate cancer and APOBEC-related signatures in breast cancer. Positive associations were also found between age at menarche PRS and mutation counts of SBS1 in overall and estrogen receptor-positive breast cancer. Consistent with prior studies that found an inverse association between the pubertal development PRS and risk of prostate cancer, likely reflecting hormone-related mechanisms, we found an inverse association between age at menarche PRS and mutation counts of SBS1 in prostate cancer. Inverse associations were also found between several cancer PRS and tumor mutation counts. CONCLUSIONS Our analysis suggests that there are robust associations between tumor somatic mutational profiles and germline PRS. These may reflect the mechanisms through hormone regulation and immune responses that contribute to cancer etiology and drive cancer progression.
Collapse
Affiliation(s)
- Yuxi Liu
- grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115 USA
| | - Alexander Gusev
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215 USA
| | - Yujing J. Heng
- grid.38142.3c000000041936754XDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Ludmil B. Alexandrov
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Peter Kraft
- grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
41
|
Zhu B, Joo L, Zhang T, Koka H, Lee D, Shi J, Lee P, Wang D, Wang F, Chan WC, Law SH, Tsoi YK, Tse GM, Lai SW, Wu C, Yang S, Yang Chan EY, Shan Wong SY, Wang M, Song L, Jones K, Zhu B, Hutchinson A, Hicks B, Prokunina-Olsson L, Garcia-Closas M, Chanock S, Tse LA, Yang XR. Comparison of somatic mutation landscapes in Chinese versus European breast cancer patients. HGG ADVANCES 2022; 3:100076. [PMID: 35047861 PMCID: PMC8756551 DOI: 10.1016/j.xhgg.2021.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Recent genomic studies suggest that Asian breast cancer (BC) may have distinct somatic features; however, most comparisons of BC genomic features across populations did not account for differences in age, subtype, and sequencing methods. In this study, we analyzed whole-exome sequencing (WES) data to characterize somatic copy number alterations (SCNAs) and mutation profiles in 98 Hong Kong BC (HKBC) patients and compared with those from The Cancer Genome Atlas of European ancestry (TCGA-EA, N = 686), which had similar distributions of age at diagnosis and PAM50 subtypes as in HKBC. We developed a two-sample Poisson model to compare driver gene selection pressure, which reflects the effect sizes of cancer driver genes, while accounting for differences in sample size, sequencing platforms, depths, and mutation calling methods. We found that somatic mutation and SCNA profiles were overall very similar between HKBC and TCGA-EA. The selection pressure for small insertions and deletions (indels) in GATA3 (false discovery rate (FDR) corrected p < 0.01) and single-nucleotide variants (SNVs) in TP53 (nominal p = 0.02, FDR corrected p = 0.28) was lower in HKBC than in TCGA-EA. Among the 13 signatures of single-base substitutions (SBS) that are common in BC, we found a suggestively higher contribution of SBS18 and a lower contribution of SBS1 in HKBC than in TCGA-EA, while the two APOBEC-induced signatures showed similar prevalence. Our results suggest that the genomic landscape of BC was largely very similar between HKBC and TCGA-EA, despite suggestive differences in some driver genes and mutational signatures that warrant future investigations in large and diverse Asian populations.
