1
|
McGill MP, Threadgill DW. Adding robustness to rigor and reproducibility for the three Rs of improving translational medical research. J Clin Invest 2023; 133:e173750. [PMID: 37712424 PMCID: PMC10503792 DOI: 10.1172/jci173750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Affiliation(s)
- Michael P. McGill
- Interdisciplinary Graduate Program in Genetics and Genomics
- Department of Cell Biology and Genetics
| | - David W. Threadgill
- Interdisciplinary Graduate Program in Genetics and Genomics
- Department of Cell Biology and Genetics
- Department of Nutrition, and
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Teng H, Wang Y, Sui X, Fan J, Li S, Lei X, Shi C, Sun W, Song M, Wang H, Dong D, Geng J, Zhang Y, Zhu X, Cai Y, Li Y, Li B, Min Q, Wang W, Zhan Q. Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell 2023; 41:124-138.e6. [PMID: 36563680 DOI: 10.1016/j.ccell.2022.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Preoperative neoadjuvant chemoradiotherapy (nCRT) is a standard treatment for locally advanced rectal cancer (LARC) patients, yet little is known about the mediators underlying the heterogeneous patient response. In this longitudinal study, we performed 16S rRNA sequencing on 353 fecal specimens and find reduced microbial diversity after nCRT. Multi-omics data integration reveals that Bacteroides vulgatus-mediated nucleotide biosynthesis associates with nCRT resistance in LARC patients, and nonresponsive tumors are characterized by the upregulation of genes related to DNA repair and nucleoside transport. Nucleosides supplementation or B. vulgatus gavage protects cancer cells from the 5-fluorouracil or irradiation treatment. An analysis of 2,205 serum samples from 735 patients suggests that uric acid is a potential prognosis marker for LARC patients receiving nCRT. Our data unravel the role of intestinal microbiota-mediated nucleotide biosynthesis in the response of rectal tumors to nCRT, and highlight the importance of deciphering the cross-talk between cancer cells and gut microorganisms during cancer therapies.
Collapse
Affiliation(s)
- Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yan Wang
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xin Sui
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiawen Fan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shuai Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiao Lei
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chen Shi
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Maxiaowei Song
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongzhi Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dezuo Dong
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianhao Geng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yangzi Zhang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xianggao Zhu
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yong Cai
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yongheng Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bo Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingjie Min
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Weihu Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Qimin Zhan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Sántha M. Biologia futura: animal testing in drug development-the past, the present and the future. Biol Futur 2021; 71:443-452. [PMID: 34554463 DOI: 10.1007/s42977-020-00050-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022]
Abstract
Animal experiments have served to improve our knowledge on diseases and treatment approaches since ancient times. Today, animal experiments are widely used in medical, biomedical and veterinary research, and are essential means of drug development and preclinical testing, including toxicology and safety studies. Recently, great efforts have been made to replace animal experiments with in vitro organoid culture methods and in silico predictions, in agreement with the 3R strategy to "reduce, refine and replace" animals in experimental testing, as outlined by the European Commission. Here we present a mini-review on the development of animal testing, as well as on alternative in vitro and in silico methods, that may at least partly replace animal experiments in the near future.
Collapse
Affiliation(s)
- Miklós Sántha
- Institute of Biochemistry, ELKH Biological Research Centre, 62. Temesvári Ave, Szeged, 6726, Hungary.
| |
Collapse
|
4
|
Hosoyamada M, Tomioka NH, Ohtsubo T, Ichida K. Xanthine oxidoreductase knockout mice with high HPRT activity were not rescued by NAD + replenishment. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1465-1473. [PMID: 32126884 DOI: 10.1080/15257770.2020.1725044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although xanthinuria is nonfatal in human, xanthine oxidoreductase knockout (Xor-KO) mice have only a short lifespan. Hypoxanthine phosphoribosyltransferase activity (HPRT) in human and wild mice is higher than in laboratory mice. The aim of this study was to investigate the underlying mechanisms that give rise to the longer lifespan of high-HPRT/Xor-KO mice. Before Xor-KO mice die, urinary excretion of hypoxanthine increased with a corresponding decrease in excretion of xanthine. The switch of excretion from xanthine to hypoxanthine might be a cause of death for Xor-KO mice, suggesting inhibition of NAD+-dependent IMP dehydrogenase. Because hypoxanthine inhibits the synthesis of nicotinamide mononucleotide (NMN), a precursor of NAD+, the accumulation of hypoxanthine in Xor-KO mice may cause a depletion in the levels of NAD+. Moreover, urinary excretion of urate in high-HPRT/Uox-KO/Xor-KO mice means urate derived from gut microbiota is absorbed by the intestine. Likewise, over excretion of oxypurine in mice may be caused by intestinal absorption of oxypurine. For NAD+ replenishment, oral supplementation with 1% L-tryptophan, an alternative precursor of NAD+, resulted in a recovery of body weight gain in high-HPRT/Uox-KO/Xor-KO mice. In conclusion, the death of Xor-KO mice by renal failure seems to be caused by a depletion in NAD+ levels due to the intracellular accumulation of hypoxanthine. NAD+ replenishment by oral supplementation of NMN or tryptophan was complicated by the effect of gut microbiota and failed to rescue high-HPRT/Xor-KO mice. The attenuation of intestinal absorption of oxypurines seems to be necessary to avoid hypoxanthine accumulation and over excretion of oxypurine.
Collapse
Affiliation(s)
- Makoto Hosoyamada
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Naoko H Tomioka
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Toshio Ohtsubo
- Department of Internal Medicine (Hypertension), Fukuoka Red Cross Hospital, Fukuoka, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
5
|
Moro CA, Hanna-Rose W. Animal Model Contributions to Congenital Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:225-244. [PMID: 32304075 PMCID: PMC8404832 DOI: 10.1007/978-981-15-2389-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic model systems allow researchers to probe and decipher aspects of human disease, and animal models of disease are frequently specifically engineered and have been identified serendipitously as well. Animal models are useful for probing the etiology and pathophysiology of disease and are critical for effective discovery and development of novel therapeutics for rare diseases. Here we review the impact of animal model organism research in three examples of congenital metabolic disorders to highlight distinct advantages of model system research. First, we discuss phenylketonuria research where a wide variety of research fields and models came together to make impressive progress and where a nearly ideal mouse model has been central to therapeutic advancements. Second, we review advancements in Lesch-Nyhan syndrome research to illustrate the role of models that do not perfectly recapitulate human disease as well as the need for multiple models of the same disease to fully investigate human disease aspects. Finally, we highlight research on the GM2 gangliosidoses Tay-Sachs and Sandhoff disease to illustrate the important role of both engineered traditional laboratory animal models and serendipitously identified atypical models in congenital metabolic disorder research. We close with perspectives for the future for animal model research in congenital metabolic disorders.
