1
|
Tirado-González I, Freitag N, Barrientos G, Shaikly V, Nagaeva O, Strand M, Kjellberg L, Klapp BF, Mincheva-Nilsson L, Cohen M, Blois SM. Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy. Mol Hum Reprod 2012; 19:43-53. [PMID: 23002109 DOI: 10.1093/molehr/gas043] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Galectin-1 (gal-1) is expressed at the feto-maternal interface and plays a role in regulating the maternal immune response against placental alloantigens, contributing to pregnancy maintenance. Both decidua and placenta contribute to gal-1 expression and may be important for the maternal immune regulation. The expression of gal-1 within the placenta is considered relevant to cell-adhesion and invasion of trophoblasts, but the role of gal-1 in the immune evasion machinery exhibited by trophoblast cells remains to be elucidated. In this study, we analyzed gal-1 expression in preimplantation human embryos and first-trimester decidua-placenta specimens and serum gal-1 levels to investigate the physiological role played by this lectin during pregnancy. The effect on human leukocyte antigen G (HLA-G) expression in response to stimulation or silencing of gal-1 was also determined in the human invasive, proliferative extravillous cytotrophoblast 65 (HIPEC65) cell line. Compared with normal pregnant women, circulating gal-1 levels were significantly decreased in patients who subsequently suffered a miscarriage. Human embryos undergoing preimplantation development expressed gal-1 on the trophectoderm and inner cell mass. Furthermore, our in vitro experiments showed that exogenous gal-1 positively regulated the membrane-bound HLA-G isoforms (HLA-G1 and G2) in HIPEC65 cells, whereas endogenous gal-1 also induced expression of the soluble isoforms (HLA-G5 and -G6). Our results suggest that gal-1 plays a key role in pregnancy maternal immune regulation by modulating HLA-G expression on trophoblast cells. Circulating gal-1 levels could serve as a predictive factor for pregnancy success in early human gestation.
Collapse
Affiliation(s)
- Irene Tirado-González
- Charité Center 12 Internal Medicine and Dermatology, Reproductive Medicine Research Group, Medicine University Berlin, BMFZ, Raum 2.0547, AugustenburgerPlatz 1, D-13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Mei J, Liu S, Li Z, Gui JF. Mtmr8 is essential for vasculature development in zebrafish embryos. BMC DEVELOPMENTAL BIOLOGY 2010; 10:96. [PMID: 20815916 PMCID: PMC2944161 DOI: 10.1186/1471-213x-10-96] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 09/05/2010] [Indexed: 11/21/2022]
Abstract
Background Embryonic morphogenesis of vascular and muscular systems is tightly coordinated, and a functional cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development has been revealed in zebrafish. Here, we attempt to explore the function of Mtmr8 in vasculature development parallel to its function in muscle development. Results During early stage of somitogenesis, mtmr8 expression was detected in both somitic mesodem and ventral mesoderm. Knockdown of mtmr8 by morpholino impairs arterial endothelial marker expression, and results in endothelial cell reduction and vasculogenesis defects, such as retardation in intersegmental vessel development and interruption of trunk dorsal aorta. Moreover, mtmr8 morphants show loss of arterial endothelial cell identity in dorsal aorta, which is effectively rescued by low concentration of PI3K inhibitor, and by over-expression of dnPKA mRNA or vegf mRNA. Interestingly, mtmr8 expression is up-regulated when zebrafish embryos are treated with specific inhibitor of Hedgehog pathway that abolishes arterial marker expression. Conclusion These data indicate that Mtmr8 is essential for vasculature development in zebrafish embryos, and may play a role in arterial specification through repressing PI3K activity. It is suggested that Mtmr8 should represent a novel element of the Hedgehog/PI3K/VEGF signaling cascade that controls arterial specification.
Collapse
Affiliation(s)
- Jie Mei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
3
|
The Sos-recruitment system as a tool to analyze cellular localization of plant proteins: membrane localization of Arabidopsis thaliana PEPINO/PASTICCINO2. Mol Genet Genomics 2010; 283:439-49. [DOI: 10.1007/s00438-010-0528-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/22/2010] [Indexed: 01/26/2023]
|
4
|
Vacaru AM, den Hertog J. Catalytically active membrane-distal phosphatase domain of receptor protein-tyrosine phosphatase alpha is required for Src activation. FEBS J 2010; 277:1562-70. [PMID: 20158519 DOI: 10.1111/j.1742-4658.2010.07584.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Receptor protein-tyrosine phosphatase alpha (RPTPalpha) is a transmembrane protein with tandem cytoplasmic phosphatase domains. Most of the catalytic activity is contained by the membrane-proximal catalytic domain (D1). We found a spontaneous Arg554 to His mutation in the pTyr recognition loop of the membrane-distal phosphatase domain (D2) of a human patient. This mutation was not linked to the disease. Here, we report that the R554H mutation abolished RPTPalpha-D2 catalytic activity. The R554H mutation impaired Src binding to RPTPalpha. RPTPalpha, with a catalytic site cysteine to serine mutation in D2, also displayed diminished binding to Src. Concomitant with decreased Src binding of the R554H and C723S mutants compared with wild-type RPTPalpha, enhanced phosphorylation of the inhibitory Src Tyr527 site was observed, as well as reduced Src activation. To confirm that catalytic activity of RPTPalpha-D2 was required for these effects, we analyzed a third mutant, RPTPalpha-R729K, which had an inactive D2. Again, Src binding was reduced and Tyr527 phosphorylation was enhanced. Our results suggest that a catalytically active D2 is required for RPTPalpha to bind and dephosphorylate its well-characterized substrate, Src.
