1
|
Karkali K, Pastor-Pareja JC, Martin-Blanco E. JNK signaling and integrins cooperate to maintain cell adhesion during epithelial fusion in Drosophila. Front Cell Dev Biol 2024; 11:1034484. [PMID: 38264353 PMCID: PMC10803605 DOI: 10.3389/fcell.2023.1034484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The fusion of epithelial sheets is an essential and conserved morphogenetic event that requires the maintenance of tissue continuity. This is secured by membrane-bound or diffusible signals that instruct the epithelial cells, in a coordinated fashion, to change shapes and adhesive properties and when, how and where to move. Here we show that during Dorsal Closure (DC) in Drosophila, the Jun kinase (JNK) signaling pathway modulates integrins expression and ensures tissue endurance. An excess of JNK activity, as an outcome of a failure in the negative feedback implemented by the dual-specificity phosphatase Puckered (Puc), promotes the loss of integrins [the ß-subunit Myospheroid (Mys)] and amnioserosa detachment. Likewise, integrins signal back to the pathway to regulate the duration and strength of JNK activity. Mys is necessary for the regulation of JNK activity levels and in its absence, puc expression is downregulated and JNK activity increases.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Jose Carlos Pastor-Pareja
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (IN-CSIC), Alicante, Spain
| | - Enrique Martin-Blanco
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7020019. [PMID: 32456345 PMCID: PMC7344558 DOI: 10.3390/jcdd7020019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor beta3 (TGFB3) gene mutations in patients of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD1) and Loeys-Dietz syndrome-5 (LDS5)/Rienhoff syndrome are associated with cardiomyopathy, cardiac arrhythmia, cardiac fibrosis, cleft palate, aortic aneurysms, and valvular heart disease. Although the developing heart of embryos express Tgfb3, its overarching role remains unclear in cardiovascular development and disease. We used histological, immunohistochemical, and molecular analyses of Tgfb3-/- fetuses and compared them to wildtype littermate controls. The cardiovascular phenotypes were diverse with approximately two thirds of the Tgfb3-/- fetuses having one or more cardiovascular malformations, including abnormal ventricular myocardium (particularly of the right ventricle), outflow tract septal and alignment defects, abnormal aortic and pulmonary trunk walls, and thickening of semilunar and/or atrioventricular valves. Ventricular septal defects (VSD) including the perimembranous VSDs were observed in Tgfb3-/- fetuses with myocardial defects often accompanied by the muscular type VSD. In vitro studies using TGFβ3-deficient fibroblasts in 3-D collagen lattice formation assays indicated that TGFβ3 was required for collagen matrix reorganization. Biochemical studies indicated the 'paradoxically' increased activation of canonical (SMAD-dependent) and noncanonical (MAP kinase-dependent) pathways. TGFβ3 is required for cardiovascular development to maintain a balance of canonical and noncanonical TGFβ signaling pathways.
Collapse
|
3
|
|
4
|
Lee HL, Yi T, Woo KM, Ryoo HM, Kim GS, Baek JH. Msx2 mediates the inhibitory action of TNF-alpha on osteoblast differentiation. Exp Mol Med 2010; 42:437-45. [PMID: 20440096 DOI: 10.3858/emm.2010.42.6.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TNF-alpha, a proinflammatory cytokine, inhibits osteoblast differentiation under diverse inflammatory conditions; however, the underlying mechanisms in terms of the TNF-alpha signaling pathway remain unclear. In this study, we examined the role of Msx2 in TNF-alpha-mediated inhibition of alkaline phosphatase (ALP) expression and the signaling pathways involved. TNF-alpha down-regulated ALP expression induced by bone morphogenetic protein 2 (BMP2) in C2C12 and Runx2(-/-)calvarial cells. Over-expression of Msx2 suppressed BMP2-induced ALP expression. Furthermore, TNF-alpha induced Msx2 expression, and the knockdown of Msx2 by small interfering RNAs rescued ALP expression, which was inhibited by TNF-alpha. TNF-alpha activated the NF-kappaB and the JNK pathways. Inhibition of NF-kappaB or JNK activation reduced the inhibitory effect of TNF-alpha on ALP expression, whereas TNF-alpha-induced Msx2 expression was only suppressed by the inhibition of the NF-kappaB pathway. Taken together, these results indicate that Msx2 mediates the inhibitory action of TNF-alpha on BMP2-regulated osteoblast differentiation and that the TNF-alpha-activated NF-kappaB pathway is responsible for Msx2 induction.
Collapse
Affiliation(s)
- Hye-Lim Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | | | | | | | | | | |
Collapse
|
5
|
De Coster PJ, Marks LA, Martens LC, Huysseune A. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2008; 38:1-17. [PMID: 18771513 DOI: 10.1111/j.1600-0714.2008.00699.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dental agenesis is the most common developmental anomaly in humans and is frequently associated with several other oral abnormalities. Whereas the incidence of missing teeth may vary considerably depending on dentition, gender, and demographic or geographic profiles, distinct patterns of agenesis have been detected in the permanent dentition. These frequently involve the last teeth of a class to develop (I2, P2, M3) suggesting a possible link with evolutionary trends. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) involving one (80% of cases), a few (less than 10%) or many teeth (less than 1%), or can be associated with a systemic condition or syndrome (syndromic hypodontia), essentially reflecting the genetically and phenotypically heterogeneity of the condition. Based on our present knowledge of genes and transcription factors that are involved in tooth development, it is assumed that different phenotypic forms are caused by different genes involving different interacting molecular pathways, providing an explanation not only for the wide variety in agenesis patterns but also for associations of dental agenesis with other oral anomalies. At present, the list of genes involved in human non-syndromic hypodontia includes not only those encoding a signaling molecule (TGFA) and transcription factors (MSX1 and PAX9) that play critical roles during early craniofacial development, but also genes coding for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). Our objective was to review the current literature on the molecular mechanisms that are responsible for selective dental agenesis in humans and to present a detailed overview of syndromes with hypodontia and their causative genes. These new perspectives and future challenges in the field of identification of possible candidate genes involved in dental agenesis are discussed.