Collapse
Affiliation(s)
- Corinna A Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Vogel M, Moehrle B, Brown A, Eiwen K, Sakk V, Geiger H. HPRT and Purine Salvaging Are Critical for Hematopoietic Stem Cell Function. Stem Cells 2019; 37:1606-1614. [PMID: 31574190 DOI: 10.1002/stem.3087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Adult hematopoietic stem cells (HSCs) maintain tissue homeostasis and regenerative capacity of the hematopoietic system through self-renewal and differentiation. Metabolism is recognized as an important regulatory entity controlling stem cells. As purine nucleotides are essential for metabolic functions, we analyzed the role of hypoxanthine guanine phosphoribosyl transferase (HPRT)-associated purine salvaging in HSCs. Here, we demonstrate that hematopoietic stem and progenitor cells (HSPCs) show a strong dependence on HPRT-associated purine salvaging. HSPCs with lower HPRT activity had a severely reduced competitive repopulation ability upon transplantation. Strikingly, HPRT deficiency resulted in altered cell-cycle progression, proliferation kinetics and mitochondrial membrane potential primarily in the HSC compartment, whereas more committed progenitors were less affected. Our data thus imply a unique and important role of HPRT and the purine salvage pathway for HSC function. Stem Cells 2019;37:1606-1614.
Collapse
Affiliation(s)
- Mona Vogel
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Bettina Moehrle
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Andreas Brown
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karina Eiwen
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Telugu BP, Park KE, Park CH. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mamm Genome 2017; 28:338-347. [PMID: 28712062 DOI: 10.1007/s00335-017-9709-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/08/2017] [Indexed: 01/23/2023]
Abstract
Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.
Collapse
Affiliation(s)
- Bhanu P Telugu
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA. .,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA. .,RenOVAte Biosciences Inc, Reisterstown, MD, USA.
| | - Ki-Eun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA.,RenOVAte Biosciences Inc, Reisterstown, MD, USA
| | - Chi-Hun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA
| |
Collapse
|
8
|
Devi U, Kumar V, Gupta PS, Dubey S, Singh M, Gautam S, Rawat JK, Roy S, Yadav RK, Ansari MN, Saeedan AS, Kaithwas G. Experimental Models for Autism Spectrum Disorder Follow-Up for the Validity. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2016. [DOI: 10.1007/s40489-016-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Meek S, Thomson AJ, Sutherland L, Sharp MGF, Thomson J, Bishop V, Meddle SL, Gloaguen Y, Weidt S, Singh-Dolt K, Buehr M, Brown HK, Gill AC, Burdon T. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease. Sci Rep 2016; 6:25592. [PMID: 27185277 PMCID: PMC4869022 DOI: 10.1038/srep25592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour.
Collapse
Affiliation(s)
- Stephen Meek
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Alison J. Thomson
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Linda Sutherland
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Matthew G. F. Sharp
- Central Bioresearch Services, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland
| | - Julie Thomson
- Central Bioresearch Services, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland
| | - Valerie Bishop
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Simone L. Meddle
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Yoann Gloaguen
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Campus, Bearsden, G61 1QH, Scotland
| | - Stefan Weidt
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Campus, Bearsden, G61 1QH, Scotland
| | - Karamjit Singh-Dolt
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Mia Buehr
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Helen K. Brown
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Andrew C. Gill
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland,
| | - Tom Burdon
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland,
| |
Collapse
|
10
|
Whitelaw CBA, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol 2015; 238:247-56. [PMID: 26414877 PMCID: PMC4737318 DOI: 10.1002/path.4648] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022]
Abstract
The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site‐specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- C Bruce A Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Science, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Timothy P Sheets
- Animal Bioscience and Biotechnology Laboratory, ARS, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, Beltsville, MD, 20742, USA
| | - Simon G Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Science, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Bhanu P Telugu
- Animal Bioscience and Biotechnology Laboratory, ARS, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, Beltsville, MD, 20742, USA
| |
Collapse
|
11
|
Ying Y, Yang X, Zhao K, Mao J, Kuang Y, Wang Z, Sun R, Fei J. The Krüppel-associated box repressor domain induces reversible and irreversible regulation of endogenous mouse genes by mediating different chromatin states. Nucleic Acids Res 2015; 43:1549-61. [PMID: 25609696 PMCID: PMC4330378 DOI: 10.1093/nar/gkv016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Krüppel-associated box (KRAB) domain is a transcription repression module from the largest family of transcriptional regulators encoded by higher vertebrates. We developed a drug-controllable regulation system based on an artificial KRAB-containing repressor (tTS) that targets the endogenous Hprt gene to explore the regulatory mechanism and molecular basis of KRAB-containing regulators within the context of an endogenous gene in vivo. We show that KRAB can mediate irreversible and reversible regulation of endogenous genes in mouse that is dependent on embryonic developmental stage. KRAB-induced stable DNA methylation within the KRAB binding region during the early embryonic stage, resulting in irreversible gene repression. In later stages, KRAB mainly induced de-acetylation and methylation of histone, resulting in reversible gene repression. Thus, we have characterized the KRAB-mediated regulation system within the context of an endogenous gene and multiple spatiotemporal ranges, thereby providing a basis for identifying the function of KRAB-containing regulators and aiding development of novel KRAB-based gene regulation tools in vivo.
Collapse
Affiliation(s)
- Yue Ying
- School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
| | - Xingyu Yang
- School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
| | - Kai Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
| | - Jifang Mao
- Shanghai Research Center For Model Organisms, Shanghai 201210, China
| | - Ying Kuang
- Shanghai Research Center For Model Organisms, Shanghai 201210, China
| | - Zhugang Wang
- Shanghai Research Center For Model Organisms, Shanghai 201210, China
| | - Ruilin Sun
- Shanghai Research Center For Model Organisms, Shanghai 201210, China
| | - Jian Fei
- School of Life Sciences and Technology, Tongji University, Shanghai 200072, China Shanghai Research Center For Model Organisms, Shanghai 201210, China
| |
Collapse
|
12
|
Fujii W, Onuma A, Sugiura K, Naito K. One-step generation of phenotype-expressing triple-knockout mice with heritable mutated alleles by the CRISPR/Cas9 system. J Reprod Dev 2014; 60:324-7. [PMID: 25110137 PMCID: PMC4139508 DOI: 10.1262/jrd.2013-139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triple-knockout mice generated by the one-step CRISPR/Cas9 system were examined for the effects of multiple gene modifications
on each phenotype and individual gene function. Sixty embryos were transferred, and 9 pups were obtained; all 9 pups had mutations
on 3 loci, and 7 pups showed mutations in all-alleles. F0 mice showed knockout phenotypes or no protein expression of target genes
simultaneously, and these mutations were normally inherited in the next generation.
Collapse
Affiliation(s)
- Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
13
|
Akizu N, Cantagrel V, Schroth J, Cai N, Vaux K, McCloskey D, Naviaux RK, Van Vleet J, Fenstermaker AG, Silhavy JL, Scheliga JS, Toyama K, Morisaki H, Sonmez FM, Celep F, Oraby A, Zaki MS, Al-Baradie R, Faqeih EA, Saleh MAM, Spencer E, Rosti RO, Scott E, Nickerson E, Gabriel S, Morisaki T, Holmes EW, Gleeson JG. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell 2013; 154:505-17. [PMID: 23911318 DOI: 10.1016/j.cell.2013.07.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 01/03/2023]
Abstract
Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease.
