1
|
Fan J, Wang X, Wang Y, Song J, Chen M, Weng C, Wang L, Chi Z, Zhang W. Dietary glutamine supplementation improves both Th1 and Th17 responses via CARD11-mTORC1 pathway in murine model of atopic dermatitis. Int Immunopharmacol 2024; 143:113316. [PMID: 39368135 DOI: 10.1016/j.intimp.2024.113316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Glutamine (GLN) is considered an immunomodulatory nutrient, while caspase recruitment domain 11 (CARD11) is a susceptibility locus for atopic dermatitis (AD). T-cell antigen receptor (TCR)-stimulated GLN uptake requires CARD11. However, the specific pathogenesis of AD via GLN uptake remains unclear. This study aimed to elucidate the association between dietary GLN supplementation and the CARD11 pathway in the pathogenesis of AD, focusing on T helper type 1 (Th1) and Th17 cell expression in AD. Herein, wild-type (WT) mice with house dust mite epidermal-sensitized skin exhibited increased expression of interferon-gamma (IFN-gamma) and interleukin (IL)-17, whereas CARD11 deficiency impaired Th1 and Th17 responses at the same site. CARD11 is a key mediator of Th1 and Th17 expression in AD. Additionally, we suppressed mammalian target of rapamycin complex 1 (mTORC1) signaling, downstream of CARD11, to underscore the critical role of CARD11 in mediating Th1 and Th17 expression in AD. Further, dietary supplementation of GLN to CARD11-/- mice restored Th1 and Th17 responses, whereas inflammatory expression was reduced in WT mice, and p-CARD11 expression and mTORC1 signaling activity were increased in JPM50.6 cells and CARD11-/- mice. Upon inhibiting the GLN transporter, alanine-serine-cysteine transporter carrier 2 (ASCT2), we observed that the Th1 and Th17 response in AD was reduced. Conclusively, ASCT2-mediated GLN uptake improves the expression of Th1 and Th17 cells via CARD11-mTORC1 signaling pathway in AD, suggesting the potential of glutamine supplementation for AD treatment.
Collapse
Affiliation(s)
- Junwen Fan
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoming Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yufei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mingxin Chen
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Cuiye Weng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zailong Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Oktelik FB, Wang M, Keles S, Gungor HE, Cansever M, Can S, Karakoc-Aydiner E, Baris S, Schmitz-Abe K, Benamar M, Chatila TA. DOCK8 deficiency due to a deep intronic variant in two kindreds with hyper-IgE syndrome. Clin Immunol 2024; 268:110384. [PMID: 39437980 DOI: 10.1016/j.clim.2024.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency underlies the majority of cases of patients with autosomal recessive form of the hyper-immunoglobulin E syndrome (HIES). Most DOCK8 mutations involve deletions and splice junction mutations that abrogate protein expression. However, a few patients whose presentation is reminiscent of DOCK8 deficiency have no identifiable mutations. Using Whole Exome Sequencing (WES), we identified a deep intronic homozygous DOCK8 variant located in intron 36 (c.4626 + 76 A > G) in two unrelated patients with features of HIES that resulted in an in-frame 75 base pair intronic sequence insertion in DOCK8 cDNA, resulting in a premature stop codon (p.S1542ins6Ter). This variant resulted in variable decrease in DOCK8 expression that was associated with impaired T cell receptor-triggered actin polymerization, decreased IL-6-induced STAT3 phosphorylation, reduced expression of the Th17 cell markers CCR6 and IL-17, and higher frequencies of GATA3+ T cells indicative of Th2 skewing. Our approach extends the reach of WES in identifying disease-related intronic variants. It highlights the role of non-coding mutations in immunodeficiency disorders, including DOCK8 deficiency, and emphasizes the need to explore these mutations in unexplained inborn errors of immunity.
Collapse
Affiliation(s)
- Fatma Betul Oktelik
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkiye; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Sevgi Keles
- Necmettin Erbakan University, Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkiye
| | - Hatice Eke Gungor
- University of Health Sciences, Kayseri City Hospital, Department of Pediatric Allergy and Immunology, Kayseri, Turkiye
| | - Murat Cansever
- University of Health Sciences, Kayseri City Hospital, Department of Pediatric Allergy and Immunology, Kayseri, Turkiye
| | - Salim Can
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Elif Karakoc-Aydiner
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Safa Baris
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Jackson Health System, Miami, FL, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Dick JK, Boull C, Pozos TC, Maguiness SM. Improvement in Atopic Dermatitis and Recurrent Infection With Dupilumab in Children With Distinct Genetic Types of Hyper-IgE Syndrome: A Case Series and Literature Review. Pediatr Dermatol 2024. [PMID: 39420803 DOI: 10.1111/pde.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Hyperimmunoglobulin E syndrome (HIES) is a group of rare genetic disorders characterized by severe atopic dermatitis and recurrent skin and pulmonary infections. The efficacy of dupilumab in pediatric patients with HIES-associated severe atopic dermatitis is relatively understudied. Here, we present a series of three children with HIES, two with AD-HIES caused by STAT3 mutations, and one with AR-HIES caused by biallelic mutations in ZNF341. In all cases, dupilumab treatment led to sustained clearance of severe atopic dermatitis over multiple years, as well as improvements in systemic symptoms of HIES.
Collapse
Affiliation(s)
- Jenna K Dick
- Division of Pediatric Dermatology, Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christina Boull
- Division of Pediatric Dermatology, Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tamara C Pozos
- Department of Clinical Immunology, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Sheilagh M Maguiness
- Division of Pediatric Dermatology, Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Galletta F, Gambadauro A, Foti Randazzese S, Passanisi S, Sinatra V, Caminiti L, Zirilli G, Manti S. Pathophysiology of Congenital High Production of IgE and Its Consequences: A Narrative Review Uncovering a Neglected Setting of Disorders. Life (Basel) 2024; 14:1329. [PMID: 39459629 PMCID: PMC11509725 DOI: 10.3390/life14101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Elevated serum IgE levels serve as a critical marker for uncovering hidden immunological disorders, particularly inborn errors of immunity (IEIs), which are often misdiagnosed as common allergic conditions. IgE, while typically associated with allergic diseases, plays a significant role in immune defense, especially against parasitic infections. However, extremely high levels of IgE can indicate more severe conditions, such as Hyper-IgE syndromes (HIES) and disorders with similar features, including Omenn syndrome, Wiskott-Aldrich syndrome, and IPEX syndrome. Novel insights into the genetic mutations responsible for these conditions highlight their impact on immune regulation and the resulting clinical features, including recurrent infections, eczema, and elevated IgE. This narrative review uniquely integrates recent advances in the genetic understanding of IEIs and discusses how these findings impact both diagnosis and treatment. Additionally, emerging therapeutic strategies, such as hematopoietic stem cell transplantation (HSCT) and gene therapies, are explored, underscoring the potential for personalized treatment approaches. Emphasizing the need for precise diagnosis and tailored interventions aims to enhance patient outcomes and improve the quality of care for those with elevated IgE levels and associated immunological disorders.
Collapse
Affiliation(s)
| | | | | | - Stefano Passanisi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| | | | | | | | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| |
Collapse
|
5
|
Zhao P, Meng Q, Wu Y, Zhang L, Zhang X, Tan L, Ding Y, Lu X, He X. A new-disease-causing dominant-negative variant in CARD11 gene in a Chinese case with recurrent fever. Sci Rep 2024; 14:24247. [PMID: 39414811 PMCID: PMC11484780 DOI: 10.1038/s41598-024-71673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/29/2024] [Indexed: 10/18/2024] Open
Abstract
Immunodeficiency 11B with atopic dermatitis (IMD11B, OMIM:617638) is rare primary immunodeficiency disease caused by germline dominant negative (DN) mutations in the CARD11 gene. Affected patients present with immune dysfunction, recurrent infections and atopic dermatitis. In this study, we sought to identify and characterize the genetic variant in one patient with periodic fever, recurrent infections, and eczema. Trio whole-exome sequencing (WES) was employed in this patient and her parents, and Sanger sequencing validated the potential pathogenic variant. In vitro functional study was performed to evaluate the pathogenicity of genetic variant identified. A very rare missense mutation (c.2324C > T, p.S775L) in CARD11 gene (NM_032415) was identified by WES in the patient but not her parents. Luciferase reporter assays and co-immunoprecipitation demonstrated mutation exerts a dominant-interfering effect on wild-type CARD11, inhibiting the activity of NF-κB. RNA sequencing analysis also confirmed that mutant CARD11 inhibited down-stream transcriptional activity of NF-κB. A review of literature doesn't found significant genotype-phenotype correlation. We identified a vary rare DN CARD11 mutation, expanding the genetic and phenotypic spectrum of CARD11.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qingjie Meng
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yali Wu
- Department of Rheumatology and Immunology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiankai Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yan Ding
- Department of Rheumatology and Immunology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - XiaoXia Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
6
|
Saito H, Tamari M, Motomura K, Ikutani M, Nakae S, Matsumoto K, Morita H. Omics in allergy and asthma. J Allergy Clin Immunol 2024:S0091-6749(24)01025-X. [PMID: 39384073 DOI: 10.1016/j.jaci.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
This review explores the transformative impact of omics technologies on allergy and asthma research in recent years, focusing on advancements in high-throughput technologies related to genomics and transcriptomics. In particular, the rapid spread of single-cell RNA sequencing has markedly advanced our understanding of the molecular pathology of allergic diseases. Furthermore, high-throughput genome sequencing has accelerated the discovery of monogenic disorders that were previously overlooked as ordinary intractable allergic diseases. We also introduce microbiomics, proteomics, lipidomics, and metabolomics, which are quickly growing areas of research interest, although many of their current findings remain inconclusive as solid evidence. By integrating these omics data, we will gain deeper insights into disease mechanisms, leading to the development of precision medicine approaches that promise to enhance treatment outcomes.