Collapse
Affiliation(s)
- P J De Coster
- Department of Paediatric Dentistry and Special Care, Paecamed Research, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
6
|
Abstract
INTRODUCTION MSX1 gene has a critical role in craniofacial development, the aim of this case-control study is to test the hypothesis that MSX1 mutation contributes to congenital tooth agenesis in Iranians. MATERIALS AND METHODS The study group consisted of 20 affected individuals with tooth agenesis of lower second premolars or upper lateral incisors with mean age of 24.6. The control group consisted of 20 unaffected individuals. DNA was extracted from all 40 individuals; the polymerase chain reaction (PCR) for MSX1 was carried out with Phenol: Chloroform: Isoamylalchol (PCI) extraction method. Ban II restriction digest and agarose gel electrophoresis of the 20 affected individuals verified the presence of mutation in all 20 affected individuals. The unaffected controls did not show any mutation. Statistical analysis performed by the chi-squared method. RESULTS Ban II did not digest PCR product (DNA) in the control group (195 bp band on electrophoresis gel) but digested the affected allele (106 bp and 89 bp bands). There is a statistically significant correlation between tooth agenesis and MSX1 mutation (P < 0.001). CONCLUSION The results indicated that MSX1 gene mutation contributes to tooth agenesis in Iranian individuals. As the timing of tooth calcification can vary, radiographic finding of congenital tooth agenesis can be confirmed by this molecular method during different dental ages to achieve certainty.
Collapse
Affiliation(s)
- Massoud Seifi
- Shaheed Beheshti University of Medical Sciences, Department of Orthodontics, Tehran, Iran.
| | | | | |
Collapse
|
7
|
Abstract
Craniofacial malformations are involved in three fourths of all congenital birth defects in humans, affecting the development of head, face, or neck. Tremendous progress in the study of craniofacial development has been made that places this field at the forefront of biomedical research. A concerted effort among evolutionary and developmental biologists, human geneticists, and tissue engineers has revealed important information on the molecular mechanisms that are crucial for the patterning and formation of craniofacial structures. Here, we highlight recent advances in our understanding of evo-devo as it relates to craniofacial morphogenesis, fate determination of cranial neural crest cells, and specific signaling pathways in regulating tissue-tissue interactions during patterning of craniofacial apparatus and the morphogenesis of tooth, mandible, and palate. Together, these findings will be beneficial for the understanding, treatment, and prevention of human congenital malformations and establish the foundation for craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yang Chai
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033, USA.
| | | |
Collapse
|
8
|
Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, Shuler CF, Moses HL, Chai Y. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130:5269-80. [PMID: 12975342 DOI: 10.1242/dev.00708] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cleft palate and skull malformations represent some of the most frequent congenital birth defects in the human population. Previous studies have shown that TGFbeta signaling regulates the fate of the medial edge epithelium during palatal fusion and postnatal cranial suture closure during skull development. It is not understood, however, what the functional significance of TGFbeta signaling is in regulating the fate of cranial neural crest (CNC) cells during craniofacial development. We show that mice with Tgfbr2 conditional gene ablation in the CNC have complete cleft secondary palate, calvaria agenesis, and other skull defects with complete phenotype penetrance. Significantly, disruption of the TGFbeta signaling does not adversely affect CNC migration. Cleft palate in Tgfbr2 mutant mice results from a cell proliferation defect within the CNC-derived palatal mesenchyme. The midline epithelium of the mutant palatal shelf remains functionally competent to mediate palatal fusion once the palatal shelves are placed in close contact in vitro. Our data suggests that TGFbeta IIR plays a crucial, cell-autonomous role in regulating the fate of CNC cells during palatogenesis. During skull development, disruption of TGFbeta signaling in the CNC severely impairs cell proliferation in the dura mater, consequently resulting in calvaria agenesis. We provide in vivo evidence that TGFbeta signaling within the CNC-derived dura mater provides essential inductive instruction for both the CNC- and mesoderm-derived calvarial bone development. This study demonstrates that TGFbeta IIR plays an essential role in the development of the CNC and provides a model for the study of abnormal CNC development.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
During mammalian palatal fusion, the medial edge epithelial (MEE) cells must stop DNA synthesis prior to the initial contact of opposing palatal shelves and thereafter selectively disappear from the midline. Exogenous EGF has been shown to inhibit the cessation of DNA synthesis and induce cleft palate; however, the precise intracellular mechanism has not been determined. We hypothesized that EGF signaling acting via ERK1/2 would maintain MEE DNA synthesis and cell proliferation and consequently inhibit the process of palatal fusion. Palatal shelves from E13 mouse embryos were maintained in organ cultures and stimulated with EGF. EGF-treated palates failed to fuse with intact MEE and had significant ERK1/2 phosphorylation. Both EGF-induced ERK1/2 phosphorylation and BrdU-incorporation were localized in the nucleus of MEE cells. Subsequent inhibition assays using U0126, a specific inhibitor of ERK1/2 phosphorylation, were conducted. U0126 inhibited EGF-induced ERK1/2 phosphorylation in a dose-dependent manner and consequently MEE cells stopped proliferation. The threshold of ERK1/2 inactivation to stop MEE DNA synthesis coincides with the level required to rescue the EGF-induced cleft palate phenotype. These results indicate that EGF-induced inhibition of palatal fusion is dependent on nuclear ERK1/2 activation and that this mechanism must be tightly regulated during normal palatal fusion.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033-9062, USA