Collapse
Affiliation(s)
- Naiara Akizu
- Neurogenetics Laboratory, Institute for Genomic Medicine, Rady Children's Hospital, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wakeling EN, Fyfe JC. Lix1 knockout mouse does not exhibit spinal muscular atrophy phenotype. J Hered 2011; 102 Suppl 1:S32-9. [PMID: 21846745 DOI: 10.1093/jhered/esr031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Feline spinal muscular atrophy (SMA) is an autosomal recessive juvenile onset lower motor neuron disease caused by an ∼ 140 kb deletion that disrupts expression of 2 genes, limb expression 1 (LIX1) and leucyl/cystinyl aminopeptidase (LNPEP). A previously generated Lnpep knockout (KO) mouse did not demonstrate a neuromuscular phenotype. Little is known about LIX1, except that it is evolutionarily conserved and highly expressed in spinal cord motor neurons. To determine whether loss of LIX1 alone is responsible for the feline SMA phenotype, a Lix1 intron 1 gene trap KO mouse line was obtained from Lexicon Genetics, Inc. Mating of F(1) heterozygotes produced offspring in the expected Mendelian ratios. KO and normal littermates were studied through 2 years of age by hanging latency, rotarod, inked footprint analysis, and histological methods. Disruption of Lix1 expression did not affect survival nor result in any neuromuscular phenotype. Reverse transcriptase-PCR amplification of spinal cord RNA identified a Lix1 alternative transcript beginning in intron 4 and containing exons 5 and 6. The alternative transcript appeared to be rodent specific, and its expression was not disrupted in Lix1 KO mice. Expression of the alternative transcript may have compensated for the loss of Lix1 in the KO mice and thus protected against motor neuron degeneration.
Collapse
Affiliation(s)
- Erin N Wakeling
- Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
15
|
Roubertoux PL, de Vries PJ. From molecules to behavior: lessons from the study of rare genetic disorders. Behav Genet 2011; 41:341-8. [PMID: 21541644 DOI: 10.1007/s10519-011-9469-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Rare diseases are defined as conditions with a prevalence of less than 1/2,000. To date between 6,000 and 7,000 rare diseases have been identified and many of those have manifestations that include intellectual disability, developmental disorders or other behavioural phenotypes. In this special issue we bring together a range of papers where rare diseases were used as models to delineate specific aspects of learning and memory, or behaviour. In this introductory paper we summarize some of the lessons we can learn from rare diseases. Firstly, we learn that, collectively, rare diseases are not at all rare. As many as 1 in 20 individuals may be affected by a rare disease at some point in their life. Secondly, we learn that rare diseases may share common pathophysiological mechanisms. A discovery in one can therefore have direct relevance to many others. A third lesson is that the study of rare diseases can lead to an understanding of common disorders, as exemplified by the relationship between Trisomy 21 (Down syndrome) and Alzheimer's disease. A fourth lesson from rare diseases is that the 'one gene-one functional consequence' assumption is not correct. Finally, rare diseases have shed new light on the strengths and weaknesses of animal models in the study of behavioural phenotypes.
Collapse
Affiliation(s)
- Pierre L Roubertoux
- Génétique Médicale, Génomique Fonctionnelle, Aix Marseille Université, Marseille cedex, France
| | | |
Collapse
|
16
|
Silverman JL, Tolu SS, Barkan CL, Crawley JN. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 2010; 35:976-89. [PMID: 20032969 PMCID: PMC2827881 DOI: 10.1038/npp.2009.201] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including well-replicated deficits in reciprocal social interactions and social approach, unusual patterns of ultrasonic vocalization, and high levels of repetitive self-grooming. These phenotypes offer straightforward behavioral assays for translational investigations of pharmacological compounds. Two suggested treatments for autism were evaluated in the BTBR mouse model. Methyl-6-phenylethynyl-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor, blocks aberrant phenotypes in the Fmr1 mouse model of Fragile X, a comorbid neurodevelopmental disorder with autistic features. Risperidone has been approved by the United States Food and Drug Administration for the treatment of irritability, tantrums, and self-injurious behavior in autistic individuals. We evaluated the actions of MPEP and risperidone on two BTBR phenotypes, low sociability and high repetitive self-grooming. Open field activity served as an independent control for non-social exploratory activity and motor functions. C57BL/6J (B6), an inbred strain with high sociability and low self-grooming, served as the strain control. MPEP significantly reduced repetitive self-grooming in BTBR, at doses that had no sedating effects on open field activity. Risperidone reduced repetitive self-grooming in BTBR, but only at doses that induced sedation in both strains. No overall improvements in sociability were detected in BTBR after treatment with either MPEP or risperidone. Our findings suggest that antagonists of mGluR5 receptors may have selective therapeutic efficacy in treating repetitive behaviors in autism.
Collapse
Affiliation(s)
- Jill L Silverman
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA.
| | - Seda S Tolu
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD, USA
| | - Charlotte L Barkan
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD, USA
| | - Jacqueline N Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD, USA
| |
Collapse
|
17
|
Micheli V, Jacomelli G, Di Marcello F, Notarantonio L, Sestini S, Cerboni B, Bertelli M, Pompucci G, Jinnah HA. NAD metabolism in HPRT-deficient mice. Metab Brain Dis 2009; 24:311-9. [PMID: 19319672 PMCID: PMC4876432 DOI: 10.1007/s11011-009-9134-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
The activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) is virtually absent in Lesch-Nyhan disease (LND), an X-linked genetic disorder characterized by uric acid accumulation and neurodevelopmental dysfunction. The biochemical basis for the neurological and behavioral abnormalities have not yet been completely explained. Prior studies of cells from affected patients have shown abnormalities of NAD metabolism. In the current studies, NAD metabolism was evaluated in HPRT gene knock-out mice. NAD content and the activities of the enzymes required for synthesis and breakdown of this coenzyme were investigated in blood, brain and liver of HPRT(-) and control mice. NAD concentration and enzyme activities were found to be significantly increased in liver, but not in brain or blood of the HPRT(-) mice. These results demonstrate that changes in NAD metabolism occur in response to HPRT deficiency depending on both species and tissue type.
Collapse
Affiliation(s)
- Vanna Micheli
- Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brunner HG. MAOA deficiency and abnormal behaviour: perspectives on an association. CIBA FOUNDATION SYMPOSIUM 2007; 194:155-64; discussion 164-7. [PMID: 8862875 DOI: 10.1002/9780470514825.ch9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have recently described an association between abnormal behaviour and monoamine oxidase A (MAOA) deficiency in several males from a single large Dutch kindred. Affected males differed from unaffected males by borderline mental retardation and increased impulsive behaviour (aggressive behaviour, abnormal sexual behaviour and arson). Nevertheless, a specific psychiatric diagnosis was not made in four affected males who had psychiatric examination. Since MAOA deficiency raises 5-hydroxytryptamine (5-HT) levels, it provides an interesting exception to the low 5-HT paradigm of impulsive aggression. Even if the possible relationship between MAOA deficiency and abnormal behaviour is confirmed in other kindreds, the data do not support the hypothesis that MAOA constitutes an "aggression gene'. In fact, because genes are essentially simple and behaviour is by definition complex, a direct causal relationship between a single gene and a specific behaviour is highly unlikely. In the case of MAOA deficiency, some of the complexities are illustrated by the variability in the behavioural phenotype, as well as by the highly complex effects of MAOA deficiency on neurotransmitter function. Thus, the concept of a gene that directly encodes behaviour is unrealistic.