Collapse
Affiliation(s)
- Andrei M Vacaru
- Hubrecht Institute - KNAW and University Medical Center, Utrecht, the Netherlands
| | | |
Collapse
|
5
|
Cheng KCC, Klancer R, Singson A, Seydoux G. Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 2009; 139:560-72. [PMID: 19879842 DOI: 10.1016/j.cell.2009.08.047] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 06/04/2009] [Accepted: 08/26/2009] [Indexed: 02/04/2023]
Abstract
DYRKs are kinases that self-activate in vitro by autophosphorylation of a YTY motif in the kinase domain, but their regulation in vivo is not well understood. In C. elegans zygotes, MBK-2/DYRK phosphorylates oocyte proteins at the end of the meiotic divisions to promote the oocyte-to-embryo transition. Here we demonstrate that MBK-2 is under both positive and negative regulation during the transition. MBK-2 is activated during oocyte maturation by CDK-1-dependent phosphorylation of serine 68, a residue outside of the kinase domain required for full activity in vivo. The pseudotyrosine phosphatases EGG-4 and EGG-5 sequester activated MBK-2 until the meiotic divisions by binding to the YTY motif and inhibiting MBK-2's kinase activity directly, using a mixed-inhibition mechanism that does not involve tyrosine dephosphorylation. Our findings link cell-cycle progression to MBK-2/DYRK activation and the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Ken Chih-Chien Cheng
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, 725 N. Wolfe Street, PCTB 706, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
6
|
Heighington CS, Kipreos ET. Embryogenesis: Degenerate phosphatases control the oocyte-to-embryo transition. Curr Biol 2009; 19:R939-41. [PMID: 19889367 DOI: 10.1016/j.cub.2009.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oocyte-to-embryo transition requires drastic reorganizations within a short timeframe. Recent studies show that, in the nematode Caenorhabditis elegans, phosphotyrosine-binding pseudo-phosphatases are key regulators of this critical developmental transition.
Collapse
|
7
|
Cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish. PLoS One 2009; 4:e4979. [PMID: 19325702 PMCID: PMC2656612 DOI: 10.1371/journal.pone.0004979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/28/2009] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND It has been shown that mutations in at least four myotubularin family genes (MTM1, MTMR1, 2 and 13) are causative for human neuromuscular disorders. However, the pathway and regulative mechanism remain unknown. METHODOLOGY/PRINCIPAL FINDINGS Here, we reported a new role for Mtmr8 in neuromuscular development of zebrafish. Firstly, we cloned and characterized zebrafish Mtmr8, and revealed the expression pattern predominantly in the eye field and somites during early somitogenesis. Using morpholino knockdown, then, we observed that loss-of-function of Mtmr8 led to defects in somitogenesis. Subsequently, the possible underlying mechanism and signal pathway were examined. We first checked the Akt phosphorylation, and observed an increase of Akt phosphorylation in the morphant embryos. Furthermore, we studied the PH/G domain function within Mtmr8. Although the PH/G domain deletion by itself did not result in embryonic defect, addition of PI3K inhibitor LY294002 did give a defective phenotype in the PH/G deletion morphants, indicating that the PH/G domain was essential for Mtmr8's function. Moreover, we investigated the cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development, and found that both Mtmr8-MO1 and Mtmr8-MO2+LY294002 led to the disorganization of the actin cytoskeleton. In addition, we revealed a possible participation of Mtmr8 in the Hedgehog pathway, and cell transplantation experiments showed that Mtmr8 worked in a non-cell autonomous manner in actin modeling. CONCLUSION/SIGNIFICANCE The above data indicate that a conserved functional cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish, and reveal a possible participation of Mtmr8 in the Hedgehog pathway. Therefore, this work provides a new clue to study the physiological function of MTM family members.