Collapse
Affiliation(s)
- Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masashi Ikutani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susumu Nakae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
7
|
Wong C, Gerasimavicius L, Crow YJ, Uggenti C. MDA5 gain-of-function associated with a Glu794del mutation. J Clin Immunol 2024; 45:20. [PMID: 39356338 PMCID: PMC11447049 DOI: 10.1007/s10875-024-01813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Affiliation(s)
- Callie Wong
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Laboratory of Neurogenetics and Neuroinflammation, Institute Imagine, Paris, France.
| | - Carolina Uggenti
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Dabbah-Krancher G, Ruchinskas A, Kallarakal MA, Lee KP, Bauman BM, Epstein B, Yin H, Krappmann D, Schaefer BC, Snow AL. A20 intrinsically influences human effector T-cell survival and function by regulating both NF-κB and JNK signaling. Eur J Immunol 2024:e2451245. [PMID: 39359035 DOI: 10.1002/eji.202451245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
A20 is a dual-function ubiquitin-editing enzyme that maintains immune homeostasis by restraining inflammation. Although A20 serves a similar negative feedback function for T-cell receptor (TCR) signaling, the molecular mechanisms utilized and their ultimate impact on human T-cell function remain unclear. TCR engagement triggers the assembly of the CARD11-BCL10-MALT1 (CBM) protein complex, a signaling platform that governs the activation of downstream transcription factors including NF-κB and c-Jun/AP-1. Utilizing WT and A20 knockout Jurkat T cells, we found that A20 is required to negatively regulate NF-κB and JNK. Utilizing a novel set of A20 mutants in NF-κB and AP-1-driven reporter systems, we discovered the ZnF7 domain is crucial for negative regulatory capacity, while deubiquitinase activity is dispensable. Successful inactivation of A20 in human primary effector T cells congruently conferred sustained NF-κB and JNK signaling, including enhanced upregulation of activation markers, and increased secretion of several cytokines including IL-9. Finally, loss of A20 in primary human T cells resulted in decreased sensitivity to restimulation-induced cell death and increased sensitivity to cytokine withdrawal-induced death. These findings demonstrate the importance of A20 in maintaining T-cell homeostasis via negative regulation of both NF-κB and JNK signaling.
Collapse
Affiliation(s)
- Gina Dabbah-Krancher
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Allison Ruchinskas
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Melissa A Kallarakal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
| | - Katherine P Lee
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
| | - Bradly M Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Benjamin Epstein
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Hongli Yin
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Brian C Schaefer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
| |
Collapse
|
9
|
Wang J, Tian L, Zhang W, Tang S, Zhao W, Guo Y, Wu C, Lin Y, Ke X, Jing H. Specific Mutation Predict Relapse/Refractory Diffuse Large B-Cell Lymphoma. J Blood Med 2024; 15:407-419. [PMID: 39279878 PMCID: PMC11401521 DOI: 10.2147/jbm.s471639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background The application of rituximab has significantly enhanced the overall survival rates in patients with diffuse large B-cell lymphoma (DLBCL). Regrettably, a significant number of patients still progress to relapse/refractory DLBCL (rrDLBCL). Methods Herein, we employed targeted sequencing of 55 genes to investigate if gene mutations could predict the progression to rrDLBCL. Additionally, we compared the mutation profiles at the time of DLBCL diagnosis with those found in rrDLBCL cases. Results Our findings highlighted significantly elevated mutation frequencies of TP53, MEF2B and CD58 in diagnostic biopsies from patients who progressed to relapse or refractory disease, with CD58 mutations exclusively observed in the rrDLBCL group. In assessing the predictive power of mutation profiles for treatment responses in primary DLBCL patients, we found that the frequency of CARD11 mutations was substantially higher in non-response group as compared with those who responded to immunochemotherapy. In addition, we revealed mutations in HIST2H2AB, BCL2, NRXN3, FOXO1, HIST1H1C, LYN and TBL1XR1 genes were only detected in initial diagnostic biopsies, mutations in the EBF1 gene were solely detected in the rrDLBCL patients. Conclusion Collectively, this study elucidates some of the genetic mechanisms contributing to the progression of rrDLBCL and suggests that the presence of CD58 mutations might serve as a powerful predictive marker for relapse/refractory outcomes in primary DLBCL patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lei Tian
- Health Management Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Shuhan Tang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Wei Zhao
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yu Guo
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yuansheng Lin
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiaoyan Ke
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| |
Collapse
|
10
|
James AE, Abdalgani M, Khoury P, Freeman AF, Milner JD. T H2-driven manifestations of inborn errors of immunity. J Allergy Clin Immunol 2024; 154:245-254. [PMID: 38761995 DOI: 10.1016/j.jaci.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monogenic lesions in pathways critical for effector functions responsible for immune surveillance, protection against autoinflammation, and appropriate responses to allergens and microorganisms underlie the pathophysiology of inborn errors of immunity (IEI). Variants in cytokine production, cytokine signaling, epithelial barrier function, antigen presentation, receptor signaling, and cellular processes and metabolism can drive autoimmunity, immunodeficiency, and/or allergic inflammation. Identification of these variants has improved our understanding of the role that many of these proteins play in skewing toward TH2-related allergic inflammation. Early-onset or atypical atopic disease, often in conjunction with immunodeficiency and/or autoimmunity, should raise suspicion for an IEI. This becomes a diagnostic dilemma if the initial clinical presentation is solely allergic inflammation, especially when the prevalence of allergic diseases is becoming more common. Genetic sequencing is necessary for IEI diagnosis and is helpful for early recognition and implementation of targeted treatment, if available. Although genetic evaluation is not feasible for all patients with atopy, identifying atopic patients with molecular immune abnormalities may be helpful for diagnostic, therapeutic, and prognostic purposes. In this review, we focus on IEI associated with TH2-driven allergic manifestations and classify them on the basis of the affected molecular pathways and predominant clinical manifestations.
Collapse
Affiliation(s)
- Alyssa E James
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manar Abdalgani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paneez Khoury
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
11
|
Satitsuksanoa P, van de Veen W, Tan G, Lopez JF, Wirz O, Jansen K, Sokolowska M, Mirer D, Globinska A, Boonpiyathad T, Schneider SR, Barletta E, Spits H, Chang I, Babayev H, Tahralı İ, Deniz G, Yücel EÖ, Kıykım A, Boyd SD, Akdis CA, Nadeau K, Akdis M. Allergen-specific B cell responses in oral immunotherapy-induced desensitization, remission, and natural outgrowth in cow's milk allergy. Allergy 2024. [PMID: 38989779 DOI: 10.1111/all.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Antigen-specific memory B cells play a key role in the induction of desensitization and remission to food allergens in oral immunotherapy and in the development of natural tolerance (NT). Here, we characterized milk allergen Bos d 9-specific B cells in oral allergen-specific immunotherapy (OIT) and in children spontaneously outgrowing cow's milk allergy (CMA) due to NT. METHODS Samples from children with CMA who received oral OIT (before, during, and after), children who naturally outgrew CMA (NT), and healthy individuals were received from Stanford biobank. Bos d 9-specific B cells were isolated by flow cytometry and RNA-sequencing was performed. Protein profile of Bos d 9-specific B cells was analyzed by proximity extension assay. RESULTS Increased frequencies of circulating milk allergen Bos d 9-specific B cells were observed after OIT and NT. Milk-desensitized subjects showed the partial acquisition of phenotypic features of remission, suggesting that desensitization is an earlier stage of remission. Within these most significantly expressed genes, IL10RA and TGFB3 were highly expressed in desensitized OIT patients. In both the remission and desensitized groups, B cell activation-, Breg cells-, BCR-signaling-, and differentiation-related genes were upregulated. In NT, pathways associated with innate immunity characteristics, development of marginal zone B cells, and a more established suppressor function of B cells prevail that may play a role in long-term tolerance. The analyses of immunoglobulin heavy chain genes in specific B cells demonstrated that IgG2 in desensitization, IgG1, IgA1, IgA2, IgG4, and IgD in remission, and IgD in NT were predominating. Secreted proteins from allergen-specific B cells revealed higher levels of regulatory cytokines, IL-10, and TGF-β after OIT and NT. CONCLUSION Allergen-specific B cells are essential elements in regulating food allergy towards remission in OIT-received and naturally resolved individuals.