Collapse
Affiliation(s)
- H G Brunner
- Department of Human Genetics, Nijmegen University Hospital, The Netherlands
| |
Collapse
|
19
|
Del Bigio MR, Halliday WC. Multifocal atrophy of cerebellar internal granular neurons in lesch-nyhan disease: case reports and review. J Neuropathol Exp Neurol 2007; 66:346-53. [PMID: 17483691 DOI: 10.1097/nen.0b013e3180515319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The neuropathologic findings in 31 cases (aged 6 months to 33 years) of Lesch-Nyhan disease (hypoxanthine-guanine phosphoribosyltransferase deficiency) have been previously reported. Herein 2 additional cases, a 10-year-old boy and a 21-year-old man, are described. Both cases had unusual cerebellar abnormalities comprising multifocal internal granular layer atrophy with sparing of the Purkinje layer, one had a slightly small brain, and neither had striatal abnormalities. Careful review of the literature indicates that the most prevalent neuropathologic abnormalities are small cerebrum (13 of 33 cases) and multifocal cerebellar lesions (9 of 33 cases), although these could be underreported. Other authors have disregarded these abnormalities, focusing on the apparently normal basal nuclei, and they have suggested that the clinical neurologic abnormalities are based solely on changes in neurotransmitters. We discuss potential mechanisms of cerebellar damage, suggest that the cerebellar abnormality could in part explain the clinical syndrome, and recommend that cerebellar structure and function should be more carefully studied in Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Canada.
| | | |
Collapse
|
20
|
Tordjman S, Drapier D, Bonnot O, Graignic R, Fortes S, Cohen D, Millet B, Laurent C, Roubertoux PL. Animal models relevant to schizophrenia and autism: validity and limitations. Behav Genet 2006; 37:61-78. [PMID: 17160702 DOI: 10.1007/s10519-006-9120-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Development of animal models is a crucial issue in biological psychiatry. Animal models provide the opportunity to decipher the relationships between the nervous system and behavior and they are an obligatory step for drug tests. Mouse models or rat models to a lesser extent could help to test for the implication of a gene using gene targeting or transfecting technologies. One of the main problem for the development of animal models is to define a marker of the psychiatric disorder. Several markers have been suggested for schizophrenia and autism, but for the moment no markers or etiopathogenic mechanisms have been identified for these disorders. We examined here animal models related to schizophrenia and autism and discussed their validity and limitations after first defining these two disorders and considering their similarities and differences. Animal models reviewed in this article test mainly behavioral dimensions or biological mechanisms related to autistic disorder or schizophrenia rather than providing specific categorical models of autism or schizophrenia. Furthermore, most of these studies focus on a behavioral dimension associated with an underlying biological mechanism, which does not correspond to the complexity of mental disorders. It could be useful to develop animal models relevant to schizophrenia or autism to test a behavioral profile associated with a biological profile. A multi-trait approach seems necessary to better understand multidimensional disorders such as schizophrenia and autism and their biological and clinical heterogeneity. Finally, animal models can help us to clarify complex mechanisms and to study relationships between biological and behavioral variables and their interactions with environmental factors. The main interest of animal models is to generate new pertinent hypotheses relevant to humans opening the path to innovative research.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Service Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Rennes 1 et Centre Hospitalier Guillaume Régnier, 154 rue de Châtillon, 35200, Rennes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fisch GS. Animal Models and Human Neuropsychiatric Disorders. Behav Genet 2006; 37:1-10. [PMID: 17047896 DOI: 10.1007/s10519-006-9117-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 09/21/2006] [Indexed: 11/26/2022]
Abstract
Humans have long distinguished themselves from other living organisms. Therefore, to make use of animal models for neuropsychiatric disorders, it is important to acknowledge what has changed historically. Darwin argued that there was continuity in mind between humans and nonhuman species, and animal experimental psychologists and others have debated the existence of consciousness and mentality in animals ever since. Those trained in the associationist tradition sought to eliminate the concept of mind in favor of an empiricial, behavioral approach; others trained in the introspectionist tradition sought to include mental abilities as an integral part of comparative animal psychology. The waning of behaviorism and ascendance of cognitive psychology in the mid-twentieth century renewed interest in the notion of consciousness and mind in nonhuman organisms, particularly as they related to learning impairment and neurobehavioral disorders. Moreover, advances in molecular genetics and technology facilitated development of genetically modified mouse strains that could be used to examine cognitive deficits and psychopathology. However, genetic modifications to individual genes that produce behavioral dysfunction in the mouse have not always provided clear results. In part, this is likely due to the influence of genes in addition to the targeted gene, sometimes resulting in paradoxical effects. I also examine other issues created by the use of nonhuman models of human disorders, including: language, the effect of background genetic strains, genetic-environmental interactions, and the problems associated with the complex genetics needed to produce similarly complex behavioral phenotypes.
Collapse
Affiliation(s)
- Gene S Fisch
- Yeshiva University, 875 West End Ave. Apt 6B, New York, NY 10025, USA.
| |
Collapse
|
22
|
Heaney JD, Bronson SK. Artificial chromosome-based transgenes in the study of genome function. Mamm Genome 2006; 17:791-807. [PMID: 16897340 DOI: 10.1007/s00335-006-0023-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/06/2006] [Indexed: 12/01/2022]
Abstract
The transfer of large DNA fragments to the mouse genome in the form of bacterial, yeast or phage artificial chromosomes is an important process in the definition of transcription units, the modeling of inherited disease states, the dissection of candidate regions identified by linkage analysis and the construction of in vivo reporter genes. However, as with small recombinant transgenes, the transferred sequences are usually integrated randomly often with accompanying genomic alterations and variable expression of the introduced genes due to the site of integration and/or copy number. Therefore, alternative methods of integrating large genomic transgenes into the genome have been developed to avoid the variables associated with random integration. This review encourages the reader to imagine the large variety of applications where artificial chromosome transgenes can facilitate in vivo and ex vivo studies in the mouse and provides a context for making the necessary decisions regarding the specifics of experimental design.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033-0850, USA
| | | |
Collapse
|
23
|
Penet MF, Laigle C, Fur YL, Confort-Gouny S, Heurteaux C, Cozzone PJ, Viola A. In vivo Characterization of Brain Morphometric and Metabolic Endophenotypes in Three Inbred Strains of Mice Using Magnetic Resonance Techniques. Behav Genet 2006; 36:732-44. [PMID: 16710778 DOI: 10.1007/s10519-006-9077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
C57BL6J, FVB/N and 129/SvJ mice are commonly used as background strains to engineer genetic models of brain pathologies and psychiatric disorders. Magnetic resonance imaging (MRI) and spectroscopy provide alternative approaches to neuroanatomy, histology and neurohistochemistry for investigating the correlation between genes and brain neuroanatomy and neurometabolism in vivo. We used these techniques to non-invasively characterize the cerebral morphologic and metabolic endophenotypes of inbred mouse strains commonly used in neurological and behavioral research. We observed a great variability in the volume of ventricles and of structures involved in cognitive function (cerebellum and hippocampus) among these strains. In addition, distinct metabolic profiles were evidenced with variable levels of N-acetylaspartate, a neuronal marker, and of choline, a compound found in membranes and myelin. Besides, significant differences in high-energy phosphates and phospholipids were detected. Our findings demonstrate the great morphologic and metabolic heterogeneity among C57BL/ 6J, FVB/N and 129/SvJ mice. They emphasize the importance of selecting the appropriate genetic background for over-expressing or silencing a gene and provide some directions for modeling symptoms that characterize psychiatric disorders such as autism, schizophrenia and depression.