| | | | | |
Collapse
|
10
|
Yanagisawa H, Clouthier DE, Richardson JA, Charité J, Olson EN. Targeted deletion of a branchial arch-specific enhancer reveals a role of dHAND in craniofacial development. Development 2003; 130:1069-78. [PMID: 12571099 DOI: 10.1242/dev.00337] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The basic helix-loop-helix transcription factor dHAND is expressed in the mesenchyme of branchial arches and the developing heart. Mice homozygous for a dHAND (Hand2) null mutation die early in embryogenesis from cardiac abnormalities, precluding analysis of the potential role of dHAND in branchial arch development. Two independent enhancers control expression of dHAND in the heart and branchial arches. Endothelin-1 (ET-1) signaling regulates the branchial arch enhancer and is required for dHAND expression in the branchial arches. To determine the potential role of dHAND in branchial arch development and to assess the role of the ET-1-dependent enhancer in dHAND regulation in vivo, we deleted this enhancer by homologous recombination. Mice lacking the dHAND branchial arch enhancer died perinatally and exhibited a spectrum of craniofacial defects that included cleft palate, mandibular hypoplasia and cartilage malformations. Expression of dHAND was abolished in the ventolateral regions of the first and second branchial arches in these mutant mice, but expression was retained in a ventral domain where the related transcription factor eHAND is expressed. We conclude that dHAND plays an essential role in patterning and development of skeletal elements derived from the first and second branchial arches and that there are heterogeneous populations of cells in the branchial arches that rely on different cis-regulatory elements for activation of dHAND transcription.
Collapse
Affiliation(s)
- Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390-9148, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
12
|
Zhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y. Rescue of cleft palate inMsx1-deficient mice by transgenicBmp4reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development 2002; 129:4135-46. [PMID: 12163415 DOI: 10.1242/dev.129.17.4135] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cleft palate, the most frequent congenital craniofacial birth defects in humans, arises from genetic or environmental perturbations in the multi-step process of palate development. Mutations in the MSX1 homeobox gene are associated with non-syndromic cleft palate and tooth agenesis in humans. We have used Msx1-deficient mice as a model system that exhibits severe craniofacial abnormalities, including cleft secondary palate and lack of teeth, to study the genetic regulation of mammalian palatogenesis. We found that Msx1 expression was restricted to the anterior of the first upper molar site in the palatal mesenchyme and that Msx1 was required for the expression of Bmp4 and Bmp2 in the mesenchyme and Shh in the medial edge epithelium (MEE) in the same region of developing palate. In vivo and in vitro analyses indicated that the cleft palate seen in Msx1 mutants resulted from a defect in cell proliferation in the anterior palatal mesenchyme rather than a failure in palatal fusion. Transgenic expression of human Bmp4 driven by the mouse Msx1 promoter in the Msx1–/– palatal mesenchyme rescued the cleft palate phenotype and neonatal lethality. Associated with the rescue of the cleft palate was a restoration of Shh and Bmp2 expression, as well as a return of cell proliferation to the normal levels. Ectopic Bmp4 appears to bypass the requirement for Msx1 and functions upstream of Shh and Bmp2 to support palatal development. Further in vitro assays indicated that Shh (normally expressed in the MEE) activates Bmp2 expression in the palatal mesenchyme which in turn acts as a mitogen to stimulate cell division. Msx1 thus controls a genetic hierarchy involving BMP and Shh signals that regulates the growth of the anterior region of palate during mammalian palatogenesis. Our findings provide insights into the cellular and molecular etiology of the non-syndromic clefting associated with Msx1 mutations.
Collapse
Affiliation(s)
- Zunyi Zhang
- Department of Cell and Molecular Biology and Center for Bioenvironmental Research, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
MSX1 has a critical role in craniofacial development, as indicated by expression assays and transgenic mouse phenotypes. Previously, MSX1 mutations have been identified in three families with autosomal-dominant tooth agenesis. To test the hypothesis that MSX1 mutations are a common cause of congenital tooth agenesis, we screened 92 affected individuals, representing 82 nuclear families, for mutations, using single-strand conformation analysis. A Met61Lys substitution was found in two siblings from a large family with autosomal-dominant tooth agenesis. Complete concordance of the mutation with tooth agenesis was observed in the extended family. The siblings have a pattern of severe tooth agenesis similar that in to previous reports, suggesting that mutations in MSX1 are responsible for a specific pattern of inherited tooth agenesis. Supporting this theory, no mutations were found in more common cases of incisor or premolar agenesis, indicating that these have a different etiology.