Collapse
|
8
|
|
9
|
Stitzel ML, Cheng KCC, Seydoux G. Regulation of MBK-2/Dyrk Kinase by Dynamic Cortical Anchoring during the Oocyte-to-Zygote Transition. Curr Biol 2007; 17:1545-54. [PMID: 17869113 DOI: 10.1016/j.cub.2007.08.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 11/15/2022]
Abstract
BACKGROUND Successful transition from oocyte to zygote depends on the timely degradation of oocyte proteins to prepare for embryonic development. In C. elegans, degradation of the oocyte protein MEI-1 depends on MBK-2, a kinase that phosphorylates MEI-1 shortly after fertilization during the second meiotic division. RESULTS Here we report that precise timing of MEI-1 phosphorylation depends on the cell cycle-regulated release of MBK-2 from the cortex. Prior to the meiotic divisions, MBK-2 is tethered at the cortex by EGG-3, an oocyte protein required for egg activation (see [1], accompanying paper in this issue). During the meiotic divisions, EGG-3 is internalized and degraded in an APC/C (anaphase-promoting complex/cyclosome)-dependent manner. EGG-3 internalization and degradation correlate with MBK-2 release from the cortex and MEI-1 phosphorylation in the cytoplasm. In an egg-3 mutant, MEI-1 is phosphorylated and degraded prematurely. CONCLUSION We suggest that successful transition from an oocyte to a zygote depends on the cell cycle-regulated relocalization of key regulators from the cortex to the cytoplasm of the egg.
Collapse
Affiliation(s)
- Michael L Stitzel
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, 725 North Wolfe Street, PCTB 706, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
10
|
Chen F, Archambault V, Kar A, Lio' P, D'Avino PP, Sinka R, Lilley K, Laue ED, Deak P, Capalbo L, Glover DM. Multiple protein phosphatases are required for mitosis in Drosophila. Curr Biol 2007; 17:293-303. [PMID: 17306545 DOI: 10.1016/j.cub.2007.01.068] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/19/2006] [Accepted: 01/24/2007] [Indexed: 12/31/2022]
Abstract
BACKGROUND Approximately one-third of the Drosophila kinome has been ascribed some cell-cycle function. However, little is known about which of its 117 protein phosphatases (PPs) or subunits have counteracting roles. RESULTS We investigated mitotic roles of PPs through systematic RNAi. We found that G(2)-M progression requires Puckered, the JNK MAP-kinase inhibitory phosphatase and PP2C in addition to string (Cdc25). Strong mitotic arrest and chromosome congression failure occurred after Pp1-87B downregulation. Chromosome alignment and segregation defects also occurred after knockdown of PP1-Flapwing, not previously thought to have a mitotic role. Reduction of several nonreceptor tyrosine phosphatases produced spindle and chromosome behavior defects, and for corkscrew, premature chromatid separation. RNAi of the dual-specificity phosphatase, Myotubularin, or the related Sbf "antiphosphatase" resulted in aberrant mitotic chromosome behavior. Finally, for PP2A, knockdown of the catalytic or A subunits led to bipolar monoastral spindles, knockdown of the Twins B subunit led to bridged and lagging chromosomes, and knockdown of the B' Widerborst subunit led to scattering of all mitotic chromosomes. Widerborst was associated with MEI-S332 (Shugoshin) and required for its kinetochore localization. CONCLUSIONS We identify cell-cycle roles for 22 of 117 Drosophila PPs. Involvement of several PPs in G(2) suggests multiple points for its regulation. Major mitotic roles are played by PP1 with tyrosine PPs and Myotubularin-related PPs having significant roles in regulating chromosome behavior. Finally, depending upon its regulatory subunits, PP2A regulates spindle bipolarity, kinetochore function, and progression into anaphase. Discovery of several novel cell-cycle PPs identifies a need for further studies of protein dephosphorylation.
Collapse
Affiliation(s)
- Feng Chen
- Cancer Research United Kingdom, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Begley MJ, Taylor GS, Brock MA, Ghosh P, Woods VL, Dixon JE. Molecular basis for substrate recognition by MTMR2, a myotubularin family phosphoinositide phosphatase. Proc Natl Acad Sci U S A 2006; 103:927-32. [PMID: 16410353 PMCID: PMC1347996 DOI: 10.1073/pnas.0510006103] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Myotubularins, a large family of catalytically active and inactive proteins, belong to a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as physiological substrates. Here, by integrating crystallographic and deuterium-exchange mass spectrometry studies of human myotubularin-related protein-2 (MTMR2) in complex with phosphoinositides, we define the molecular basis for this unique substrate specificity. Phosphoinositide substrates bind in a pocket located on a positively charged face of the protein, suggesting an electrostatic mechanism for membrane targeting. A flexible, hydrophobic helix makes extensive interactions with the diacylglycerol moieties of substrates, explaining the specificity for membrane-bound phosphoinositides. An extensive H-bonding network and charge-charge interactions within the active site pocket determine phosphoinositide headgroup specificity. The conservation of these specificity determinants within the active, but not the inactive, myotubularins provides insight into the functional differences between the active and inactive members.