Collapse
Affiliation(s)
- Marie-France Penet
- Faculté de Médecine, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Université de la Méditérranée, 27 Bd J. Moulin, Marseille 13005, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Moy SS, Nadler JJ, Magnuson TR, Crawley JN. Mouse models of autism spectrum disorders: The challenge for behavioral genetics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:40-51. [PMID: 16419099 DOI: 10.1002/ajmg.c.30081] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autism is a severe neurodevelopmental disorder, which typically emerges early in childhood. The core symptoms of autism include deficits in social interaction, impaired communication, and aberrant repetitive behavior, including self-injury. Despite the strong genetic component for the disease, most cases of autism have not been linked to mutations in a specific gene, and the etiology of the disorder has yet to be established. At the present time, there is no generally accepted therapeutic strategy to treat the core symptoms of autism, and there remains a critical need for appropriate animal models and relevant behavioral assays to promote the understanding and treatment of the clinical syndrome. Challenges for the development of valid mouse models include complex genetic interactions underlying the high heritability of the disease in humans, diagnosis based on deficits in social interaction and communication, and the lack of confirmatory neuropathological markers to provide validation for genetic models of the disorder. Research focusing on genes that mediate social behavior in mice may help identify neural circuitry essential for normal social interaction, and lead to novel genetic animal models of the autism behavioral phenotype.
Collapse
Affiliation(s)
- Sheryl S Moy
- Neurodevelopmental Disorders Research Center, CB #7146, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
25
|
Heaney JD, Rettew AN, Bronson SK. Tissue-specific expression of a BAC transgene targeted to the Hprt locus in mouse embryonic stem cells. Genomics 2005; 83:1072-82. [PMID: 15177560 DOI: 10.1016/j.ygeno.2003.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 12/31/2003] [Indexed: 10/26/2022]
Abstract
The hypoxanthine phosphoribosyltransferase (Hprt) locus has been shown to have minimal influence on transgene expression when used as a surrogate site in the mouse genome. We have developed a method to transfer bacterial artificial chromosomes (BACs) as a single copy into the partially deleted Hprt locus of embryonic stem cells. BACs were modified by Cre/loxP recombination to contain the sequences necessary for homologous recombination into and complementation of the partially deleted Hprt locus. Modified BACs were shown to undergo homologous recombination into the genome intact, to be stably transmitted through the germ line of transgenic mice, and to be expressed in the proper tissue-specific manner. This technology will facilitate many studies in which correct interpretation of data depends on developmentally appropriate transgene expression in the absence of rearrangements or deletions of endogenous DNA.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine H166, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
26
|
Watanabe S, Yoshimi Y, Ikekita M. Neuroprotective effect of adenine on purkinje cell survival in rat cerebellar primary cultures. J Neurosci Res 2004; 74:754-9. [PMID: 14635226 DOI: 10.1002/jnr.10790] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although adenosine or ATP is known to control various physiological functions in the brain, including synaptic transmission, neuronal cell death, and neurite outgrowth via P1 or P2 purinergic receptors in the nervous system, little is known about the functions of many other purine derivatives. We examined the effects of various purines on survival in the cerebellar cortex of Purkinje cells with large cell bodies and highly branched dendrites, and it was found that some purine and pyrimidine derivatives influence Purkinje cell survival. Treatment with adenine, guanine, guanosine, guanine nucleotides, and uracil nucleotides protected Purkinje cells from cell death in the cerebellar primary cultures. Among the effective compounds, adenine had the most potent survival activities on Purkinje cells. Other adenine-based purines such as adenosine, AMP, ADP, and ATP did not promote Purkinje cell survival. Furthermore, metabolic inhibitors of adenine had no effect on the protective ability of adenine for Purkinje cells, suggesting that adenine itself, not adenine metabolites, maintains Purkinje cell survival. These results suggest that adenine is involved in the control of Purkinje cell survival in cerebellar primary cultures via a novel adenine-dependent mechanism.
Collapse
Affiliation(s)
- Shun Watanabe
- Department of Applied Biology, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | | | | |
Collapse
|
27
|
Nurnberger JI. Implications of multifactorial inheritance for identification of genetic mechanisms in major psychiatric disorders. Psychiatr Genet 2002; 12:121-6. [PMID: 12218654 DOI: 10.1097/00041444-200209000-00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Elsea SH, Lucas RE. The mousetrap: what we can learn when the mouse model does not mimic the human disease. ILAR J 2002; 43:66-79. [PMID: 11917158 DOI: 10.1093/ilar.43.2.66] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, mouse models for human metabolic diseases have become commonplace because the information gained from in vivo study of biochemical pathways is invaluable, and many metabolic diseases are relatively easy to recreate in mice through gene knockout technology in embryonic stem cells. In certain cases, however, the knockout mice may reproduce only some of the human disease phenotype, may be more severely affected than human cases, or may have no clinical phenotype at all. Under these circumstances, the disease pathology can become more complex, causing the researcher to evaluate basic differences in mouse and human biology as well as questions of genetic background, alternate pathways, and possible gene interactions. This review is a brief analysis of gene knockout models for Lesch-Nyhan syndrome, Lowe syndrome, X-linked adrenoleukodystrophy, Fabry disease, galactosemia, glycogen storage disease type II, metachromatic leukodystrophy, and Tay-Sachs disease, which produce a biochemical model of disease but often do not reproduce clinical symptoms. These mice may be useful for studying the biochemical and physiological pathways in which certain metabolites function toward embryonic and fetal development, as well as specific functions in various organs, and they may provide an inexpensive and useful model system for development of new therapeutic techniques.
Collapse
Affiliation(s)
- Sarah H Elsea
- Department of Zoology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
29
|
Abstract
Despite the previous development of single-gene knock-out mice that exhibit alterations in aggressive behavior, very little progress has been made toward identifying the natural gene variants (alleles) that contribute to individual or strain differences in aggression. Whereas most inbred mouse strains show an intermediate level of inter-male aggression in the resident-intruder or dangler behavioral tests, NZB/B1NJ mice are extremely aggressive and A/J mice are extremely unaggressive. We took advantage of the large phenotypic difference between these strains and used an outcross-backcross breeding protocol and a genome-wide scan to identify aggression quantitative trait loci (QTLs) on distal chromosome 10 (Aggr1; p = 6 x 10(-7)) and proximal chromosome X (Aggr2; p = 2.14 x 10(-5)). Candidate genes for Aggr1 and Aggr2, respectively, include the diacylglycerol kinase alpha subunit gene (Dagk1) and the glutamate receptor subunit AMPA3 gene (Gria3). This is the first report of significant aggression QTLs established through a genome-wide scan in any mammal. The mapping of these QTLs is a step toward the definitive identification of mouse alleles that affect aggression and may lead, ultimately, to the discovery of homologous alleles that affect individual differences in aggression within other mammalian species.
Collapse
|
30
|
Abstract
Availability of the mouse genome sequence will have a major impact on the study of vertebrate evolution, mammalian biology, and animal models of human disease. Resources to explore genome biology in mice will maximize the effect of this watershed event.