Collapse
Affiliation(s)
- Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lijin Joo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - DongHyuk Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Priscilla Lee
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Feng Wang
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-cheong Chan
- Department of Surgery, North District Hospital, Hong Kong, China
| | - Sze Hong Law
- Department of Surgery, North District Hospital, Hong Kong, China
- Department of Pathology, Yan Chai Hospital, Hong Kong, China
| | - Yee-kei Tsoi
- Department of Surgery, North District Hospital, Hong Kong, China
| | - Gary M. Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shui Wun Lai
- Department of Pathology, North District Hospital, Hong Kong, China
| | - Cherry Wu
- Department of Pathology, North District Hospital, Hong Kong, China
| | - Shuyuan Yang
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Emily Ying Yang Chan
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Samuel Yeung Shan Wong
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lap Ah Tse
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
42
|
Liu W, Ji H, Zhao J, Song J, Zheng S, Chen L, Li P, Tan X, Ding Y, Pu R, Yin J, Han X, Cao G. Transcriptional repression and apoptosis influence the effect of APOBEC3A/3B functional polymorphisms on biliary tract cancer risk. Int J Cancer 2022; 150:1825-1837. [PMID: 35020946 DOI: 10.1002/ijc.33930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
APOBEC3-related somatic mutations are predominant in biliary tract cancers (BTCs). We aimed to elucidate the roles of APOBEC3A/3B functional polymorphisms and their influencing factors on the development of cholangiocarcinoma and gallbladder cancer (GBC). Polymorphisms at the promoter regions of APOBEC3A and APOBEC3B were genotyped in 3231 participants using quantitative PCR. Dual-luciferase reporter assay was applied to investigate the promoter activity. The difference in gene accessibility between cholangiocarcinoma cells and GBC cells was analyzed through single-cell transposase accessible chromatin sequencing. The effect of APOBEC3A on apoptosis was examined by cytometry. It's found that rs2267401-G at the APOBEC3B promoter decreases cholangiocarcinoma risk (age-, gender-adjusted odds ratio [AOR], 0.69; 95% confidence interval [CI], 0.51-0.94) but increases GBC risk (AOR, 2.04; 95% CI, 1.35-3.10). rs2267401-G confers a decreased APOBEC3B promoter activity in cholangiocarcinoma cells but an increased activity in GBC cells, possibly because the transcriptional repressor TFAP2A is over-expressed in cholangiocarcinoma. Tumor necrosis factor-α (TNF-α) increases the level of APOBEC3B via inhibiting TFAP2A expression rather than directly increasing the accessibility of APOBEC3B promoter. APOBEC3A promoter rs12157810-C decreased the risks of cholangiocarcinoma and GBC, with an AOR (95% CI) of 0.80 (0.66-0.97) and 0.75 (0.59-0.95), respectively. rs12157810-C upregulated the promoter activity in both cholangiocarcinoma and GBC cells. TNF-α upregulated the activity of the APOBEC3A promoter with rs12157810-C via increasing the accessibility of Ets-1 p68. APOBEC3A overexpression attenuates cancer evolution by causing apoptosis, in contrast to APOBEC3B. The heterogeneity in the transcriptional regulation of APOBEC3B affects the evolutionary potential of cancer cells in the inflammatory microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Hongxiang Ji
- Department of Liver Cancer Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Jun Zhao
- Department of Liver Cancer Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Shaoling Zheng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Lei Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Peng Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Rui Pu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Department of Chronic Disease, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
43
|
APOBEC mediated mutagenesis drives genomic heterogeneity in endometriosis. J Hum Genet 2022; 67:323-329. [PMID: 35017684 DOI: 10.1038/s10038-021-01003-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022]
Abstract
Endometriosis is a benign gynecologic condition, acting as a precursor of certain histological subtypes of ovarian cancers. The epithelial cells of endometriotic tissues and normal uterine endometrium accumulated somatic mutations in cancer-associated genes such as phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and Kirsten rat sarcoma (KRAS) proto-oncogene. To determine the genomic characteristic of endometriotic epithelial cells and normal uterine endometrium and to identify the predominant mutational process acting on them, we studied the somatic mutation profiles obtained from whole exome sequencing of 14 endometriotic epithelium and 11 normal uterine endometrium tissues and classified them into mutational signatures. We observed that single base substitutions 2/13 (SBS), attributed to Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit (APOBEC) induced mutagenesis, were significant in endometriotic tissues, but not in the normal uterine endometrium. Additionally, the larger number and wider allele frequency distribution of APOBEC signature mutations, compared to cancer-associated driver mutations in endometriotic epithelium suggested APOBEC mutagenesis as an important source of mutational burden and heterogeneity in endometriosis. Further, the relative risk of enriched APOBEC signature mutations was higher in endometriosis patients who were carriers of APOBEC3A/3B germline deletion, a common polymorphism in East Asians which involves the complete loss of APOBEC3B coding region. Our results illustrate the significance of APOBEC induced mutagenesis in driving the genomic heterogeneity of endometriosis.