Collapse
Affiliation(s)
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Functional Genomics Center Zürich, ETH Zürich, Zürich, Switzerland
| | - Juan-Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Oliver Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Swiss Institute of Bioinformatics, Laussane, Switzerland
| | - Hergen Spits
- Department of Experimental Immunology, Academic Medical Center of the University of Amsterdam, Amsterdam, the Netherlands
| | - Iris Chang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, California, USA
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - İlhan Tahralı
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esra Özek Yücel
- Division of Pediatrics, Department of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Pediatric Allergy and Immunology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayca Kıykım
- Department of Pediatric Allergy and Immunology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, California, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| |
Collapse
|
12
|
Hu Y, Han L, Xu W, Li T, Zhao Q, Lu W, Sun J, Wang Y. CARD11 regulates the thymic Treg development in an NF-κB-independent manner. Front Immunol 2024; 15:1364957. [PMID: 38650932 PMCID: PMC11033321 DOI: 10.3389/fimmu.2024.1364957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction CARD11 is a lymphoid lineage-specific scaffold protein regulating the NF-κB activation downstream of the antigen receptor signal pathway. Defective CARD11 function results in abnormal development and differentiation of lymphocytes, especially thymic regulatory T cells (Treg). Method In this study, we used patients' samples together with transgenic mouse models carrying pathogenic CARD11 mutations from patients to explore their effects on Treg development. Immunoblotting and a GFP receptor assay were used to evaluate the activation effect of CARD11 mutants on NF-κB signaling. Then the suppressive function of Tregs carrying distinct CARD11 mutations was measured by in vitro suppression assay. Finally, we applied the retroviral transduced bone marrow chimeras to rescue the Treg development in an NF-κB independent manner. Results and discuss We found CARD11 mutations causing hyper-activated NF-κB signals also gave rise to compromised Treg development in the thymus, similar to the phenotype in Card11 deficient mice. This observation challenges the previous view that CARD11 regulates Treg lineage dependent on the NF-kB activation. Mechanistic investigations reveal that the noncanonical function CARD11, which negatively regulates the AKT/ FOXO1 signal pathway, is responsible for regulating Treg generation. Moreover, primary immunodeficiency patients carrying CARD11 mutation, which autonomously activates NF-κB, also represented the reduced Treg population in their peripheral blood. Our results propose a new regulatory function of CARD11 and illuminate an NF-κB independent pathway for thymic Treg lineage commitment.
Collapse
Affiliation(s)
- Yu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingli Han
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenwen Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianci Li
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qifan Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ying Wang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
13
|
Staal J, Driege Y, Van Gaever F, Steels J, Beyaert R. Chimeric and mutant CARD9 constructs enable analyses of conserved and diverged autoinhibition mechanisms in the CARD-CC protein family. FEBS J 2024; 291:1220-1245. [PMID: 38098267 DOI: 10.1111/febs.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Caspase recruitment domain-containing protein (CARD)9, CARD10, CARD11, and CARD14 all belong to the CARD-coiled coil (CC) protein family and originated from a single common ancestral protein early in vertebrate evolution. All four proteins form CARD-CC/BCL10/MALT1 (CBM) complexes leading to nuclear factor-kappa-B (NF-κB) activation after upstream phosphorylation by various protein kinase C (PKC) isoforms. CBM complex signaling is critical for innate and adaptive immunity, but aberrant activation can cause autoimmune or autoinflammatory diseases, or be oncogenic. CARD9 shows a superior auto-inhibition compared with other CARD-CC family proteins, with very low spontaneous activity when overexpressed in HEK293T cells. In contrast, the poor auto-inhibition of other CARD-CC family proteins, especially CARD10 (CARMA3) and CARD14 (CARMA2), is hampering characterization of upstream activators or activating mutations in overexpression studies. We grafted different domains from CARD10, 11, and 14 on CARD9 to generate chimeric CARD9 backbones for functional characterization of activating mutants using NF-κB reporter gene activation in HEK293T cells as readout. CARD11 (CARMA1) activity was not further reduced by grafting on CARD9 backbones. The chimeric CARD9 approach was subsequently validated by using several known disease-associated mutations in CARD10 and CARD14, and additional screening allowed us to identify several previously unknown activating natural variants in human CARD9 and CARD10. Using Genebass as a resource of exome-based disease association statistics, we found that activated alleles of CARD9 correlate with irritable bowel syndrome (IBS), constipation, osteoarthritis, fibromyalgia, insomnia, anxiety, and depression, which can occur as comorbidities.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Femke Van Gaever
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jill Steels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
14
|
Diaz-Cabrera NM, Bauman BM, Iro MA, Dabbah-Krancher G, Molho-Pessach V, Zlotogorski A, Shamriz O, Dinur-Schejter Y, Sharon TD, Stepensky P, Tal Y, Eisenstein EM, Pietzsch L, Schuetz C, Abreu D, Coughlin CC, Cooper MA, Milner JD, Williams A, Armoni-Weiss G, Snow AL, Leiding JW. Management of Atopy with Dupilumab and Omalizumab in CADINS Disease. J Clin Immunol 2024; 44:48. [PMID: 38231347 DOI: 10.1007/s10875-023-01636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
The caspase activation and recruitment domain 11 (CARD11) gene encodes a scaffold protein required for lymphocyte antigen receptor signaling. Dominant-negative, loss-of-function (LOF) pathogenic variants in CARD11 result in CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS) disease. Patients with CADINS suffer with severe atopic manifestations including atopic dermatitis, food allergy, and chronic spontaneous urticaria in addition to recurrent infections and autoimmunity. We assessed the response of dupilumab in five patients and omalizumab in one patient with CADINS for the treatment of severe atopic symptoms. CARD11 mutations were validated for pathogenicity using a T cell transfection assay to assess the impact on activation-induced signaling to NF-κB. Three children and three adults with dominant-negative CARD11 LOF mutations were included. All developed atopic disease in infancy or early childhood. In five patients, atopic dermatitis was severe and recalcitrant to standard topical and systemic medications; one adult suffered from chronic spontaneous urticaria. Subcutaneous dupilumab was initiated to treat atopic dermatitis and omalizumab to treat chronic spontaneous urticaria. All six patients had rapid and sustained improvement in atopic symptoms with no complications during the follow-up period. Previous medications used to treat atopy were able to be decreased or discontinued. In conclusion, treatment with dupilumab and omalizumab for severe, refractory atopic disease in patients with CADINS appears to be effective and well tolerated in patients with CADINS with severe atopy.
Collapse
Affiliation(s)
- Natalie M Diaz-Cabrera
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Mildred A Iro
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Gina Dabbah-Krancher
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Vered Molho-Pessach
- Pediatric Dermatology Service, Department of Dermatology and Venereology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Dermatology and Venereology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abraham Zlotogorski
- Department of Dermatology and Venereology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Shamriz
- Clinical Immunology and Allergy Unit, Department of Medicine, The Faculty of Medicine, Hadassah Medical Organization, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Dinur-Schejter
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, The Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Tatyana Dubnikov Sharon
- Clinical Immunology and Allergy Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, The Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yuval Tal
- Clinical Immunology and Allergy Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eli M Eisenstein
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Leonora Pietzsch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catharina Schuetz
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- UniversitätsCentrum Für Seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Damien Abreu
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carrie C Coughlin
- Division of Dermatology, Departments of Medicine & Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Megan A Cooper
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Anthony Williams
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Gil Armoni-Weiss
- Department of Dermatology and Venereology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013, Bethesda, MD, 20814, USA.
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Institute for Clinical and Translational Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street South, Suite 3200, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
15
|
Carrascosa-Carrillo JM, Aterido A, Li T, Guillén Y, Martinez S, Marsal S, Julià A. Toward Precision Medicine in Atopic Dermatitis Using Molecular-Based Approaches. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:66-75. [PMID: 37652096 DOI: 10.1016/j.ad.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Atopic dermatitis is the most common chronic inflammatory skin disorder, affecting up to 20% of children and 10% of adults in developed countries. The pathophysiology of atopic dermatitis is complex and involves a strong genetic predisposition and T-cell driven inflammation. Although our understanding of the pathology and drivers of this disease has improved in recent years, there are still knowledge gaps in the immune pathways involved. Therefore, advances in new omics technologies in atopic dermatitis will play a key role in understanding the pathogenesis of this burden disease and could develop preventive strategies and personalized treatment strategies. In this review, we discuss the latest developments in genetics, transcriptomics, epigenomics, proteomics, and metagenomics and understand how integrating multiple omics datasets will identify potential biomarkers and uncover nets of associations between several molecular levels.