Collapse
Affiliation(s)
- Michael J Begley
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
12
|
Begley MJ, Dixon JE. The structure and regulation of myotubularin phosphatases. Curr Opin Struct Biol 2005; 15:614-20. [PMID: 16289848 DOI: 10.1016/j.sbi.2005.10.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 10/17/2005] [Accepted: 10/21/2005] [Indexed: 11/18/2022]
Abstract
The human neuromuscular diseases X-linked myotubular myopathy and Charcot-Marie-Tooth disease type 4B are caused by mutations in myotubularin family proteins. The myotubularins are a unique subfamily of protein tyrosine phosphatases that utilize inositol phospholipids, rather than phosphoproteins, as substrates. Recent structural studies, including the first crystal structure of a myotubularin family protein, have defined the structural features that are characteristic of the family and revealed the molecular basis of their unique substrate specificity. Interestingly, the myotubularin family contains a subgroup of proteins that are catalytically inactive. Recent biochemical studies have established that the inactive myotubularins function as adaptors for the active members and play an important regulatory role within the family.
Collapse
Affiliation(s)
- Michael J Begley
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 2093-0721, USA
| | | |
Collapse
|
13
|
Kim HO, Blaskovich MA. Recent discovery and development of protein tyrosine phosphatase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.6.871] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Abstract
The human Y chromosome contains over 60 million nucleotides, but least number of genes compared to any other chromosome and acts as a genetic determinant of the male characteristic features. The male specific region, MSY, comprising 95% of the Y chromosome represents a mosaic of heterochromatic and three classes of euchromatic (X-transposed, X-degenerate and ampliconic) sequences. Thus far, 156 transcription units, 78 protein-coding genes and 27 distinct proteins of the Y chromosome have been identified. The MSY euchromatic sequences show frequent gene conversion. Of the eight massive palindromes identified on the human Y chromosome, six harbor vital testis specific genes. The human male infertility has been attributed to mutations in the genes on Y chromosome and autosomes and failures of several physical and physiological attributes including paracrine controls. In addition, deletion of any one or all the three azoospermia (AZFa, AZFb or AZFc) factor(s) and some still unidentified regulatory elements located elsewhere in the genome result in infertility. Characterization of palindromic complexes on the long arm of Y chromosome encompassing AZFb and AZFc regions and identification of HERV15 class of endogenous retroviruses close to AZFa region have facilitated our understanding on the organization of azoospermia factors. Considerable overlap of the AZFb and AZFc regions encompassing a number of genes and transcripts has been shown to exist. However, barring details on AZF, information on the exact number of genes or the types of mutations prevalent in the infertile male is not available. Similarly, roles of sizable body of repetitive DNA present in close association with transcribing sequences on the Y chromosome are yet not clear. In a clinical setting with known cases of infertility, systematic search for loss or gain of these repeat elements would help understand their biological role(s). We present a brief overview on the genetic complexity of the human Y chromosome in the context of human male infertility.
Collapse
Affiliation(s)
- Sher Ali
- National Institute of Immunology, Molecular Genetics Laboratory, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | |
Collapse
|
15
|
Pils B, Schultz J. Evolution of the multifunctional protein tyrosine phosphatase family. Mol Biol Evol 2004; 21:625-31. [PMID: 14739250 DOI: 10.1093/molbev/msh055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The protein tyrosine phosphatase (PTP) family plays a central role in signal transduction pathways by controlling the phosphorylation state of serine, threonine, and tyrosine residues. PTPs can be divided into dual specificity phosphatases and the classical PTPs, which can comprise of one or two phosphatase domains. We studied amino acid substitutions at functional sites in the phosphatase domain and identified putative noncatalytic phosphatase domains in all subclasses of the PTP family. The presence of inactive phosphatase domains in all subclasses indicates that they were invented multiple times in evolution. Depending on the domain composition, loss of catalytic activity can result in different consequences for the function of the protein. Inactive single-domain phosphatases can still specifically bind substrate and protect it from dephosphorylation by other phosphatases. The inactive domains of tandem phosphatases can be further subdivided. The first class is more conserved, still able to bind phosphorylated tyrosine residues and might recruit multiphosphorylated substrates for the adjacent active domain. The second has accumulated several variable amino acid substitutions in the catalytic center, indicating a complete loss of tyrosine-binding capabilities. To study the impact of substitutions in the catalytic center to the evolution of the whole domain, we examined the evolutionary rates for each individual site and compared them between the classes. This analysis revealed a release of evolutionary constraint for multiple sites surrounding the catalytic center only in the second class, emphasizing its difference in function compared with the first class. Furthermore, we found a region of higher conservation common to both domain classes, suggesting a new regulatory center. We discuss the influence of evolutionary forces on the development of the phosphatase domain, which has led to additional functions, such as the specific protection of phosphorylated tyrosine residues, substrate recruitment, and regulation of the catalytic activity of adjacent domains.