Collapse
|
44
|
Impact of the APOBEC3A/B deletion polymorphism on risk of ovarian cancer. Sci Rep 2021; 11:23463. [PMID: 34873230 PMCID: PMC8648731 DOI: 10.1038/s41598-021-02820-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
A germline 29.5-kb deletion variant removes the 3’ end of the APOBEC3A gene and a large part of APOBEC3B, creating a hybrid gene that has been linked to increased APOBEC3 activity and DNA damage in human cancers. We genotyped the APOBEC3A/B deletion in hospital-based samples of 1398 Norwegian epithelial ovarian cancer patients without detected BRCA1/2 germline mutations and compared to 1,918 healthy female controls, to assess the potential cancer risk associated with the deletion. We observed an association between APOBEC3A/B status and reduced risk for ovarian cancer (OR = 0.75; CI = 0.61–0.91; p = 0.003) applying the dominant model. Similar results were found in other models. The association was observed both in non-serous and serous cases (dominant model: OR = 0.69; CI = 0.50–0.95; p = 0.018 and OR = 0.77; CI = 0.62–0.96; p = 0.019, respectively) as well as within high-grade serous cases (dominant model: OR = 0.79; CI = 0.59–1.05). For validation purposes, we mined an available large multinational GWAS-based data set of > 18,000 cases and > 26,000 controls for SNP rs12628403, known to be in linkage disequilibrium with the APOBEC3A/B deletion. We found a non-significant trend for SNP rs12628403 being linked to reduced risk of ovarian cancer in general and similar trends for all subtypes. For clear cell cancers, the risk reduction reached significance (OR = 0.85; CI = 0.69–1.00).
Collapse
|
45
|
Liu W, Deng Y, Li Z, Chen Y, Zhu X, Tan X, Cao G. Cancer Evo-Dev: A Theory of Inflammation-Induced Oncogenesis. Front Immunol 2021; 12:768098. [PMID: 34880864 PMCID: PMC8645856 DOI: 10.3389/fimmu.2021.768098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a prerequisite for the development of cancers. Here, we present the framework of a novel theory termed as Cancer Evolution-Development (Cancer Evo-Dev) based on the current understanding of inflammation-related carcinogenesis, especially hepatocarcinogenesis induced by chronic infection with hepatitis B virus. The interaction between genetic predispositions and environmental exposures, such as viral infection, maintains chronic non-resolving inflammation. Pollution, metabolic syndrome, physical inactivity, ageing, and adverse psychosocial exposure also increase the risk of cancer via inducing chronic low-grade smoldering inflammation. Under the microenvironment of non-resolving inflammation, pro-inflammatory factors facilitate the generation of somatic mutations and viral mutations by inducing the imbalance between the mutagenic forces such as cytidine deaminases and mutation-correcting forces including uracil-DNA glycosylase. Most cells with somatic mutations and mutated viruses are eliminated in survival competition. Only a small percentage of mutated cells survive, adapt to the hostile environment, retro-differentiate, and function as cancer-initiating cells via altering signaling pathways. These cancer-initiating cells acquire stem-ness, reprogram metabolic patterns, and affect the microenvironment. The carcinogenic process follows the law of "mutation-selection-adaptation". Chronic physical activity reduces the levels of inflammation via upregulating the activity and numbers of NK cells and lymphocytes and lengthening leukocyte telomere; downregulating proinflammatory cytokines including interleukin-6 and senescent lymphocytes especially in aged population. Anti-inflammation medication reduces the occurrence and recurrence of cancers. Targeting cancer stemness signaling pathways might lead to cancer eradication. Cancer Evo-Dev not only helps understand the mechanisms by which inflammation promotes the development of cancers, but also lays the foundation for effective prophylaxis and targeted therapy of various cancers.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zishuai Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yifan Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaoqiong Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, Cortez Cardoso Penha R, Fitzgerald S, Bergstrom EN, Atkins J, He Y, Khandekar A, Smith-Byrne K, Carreira C, Gaborieau V, Latimer C, Thomas E, Abnizova I, Bucciarelli PE, Jones D, Teague JW, Abedi-Ardekani B, Serra S, Scoazec JY, Saffar H, Azmoudeh-Ardalan F, Sotoudeh M, Nikmanesh A, Poustchi H, Niavarani A, Gharavi S, Eden M, Richman P, Campos LS, Fitzgerald RC, Ribeiro LF, Soares-Lima SC, Dzamalala C, Mmbaga BT, Shibata T, Menya D, Goldstein AM, Hu N, Malekzadeh R, Fazel A, McCormack V, McKay J, Perdomo S, Scelo G, Chanudet E, Humphreys L, Alexandrov LB, Brennan P, Stratton MR. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet 2021; 53:1553-1563. [PMID: 34663923 DOI: 10.1038/s41588-021-00928-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/28/2021] [Indexed: 12/28/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.