Collapse
Affiliation(s)
- A C Lidral
- Department of Orthodontics, University of Iowa, 140 EMRB, Iowa City 52242, USA.
| | | |
Collapse
|
14
|
Abstract
The mapping of the field of influence of specific regulatory molecules can provide a great deal of information on the molecular strategies that underlie the changes in the developmental program and macroevolutionary process. The strategy in this study was to use the variation in the number of teeth in the affected individuals of three mutant families with hypodontia, to determine the relative influence (relative molecular morphogenetic field) of MSX 1 and PAX 9 genes on the dental field. The variations in the pattern of symmetry of tooth agenesis were used in order to estimate the developmental stability of these genes. The approach used in the present work can help to explore new hypotheses linking development with the patterning of dentition during mammalian evolution. Furthermore, the developmental changes can be linked to changes in the molecular morphogenetic field of specific genes.
Collapse
Affiliation(s)
- S R Line
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Av. Limeira 901, Piracicaba, SP, 13414-018, Brazil.
| |
Collapse
|
15
|
Martínez-Alvarez C, Tudela C, Pérez-Miguelsanz J, O'Kane S, Puerta J, Ferguson MW. Medial edge epithelial cell fate during palatal fusion. Dev Biol 2000; 220:343-57. [PMID: 10753521 DOI: 10.1006/dbio.2000.9644] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To explain the disappearance of medial edge epithelial (MEE) cells during palatal fusion, programmed cell death, epithelial-mesenchymal transformation, and migration of these cells to the oral and nasal epithelia have been proposed. However, MEE cell death has not always been accepted as a mechanism involved in midline epithelial seam disappearance. Similarly, labeling of MEE cells with vital lipophilic markers has not led to a clear conclusion as to whether MEE cells migrate, transform into mesenchyme, or both. To clarify these controversies, we first utilized TUNEL techniques to detect apoptosis in mouse palates at the fusion stage and concomitantly analyzed the presence of macrophages by immunochemistry and confocal microscopy. Second, we in vitro infected the MEE with the replication-defective helper-free retroviral vector CXL, which carries the Escherichia coli lacZ gene, and analyzed beta-galactosidase activity in cells after fusion to follow their fate. Our results demonstrate that MEE cells die and transform into mesenchyme during palatal fusion and that dead cells are phagocytosed by macrophages. In addition, we have investigated the effects of the absence of transforming growth factor beta(3) (TGF-beta(3)) during palatal fusion. Using environmental scanning electron microscopy and TUNEL labeling we compared the MEE of the clefted TGF-beta(3) null and wild-type mice. We show that MEE cell death in TGF-beta(3) null palates is greatly reduced at the time of fusion, revealing that TGF-beta(3) has an important role as an inducer of apoptosis during palatal fusion. Likewise, the bulging cells observed on the MEE surface of wild-type mice prior to palatal shelf contact are very rare in the TGF-beta(3) null mutants. We hypothesize that these protruding cells are critical for palatal adhesion, being morphological evidence of increased cell motility/migration.
Collapse
Affiliation(s)
- C Martínez-Alvarez
- Departamento de Ciencias Morfológicas I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
We previously reported that mutation of the transforming growth factor-beta3 (TGF-beta3) gene caused cleft palate in homozygous null (−/−) mice. TGF-beta3 is normally expressed in the medial edge epithelial (MEE) cells of the palatal shelf. In the present study, we investigated the mechanisms by which TGF-beta3 deletions caused cleft palate in 129 × CF-1 mice. For organ culture, palatal shelves were dissected from embryonic day 13.5 (E13.5) mouse embryos. Palatal shelves were placed singly or in pairs on Millipore filters and cultured in DMEM/F12 medium. Shelves were placed in homologous (+/+ vs +/+, −/− vs −/−, +/− vs +/−) or heterologous (+/+ vs −/−, +/− vs −/−, +/+ vs +/−) paired combinations and examined by macroscopy and histology. Pairs of −/− and −/− shelves failed to fuse over 72 hours of culture whereas pairs of +/+ (wild-type) and +/+ or +/− (heterozygote) and +/−, as well as +/+ and −/− shelves, fused within the first 48 hour period. Histological examination of the fused +/+ and +/+ shelves showed complete disappearance of the midline epithelial seam whereas −/− and +/+ shelves still had some seam remnants. In order to investigate the ability of TGF-beta family members to rescue the fusion between −/− and −/− palatal shelves in vitro, either recombinant human (rh) TGF-beta1, porcine (p) TGF-beta2, rh TGF-beta3, rh activin, or p inhibin was added to the medium in different concentrations at specific times and for various periods during the culture. In untreated organ culture −/− palate pairs completely failed to fuse, treatment with TGF-beta3 induced complete palatal fusion, TGF-beta1 or TGF-beta2 near normal fusion, but activin and inhibin had no effect. We investigated ultrastructural features of the surface of the MEE cells using SEM to compare TGF-beta3-null embryos (E 12. 5-E 16.5) with +/+ and +/− embryos in vivo and in vitro. Up to E13.5 and after E15.5, structures resembling short rods were observed in both +/+ and −/− embryos. Just before fusion, at E14.5, a lot of filopodia-like structures appeared on the surface of the MEE cells in +/+ embryos, however, none were observed in −/− embryos, either in vivo or in vitro. With TEM these filopodia are coated with material resembling proteoglycan. Interestingly, addition of TGF-beta3 to the culture medium which caused fusion between the −/− palatal shelves also induced the appearance of these filopodia on their MEE surfaces. TGF-beta1 and TGF-beta2 also induced filopodia on the −/− MEE but to a lesser extent than TGF-beta3 and additionally induced lamellipodia on their cell surfaces. These results suggest that TGF-beta3 may regulate palatal fusion by inducing filopodia on the outer cell membrane of the palatal medial edge epithelia prior to shelf contact. Exogenous recombinant TGF-beta3 can rescue fusion in −/− palatal shelves by inducing such filopodia, illustrating that the effects of TGF-beta3 are transduced by cell surface receptors which raises interesting potential therapeutic strategies to prevent and treat embryonic cleft palate.