Collapse
Affiliation(s)
- J M Carrascosa-Carrillo
- Dermatology Department, Hospital Germans Trias i Pujol, UAB, IGTP, Badalona, Barcelona, Spain
| | - A Aterido
- IMIDomics, Inc., Barcelona, Spain; Rheumatology Research Group, Vall Hebron Research Institute, Barcelona, Spain
| | - T Li
- IMIDomics, Inc., Barcelona, Spain
| | | | | | - S Marsal
- IMIDomics, Inc., Barcelona, Spain; Rheumatology Research Group, Vall Hebron Research Institute, Barcelona, Spain.
| | - A Julià
- IMIDomics, Inc., Barcelona, Spain; Rheumatology Research Group, Vall Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
16
|
Gualdi G, Lougaris V, Amerio P, Petruzzellis A, Parodi A, Burlando M. Prurigo-like atopic dermatitis in a child with CARD11-associated severe combined immunodeficiency successfully treated with dupilumab. Pediatr Dermatol 2024; 41:158-159. [PMID: 37888582 DOI: 10.1111/pde.15453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
A 12-year-old boy affected by severe combined immunodeficiency due to a heterozygous variant in the CARD domain of CARD11, c.169G>A; p.Glu57Lys, developed severe atopic dermatitis and alopecia areata. After failure of conventional systemic therapy, dupilumab was administered at a dose of 400 mg subcutaneously, followed by 200 mg every 14 days. The patient had an excellent clinical response after 1 month and complete remission after a year, with the absence of side effects, demonstrating good efficacy and safety profile.
Collapse
Affiliation(s)
- Giulio Gualdi
- Dermatology Clinic, Department of Medicine and Aging Science, University G D'Annunzio Chieti-Pescara, Chieti, Italy
| | - Vassilios Lougaris
- Department of Pediatrics and Istituto di Medicina Molecolare "A. Nocivelli", University of Brescia, Brescia, Italy
| | - Paolo Amerio
- Dermatology Clinic, Department of Medicine and Aging Science, University G D'Annunzio Chieti-Pescara, Chieti, Italy
| | | | - Aurora Parodi
- Department of Dermatology, Di.S.Sal, San Martino Polyclinic Hospital IRCCS, University of Genoa, Genoa, Italy
| | - Martina Burlando
- Department of Dermatology, Di.S.Sal, San Martino Polyclinic Hospital IRCCS, University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Carrascosa-Carrillo JM, Aterido A, Li T, Guillén Y, Martinez S, Marsal S, Julià A. Toward Precision Medicine in Atopic Dermatitis Using Molecular-Based Approaches. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:T66-T75. [PMID: 37923065 DOI: 10.1016/j.ad.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 11/07/2023] Open
Abstract
Atopic dermatitis is the most common chronic inflammatory skin disorder, affecting up to 20% of children and 10% of adults in developed countries. The pathophysiology of atopic dermatitis is complex and involves a strong genetic predisposition and T-cell driven inflammation. Although our understanding of the pathology and drivers of this disease has improved in recent years, there are still knowledge gaps in the immune pathways involved. Therefore, advances in new omics technologies in atopic dermatitis will play a key role in understanding the pathogenesis of this burden disease and could develop preventive strategies and personalized treatment strategies. In this review, we discuss the latest developments in genetics, transcriptomics, epigenomics, proteomics, and metagenomics and understand how integrating multiple omics datasets will identify potential biomarkers and uncover nets of associations between several molecular levels.
Collapse
Affiliation(s)
- J M Carrascosa-Carrillo
- Dermatology Department, Hospital Germans Trias i Pujol, UAB, IGTP, Badalona, Barcelona, España
| | - A Aterido
- IMIDomics, Inc., Barcelona, España; Rheumatology Research Group, Vall Hebron Research Institute, Barcelona, España
| | - T Li
- IMIDomics, Inc., Barcelona, España
| | | | | | - S Marsal
- IMIDomics, Inc., Barcelona, España; Rheumatology Research Group, Vall Hebron Research Institute, Barcelona, España.
| | - A Julià
- IMIDomics, Inc., Barcelona, España; Rheumatology Research Group, Vall Hebron Research Institute, Barcelona, España
| |
Collapse
|
18
|
Boutboul D, Picard C, Latour S. Inborn errors of immunity underlying defective T-cell memory. Curr Opin Allergy Clin Immunol 2023; 23:491-499. [PMID: 37797193 DOI: 10.1097/aci.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW T-cell memory is a complex process not well understood involving specific steps, pathways and different T-cell subpopulations. Inborn errors of immunity (IEIs) represent unique models to decipher some of these requirements in humans. More than 500 different IEIs have been reported to date, and recently a subgroup of monogenic disorders characterized by memory T-cell defects has emerged, providing novel insights into the pathways of T-cell memory generation and maintenance, although this new knowledge is mostly restricted to peripheral blood T-cell memory populations. RECENT FINDINGS This review draws up an inventory of the main and recent IEIs associated with T-cell memory defects and their mice models, with a particular focus on the nuclear factor kappa B (NF-κB) signalling pathway, including the scaffold protein capping protein regulator and myosin 1 linker 2 (CARMIL2) and the T-cell co-stimulatory molecules CD28 and OX-40. Besides NF-κB, IKZF1 (IKAROS), a key transcription factor of haematopoiesis and STAT3-dependent interleukin-6 signals involving the transcription factor ZNF341 also appear to be important for the generation of T cell memory. Somatic reversion mosaicism in memory T cells is documented for several gene defects supporting the critical role of these factors in the development of memory T cells with a potential clinical benefit. SUMMARY Systematic examination of T-cell memory subsets could be helpful in the diagnosis of IEIs.
Collapse
Affiliation(s)
- David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Haematology department, Hospital Cochin, Assistance Publique-Hôpitaux de Paris (APHP)
- Université de Paris Cité
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital
- Université de Paris Cité
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Université de Paris Cité
| |
Collapse
|
19
|
Vasavda C, Wan G, Szeto MD, Marani M, Sutaria N, Rajeh A, Lu C, Lee KK, Nguyen NTT, Adawi W, Deng J, Parthasarathy V, Bordeaux ZA, Taylor MT, Alphonse MP, Kwatra MM, Kang S, Semenov YR, Gusev A, Kwatra SG. A Polygenic Risk Score for Predicting Racial and Genetic Susceptibility to Prurigo Nodularis. J Invest Dermatol 2023; 143:2416-2426.e1. [PMID: 37245863 PMCID: PMC11290854 DOI: 10.1016/j.jid.2023.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/30/2023]
Abstract
Prurigo nodularis (PN) is an understudied inflammatory skin disease characterized by pruritic, hyperkeratotic nodules. Identifying the genetic factors underlying PN could help to better understand its etiology and guide the development of therapies. In this study, we developed a polygenic risk score that predicts a diagnosis of PN (OR = 1.41, P = 1.6 × 10-5) in two independent and continentally distinct populations. We also performed GWASs, which uncovered genetic variants associated with PN, including one near PLCB4 (rs6039266: OR = 3.15, P = 4.8 × 10-8) and others near TXNRD1 (rs34217906: OR = 1.71, P = 6.4 × 10-7; rs7134193: OR = 1.57, P = 1.1 × 10-6). Finally, we discovered that Black patients have over a two-times greater genetic risk of developing PN (OR = 2.63, P = 7.8 × 10-4). Combining the polygenic risk score and self-reported race together was significantly predictive of PN (OR = 1.32, P = 4.7 × 10-3). Strikingly, this association was more significant with race than after adjusting for genetic ancestry. Because race is a sociocultural construct and not a genetically bound category, our findings suggest that genetics, environmental influence, and social determinants of health likely affect the development of PN and may contribute to clinically observed racial disparities.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guihong Wan
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mindy D Szeto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nishadh Sutaria
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ahmad Rajeh
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chenyue Lu
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nga T T Nguyen
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Waleed Adawi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junwen Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew T Taylor
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Gusev
- Division of Genetics, Brigham & Women's Hospital, Boston, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
20
|
Wilson BE, Stechelman PV, Mariani R, Goswami N, Sidebottom N, Bauer CS, Sacco KA. Dominant-negative CARD11 loss-of-function variant presenting with hypereosinophilic syndrome. Pediatr Allergy Immunol 2023; 34:e14041. [PMID: 38010008 DOI: 10.1111/pai.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Bridget E Wilson
- Division of Pulmonology, Section of Allergy-Immunology, Phoenix Children's, Phoenix, Arizona, USA
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Rachel Mariani
- Department of Pathology, Phoenix Children's, Phoenix, Arizona, USA
| | - Nikita Goswami
- Division of Rheumatology, Phoenix Children's, Phoenix, Arizona, USA
| | - Nicole Sidebottom
- Division of Pulmonology, Section of Allergy-Immunology, Phoenix Children's, Phoenix, Arizona, USA
| | - Cindy S Bauer
- Division of Pulmonology, Section of Allergy-Immunology, Phoenix Children's, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Keith A Sacco
- Division of Pulmonology, Section of Allergy-Immunology, Phoenix Children's, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
| |
Collapse
|
21
|
Loh JT, Teo JKH, Kannan S, Verma CS, Andiappan AK, Lim HH, Lam KP. DOK3 promotes atopic dermatitis by enabling the phosphatase PP4C to inhibit the T cell signaling mediator CARD11. Sci Signal 2023; 16:eadg5171. [PMID: 37906628 DOI: 10.1126/scisignal.adg5171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The scaffolding protein CARD11 is a critical mediator of antigen receptor signaling in lymphocytes. Hypomorphic (partial loss-of-function) mutations in CARD11 are associated with the development of severe atopic dermatitis, in which T cell receptor signaling is reduced and helper T cell differentiation is skewed to an allergy-associated type 2 phenotype. Here, we found that the docking protein DOK3 plays a key role in the pathogenesis of atopic dermatitis by suppressing CARD11 activity. DOK3 interacted with CARD11 and decreased its phosphorylation in T cells by recruiting the catalytic subunit of protein phosphatase 4, thereby dampening downstream signaling. Knocking out Dok3 enhanced the production of the cytokine IFN-γ by T cells, which conferred protection against experimental atopic dermatitis-like skin inflammation in mice. The expression of DOK3 was increased in T cells isolated from patients with atopic dermatitis and inversely correlated with IFNG expression. A subset of hypomorphic CARD11 variants found in patients with atopic dermatitis bound more strongly than wild-type CARD11 to DOK3. Our findings suggest that the strength of the interaction of DOK3 with CARD11 may predispose individuals to developing atopic dermatitis.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Joey Kay Hui Teo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore 138671, Republic of Singapore
| | - Chandra S Verma
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore 138671, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Hong-Hwa Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Republic of Singapore
| |
Collapse
|
22
|
Bauman BM, Dorjbal B, Pittaluga S, Zhang Y, Niemela JE, Stoddard JL, Rosenzweig SD, Anderson R, Guilcher GMT, Auer I, Perrier R, Campbell M, Bhandal SK, Alba C, Sukumar G, Dalgard CL, Schelotto M, Wright NAM, Su HC, Snow AL. Subcutaneous panniculitis-like T-cell lymphoma in two unrelated individuals with BENTA disease. Clin Immunol 2023; 255:109732. [PMID: 37562721 PMCID: PMC10551883 DOI: 10.1016/j.clim.2023.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a rare primary cutaneous non-Hodgkin lymphoma involving CD8+ T cells, the genetic underpinnings of which remain incompletely understood. Here we report two unrelated patients with B cell Expansion with NF-κB and T cell Anergy (BENTA) disease and a novel presentation of SPTCL. Patient 1 presented early in life with recurrent infections and B cell lymphocytosis, linked to a novel gain-of-function (GOF) CARD11 mutation (p.Lys238del). He developed SPTCL-like lesions and membranoproliferative glomerulonephritis by age 2, treated successfully with cyclosporine. Patient 2 presented at 13 months with splenomegaly, lymphadenopathy, and SPTCL with evidence of hemophagocytic lymphohistiocytosis. Genetic analysis revealed two in cis germline GOF CARD11 variants (p.Glu121Asp/p.Gly126Ser). Autologous bone marrow transplant resulted in SPTCL remission despite persistent B cell lymphocytosis. These cases illuminate an unusual pathological manifestation for BENTA disease, suggesting that CARD11 GOF mutations can manifest in cutaneous CD4+and CD8+ T cell malignancies.