Collapse
Affiliation(s)
- Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - S M Ashiqul Islam
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Dariush Nasrollahzadeh
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | | | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Erik N Bergstrom
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Joshua Atkins
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Yudou He
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Azhar Khandekar
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Valerie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Emily Thomas
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Irina Abnizova
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Pauline E Bucciarelli
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Jean-Yves Scoazec
- Department Laboratory Medicine and Pathology, Gustave Roussy, Paris, France
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Azmoudeh-Ardalan
- Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Arash Nikmanesh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Samad Gharavi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Michael Eden
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Paul Richman
- Histopathology Department, Hemel Hempstead General Hospital, Hemel Hempstead, UK
| | - Lia S Campos
- West Suffolk NHS Foundation Trust, Bury St Edmunds, UK
| | | | | | | | | | - Blandina Theophil Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre & Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Centre Research Institute, Tokyo, Japan
| | | | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Abdolreza Fazel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Valerie McCormack
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ghislaine Scelo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Estelle Chanudet
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ludmil B Alexandrov
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
47
|
Scholtes GK, Sawyer AM, Vaca CC, Clerc I, Roh M, Song C, D'Aquila RT. The von Hippel-Lindau Cullin-RING E3 ubiquitin ligase regulates APOBEC3 cytidine deaminases. Transl Res 2021; 237:1-15. [PMID: 34004371 PMCID: PMC8440357 DOI: 10.1016/j.trsl.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The 7 members of the A3 family of cytidine deaminases (A3A to A3H) share a conserved catalytic activity that converts cytidines in single-stranded (ss) DNA into uridines, thereby inducing mutations. After their initial identification as cell-intrinsic defenses against HIV and other retroviruses, A3s were also found to impair many additional viruses. Moreover, some of the A3 proteins (A3A, A3B, and A3H haplotype I) are dysregulated in cancer cells, thereby causing chromosomal mutations that can be selected to fuel progression of malignancy. Viral mechanisms that increase transcription of A3 genes or induce proteasomal degradation of A3 proteins have been characterized. However, only a few underlying biological mechanisms regulating levels of A3s in uninfected cells have been described. Here, we characterize that the von Hippel-Lindau tumor suppressor (pVHL), via its CRLpVHL, induces degradation of all 7 A3 proteins. Two independent lines of evidence supported the conclusion that the multiprotein CRLpVHL complex is necessary for A3 degradation. CRLpVHL more effectively induced degradation of nuclear, procancer A3 (A3B) than the cytoplasmic, antiretroviral A3 (A3G). These results identify specific cellular factors that regulate A3s post-translationally.
Collapse
Affiliation(s)
- Gael K Scholtes
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Aubrey M Sawyer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cristina C Vaca
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Isabelle Clerc
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Meejeon Roh
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Chisu Song
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard T D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
48
|
Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer 2021; 21:619-637. [PMID: 34316057 DOI: 10.1038/s41568-021-00377-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Whole-genome sequencing has brought the cancer genomics community into new territory. Thanks to the sheer power provided by the thousands of mutations present in each patient's cancer, we have been able to discern generic patterns of mutations, termed 'mutational signatures', that arise during tumorigenesis. These mutational signatures provide new insights into the causes of individual cancers, revealing both endogenous and exogenous factors that have influenced cancer development. This Review brings readers up to date in a field that is expanding in computational, experimental and clinical directions. We focus on recent conceptual advances, underscoring some of the caveats associated with using the mutational signature frameworks and highlighting the latest experimental insights. We conclude by bringing attention to areas that are likely to see advancements in clinical applications.