Collapse
Affiliation(s)
- Y Taya
- Division of Cells, Immunology and Development, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
17
|
Nugent P, Greene RM. MSX-1 gene expression and regulation in embryonic palatal tissue. In Vitro Cell Dev Biol Anim 1998; 34:831-5. [PMID: 9870533 DOI: 10.1007/s11626-998-0038-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.
Collapse
Affiliation(s)
- P Nugent
- Department of Biological and Biophysical Sciences, University of Louisville School of Dentistry, Kentucky 40292, USA
| | | |
Collapse
|
18
|
Abstract
A transgenic mouse insertional mutant displayed the phenotype of altered cranial morphology with sex-linked cleft palate. We have cloned the disrupted genomic X-linked locus and report the identification of the mCASK gene. The gene is transcribed to produce two messages of 4.5 and 9.5 kb expressed during development and in adult tissues, particularly the brain. We describe the isolation of two differentially spliced mouse cDNAs from the locus (mCASK-A and mCASK-B). The mCASK-B cDNA probably represents the full-length product of the 4.5-kb transcript. The identical N-termini of the predicted encoded proteins (mCASK-A and -B) are highly homologous to Ca2+/calmodulin-dependent protein kinase II, while the deduced C-terminus of mCASK-B is highly homologous to a family of multidomain proteins containing a guanylate kinase motif, the MAGUK proteins. mCASK-B is a new member of an emerging family of genes in which the encoded proteins combine these domains, termed here, the CAMGUKs, including rat CASK, Caenorhabditis elegans lin-2, and Drosophila caki/camguk. The CAMGUKs are likely to be effectors in signal transduction as regulatory partners of transmembrane molecules, modulated by calcium and nucleotides. The transgene in this mutant mouse line integrated into an intron that bisects the encoded calmodulin-binding domain, a potentially important regulatory domain of the predicted protein, generating hybrid transcripts.
Collapse
Affiliation(s)
- H G Laverty
- CID School of Biological Sciences, The Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | |
Collapse
|
19
|
Thomas T, Kurihara H, Yamagishi H, Kurihara Y, Yazaki Y, Olson EN, Srivastava D. A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchial arch mesenchyme. Development 1998; 125:3005-14. [PMID: 9671575 DOI: 10.1242/dev.125.16.3005] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous human syndromes are the result of abnormal cranial neural crest development. One group of such defects, referred to as CATCH-22 (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate, hypocalcemia, associated with chromosome 22 microdeletion) syndrome, exhibit craniofacial and cardiac defects resulting from abnormal development of the third and fourth neural crest-derived branchial arches and branchial arch arteries. Mice harboring a null mutation of the endothelin-1 gene (Edn1), which is expressed in the epithelial layer of the branchial arches and encodes for the endothelin-1 (ET-1) signaling peptide, have a phenotype similar to CATCH-22 syndrome with aortic arch defects and craniofacial abnormalities. Here we show that the basic helix-loop-helix transcription factor, dHAND, is expressed in the mesenchyme underlying the branchial arch epithelium. Further, dHAND and the related gene, eHAND, are downregulated in the branchial and aortic arches of Edn1-null embryos. In mice homozygous null for the dHAND gene, the first and second arches are hypoplastic secondary to programmed cell death and the third and fourth arches fail to form. Molecular analysis revealed that most markers of the neural-crest-derived components of the branchial arch are expressed in dHAND-null embryos, suggesting normal migration of neural crest cells. However, expression of the homeobox gene, Msx1, was undetectable in the mesenchyme of dHAND-null branchial arches but unaffected in the limb bud, consistent with the separable regulatory elements of Msx1 previously described. Together, these data suggest a model in which epithelial secretion of ET-1 stimulates mesenchymal expression of dHAND, which regulates Msx1 expression in the growing, distal branchial arch. Complete disruption of this molecular pathway results in growth failure of the branchial arches from apoptosis, while partial disruption leads to defects of branchial arch derivatives, similar to those seen in CATCH-22 syndrome.