Collapse
Affiliation(s)
- Birgit Pils
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
16
|
Laporte J, Bedez F, Bolino A, Mandel JL. Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases. Hum Mol Genet 2003; 12 Spec No 2:R285-92. [PMID: 12925573 DOI: 10.1093/hmg/ddg273] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The myotubularin family is a large eukaryotic group within the tyrosine/dual-specificity phosphatase super-family (PTP/DSP). Among the 14 human members, three are mutated in genetic diseases: myotubular myopathy and two forms of Charcot-Marie-Tooth neuropathy. We present an analysis of the myotubularin family in sequenced genomes. The myotubularin family encompasses catalytically active and inactive phosphatases, and both classes are well conserved from nematode to man. Catalytically active myotubularins dephosphorylate phosphatidylinositol 3-phosphate (PtdIns3P) and PtdIns3,5P2, leading to the production of PtdIns and PtdIns5P. This activity may be modulated by direct interaction with catalytically inactive myotubularins. These phosphoinositides are signaling molecules that are notably involved in vacuolar transport and membrane trafficking. Myotubularins are thus proposed to be implicated in these cellular mechanisms, and recent observations on myotubularins homologues in the nematode Caenorhabditis elegans indicate a role in endocytosis.
Collapse
|
17
|
Chaussade C, Pirola L, Bonnafous S, Blondeau F, Brenz-Verca S, Tronchère H, Portis F, Rusconi S, Payrastre B, Laporte J, Van Obberghen E. Expression of myotubularin by an adenoviral vector demonstrates its function as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase in muscle cell lines: involvement of PtdIns(3)P in insulin-stimulated glucose transport. Mol Endocrinol 2003; 17:2448-60. [PMID: 14500759 DOI: 10.1210/me.2003-0261] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
X-linked myotubular myopathy is a muscle disorder caused by mutations on the myotubular myopathy-1 (MTM-1) gene, coding for myotubularin a 65-kDa polypeptide similar to protein phosphatases. Biochemical and in vivo studies define myotubularin as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase. To efficiently express myotubularin in muscle cell lines and adipocytes, we used an adenoviral genome recombinogenic to pcDNA3, and to other widely used expression vectors, to produce adenoviruses expressing wild-type (wt), catalytically inactive C375S, and substrate trap D278A myotubularin.[32P]Orthophosphate labeling followed by phosphoinositide analysis of differentiated L6 and C2C12 cells expressing myotubularin demonstrated increased PtdIns(3)P levels upon expression of the C375S and D278A mutants. In keeping with its biochemical function, overexpression of wt myotubularin as an enhanced green fluorescent protein fusion disrupted the endosomal punctuated staining of the FYVE (Fab1p/YOTB Vac1p/EEA1)-domain-containing PtdIns(3)P binding protein early endosomal antigen 1 as well as of a gluathione-S-transferase-FYVE probe directed to PtdIns(3)P. Expression of wt myotubularin, although not affecting activation of proximal insulin signal transduction targets such as protein kinase B and MAPK, induced a decrease in insulin-induced glucose uptake, whereas basal glucose uptake was augmented by expression of D278A (DA) and C375S (CS) mutants. Moreover, overexpression of myotubularin in 3T3-L1 adipocytes impaired insulin-induced translocation at the plasma membrane of green fluorescent protein-tagged glucose transporter 4. These data indicate that PtdIns(3)P is required to direct glucose transporter 4 to insulin-responsive compartments and/or to allow the translocation of the latter at the plasma membrane. We conclude that myotubularin, by modulating the intracellular levels of PtdIns(3)P, plays a role in the control of vesicular traffic related to glucose transport, by counteracting the activities of the PtdIns(3)P-producing phosphatidylinositol 3-kinases.