Collapse
Affiliation(s)
- Bradly M Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Batsukh Dorjbal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Jennifer L Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ronald Anderson
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Gregory M T Guilcher
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Iwona Auer
- Alberta Precision Laboratories, University of Calgary, Calgary, AB, Canada
| | - Renee Perrier
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | | | | | - Camille Alba
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Clifton L Dalgard
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Magdalena Schelotto
- Department of Pediatric Hematology and Oncology, Fundación Pérez Scremini, Hospital Pereira Rossell, Montevideo, Uruguay
| | - Nicola A M Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
23
|
Wang J, Zhao P, Chen Z, Wang H, Wang Y, Lin Q. Non-viral gene therapy using RNA interference with PDGFR-α mediated epithelial-mesenchymal transformation for proliferative vitreoretinopathy. Mater Today Bio 2023; 20:100632. [PMID: 37122836 PMCID: PMC10130499 DOI: 10.1016/j.mtbio.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic eye diseases, a series of severe oculopathy, that will destroy normal ocular refractive media and imaging structures. It is characterized by the transformation of the epithelial cells into mesenchyme cells. Proliferative vitreoretinopathy (PVR) is one of these representative diseases. In this investigation, polyethylene glycol grafted branched Polyethyleneimine (PEI-g-PEG) was used as a non-viral gene vector in gene therapy of PVR to achieve anti-fibroblastic effects in vitro and in vivo by interfering with platelet-derived growth factor alpha receptor (PDGFR-α) in the epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells. The plasmid was wrapped by electrostatic conjugation. Physical characterization of the complexes indicated that the gene complexes were successfully prepared. In vitro, cellular experiments showed excellent biocompatibility of PEI-g-PEG, efficient cellular uptake of the gene complexes, and successful expression of the corresponding fragments. Through gene silencing technique, PEI-g-PEG/PDGFR-α shRNA successfully inhibited the process of EMT in vitro. Furthermore, in vivo animal experiments suggested that this method could effectively inhibit the progression of fibroproliferative membranes of PVR. Herein, a feasible and promising clinical idea was provided for developing non-viral gene vectors and preventing fibroblastic eye diseases by RNA interference (RNAi) technology.
Collapse
|
24
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
25
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
26
|
Baronio M, Gazzurelli L, Rezzola S, Rossi S, Tessarin G, Marinoni M, Salpietro A, Fiore M, Moratto D, Chiarini M, Badolato R, Parolini S, Tabellini G, Lougaris V. CARD11 dominant negative mutation leads to altered human Natural Killer cell homeostasis. Immunobiology 2023; 228:152381. [PMID: 37086690 DOI: 10.1016/j.imbio.2023.152381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
Dominant negative mutations in CARD11 have been reported in patients with immune dysregulation, severe atopic features, and variable T cell alterations. Data on Natural killer (NK) cells from affected patients are lacking. We report on a 12-year-old boy with severe atopic dermatitis, food induced anaphylaxis and hypogammaglobulinemia harbouring a novel de novo heterozygous variant c.169G > A; p.Glu57Lys in CARD11. The dominant negative effect of this mutation was confirmed on both CD4+ and CD8+. CTLA4+Foxp3+CD4+ Tregs were severely reduced. Patient's NK cells showed reduced expression of NKp46, NKG2D and CD69. Patient's CD56bright NK cells showed in vitro impaired production of IFN-γ. Steady state pS6 levels on patient's NK cells were increased and remained elevated upon IL2 + IL12 + IL18 overnight stimulation. Overall, the effect of CARD11 mutation on mTORC1 differs between T and NK cells. These findings may explain the increased susceptibility to viral infections and the reduced immune surveillance in affected patients.
Collapse
Affiliation(s)
- Manuela Baronio
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Luisa Gazzurelli
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Stefano Rossi
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giulio Tessarin
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maddalena Marinoni
- Paediatric Department, ASST-Sette Laghi, "F. Del Ponte" Hospital, Varese, Italy
| | - Annamaria Salpietro
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Michele Fiore
- Primary Care Pediatrician, Local unit ASL3 "genovese", Genova, Italy
| | - Daniele Moratto
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Marco Chiarini
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Raffaele Badolato
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy.
| |
Collapse
|
27
|
He M, Wong A, Sutton K, Gondim MJB, Samson C. Very-Early Onset Chronic Active Colitis with Heterozygous Variants in LRBA1 and CARD11, a Case of "Immune TOR-Opathies". Fetal Pediatr Pathol 2023; 42:297-306. [PMID: 35748740 DOI: 10.1080/15513815.2022.2088912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND A small subset of cases of inflammatory bowel disease (IBD) occurs as a result of single gene defects, and typically occurs in young or very young pediatric patients, referred to as "monogenic very-early onset IBD (VEO-IBD)". The gene variants leading to monogenic VEO-IBD are often associated with primary immunodeficiency syndromes. CASE REPORT A six year-old girl presented to our gastroenterology clinic with LRBA deficiency with a heterozygous mutation at c.1399 A > G, p Met467Val, histopathologic chronic active colitis without granulomas and clinical chronic colitis. Her gastrointestinal symptoms began at age 5 with bloody diarrhea, abdominal pain and weight loss. Whole exome sequencing revealed a CARD11 heterozygous de novo mutation (c.220 + 1G > A). She was in clinical remission on only abatacept. DISCUSSION We present a case of monogenic VEO-IBD associated with two heterozygous variants in LRBA1 and CARD11, both considered as key players in the newly proposed "immune TOR-opathies".