Collapse
Affiliation(s)
- B A Hamilton
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
31
|
Melton DW, Ketchen AM, Kind AJ, McEwan C, Paisley D, Selfridge J. A one-step gene amplification system for use in cultured mammalian cells and transgenic animals. Transgenic Res 2001; 10:133-42. [PMID: 11305360 DOI: 10.1023/a:1008951732020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene amplification is widely used for the production of pharmaceuticals and therapeutics in situations where a mammalian system is essential to synthesise a fully active product. Current gene amplification systems require multiple rounds of selection, often with high concentrations of toxic chemicals, to achieve the highest levels of gene amplification. The use of these systems has not been demonstrated in specialised mammalian cells, such as embryonic-stem cells, which can be used to generate transgenic animals. Thus, it has not yet proved possible to produce transgenic animals containing amplified copies of a gene of interest, with the potential to synthesise large amounts of a valuable gene product. We have developed a new amplification system, based around vectors encoding a partially disabled hypoxanthine phosphoribosyltransferase (HPRT) minigene, which can achieve greater than 1000-fold amplification of HPRT and the human growth hormone gene in a single step in Chinese hamster-lung cells. The amplification system also works in mouse embryonic-stem cells and we have used it to produce mice which express 30-fold higher levels of human protein C in milk than obtained with conventional transgenesis using the same protein C construct. This system should also be applicable to large animal transgenics produced by nuclear transfer from cultured cell lines.
Collapse
Affiliation(s)
- D W Melton
- Sir Alastair Currie CRC Laboratories, Molecular Medicine Centre, Edinburgh University, Western General Hospital, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Southgate TD, Bain D, Fairbanks LD, Morelli AE, Larregina AT, Simmonds HA, Castro MG, Löwenstein PR. Adenoviruses encoding HPRT correct biochemical abnormalities of HPRT-deficient cells and allow their survival in negative selection medium. Metab Brain Dis 1999; 14:205-21. [PMID: 10850548 DOI: 10.1023/a:1020728924026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Lesch-Nyhan syndrome is an X-linked disorder caused by a virtually complete absence of the key enzyme of purine recycling, hypoxanthine-guanine phosphoribosyltransferase (HPRT). It is characterized by uric acid overproduction and severe neurological dysfunction. No treatment is yet available for the latter symptoms. A possible long-term solution is gene therapy, and recombinant adenoviruses have been proposed as vectors for gene transfer into postmitotic neuronal cells. We have constructed an adenoviral vector expressing the human HPRT cDNA under the transcriptional control of a short human cytomegalovirus major immediate early promoter (RAd-HPRT). Here we show that infection of human 1306, HPRT-negative cells with RAd-HPRT, expressed high enough levels of HPRT enzyme activity, as to reverse their abnormal biochemical phenotype, thus enhancing hypoxanthine incorporation and restoring purine recycling, increasing GTP levels, decreasing adenine incorporation, and allowing cell survival in HAT medium in which only cells expressing high levels of HPRT can survive. Infection of murine STO cells, increased hypoxanthine incorporation and restored purine recycling, thus allowing cell survival in HAT medium, and reduced de novo purine synthesis. Although both cells were able to survive in HAT medium post infection with RAd-HPRT, some of the biochemical consequences differed. In summary, even though adenoviral vectors do not integrate into the genome of target HPRT-deficient human or murine cells, RAd-HPRT mediated enzyme replacement corrects abnormal purine metabolism, increases intracellular GTP levels, and allows cells to survive in a negative selection medium.
Collapse
Affiliation(s)
- T D Southgate
- Molecular Medicine and Gene Therapy Unit, School of Medicine, University of Manchester, England
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Gene targeting, defined as the introduction of site-specific modifications into the genome by homologous recombination, has revolutionarized the field of mouse genetics and allowed the analysis of diverse aspects of gene function in vivo. It is now possible to engineer specific genetic alterations ranging from subtle mutations to chromosomal rearrangements and more recently, even tissue-specific inducible gene targeting with temporo-spatial control has become feasible. This review tries to recapitulate what we have learned in this extremely rapidly expanding field during the past decade. Diverse aspects of the technique will be discussed starting from basic construct design to the analysis of complex phenotypes, including recent advances on inducible expression system. Many examples from different areas of biomedical research are given to illustrate the purpose and limitations of the employed experimental approaches.
Collapse
Affiliation(s)
- U Müller
- Max-Planck-Institute for Brain Research, Deutschordenstr. 46, D-60528, Frankfurt, Germany.
| |
Collapse
|
34
|
Lowenstein PR, Southgate TD, Smith-Arica JR, Smith J, Castro MG. Gene therapy for inherited neurological disorders: towards therapeutic intervention in the Lesch-Nyhan syndrome. PROGRESS IN BRAIN RESEARCH 1999; 117:485-501. [PMID: 9932427 DOI: 10.1016/s0079-6123(08)64034-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
35
|
Barranger J, Vallor MJ. Models of Lysosomal Storage Disorders Useful for the Study of Gene Therapy. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Edamura K, Sasai H. No self-injurious behavior was found in HPRT-deficient mice treated with 9-ethyladenine. Pharmacol Biochem Behav 1998; 61:175-9. [PMID: 9738533 DOI: 10.1016/s0091-3057(98)00095-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been reported that 9-ethyladenine (9-EA) is an efficient inhibitor of APRT (adenine phosphoribosyltransferase) and that its administration causes self-injurious behavior (Lesch-Nyhan Syndrome-like symptoms) in HPRT (hypoxanthine-guanine phosphoribosyltransferase)-deficient mice. In contrast, we found neither any self-injurious behavior (SIB), such as visible injury or hair loss, nor any apparent decrease in APRT activity in HPRT-deficient mice treated with 9-EA. We also found that 9-EA has little irreversible or competitive inhibitory effect on APRT in vitro, even at a concentration of 10(-2) M. In light of the negative finding of SIB in APRT/HPRT double-deficient mice, it seems unlikely that SIB in HPRT-deficient mice is caused by lowered APRT activity. It is concluded that 9-EA is not a sufficient APRT inhibitor and cannot be used in experiments that mimic lowered APRT status in an animal model.
Collapse
Affiliation(s)
- K Edamura
- Life Science Research Laboratory, Japan Tobacco Inc., Yokohama, Kanagawa
| | | |
Collapse
|
37
|
Fischer KM. Expanded (CAG)n, (CGG)n and (GAA)n trinucleotide repeat microsatellites, and mutant purine synthesis and pigmentation genes cause schizophrenia and autism. Med Hypotheses 1998; 51:223-33. [PMID: 9792200 DOI: 10.1016/s0306-9877(98)90080-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Unstable (CAG)n trinucleotide repeat microsatellites are hypothesized to cause schizophrenia. The (CAG)n microsatellite of dominant spinal cerebellar ataxia type 1 (SCA1) is a candidate schizophrenia gene. Autism results from expansions of (CGG)n and (GAA)n trinucleotide repeat stretches at fragile X syndrome (FRAXA), and the recessive Friedreich's ataxia (FA). Dominant ataxia genes may cause schizophrenia and recessive ataxia genes may cause autism. Syndromes with autism show purine synthesis defects (PSDs) and/or pigmentation defects (PDs). Autism is caused by very lengthy expansions of (CAG)n, (CGG)n and (GAA)n repeats, while schizophrenia results from much smaller (CAG)n and (CGG)n repeat expansions.