Collapse
Affiliation(s)
- Claire Chaussade
- Institut National de la Santé et de la Recherche Medicale, Unité 145, 28, avenue de Valombrose, 06 107 Nice Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim SA, Vacratsis PO, Firestein R, Cleary ML, Dixon JE. Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci U S A 2003; 100:4492-7. [PMID: 12668758 PMCID: PMC153583 DOI: 10.1073/pnas.0431052100] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The myotubularin (MTM) family constitutes one of the most highly conserved protein-tyrosine phosphatase subfamilies in eukaryotes. MTM1, the archetypal member of this family, is mutated in X-linked myotubular myopathy, whereas mutations in the MTM-related (MTMR)2 gene cause the type 4B1 Charcot-Marie-Tooth disease, a severe hereditary motor and sensory neuropathy. In this study, we identified a protein that specifically interacts with MTMR2 but not MTM1. The interacting protein was shown by mass spectrometry to be MTMR5, a catalytically inactive member of the MTM family. We also demonstrate that MTMR2 interacts with MTMR5 via its coiled-coil domain and that mutations in the coiled-coil domain of either MTMR2 or MTMR5 abrogate this interaction. Through this interaction, MTMR5 increases the enzymatic activity of MTMR2 and dictates its subcellular localization. This article demonstrates an active MTM member being regulated by an inactive family member.
Collapse
Affiliation(s)
- Soo-A Kim
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | |
Collapse
|
19
|
Firestein R, Nagy PL, Daly M, Huie P, Conti M, Cleary ML. Male infertility, impaired spermatogenesis, and azoospermia in mice deficient for the pseudophosphatase Sbf1. J Clin Invest 2002. [DOI: 10.1172/jci0212589] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Firestein R, Nagy PL, Daly M, Huie P, Conti M, Cleary ML. Male infertility, impaired spermatogenesis, and azoospermia in mice deficient for the pseudophosphatase Sbf1. J Clin Invest 2002; 109:1165-72. [PMID: 11994405 PMCID: PMC150957 DOI: 10.1172/jci12589] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudophosphatases display extensive sequence similarities to phosphatases but harbor amino acid alterations in their active-site consensus motifs that render them catalytically inactive. A potential role in substrate trapping or docking has been proposed, but the specific requirements for pseudophosphatases during development and differentiation are unknown. We demonstrate here that Sbf1, a pseudophosphatase of the myotubularin family, is expressed at high levels in seminiferous tubules of the testis, specifically in Sertoli's cells, spermatogonia, and pachytene spermatocytes, but not in postmeiotic round spermatids. Mice that are nullizygous for Sbf1 exhibit male infertility characterized by azoospermia. The onset of the spermatogenic defect occurs in the first wave of spermatogenesis at 17 days after birth during the synchronized progression of pachytene spermatocytes to haploid spermatids. Vacuolation of the Sertoli's cells is the earliest observed phenotype and is followed by reduced formation of spermatids and eventual depletion of the germ cell compartment in older mice. The nullizygous phenotype in conjunction with high-level expression of Sbf1 in premeiotic germ cells and Sertoli's cells is consistent with a crucial role for Sbf1 in transition from diploid to haploid spermatocytes. These studies demonstrate an essential role for a pseudophosphatase and implicate signaling pathways regulated by myotubularin family proteins in spermatogenesis and germ cell differentiation.
Collapse
Affiliation(s)
- Ron Firestein
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wishart MJ, Dixon JE. The archetype STYX/dead-phosphatase complexes with a spermatid mRNA-binding protein and is essential for normal sperm production. Proc Natl Acad Sci U S A 2002; 99:2112-7. [PMID: 11842224 PMCID: PMC122327 DOI: 10.1073/pnas.251686198] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differentiation of spermatids into spermatozoa is regulated via phosphorylated RNA-binding proteins that modulate the expression of stage-specific mRNAs. We demonstrate that the phosphoserine, -threonine or -tyrosine, interaction protein, Styx, complexes with a testicular RNA-binding protein and is essential for normal spermiogenesis. Ablation of Styx expression in mouse disrupts round and elongating spermatid development, resulting in a >1,000-fold decrease in spermatozoa production. Moreover, Styx(-/-) males are infertile because of structural head abnormalities in residual epididymal sperm. Immunoprecipitation of Styx with Crhsp-24, a phosphorylated RNA-binding protein implicated in translational repression of histone mRNAs, provides a strategy for regulating posttranscriptional gene expression.
Collapse
Affiliation(s)
- Matthew J Wishart
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
22
|
Bennett CL, Chance PF. Molecular pathogenesis of hereditary motor, sensory and autonomic neuropathies. Curr Opin Neurol 2001; 14:621-7. [PMID: 11562574 DOI: 10.1097/00019052-200110000-00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hereditary motor, sensory and autonomic neuropathies are a heterogeneous group of neurological diseases. The classification of such is presently in a state of change. The original classification system was based on clinical findings whose limitations are being unfurled with increasing insights into the molecular basis of these disorders. In particular, much progress has been achieved in understanding the demyelinating forms of Charcot-Marie-Tooth (type 1), for which at least a dozen loci have been delineated and six genes identified. As anticipated, these genes play predominant roles in myelin biology. Four separate loci for the axonal Charcot-Marie-Tooth neuropathies (type 2) have been identified and only now are researchers beginning to tease out the responsible genes and the underlying molecular mechanisms. Similarly, progress is being made with the pure hereditary motor neuropathies. This review presents an updated list of genes responsible for inherited peripheral neuropathies and explores the underlying molecular mechanisms actively being investigated.