Collapse
Affiliation(s)
- Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Wong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly Sutton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mercia Jeanne Bezerra Gondim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Charles Samson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Duan X, Shen F, Deng Y, Zhang J, Fang F, Luo Z, Chen Y, Yang Y. Novel Loss of Function (G15D) Mutation on RAC2 in a Family with Combined Immunodeficiency and Increased Levels of Immunoglobulin G, A, and E. J Clin Immunol 2023; 43:604-614. [PMID: 36459342 DOI: 10.1007/s10875-022-01411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Ras-related C3 botulinum toxin substrate 2 (RAC2) is a small guanine nucleotide binding molecule that is exclusively expressed in hematopoietic cell lineages as a switcher. Based on in vivo and/or in vitro model experiments, RAC2 plays important roles in different cells through proliferation, secretion, and phagocytosis. It also performs a suppressing function in immunoglobulin (Ig) switching in Rac2-/- animals or cells. Several RAC2 natural mutations have been described in patients with primary immunodeficiency. RAC2 mutations can be classified into loss-of-function inactivating (LoF-I) and gain-of-function activating mutations according to their functional effects. Only two LoF-I mutations on RAC2 have been reported, including a dominant D57N mutation in several cases that exhibit granulocyte function defects and a recessive D56X mutation in cases with common variable immunodeficiency. Regardless of the type of mutation, most of the reported RAC2 mutant cases have shown reduced IgG, IgA, and IgM levels. Herein, we report on a family with three members that suffer from persistent HPV infection, recurrent respiratory infections, bronchiectasis, and autoimmune disease. The immunologic profile suggests that the family was affected by combined immunodeficiency (CID) with increased serum levels of IgG, IgA, and IgE. Exome sequencing identified a de novo RAC2 mutation (c.44G > A/p.G15D) that was co-segregated with the disease in the family. Gene functional experiments identified that such mutation results in reduced guanosine triphosphate binding activity and RAC2 protein expression. In patients' lymphocytes, impaired aggregation and proliferation effects, decreased mitochondrial membrane potential, and increased levels of cell apoptosis were observed, although no functional abnormalities were detected in neutrophils. To our knowledge, this study was the first to identify a LoF-I mutation of RAC2 affecting lymphocyte function that consequently led to CID and increased levels of serum IgG, IgE, and IgA. This study presents a novel subtype of RAC2-related immune disorder.
Collapse
Affiliation(s)
- Xiaojun Duan
- Hunan Children's Hospital & School of Pediatrics, Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Fang Shen
- Hunan Children's Hospital & School of Pediatrics, Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Yafei Deng
- Hunan Children's Hospital & School of Pediatrics, Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Jin Zhang
- Hunan Children's Hospital & School of Pediatrics, Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Fan Fang
- Hunan Children's Hospital & School of Pediatrics, Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Zhenqing Luo
- Hunan Children's Hospital & School of Pediatrics, Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Yanping Chen
- Hunan Children's Hospital & School of Pediatrics, Hengyang Medical School, University of South China, Hunan, 421001, China.
| | - Yongjia Yang
- Hunan Children's Hospital & School of Pediatrics, Hengyang Medical School, University of South China, Hunan, 421001, China.
| |
Collapse
|
29
|
Jacob M, Masood A, Abdel Rahman AM. Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients. Int J Mol Sci 2023; 24:ijms24032406. [PMID: 36768728 PMCID: PMC9916661 DOI: 10.3390/ijms24032406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/27/2023] Open
Abstract
Hyper-IgE Syndrome (HIES) is a heterogeneous group of primary immune-deficiency disorders characterized by elevated levels of IgE, eczema, and recurrent skin and lung infections. HIES that is autosomally dominant in the signal transducer and activator of transcription 3 (STAT3), and autosomal recessive mutations in phosphoglucomutase 3 (PGM3) have been reported in humans. An early diagnosis, based on clinical suspicion and immunological assessments, is challenging. Patients' metabolomics, proteomics, and cytokine profiles were compared to DOCK 8-deficient and atopic dermatitis patients. The PGM3 metabolomics profile identified significant dysregulation in hypotaurine, hypoxanthine, uridine, and ribothymidine. The eight proteins involved include bifunctional arginine demethylase and lysyl hydroxylase (JMJD1B), type 1 protein phosphatase inhibitor 4 (PPI 4), and platelet factor 4 which aligned with an increased level of the cytokine GCSF. Patients with STAT3 deficiency, on the other hand, showed significant dysregulation in eight metabolites, including an increase in protocatechuic acid, seven proteins including ceruloplasmin, and a plasma protease C1 inhibitor, in addition to cytokine VEGF being dysregulated. Using multi-omics profiling, we identified the dysregulation of endothelial growth factor (EGFR) and tumor necrosis factor (TNF) signaling pathways in PGM3 and STAT3 patients, respectively. Our findings may serve as a stepping stone for larger prospective HIES clinical cohorts to validate their future use as biomarkers.
Collapse
Affiliation(s)
- Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11564, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925(98), Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11564, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
30
|
Wu PC, Dai YX, Li CL, Chen CC, Chang YT, Ma SH. Dupilumab in the treatment of genodermatosis: A systematic review. J Dtsch Dermatol Ges 2023; 21:7-17. [PMID: 36657040 DOI: 10.1111/ddg.14924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 01/20/2023]
Abstract
Dupilumab interferes with the signaling pathways of IL-4 and IL-13 and is effective in treating atopic dermatitis. Specific genodermatoses, including Netherton syndrome, epidermolysis bullosa pruriginosa, and hyper-IgE syndrome, are Th2 skewed diseases with activation of type 2 inflammation. We performed this systematic review to investigate the therapeutic role of dupilumab in the treatment of genodermatosis. A systematic search was conducted of the PubMed, Embase, Web of Science, and Cochrane databases from inception to December 13, 2021. The review included studies with relevant terms including "dupilumab," "genodermatosis", "Netherton syndrome", "ichthyosis", "epidermolysis bullosa" and "hyper-IgE syndrome". The initial search yielded 2,888 results, of which 28 studies and 37 patients with genodermatosis were enrolled. The assessed genodermatoses included Netherton syndrome, epidermolysis bullosa pruriginosa, hyper-IgE syndrome, Hailey-Hailey disease, and severe eczema associated with genetic disorders. Most of the reported cases showed significant clinical improvement after the initiation of dupilumab treatment without major adverse events. Decreased immunoglobulin E levels and cytokine normalization have also been documented. In conclusion, Dupilumab may have a potential therapeutic role in certain genodermatoses skewed towards T helper 2 (Th2) immunity, including Netherton syndrome, epidermolysis bullosa pruriginosa, hyper-IgE syndrome, Hailey-Hailey disease, and severe eczema associated with some genetic disorders.
Collapse
Affiliation(s)
- Po-Chien Wu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ying-Xiu Dai
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Lun Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hsiang Ma
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
31
|
Giancotta C, Colantoni N, Pacillo L, Santilli V, Amodio D, Manno EC, Cotugno N, Rotulo GA, Rivalta B, Finocchi A, Cancrini C, Diociaiuti A, El Hachem M, Zangari P. Tailored treatments in inborn errors of immunity associated with atopy (IEIs-A) with skin involvement. Front Pediatr 2023; 11:1129249. [PMID: 37033173 PMCID: PMC10073443 DOI: 10.3389/fped.2023.1129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited monogenic disorders that occur with immune dysregulation and frequent skin involvement. Several pathways are involved in the pathogenesis of these conditions, including immune system defects, alterations of skin barrier and metabolism perturbations. Current technological improvements and the higher accessibility to genetic testing, recently allowed the identification of novel molecular pathways involved in IEIs-A, also informing on potential tailored therapeutic strategies. Compared to other systemic therapy for skin diseases, biologics have the less toxic and the best tolerated profile in the setting of immune dysregulation. Here, we review IEIs-A with skin involvement focusing on the tailored therapeutic approach according to their pathogenetic mechanism.
Collapse
Affiliation(s)
- Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicole Colantoni
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Correspondence: Paola Zangari
| |
Collapse
|
32
|
Wu PC, Dai YX, Li CL, Chen CC, Chang YT, Ma SH. Dupilumab zur Behandlung von Genodermatosen: Eine systematische Übersicht. J Dtsch Dermatol Ges 2023; 21:7-18. [PMID: 36721935 DOI: 10.1111/ddg.14924_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Po-Chien Wu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ying-Xiu Dai
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Lun Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hsiang Ma
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
33
|
Masle-Farquhar E, Jeelall Y, White J, Bier J, Deenick EK, Brink R, Horikawa K, Goodnow CC. CARD11 gain-of-function mutation drives cell-autonomous accumulation of PD-1 + ICOS high activated T cells, T-follicular, T-regulatory and T-follicular regulatory cells. Front Immunol 2023; 14:1095257. [PMID: 36960072 PMCID: PMC10028194 DOI: 10.3389/fimmu.2023.1095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Yogesh Jeelall
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Jacqueline White
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Keisuke Horikawa
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
| | - Christopher Carl Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
34
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
35
|
Gui Z, Zhang Y, Zhang A, Xia W, Jia Z. CARMA3: A potential therapeutic target in non-cancer diseases. Front Immunol 2022; 13:1057980. [PMID: 36618379 PMCID: PMC9815110 DOI: 10.3389/fimmu.2022.1057980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Caspase recruitment domain and membrane-associated guanylate kinase-like protein 3 (CARMA3) is a scaffold protein widely expressed in non-hematopoietic cells. It is encoded by the caspase recruitment domain protein 10 (CARD10) gene. CARMA3 can form a CARMA3-BCL10-MALT1 complex by recruiting B cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), thereby activating nuclear factor-κB (NF-κB), a key transcription factor that involves in various biological responses. CARMA3 mediates different receptors-dependent signaling pathways, including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Inappropriate expression and activation of GPCRs and/or RTKs/CARMA3 signaling lead to the pathogenesis of human diseases. Emerging studies have reported that CARMA3 mediates the development of various types of cancers. Moreover, CARMA3 and its partners participate in human non-cancer diseases, including atherogenesis, abdominal aortic aneurysm, asthma, pulmonary fibrosis, liver fibrosis, insulin resistance, inflammatory bowel disease, and psoriasis. Here we provide a review on its structure, regulation, and molecular function, and further highlight recent findings in human non-cancerous diseases, which will provide a novel therapeutic target.