Collapse
|
38
|
Bemi V, Tazzni N, Banditelli S, Giorgelli F, Pesi R, Turchi G, Mattana A, Sgarrella F, Tozzi MG, Camici M. Deoxyadenosine metabolism in a human colon-carcinoma cell line (LoVo) in relation to its cytotoxic effect in combination with deoxycoformycin. Int J Cancer 1998; 75:713-20. [PMID: 9495239 DOI: 10.1002/(sici)1097-0215(19980302)75:5<713::aid-ijc9>3.0.co;2-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have assessed the intracellular metabolism of 2'-deoxyadenosine in a human colon-carcinoma cell line (LoVo), both in the absence and in the presence of deoxycoformycin, the powerful inhibitor of adenosine deaminase. The combination of 2'-deoxyadenosine and deoxycoformycin has been reported to inhibit the growth of LoVo cells in culture. In this paper we demonstrate that the observed toxic effect is strictly dependent on cell density. In the absence of deoxycoformycin, 2'-deoxyadenosine is primarily deaminated to 2'-deoxyinosine and then converted into hypoxanthine. In the presence of the inhibitor, the deoxynucleoside, in addition to a phosphorylation process, undergoes phosphorolytic cleavage giving rise to adenine. The conversion of 2'-deoxyadenosine to adenine might represent a protective device, emerging when the activity of adenosine deaminase is reduced or inhibited. There is much evidence to indicate that the enzyme catalyzing this process may be distinct from methylthioadenosine phosphorylase and S-adenosyl homocysteine hydrolase, which are the enzymes reported to be responsible for the formation of adenine from 2'-deoxyadenosine in mammals.
Collapse
|
39
|
Abstract
After genetic mapping and physical representation of a particular genomic region containing the gene underlying a particular Mendelian trait, a successful positional cloning strategy depends on the efficient detection and analysis of genes in the critical interval. Several gene detection strategies are presently available to compile an inventory of genes from large genomic regions. Here, the principle of these methods is briefly reviewed and their relative value for positional cloning projects compared.
Collapse
Affiliation(s)
- T Boehm
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
40
|
Cooper RA, Kerr AM, Amos PM. Rett syndrome: critical examination of clinical features, serial EEG and video-monitoring in understanding and management. Eur J Paediatr Neurol 1998; 2:127-35. [PMID: 10726834 DOI: 10.1016/s1090-3798(98)80028-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We studied data on seizures, vacant spells and breathing dysrhythmia from the British Rett Survey and 150 electroencephalographic records from 78 classic cases, including 23 with prolonged synchronous recordings of EEG, respiration and movement. The proportion of abnormal records increased from 6 of 18 (33%) during the first 6 months of the regression period to 44 of 59 (75%) in the later period to 6 years, the increase in abnormality following rather than preceding the onset of regression. In young girls the EEG abnormality increased in sleep but decreased during episodic hyperventilation and breath-holding. Epileptogenic activity was commonly present without clinical seizures. Eleven vacant spells were monitored and were not epileptic but related to the breathing abnormality. Full monitoring is essential when supposed seizures are intractable. The intermittent EEG abnormality and behavioural changes indicate abnormal fluctuating arousal possibly of midbrain or brainstem origin.
Collapse
Affiliation(s)
- R A Cooper
- University of Keele and North Staffordshire Hospital Group, UK
| | | | | |
Collapse
|
41
|
Pellicer F, Buendía-Roldán I, Pallares-Trujillo VC. Self-mutilation in the Lesch-Nyhan syndrome: a corporal consciousness problem?--a new hypothesis. Med Hypotheses 1998; 50:43-7. [PMID: 9488181 DOI: 10.1016/s0306-9877(98)90176-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Lesch-Nyhan syndrome (LNS) has been extensively studied from the genetic and biochemical point of view. The main characteristic of the syndrome is the self-mutilation feature, which has been poorly studied and understood. We propose a new hypothesis about the self-mutilation physiopathology, which is related to the supersensitivity of the dopaminergic D1 receptors in the neuromatrix found in the cingulum cortex region. The LNS shows an increase of uric acid levels as a result of the deficiency of hypoxanthine phosphoribosyltransferase enzyme. This increase could induce damage to dopaminergic neurons. As a consequence, a decrease in dopamine synthesis during gestation and the early postnatal period could occur, producing a functional dopaminergic denervation of the D1 receptors, located on the prefrontal cortex, specifically in the cingulum bundle projections. This phenomenon could induce a codification disturbance in the 'genetic body' of the neuromatrix, that could be expressed functionally as anosognosia, giving rise to self-mutilation. We suggest that this self-mutilation is a pain consciousness problem.
Collapse
Affiliation(s)
- F Pellicer
- Laboratorio de Neurofisiología, Instituto Mexicano de Psiquiatría, Tlalpan, México DF
| | | | | |
Collapse
|
42
|
Davidson BL, Bohn MC. Recombinant adenovirus: a gene transfer vector for study and treatment of CNS diseases. Exp Neurol 1997; 144:125-30. [PMID: 9126161 DOI: 10.1006/exnr.1996.6398] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gene transfer to the CNS with recombinant adenoviral vectors is a relatively recent event. In initial reports it was clearly demonstrated that adenoviral vectors can transfer genetic material to multiple cell types within the CNS. The relative ease in generating recombinant adenovirus (Ad) led to feasibility studies in the CNS with application to animal models of inherited disease, neurodegenerative diseases (e.g., Parkinson's and amyotrophic lateral sclerosis), and cerebrovascular disease. In combination with Ad gene transfer to peripheral tissues, these experiments have identified specific limitations and directed further research to improve vector design, formulation, and delivery.
Collapse
Affiliation(s)
- B L Davidson
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
43
|
Bedell MA, Largaespada DA, Jenkins NA, Copeland NG. Mouse models of human disease. Part II: recent progress and future directions. Genes Dev 1997; 11:11-43. [PMID: 9000048 DOI: 10.1101/gad.11.1.11] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M A Bedell
- Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
44
|
Abstract
There has always been great interest in animal models of human genetic disease, and mice provide the largest number of examples. A mutation in the homologous gene in mice does not always lead to the same phenotype as is found in man, however. Recent studies made it apparent that one mutation can have markedly different phenotypes when placed on different genetic backgrounds. This variation is due to different alleles at modifying loci in various inbred strains. Thus, if one wishes to obtain the optimal mouse model for a human disease, one needs to choose the correct genetic background as well as the correct mutation.