Collapse
Affiliation(s)
- C L Bennett
- Division of Genetics and Development, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
23
|
Zervas CG, Gregory SL, Brown NH. Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J Cell Biol 2001; 152:1007-18. [PMID: 11238456 PMCID: PMC2198807 DOI: 10.1083/jcb.152.5.1007] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Integrin-linked kinase (ILK) was identified by its interaction with the cytoplasmic tail of human beta1 integrin and previous data suggest that ILK is a component of diverse signaling pathways, including integrin, Wnt, and protein kinase B. Here we show that the absence of ILK function in Drosophila causes defects similar to loss of integrin adhesion, but not similar to loss of these signaling pathways. ILK mutations cause embryonic lethality and defects in muscle attachment, and clones of cells lacking ILK in the adult wing fail to adhere, forming wing blisters. Consistent with this, an ILK-green fluorescent protein fusion protein colocalizes with the position-specific integrins at sites of integrin function: muscle attachment sites and the basal junctions of the wing epithelium. Surprisingly, mutations in the kinase domain shown to inactivate the kinase activity of human ILK do not show any phenotype in Drosophila, suggesting a kinase-independent function for ILK. The muscle detachment in ILK mutants is associated with detachment of the actin filaments from the muscle ends, unlike integrin mutants, in which the primary defect is detachment of the plasma membrane from the extracellular matrix. Our data suggest that ILK is a component of the structure linking the cytoskeleton and the plasma membrane at sites of integrin-mediated adhesion.
Collapse
Affiliation(s)
- Christos G. Zervas
- Wellcome/CRC Institute and Department of Anatomy, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Stephen L. Gregory
- Wellcome/CRC Institute and Department of Anatomy, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Nicholas H. Brown
- Wellcome/CRC Institute and Department of Anatomy, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
24
|
Affiliation(s)
- Deborah K. Morrison
- Regulation of Cell Growth Laboratory, National Cancer Institute, Frederick, Maryland 21702
| | - Monica S. Murakami
- Regulation of Cell Growth Laboratory, National Cancer Institute, Frederick, Maryland 21702
| | - Vaughn Cleghon
- Regulation of Cell Growth Laboratory, National Cancer Institute, Frederick, Maryland 21702
| |
Collapse
|
25
|
Buist A, Blanchetot C, Tertoolen LG, den Hertog J. Identification of p130cas as an in vivo substrate of receptor protein-tyrosine phosphatase alpha. J Biol Chem 2000; 275:20754-61. [PMID: 10787408 DOI: 10.1074/jbc.m001626200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have employed a substrate trapping strategy to identify physiological substrates of the receptor protein-tyrosine phosphatase alpha (RPTPalpha). Here we report that a substrate-trapping mutant of the RPTPalpha membrane proximal catalytic domain (D1), RPTPalpha-D1-C433S, specifically bound to tyrosine-phosphorylated proteins from pervanadate-treated cells. The membrane distal catalytic domain of RPTPalpha (D2) and mutants thereof did not bind to tyrosine-phosphorylated proteins. The pattern of tyrosine-phosphorylated proteins that bound to RPTPalpha-D1-C433S varied between cell lines, but a protein of approximately 130 kDa was pulled down from every cell line. This protein was identified as p130(cas). Tyrosine-phosphorylated p130(cas) from fibronectin-stimulated NIH3T3 cells bound to RPTPalpha-D1-C433S as well, suggesting that p130(cas) is a physiological substrate of RPTPalpha. RPTPalpha dephosphorylated p130(cas) in vitro, and RPTPalpha co-localized with a subpopulation of p130(cas) to the plasma membrane. Co-transfection experiments with activated SrcY529F, p130(cas), and RPTPalpha or inactive, mutant RPTPalpha indicated that RPTPalpha dephosphorylated p130(cas) in vivo. Tyrosine-phosphorylated epidermal growth factor receptor was not dephosphorylated by RPTPalpha under these conditions, suggesting that p130(cas) is a specific substrate of RPTPalpha in living cells. In conclusion, our results provide evidence that p130(cas) is a physiological substrate of RPTPalpha in vivo.