Collapse
Affiliation(s)
- T Thomas
- Department of Pediatrics, Division of Cardiology and Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9148, USA. edu
| | | | | | | | | | | | | |
Collapse
|
20
|
Lidral AC, Romitti PA, Basart AM, Doetschman T, Leysens NJ, Daack-Hirsch S, Semina EV, Johnson LR, Machida J, Burds A, Parnell TJ, Rubenstein JL, Murray JC. Association of MSX1 and TGFB3 with nonsyndromic clefting in humans. Am J Hum Genet 1998; 63:557-68. [PMID: 9683588 PMCID: PMC1377298 DOI: 10.1086/301956] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nonsyndromic cleft lip with or without cleft palate (CL/P) and nonsyndromic cleft palate only (CPO) are common congenital anomalies with significant medical, psychological, social, and economic ramifications. Both CL/P and CPO are examples of complex genetic traits. There exists sufficient evidence to hypothesize that disease loci for CL/P and CPO can be identified by a candidate-gene linkage-disequilibrium (LD) strategy. Candidate genes for clefting, including TGFA, BCL3, DLX2, MSX1, and TGFB3, were screened for LD with either CL/P or CPO in a predominantly Caucasian population, with both case-control- and nuclear-family-based approaches. Previously reported LD for TGFA with both CL/P and CPO could not be confirmed, except in CL/P patients with a positive family history. Also, in contrast to previous studies, no LD was found between BCL3 and either CL/P or CPO. Significant LD was found between CL/P and both MSX1 and TGFB3 and between CPO and MSX1, suggesting that these genes are involved in the pathogenesis of clefting. In addition, a mutation search in the genes DLX2, MSX1, and TGFB3 was performed in 69 CPO patients and in a subset of the CL/P patients. No common mutations were found in the coding regions of these genes; however, several rare variants of MSX1 and TGFB3 were found that may alter the latters' normal function. These results form the basis for future research, including (a) mutation searches in the MSX1 and TGFB3 genes in Caucasian CL/P patients and (b) extension of the search for MSX1 mutations in CPO patients to the noncoding regions.
Collapse
Affiliation(s)
- A C Lidral
- Department of Orthodontics, Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mossey PA, Arngrimsson R, McColl J, Vintiner GM, Connor JM. Prediction of liability to orofacial clefting using genetic and craniofacial data from parents. J Med Genet 1998; 35:371-8. [PMID: 9610799 PMCID: PMC1051310 DOI: 10.1136/jmg.35.5.371] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cleft lip with or without cleft palate (CL(P)) and isolated cleft palate (CP) are separate clinical entities and for both polygenic multifactorial aetiology has been proposed. Parents of children with orofacial clefting have been shown to have distinctive differences in their facial shape when compared to matched controls. OBJECTIVE To test the hypothesis that genetic and morphometric factors predispose to orofacial clefting and that these markers differ for CL(P) and CP. Methods-Polymorphisms at the transforming growth factor alpha (TGFalpha) locus in 83 parents of children with nonsyndromic orofacial clefts were analysed, and their craniofacial morphology was assessed using lateral cephalometry. RESULTS Parents of children with CL(P) and CP showed an increased frequency of the TGFalpha/TaqI C2 allele (RR=4.10, p=0.009) relative to the comparison group. Also the TGFalpha/BamHI A1 allele was more prevalent in the CP parents. MULTIVARIATE STATISTICAL ANALYSIS: Using stepwise logistic regression analysis the TGFalpha/TaqI C2 polymorphism provides the best model for liability to orofacial clefting. To determine the type of clefting a model involving interaction between the parental TGFalpha/BamHI and TGFalpha/RsaI genotypes showed the best fit. Using genotype only to predict the clefting defect in the children according to parental genotype, 68.3% could be correctly classified. By adding information on craniofacial measurements in the parents, 76% of CP and 94% of CL(P) parents could be correctly classified. CONCLUSIONS This study provides a model for prediction of liability to orofacial clefting. These findings suggest that different molecular aberrations at the TGFalpha locus may modify the risk for CP and CL(P).
Collapse
Affiliation(s)
- P A Mossey
- Department of Dental Health, University of Dundee Dental School, UK
| | | | | | | | | |
Collapse
|
22
|
Abstract
The insulin-like growth factor II (IGFII) is a mitogen for a number of cell types in vitro and is required for normal embryonic growth. It has been hypothesized that overexpression of IGF2 is responsible for the increased growth and tumor predisposition in patients with Beckwith-Wiedemann syndrome. Association of increased levels of IGFII with increased growth is also incorporated in a current model for the evolution of Igf2 imprinting. Different experimental approaches to increasing IGFII levels in the mouse have yielded different results with respect to its effects on growth, viability, and tumor development. To investigate the consequences of IGf2 overexpression in the embryonic period, without alterations in the activity of other genes, we produced transgenic mice that express the Igf2 gene under the control of the H19 enhancers. Transgene expression in the embryonic period had no significant effect on the overall size of the embryos, but was associated with perinatal lethality in homozygous, and some heterozygous, mice. A large fraction of homozygous mice also developed a cleft palate. These findings indicate that overexpression of Igf2 can have an adverse effect on viability in the absence of a pronounced effect on overall body growth. The results are consistent with the view that growth and perinatal viability are affected differently by Igf2 overexpression in endodermal and mesodermal tissues.
Collapse
Affiliation(s)
- T L Wise
- Saint Louis University Health Sciences Center, Dept. of Pediatrics, MO 63110, USA
| | | |
Collapse
|
23
|
Abstract
Nonsyndromic oral clefts are among the most common birth defects, affecting approximately 1 in 1000 Caucasian newborns. In recent decades, many investigators have used genetic and epidemiologic methods to identify etiologic factors, but results have often been inconclusive or contradictory. Etiologic heterogeneity is undoubtedly a major component in these birth defects, and there may not be a single answer to this problem. Here, we describe the main features of published studies pointing out their strengths and limitations. Additionally, we give insight into current methods for detecting the presence of interaction between genetic markers and environmental exposures in the etiology of oral clefts.