Collapse
Affiliation(s)
- Zhen Gui
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| |
Collapse
|
36
|
Pomerantz JL, Milner JD, Snow AL. Elevated IgE from attenuated CARD11 signaling: lessons from atopic mice and humans. Curr Opin Immunol 2022; 79:102255. [PMID: 36334349 PMCID: PMC10424059 DOI: 10.1016/j.coi.2022.102255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
CARD11 encodes a large scaffold protein responsible for integrating antigen-receptor engagement with downstream signaling to NF-kB and other outputs in lymphocytes. Over the past 10 years, several human-inborn errors of immunity have been linked to pathogenic CARD11 mutations. Most recently, severe atopic patients were discovered that carried heterozygous dominant-negative CARD11 mutations. Here, we review the mechanistic connections between attenuated CARD11 signaling, elevated IgE, and atopy, comparing and contrasting key insights from both human patients and murine models. Continued investigation of abnormal CARD11 signaling in both contexts should inform novel therapeutic strategies to combat allergic pathogenesis.
Collapse
Affiliation(s)
- Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
37
|
Urdinez L, Erra L, Palma AM, Mercogliano MF, Fernandez JB, Prieto E, Goris V, Bernasconi A, Sanz M, Villa M, Bouso C, Caputi L, Quesada B, Solis D, Aguirre Bruzzo A, Katsicas MM, Galluzzo L, Weyersberg C, Bocian M, Bujan MM, Oleastro M, Almejun MB, Danielian S. Expanding spectrum, intrafamilial diversity, and therapeutic challenges from 15 patients with heterozygous CARD11-associated diseases: A single center experience. Front Immunol 2022; 13:1020927. [PMID: 36405754 PMCID: PMC9668901 DOI: 10.3389/fimmu.2022.1020927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2023] Open
Abstract
CARD11-associated diseases are monogenic inborn errors of immunity involving immunodeficiency, predisposition to malignancy and immune dysregulation such as lymphoproliferation, inflammation, atopic and autoimmune manifestations. Defects in CARD11 can present as mutations that confer a complete or a partial loss of function (LOF) or contrarily, a gain of function (GOF) of the affected gene product. We report clinical characteristics, immunophenotypes and genotypes of 15 patients from our center presenting with CARD11-associated diseases. Index cases are pediatric patients followed in our immunology division who had access to next generation sequencing studies. Variant significance was defined by functional analysis in cultured cells transfected with a wild type and/or with mutated hCARD11 constructs. Cytoplasmic aggregation of CARD11 products was evaluated by immunofluorescence. Nine index patients with 9 unique heterozygous CARD11 variants were identified. At the time of the identification, 7 variants previously unreported required functional validation. Altogether, four variants showed a GOF effect as well a spontaneous aggregation in the cytoplasm, leading to B cell expansion with NF-κB and T cell anergy (BENTA) diagnosis. Additional four variants showing a LOF activity were considered as causative of CARD11-associated atopy with dominant interference of NF-kB signaling (CADINS). The remaining variant exhibited a neutral functional assay excluding its carrier from further analysis. Family segregation studies expanded to 15 individuals the number of patients presenting CARD11-associated disease. A thorough clinical, immunophenotypical, and therapeutic management evaluation was performed on these patients (5 BENTA and 10 CADINS). A remarkable variability of disease expression was clearly noted among BENTA as well as in CADINS patients, even within multiplex families. Identification of novel CARD11 variants required functional studies to validate their pathogenic activity. In our cohort BENTA phenotype exhibited a more severe and expanded clinical spectrum than previously reported, e.g., severe hematological and extra hematological autoimmunity and 3 fatal outcomes. The growing number of patients with dysmorphic facial features strengthen the inclusion of extra-immune characteristics as part of the CADINS spectrum. CARD11-associated diseases represent a challenging group of disorders from the diagnostic and therapeutic standpoint, especially BENTA cases that can undergo a more severe progression than previously described.
Collapse
Affiliation(s)
- Luciano Urdinez
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lorenzo Erra
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro M. Palma
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María F. Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Belén Fernandez
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emma Prieto
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Verónica Goris
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Andrea Bernasconi
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marianela Sanz
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Mariana Villa
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Carolina Bouso
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lucia Caputi
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Belen Quesada
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Daniel Solis
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Anabel Aguirre Bruzzo
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Martha Katsicas
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Laura Galluzzo
- Servicio de Anatomía Patológica, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Christian Weyersberg
- Servicio de Gastroenterología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marcela Bocian
- Servicio de Dermatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Marta Bujan
- Servicio de Dermatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Matías Oleastro
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María B. Almejun
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Danielian
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
38
|
Nihal A, Comstock JR, Holland KE, Singh AM, Seroogy CM, Arkin LM. Clearance of atypical cutaneous manifestations of hyper-IgE syndrome with dupilumab. Pediatr Dermatol 2022; 39:940-942. [PMID: 35734823 PMCID: PMC10084161 DOI: 10.1111/pde.15072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Hyper-IgE syndromes (HIES) are a heterogeneous group of rare primary immunodeficiency diseases classically characterized by the triad of atopic dermatitis, and recurrent cutaneous and pulmonary infections. Autosomal dominant, loss-of-function STAT3 pathogenic variants are the most common genetic cause, which lead to deficiency of Th17 lymphocytes, impaired interferon gamma production, and IL-10 signal transduction, and an unbalanced IL-4 state. Dupilumab, a monoclonal antibody to the IL-4a receptor, inhibits both IL-4 and IL-13, and has been shown to improve atopic dermatitis and other manifestations of HIES including asthma and allergic bronchopulmonary aspergillosis. We present a pediatric patient with HIES who presented predominantly with eosinophilic folliculitis, recurrent cutaneous infections, and other non-eczematous findings and achieved sustained clearance with dupilumab.
Collapse
Affiliation(s)
- Aman Nihal
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeanette R Comstock
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristen E Holland
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne Marie Singh
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christine M Seroogy
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lisa M Arkin
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
39
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
40
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
41
|
Zhao L, Luo T, Jiang J, Wu J, Zhang X. Eight gene mutation-based polygenic hazard score as a potential predictor for immune checkpoint inhibitor therapy outcome in metastatic melanoma. Front Mol Biosci 2022; 9:1001792. [PMID: 36120536 PMCID: PMC9478752 DOI: 10.3389/fmolb.2022.1001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Immune checkpoint inhibitor (ICI) therapies have revolutionized the treatment of metastatic cutaneous melanoma, but have only benefitted a subset of them. Gene mutations were reported to impact the ICI therapy outcomes in metastatic melanoma but have not been fully investigated. Hence, we systematically analyzed the impact of cancer-related gene mutations on the clinical outcome in metastatic melanoma patients who underwent ICI therapies.Methods: Publicly available discovery and validation cohorts (312 patients and 110 patients respectively, all the patients received ICI therapies) were included in this study. Cox proportional hazards regression analysis was used to assess the association of 468 cancer-related gene mutations with overall survival (OS) in the discovery cohort, and the polygenic hazard score (PHS) was constructed subsequently, and validated in the validation cohort. The Tumor Immune Estimation Resource (TIMER) online tools, which are based on The Cancer Genome Atlas database, were used to analyze the impact of gene mutations on tumor-infiltrated immune cells in melanoma samples.Results: We found eight gene mutations that were significantly associated with the overall survival (BAP1, CARD11, IGF1R, KMT2D, PTPRD, PTPRT, ROS1, and TERT, p < 0.05, mutation frequency >0.05). The PHS, which was based on these genes, was found to effectively discriminate the subset which benefited most from ICI therapies (HR = 1·54, 95%CI, 1.25–1.95; p < 0.001). After adjusting with age, sex, ICI regimes, and tumor mutation burden (TMB), we found that PHS was an independent predictor for the outcome of ICI therapies (adjusted HR = 1.84, 95%CI, 1.22–2.79; p = 0.004). The PHS was validated in the validation cohort (log-Rank p = 0.038). Further research found that CARD11 and PTPRD mutations were significantly associated with more tumor-infiltrated immune cells in melanoma samples.Conclusion: For the first time, we have shown that PHS can independently and effectively predict the ICI therapy outcome in metastatic melanoma, which once validated by larger research, may help the decision-making process in melanoma.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Luo
- Department of Oncology, Chengdu First People’s Hospital, Chengdu, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Zhang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Xiaowei Zhang,
| |
Collapse
|
42
|
Resolution of Eczema with Multivalent Peptides. JID INNOVATIONS 2022; 2:100142. [PMID: 36039327 PMCID: PMC9418603 DOI: 10.1016/j.xjidi.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
|
43
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
44
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
45
|