Collapse
Affiliation(s)
- R P Erickson
- Steele Memorial Children's Research Center, The University of Arizona, Department of Medical and Molecular Genetics, Tucson 85724, USA
| |
Collapse
|
45
|
Abstract
OBJECTIVE Progress in the use of genetically altered animals for psychosomatic research is reviewed. METHOD Analysis of the strengths and weaknesses of these models, particularly from a developmental and behavioral prospective is used to assess the validity of these models. RESULTS Genetically altered animals can be used to create models of the estimated 5000 human diseases in which genetic predispositions play a role, as well as models for diseases that do not involve gene defects, such as human immunodeficiency virus (HIV) infection. In addition, these models have already contributed immensely to our understanding of basic biology and the biology of behavior. Replication of human gene defects in mice has provided direct models of human disease, but there are various factors that sometimes prevent the gene defect from producing the human disease in mice. However, even in this case, the models can contribute to understanding the basic biology of the disease. CONCLUSIONS While genetically altered animals have revolutionized the understanding of single gene disorders, their promise has not yet been fulfilled for multigenic behavioral disorders. Newer techniques to allow control of the tissue and stage of development at which a gene is expressed are likely to enhance the usefulness of these models for psychosomatic research. New models of disease for testing psychological impacts on illness and specific ways altering neurotransmitter function will be discovered. While these models will be extremely useful to psychosomatic medicine, the nature of this discipline of necessity involves emphasis on individual experience, and thus will never be amenable to exclusively genetic analysis.
Collapse
Affiliation(s)
- L S Crnic
- Mental Retardation Research Center, University of Colorado School of Medicine, Denver 80262, USA
| |
Collapse
|
46
|
Redhead NJ, Selfridge J, Wu CL, Melton DW. Mice with adenine phosphoribosyltransferase deficiency develop fatal 2,8-dihydroxyadenine lithiasis. Hum Gene Ther 1996; 7:1491-502. [PMID: 8864750 DOI: 10.1089/hum.1996.7.13-1491] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Deficiencies in different steps of purine metabolism give rise to a number of human inherited disorders. Lesch-Nyhan syndrome is a severe neurological disorder, caused by a deficiency in the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT). HPRT-deficient mice have been generated, but have proved to be an unsuccessful model of the human disease. We have suggested that this may be due to a greater dependency in rodents on the other purine salvage enzyme, adenine phosphoribosyltransferase (APRT). We have generated an APRT-deficient mouse line by gene targeting, with a phenotype that closely resembled the symptoms of APRT deficiency in man. APRT null mice were viable, but 90% died prematurely before 6 months of age, displaying highly abnormal kidney morphology, with pathology characteristic of tubule obstruction. These mice have elevated urinary levels of adenine and 2,8-dihydroxyadenine, a highly insoluble adenine derivative, plus birefringent crystalline deposits and calculi within tubules throughout the kidney. A standard therapy for APRT-deficient human patients is the administration of the xanthine oxidase inhibitor, allopurinol. This has proved an effective therapy for APRT null mice, preventing accumulation of 2,8-dihydroxyadenine and much of the resultant renal obstruction, allowing us to establish a breeding line. We believe that these mice should provide a useful model for further study of APRT deficiency in humans. Furthermore, by generating APRT and HPRT double mutants, we will be able to test our hypothesis that both genes must be inactivated in mice before a model for Lesch-Nyhan syndrome can be obtained.
Collapse
Affiliation(s)
- N J Redhead
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- M Jasin
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
48
|
Brosh S, Zoref-Shani E, Danziger E, Bromberg Y, Sperling O, Sidi Y. Adenine nucleotide metabolism in primary rat neuronal cultures. Int J Biochem Cell Biol 1996; 28:319-28. [PMID: 8920641 DOI: 10.1016/1357-2725(95)00134-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The metabolism of adenine nucleotides (AdRN) has been studied previously in whole brains, brain slices and brain extracts, containing mixed populations of neurons and glia. The availability of primary neuronal cultures enables us to study these pathways in almost pure neuronal preparations. The aim of the present study was to characterize the relative importance of the pathways of AdRN metabolism in the neurons. The metabolic fate of (8-14C) adenine and of AdRN prelabeled with (8-14C)adenine were studied in immature and mature primary rat neuronal cultures. Specific inhibitors were used to clarify the various metabolic fluxes, which were evaluated based on the time-related changes in the distribution of label (the cellular nucleotide content did not change during incubation). The turnover rate of AdRN was found to reflect mainly conversion of label to acid insoluble derivatives (AID) and partly degradation to hypoxanthine. The turnover was faster in the immature neurons. The combined addition of 2'-deoxycoformycin (2'-dCF) and of 5'-amino-5'-deoxyadenosine, inhibiting adenosine metabolism, resulted in both cultures in enhanced loss of label from AdRN, mainly to adenosine and adenine. This finding indicates the activity of the futile cycle AMP-->adenosine-->AMP. In both cultures, in the presence of these inhibitors, the ratio (hypoxanthine + inosine)/(adenine + adenosine) was 1.1, indicating that the fluxes through AMP deamination and AMP dephosphorylation are about equal. Addition of L-alanosine, inhibiting the conversion of IMP to AMP, resulted in both cultures, but especially in the mature neurons, in enhanced loss of label from AdRN to hypoxanthine and inosine. This finding indicates the functioning of the adenine nucleotide cycle (AMP-->IMP-->adenylosuccinic acid-->AMP). Under conditions of enhanced degradation of ATP (induced by iodoacetate and antimycin A), addition of 2'-dCF resulted in the immature cultures in lowering the ratio (hypoxanthine + inosine + IMP)/(adenine + adenosine) to 0.62, indicating a shift in favor of AMP dephosphorylation.
Collapse
Affiliation(s)
- S Brosh
- Felsenstein Medical Research Center, Beilinson Medical Center, Petah Tikva, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Cohen-Tannoudji M, Marchand P, Akli S, Sheardown SA, Puech JP, Kress C, Gressens P, Nassogne MC, Beccari T, Muggleton-Harris AL. Disruption of murine Hexa gene leads to enzymatic deficiency and to neuronal lysosomal storage, similar to that observed in Tay-Sachs disease. Mamm Genome 1995; 6:844-9. [PMID: 8747922 DOI: 10.1007/bf00292433] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tay-Sachs disease is an autosomal recessive lysosomal storage disease caused by beta-hexosaminidase A deficiency and leads to death in early childhood. The disease results from mutations in the HEXA gene, which codes for the alpha chain of beta-hexosaminidase. The castastrophic neurodegenerative progression of the disease is thought to be a consequence of massive neuronal accumulation of GM2 ganglioside and related glycolipids in the brain and nervous system of the patients. Fuller understanding of the pathogenesis and the development of therapeutic procedures have both suffered from the lack of an animal model. We have used gene targeting in embryonic stem (ES) cells to disrupt the mouse Hexa gene. Mice homozygous for the disrupted allele mimic several biochemical and histological features of human Tay-Sachs disease. Hexa-/- mice displayed a total deficiency of beta-hexosaminidase A activity, and membranous cytoplasmic inclusions typical of GM2 gangliosidoses were found in the cytoplasm of their neurons. However, while the number of storage neurons increased with age, it remained low compared with that found in human, and no apparent motor or behavioral disorders could be observed. This suggests that the presence of beta-hexosaminidase A is not an absolute requirement of ganglioside degradation in mice. These mice should help us to understand several aspects of the disease as well as the physiological functions of hexosaminidase in mice. They should also provide a valuable animal model in which to test new forms of therapy, and in particular gene delivery into the central nervous system.
Collapse
|
50
|
Tischfield JA, Engle SJ, Gupta PK, Bye S, Boyadjiev S, Shao C, O'Neill P, Albertini RJ, Stambrook PJ, Sahota AS. Germline and somatic mutation at the APRT locus of mice and man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:661-4. [PMID: 7660991 DOI: 10.1007/978-1-4615-2584-4_137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J A Tischfield
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|