Collapse
Affiliation(s)
- D F Wyszynski
- Department of Epidemiology, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
24
|
Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 1996; 13:417-21. [PMID: 8696335 DOI: 10.1038/ng0896-417] [Citation(s) in RCA: 479] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We demonstrate that a mutation in the homeobox gene, MSX1, causes a common developmental anomaly, familial tooth agenesis. Genetic linkage analyses in a family with autosomal dominant agenesis of second premolars and third molars identified a locus on chromosome 4p, where the MSX1 gene resides. Sequence analyses demonstrated an Arg31Pro missense mutation in the homeodomain of MSX1 in all affected family members. Arg 31 is a highly conserved homeodomain residue that interacts with the ribose phosphate backbone of target DNA. We propose that the Arg31 Pro mutatrion comprises MSX1 interactions, and suggest that MSX1 functions are critical for normal development of specific human teeth.
Collapse
Affiliation(s)
- H Vastardis
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
25
|
Slaney SF, Oldridge M, Hurst JA, Moriss-Kay GM, Hall CM, Poole MD, Wilkie AO. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Am J Hum Genet 1996. [PMID: 8651276 DOI: 10.1002/(sici)1096-8628(19960503)63:1<323::aid-ajmg54>3.0.co;2-m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apert syndrome is a distinctive human malformation characterized by craniosynostosis and severe syndactyly of the hands and feet. It is caused by specific missense substitutions involving adjacent amino acids (Ser252Trp or Pro253Arg) in the linker between the second and third extracellular immunoglobulin domains of fibroblast growth factor receptor 2 (FGFR2). We have developed a simple PCR assay for these mutations in genomic DNA, based on the creation of novel (SfiI) and (BstUI) restriction sites. Analysis of DNA from 70 unrelated patients with Apert syndrome showed that 45 had the Ser252Trp mutation and 25 had the Pro253Arg mutation. Phenotypic differences between these two groups of patients were investigated. Significant differences were found for severity of syndactyly and presence of cleft palate. The syndactyly was more severe with the Pro253Arg mutation, for both the hands and the feet. In contrast, cleft palate was significantly more common in the Ser252Trp patients. No convincing differences were found in the prevalence of other malformations associated with Apert syndrome. We conclude that, although the phenotype attributable to the two mutations is very similar, there are subtle differences. The opposite trends for severity of syndactyly and cleft palate in relation to the two mutations may relate to the varying patterns of temporal and tissue-specific expression of different fibroblast growth factors, the ligands for FGFR2.
Collapse
Affiliation(s)
- S F Slaney
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Murray JD, Kulesa PM. On a dynamic reaction–diffusion mechanism: the spatial patterning of teeth primordia in the alligator. ACTA ACUST UNITED AC 1996. [DOI: 10.1039/ft9969202927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 1995; 11:409-14. [PMID: 7493021 PMCID: PMC3855390 DOI: 10.1038/ng1295-409] [Citation(s) in RCA: 696] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mice lacking TGF-beta 3 exhibit an incompletely penetrant failure of the palatal shelves to fuse leading to cleft palate. The defect appears to result from impaired adhesion of the apposing medial edge epithelia of the palatal shelves and subsequent elimination of the mid-line epithelial seam. No craniofacial abnormalities were observed. This result demonstrates that TGF-beta 3 affects palatal shelf fusion by an intrinsic, primary mechanism rather than by effects secondary to craniofacial defects.
Collapse
Affiliation(s)
- G Proetzel
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sperber GH. Confleunce of clinical, theoretical, and laboratory research in syndromology. Cleft Palate Craniofac J 1995; 32:527-8. [PMID: 8547297 DOI: 10.1597/1545-1569_1995_032_0527_coctal_2.3.co_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- G H Sperber
- Faculty of Medicine and Oral Health Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
30
|
Johnston MC, Bronsky PT. Prenatal craniofacial development: new insights on normal and abnormal mechanisms. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1995; 6:368-422. [PMID: 8664424 DOI: 10.1177/10454411950060040601] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Technical advances are radically altering our concepts of normal prenatal craniofacial development. These include concepts of germ layer formation, the establishment of the initial head plan in the neural plate, and the manner in which head segmentation is controlled by regulatory (homeobox) gene activity in neuromeres and their derived neural crest cells. There is also a much better appreciation of ways in which new cell associations are established. For example, the associations are achieved by neural crest cells primarily through cell migration and subsequent cell interactions that regulate induction, growth, programmed cell death, etc. These interactions are mediated primarily by two groups of regulatory molecules: "growth factors" (e.g., FGF and TGF alpha) and the so-called steroid/thyroid/retinoic acid superfamily. Considerable advances have been made with respect to our understanding of the mechanisms involved in primary and secondary palate formation, such as growth, morphogenetic movements, and the fusion/merging phenomenon. Much progress has been made on the mechanisms involved in the final differentiation of skeletal tissues. Molecular genetics and animal models for human malformations are providing many insights into abnormal development. A mouse model for the fetal alcohol syndrome (FAS), a mild form of holoprosencephaly, demonstrates a mid-line anterior neural plate deficiency which leads to olfactory placodes being positioned too close to the mid-line, and other secondary changes. Work on animal models for the retinoic acid syndrome (RAS) shows that there is major involvement of neural crest cells. There is also major crest cell involvement in similar syndromes, apparently including hemifacial microsomia. Later administration of retinoic acid prematurely and excessively kills ganglionic placodal cells and leads to a malformation complex virtually identical to the Treacher Collins syndrome. Most clefts of the lip and/or palate appear to have a multifactorial etiology. Genetic variations in TGF alpha s, RAR alpha s, NADH dehydrogenase, an enzyme involved in oxidative metabolism, and cytochrome P-450, a detoxifying enzyme, have been implicated as contributing genetic factors. Cigarette smoking, with the attendant hypoxia, is a probable contributing environmental factor. It seems likely that few clefts involve single major genes. In most cases, the pathogenesis appears to involve inadequate contact and/or fusion of the facial prominences or palatal shelves. Specific mutations in genes for different FGF receptor molecules have been identified for achondroplasia and Crouzon's syndrome, and in a regulatory gene (Msx2) for one type of craniosynostosis. Poorly co-ordinated control of form and size of structures, or groups of structures (e.g., teeth and jaws), by regulatory genes should do much to explain the very frequent "mismatches" found in malocclusions and other dentofacial "deformities". Future directions for research, including possibilities for prevention, are discussed.