Boberg E, Weidner J, Malmhäll C, Calvén J, Corciulo C, Rådinger M. Rapamycin Dampens Inflammatory Properties of Bone Marrow ILC2s in IL-33-Induced Eosinophilic Airway Inflammation. Front Immunol 2022; 13:915906. [PMID: 35720347 PMCID: PMC9203889 DOI: 10.3389/fimmu.2022.915906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The alarmin cytokine interleukin (IL)-33 plays an important proinflammatory role in type 2 immunity and can act on type 2 innate lymphoid cells (ILC2s) and type 2 T helper (TH2) cells in eosinophilic inflammation and asthma. The mechanistic target of rapamycin (mTOR) signaling pathway drives immune responses in several inflammatory diseases, but its role in regulating bone marrow responses to IL-33 is unclear. The aim of this study was to determine the role of the mTORC1 signaling pathway in IL-33-induced bone marrow ILC2 responses and its impact on IL-33-induced eosinophilia. Wild-type mice were intranasally exposed to IL-33 only or in combination with the mTORC1 inhibitor, rapamycin, intraperitoneally. Four groups were included in the study: saline-treated (PBS)+PBS, rapamycin+PBS, PBS+IL-33 and rapamycin+IL-33. Bronchoalveolar lavage fluid (BALF), serum and bone marrow cells were collected and analyzed by differential cell count, enzyme-linked immunosorbent assay and flow cytometry. IL-33 induced phosphorylation of the mTORC1 protein rpS6 in bone marrow ILC2s both ex vivo and in vivo. The observed mTOR signal was reduced by rapamycin treatment, indicating the sensitivity of bone marrow ILC2s to mTORC1 inhibition. IL-5 production by ILC2s was reduced in cultures treated with rapamycin before stimulation with IL-33 compared to IL-33 only. Bone marrow and airway eosinophils were reduced in mice given rapamycin before IL-33-exposure compared to mice given IL-33 only. Bone marrow ILC2s responded to IL-33 in vivo with increased mTORC1 activity and rapamycin treatment successfully decreased IL-33-induced eosinophilic inflammation, possibly by inhibition of IL-5-producing bone marrow ILC2s. These findings highlight the importance of investigating specific cells and proinflammatory pathways as potential drivers of inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Emma Boberg
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julie Weidner
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Calvén
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carmen Corciulo
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Pietzsch L, Körholz J, Boschann F, Sergon M, Dorjbal B, Yee D, Gilly V, Kämmerer E, Paul D, Kastl C, Laass MW, Berner R, Jacobsen EM, Roesler J, Aust D, Lee-Kirsch MA, Snow AL, Schuetz C. Hyper-IgE and Carcinoma in CADINS Disease. Front Immunol 2022; 13:878989. [PMID: 35651609 PMCID: PMC9149281 DOI: 10.3389/fimmu.2022.878989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atopic dermatitis (AD) affects up to 25% of children and 10% of adults in Western countries. When severe or recurrent infections and exceedingly elevated serum IgE levels occur in AD patients, an inborn error of immunity (IEI) may be suspected. The International Union of Immunological Societies classification lists variants in different genes responsible for so-called Hyper-IgE syndromes. Diagnosing an underlying IEI may influence treatment strategies. Methods Clinical and diagnostic workup of family members are presented including a detailed immunological description and histology of the carcinoma. Functional testing of the novel variant in CARD11 underlying ‘CARD11-associated atopy with dominant interference of NF-kB signaling’ (CADINS) was performed. Results We report on an 18-year-old patient with a long-standing history of infections, accompanied by hypogammaglobulinemia, intermittent agranulocytosis, atopy, eosinophilia and colitis. The working diagnosis of common variable immunodeficiency was revised when a novel heterozygous CARD11 variant [c.223C>T; p.(Arg75Trp)] was identified. Functional studies confirmed this variant to have a dominant negative (DN) effect, as previously described in patients with CADINS. Five other family members were affected by severe atopy associated with the above variant, but not hypogammaglobulinemia. Malignancies occurred in two generations: an HPV-positive squamous cell carcinoma and a cutaneous T-cell lymphoma. So far, one patient is under treatment with dupilumab, which has shown marked benefit in controlling severe eczema. Conclusion The phenotypic spectrum associated with heterozygous CARD11 DN mutations is broad. Partial T-cell deficiency, diminished IFN-γ cytokine and increased IL-4 production, were identified as disease-causing mechanisms. Malignant disease associated with germline CARD11 DN variants has only been reported sporadically. HPV vaccination in teenage years, and cytology screening analogous with routine cervical swabs may be recommended. Treatment with dupilumab, a monoclonal antibody blocking interleukin-4- and interleukin-13 signaling, may be of benefit in controlling severe and extended AD for some patients as reported for STAT3 loss-of-function.
Collapse
Affiliation(s)
- Leonora Pietzsch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Körholz
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mildred Sergon
- Department of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Debra Yee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Vanessa Gilly
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Diana Paul
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Clemens Kastl
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin W Laass
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Universitäts Centrum für Seltene Erkrankungen, University Hospital Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Joachim Roesler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Aust
- Department of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany.,Nationales Centrum für Tumorerkrankungen (NCT)/Universitäts KrebsCentrum (UCC) Biobank Dresden, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Min A Lee-Kirsch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Universitäts Centrum für Seltene Erkrankungen, University Hospital Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Catharina Schuetz
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Universitäts Centrum für Seltene Erkrankungen, University Hospital Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
47
|
Nelson RW, Geha RS, McDonald DR. Inborn Errors of the Immune System Associated With Atopy. Front Immunol 2022; 13:860821. [PMID: 35572516 PMCID: PMC9094424 DOI: 10.3389/fimmu.2022.860821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic disorders, including atopic dermatitis, food and environmental allergies, and asthma, are increasingly prevalent diseases. Atopic disorders are often associated with eosinophilia, driven by T helper type 2 (Th2) immune responses, and triggered by disrupted barrier function leading to abnormal immune priming in a susceptible host. Immune deficiencies, in contrast, occur with a significantly lower incidence, but are associated with greater morbidity and mortality. A subset of atopic disorders with eosinophilia and elevated IgE are associated with monogenic inborn errors of immunity (IEI). In this review, we discuss current knowledge of IEI that are associated with atopy and the lessons these immunologic disorders provide regarding the fundamental mechanisms that regulate type 2 immunity in humans. We also discuss further mechanistic insights provided by animal models.
Collapse
Affiliation(s)
- Ryan W Nelson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas R McDonald
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Carter NM, Pomerantz JL. CARD11 signaling in regulatory T cell development and function. Adv Biol Regul 2022; 84:100890. [PMID: 35255409 PMCID: PMC9149070 DOI: 10.1016/j.jbior.2022.100890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 05/03/2023]
Abstract
Regulatory T cells (Tregs) are a critical subset of CD4 T cells that modulate the immune response to prevent autoimmunity and chronic inflammation. CARD11, a signaling hub and scaffold protein that links antigen receptor engagement to activation of NF-κB and other downstream signaling pathways, is essential for the development and function of thymic Tregs. Mouse models with deficiencies in CARD11 and CARD11-associated signaling components generally have Treg defects, but some mouse models develop overt autoimmunity and inflammatory disease whereas others do not. Inhibition of CARD11 signaling in Tregs within the tumor microenvironment can potentially promote anti-tumor immunity. In this review, we summarize evidence for the involvement of CARD11 signaling in Treg development and function and discuss key unanswered questions and future research opportunities.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
49
|
Olbrich P, Ortiz Aljaro P, Freeman AF. Eosinophilia Associated With Immune Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1140-1153. [PMID: 35227935 DOI: 10.1016/j.jaip.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The differential diagnosis of eosinophilia is broad and includes infections, malignancies, and atopy as well as inborn errors of immunity (IEI). Certain types of IEIs are known to be associated with elevated numbers of eosinophils and frequently elevated serum IgE, whereas for others the degree and frequency of eosinophilia are less established. The molecular defects underlying IEI are heterogeneous and affect different pathways, which highlights the complex regulations of this cell population within the immune system. In this review, we list and discuss clinical manifestations and therapies of immune deficiency or immune dysregulation disorders associated with peripheral blood or tissue eosinophilia with or without raised IgE levels. We present illustrative case vignettes for the most common entities and propose a diagnostic algorithm aiming to help physicians systematically to evaluate patients with eosinophilia and suspicion of an underlying IEI.
Collapse
Affiliation(s)
- Peter Olbrich
- Sección Infectología, Reumatología e Inmunología Pediátrica, UGC de Pediatría, Hospital Universitario Virgen del Rocío, Seville, Spain; Laboratorio de Alteraciones Congénitas de la Inmunidad, Laboratorio 205, Instituto de Biomedicina de Sevilla, Seville, Spain; Departamento de Farmacología, Pediatría y Radiología, Facultad de Medicina, Universidad de Sevilla, Spain.
| | - Pilar Ortiz Aljaro
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Seville, Spain
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| |
Collapse
|
50
|
Abbott JK, Gelfand EW. Registries Are Shaping How We Think About Primary Immunodeficiency Diseases. J Allergy Clin Immunol 2022; 149:1943-1945. [PMID: 35487306 DOI: 10.1016/j.jaci.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Jordan K Abbott
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Erwin W Gelfand
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO; National Jewish Health, Denver, CO
| |
Collapse
|