Collapse
Affiliation(s)
- Gene Koh
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Sophie Momen
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
49
|
Tan X, Zheng S, Liu W, Liu Y, Kang Z, Li Z, Li P, Song J, Hou J, Yang B, Han X, Wang F, Jing C, Cao G. Effect of APOBEC3A functional polymorphism on renal cell carcinoma is influenced by tumor necrosis factor-α and transcriptional repressor ETS1. Am J Cancer Res 2021; 11:4347-4363. [PMID: 34659891 PMCID: PMC8493372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/13/2021] [Indexed: 06/13/2023] Open
Abstract
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) 3 cytidine deaminases are the prominent drivers of somatic mutations in cancers. However, the effect of APOBEC3s functional polymorphisms on the development of renal cell carcinoma (RCC) remains unknown. Five genetic polymorphisms affecting the expression of APOBEC3A (A3A), APOBEC3B, and APOBEC4 and uracil DNA glycosylase (UNG) were genotyped in 728 RCC patients and 1500 healthy controls. The effects of tumor necrosis factor-α (TNFα) and interleukin-6 on the activity of the A3A promoter with rs12157810-A or -C in four RCC cell lines (786-O, A498, Caki2, ACHN) and two colorectal cancer cell lines (HCT116, SW620) were evaluated using dual-luciferase assays. Transcriptional repressors to the A3A promoter were identified by chromatin immunoprecipitation-quantitative PCR. The proapoptotic effect of A3A on RCC cells was evaluated using cytometry. The prognostic values of A3A and ETS1 were evaluated by the Cox regression analysis. The expressions of A3A and ETS1 were evaluated in clear cell RCC (ccRCC) specimens with different polymorphic genotypes using quantitative RT-PCR and immunohistochemistry. Of those functional polymorphisms, CC genotype at rs12157810 in the A3A promoter was significantly associated with a decreased risk of ccRCC, compared to the AA genotype (odds ratio adjusted for age and gender, 0.41, 95% confidence interval [CI], 0.28-0.57). Other polymorphic genotypes were not associated with the risk of RCC. The activity of the A3A promoter with rs12157810-C was significantly higher than that with rs12157810-A in the four RCC cell lines and two colorectal cancer cell lines. The activity of the A3A promoter with rs12157810-C was greatly up-regulated by TNFα and predominantly inhibited by a transcriptional repressor ETS1. The binding of ETS1 to the A3A promoter with rs12157810-C was looser than that with rs12157810-A. Ectopic expression of A3A significantly promoted apoptosis in ccRCC cells, rather than in colorectal cancer cells. Higher ETS1 expression predicted a favorable prognosis in ccRCC, with a hazard ratio of 0.58 (95% CI, 0.43-0.78). Rs121567810-C up-regulates the A3A promoter activity, possibly due to higher response to TNFα and looser transcriptional repression by ETS1. Up-regulation of A3A increases apoptosis, thus decreasing ccRCC risk in those carrying rs121567810-C.
Collapse
Affiliation(s)
- Xiaojie Tan
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Shaoling Zheng
- Department of Epidemiology, School of Medicine, Jinan UniversityGuangzhou 510632, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Yan Liu
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Zhengchun Kang
- Department of General Surgery, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Zishuai Li
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Peng Li
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Jianguo Hou
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Bo Yang
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Xue Han
- Department of Chronic Diseases, The Center for Disease Control and Prevention of Yangpu DistrictShanghai 200090, China
| | - Fubo Wang
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan UniversityGuangzhou 510632, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| |
Collapse
|
50
|
Guo J, Zhou Y, Xu C, Chen Q, Sztupinszki Z, Börcsök J, Xu C, Ye F, Tang W, Kang J, Yang L, Zhong J, Zhong T, Hu T, Yu R, Szallasi Z, Deng X, Li Q. Genetic Determinants of Somatic Selection of Mutational Processes in 3,566 Human Cancers. Cancer Res 2021; 81:4205-4217. [PMID: 34215622 PMCID: PMC9662923 DOI: 10.1158/0008-5472.can-21-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023]
Abstract
The somatic landscape of the cancer genome results from different mutational processes represented by distinct "mutational signatures." Although several mutagenic mechanisms are known to cause specific mutational signatures in cell lines, the variation of somatic mutational activities in patients, which is mostly attributed to somatic selection, is still poorly explained. Here, we introduce a quantitative trait, mutational propensity (MP), and describe an integrated method to infer genetic determinants of variations in the mutational processes in 3,566 cancers with specific underlying mechanisms. As a result, we report 2,314 candidate determinants with both significant germline and somatic effects on somatic selection of mutational processes, of which, 485 act via cancer gene expression and 1,427 act through the tumor-immune microenvironment. These data demonstrate that the genetic determinants of MPs provide complementary information to known cancer driver genes, clonal evolution, and clinical biomarkers. SIGNIFICANCE: The genetic determinants of the somatic mutational processes in cancer elucidate the biology underlying somatic selection and evolution of cancers and demonstrate complementary predictive power across cancer types.
Collapse
Affiliation(s)
- Jintao Guo
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chaoqun Xu
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qinwei Chen
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | - Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Canqiang Xu
- XMU-Aginome Joint Lab, School of Informatics, Xiamen University, Xiamen, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weiwei Tang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiapeng Kang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lu Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiaxin Zhong
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Taoling Zhong
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tianhui Hu
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Rongshan Yu
- XMU-Aginome Joint Lab, School of Informatics, Xiamen University, Xiamen, China
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Xiamen University, Xiamen, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Corresponding Author: Qiyuan Li, School of Medicine, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China. Phone: 8659-2218-5175; E-mail:
| |
Collapse
|