Collapse
Affiliation(s)
- M C Johnston
- Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
31
|
Shuler CF. Programmed cell death and cell transformation in craniofacial development. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1995; 6:202-17. [PMID: 8785261 DOI: 10.1177/10454411950060030301] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fusion of branchial arch derivatives is an essential component in the development of craniofacial structures. Bilaterally symmetric branchial arch processes fuse in the midline to form the mandible, lips, and palate. The mechanism for fusion requires several different morphologic and molecular events prior to the completion of the mesenchymal continuity between opposing tissue processes. The ectodermal covering of the branchial arches is one of the cell types that has an important role during craniofacial development. The surface epithelia provide the initial adherence between the processes; however, this population of cells is ultimately absent from the fusion zone. The medial edge epithelium of the secondary palatal shelves is one example of such an epithelium that must disappear from the fusion zone of the secondary palate during development in order to complete palatal fusion. The mechanisms for removal of the epithelial cells from the fusion zone could include either programmed cell death, epithelial-mesenchymal transformation, or migration to adjacent epithelia. All three of these fates have been hypothesized as a mechanism for the removal of the palatal medial edge epithelia. The processes of programmed cell death, epithelial-mesenchymal transformation, and epithelial migration are reviewed with respect to both palatal fusion and results reported in other model systems.
Collapse
Affiliation(s)
- C F Shuler
- University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, Los Angeles 90033, USA
| |
Collapse
|
32
|
Johnston MC, Bronsky PT. Prenatal craniofacial development: new insights on normal and abnormal mechanisms. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1995; 6:25-79. [PMID: 7632866 DOI: 10.1177/10454411950060010301] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Technical advances are radically altering our concepts of normal prenatal craniofacial development. These include concepts of germ layer formation, the establishment of the initial head plan in the neural plate, and the manner in which head segmentation is controlled by regulatory (homeobox) gene activity in neuromeres and their derived neural crest cells. There is also a much better appreciation of ways in which new cell associations are established. For example, the associations are achieved by neural crest cells primarily through cell migration and subsequent cell interactions that regulate induction, growth, programmed cell death, etc. These interactions are mediated primarily by two groups of regulatory molecules: "growth factors" (e.g., FGF and TGFalpha) and the so-called steroid/thyroid/retinoic acid superfamily. Considerable advances have been made with respect to our understanding of mechanisms involved in primary and secondary palate formation, such as growth, morphogenetic movements, and the fusion/merging phenomenon. Much progress has been made on the mechanisms involved in the final differentiation of skeletal tissues. Molecular genetics and animal models for human malformations are providing many insights into abnormal development. A mouse model for the fetal alcohol syndrome(FAS), a mild form of holoprosencephaly, demonstrates a mid-line anterior neural plate deficiency which leads to olfactory placodes being positioned too close to the mid-line, and other secondary changes. Work on animal models for the retinoic acid syndrome (RAS) shows that there is major involvement of neural crest cells. There is also major crest cell involvement in similar syndromes, apparently including hemifacial microsomia. Later administration of retinoic acid prematurely and excessively kills ganglionic placodal cells and leads to a malformation complex virtually identical to the Treacher Collins syndrome. Most clefts of the lip and/or palate appear to have a multifactorial etiology. Genetic variations in TGF alpha s, RAR alpha s, NADH dehydrogenase, an enzyme involved in oxidative metabolism, and cytochrome P-450, a detoxifying enzyme, have been implicated as contributing genetic factors. Cigarette smoking, with the attendant hypoxia, is a probable contributing environmental factor. It seems likely that few clefts involve single major genes. In most cases, the pathogenesis appears to involve inadequate contact and/or fusion of the facial prominences or palatal shelves. Specific mutations in genes for different FGF receptor molecules have been identified for achondroplasia and Crouzon's syndrome, and in a regulatory gene (Msx2) for one type of craniosynostosis.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M C Johnston
- Dental Research Center, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|