Collapse
Affiliation(s)
- A Buist
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
26
|
Firestein R, Cui X, Huie P, Cleary ML. Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol Cell Biol 2000; 20:4900-9. [PMID: 10848615 PMCID: PMC85941 DOI: 10.1128/mcb.20.13.4900-4909.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian SET domain-containing proteins define a distinctive class of chromatin-associated factors that are targets for growth control signals and oncogenic activation. SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9, contains both SET and chromo domains, signature motifs for proteins that contribute to epigenetic control of gene expression through effects on the regional organization of chromatin structure. In this report we demonstrate that SUV39H1 represses transcription in a transient transcriptional assay when tethered to DNA through the GAL4 DNA binding domain. Under these conditions, SUV39H1 displays features of a long-range repressor capable of acting over several kilobases to silence basal promoters. A possible role in chromatin-mediated gene silencing is supported by the localization of exogenously expressed SUV39H1 to nuclear bodies with morphologic features suggestive of heterochromatin in interphase cells. In addition, we show that SUV39H1 is phosphorylated specifically at the G(1)/S cell cycle transition and when forcibly expressed suppresses cell growth. Growth suppression as well as the ability of SUV39H1 to form nuclear bodies and silence transcription are antagonized by the oncogenic antiphosphatase Sbf1 that when hyperexpressed interacts with the SET domain and stabilizes the phosphorylated form of SUV39H1. These studies suggest a phosphorylation-dependent mechanism for regulating the chromatin organizing activity of a mammalian su(var) protein and implicate the SET domain as a gatekeeper motif that integrates upstream signaling pathways to epigenetic regulation and growth control.
Collapse
Affiliation(s)
- R Firestein
- Department of Pathology, Stanford University Medical Center, CA 94305, USA
| | | | | | | |
Collapse
|
27
|
Bolino A, Muglia M, Conforti FL, LeGuern E, Salih MA, Georgiou DM, Christodoulou K, Hausmanowa-Petrusewicz I, Mandich P, Schenone A, Gambardella A, Bono F, Quattrone A, Devoto M, Monaco AP. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 2000; 25:17-9. [PMID: 10802647 DOI: 10.1038/75542] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A gene mutated in Charcot-Marie-Tooth disease type 4B (CMT4B), an autosomal recessive demyelinating neuropathy with myelin outfoldings, has been mapped on chromosome 11q22. Using a positional-cloning strategy, we identified in unrelated CMT4B patients mutations occurring in the gene MTMR2, encoding myotubularin-related protein-2, a dual specificity phosphatase (DSP).
Collapse
Affiliation(s)
- A Bolino
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- T Hunter
- The Salk Institute, La Jolla, California 92037, USA
| |
Collapse
|
29
|
Uwanogho DA, Hardcastle Z, Balogh P, Mirza G, Thornburg KL, Ragoussis J, Sharpe PT. Molecular cloning, chromosomal mapping, and developmental expression of a novel protein tyrosine phosphatase-like gene. Genomics 1999; 62:406-16. [PMID: 10644438 DOI: 10.1006/geno.1999.5950] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) mediate the dephosphorylation of phosphotyrosine. PTPs are known to be involved in many signal transduction pathways leading to cell growth, differentiation, and oncogenic transformation. We have cloned a new family of novel protein tyrosine phosphatase-like genes, the Ptpl (protein tyrosine phosphatase-like; proline instead of catalytic arginine) gene family. This gene family is composed of at least three members, and we describe here the developmental expression pattern and chromosomal location for one of these genes, Ptpla. In situ hybridization studies revealed that Ptpla expression was first detected at embryonic day 8.5 in muscle progenitors and later in differentiated muscle types: in the developing heart, throughout the liver and lungs, and in a number of neural crest derivatives including the dorsal root and trigeminal ganglia. Postnatally Ptpla was expressed in a number of adult tissues including cardiac and skeletal muscle, liver, testis, and kidney. The early expression pattern of this gene and its persistent expression in adult tissues suggest that it may have an important role in the development, differentiation, and maintenance of a number of different tissue types. The human homologue of Ptpla (PTPLA) was cloned and shown to map to 10p13-p14.
Collapse
Affiliation(s)
- D A Uwanogho
- Department of Craniofacial Development, Kings College at Guy's Hospital, London
| | | | | | | | | | | | | |
Collapse
|
30
|
Plowman GD, Sudarsanam S, Bingham J, Whyte D, Hunter T. The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc Natl Acad Sci U S A 1999; 96:13603-10. [PMID: 10570119 PMCID: PMC24111 DOI: 10.1073/pnas.96.24.13603] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans should soon be the first multicellular organism whose complete genomic sequence has been determined. This achievement provides a unique opportunity for a comprehensive assessment of the signal transduction molecules required for the existence of a multicellular animal. Although the worm C. elegans may not much resemble humans, the molecules that regulate signal transduction in these two organisms prove to be quite similar. We focus here on the content and diversity of protein kinases present in worms, together with an assessment of other classes of proteins that regulate protein phosphorylation. By systematic analysis of the 19,099 predicted C. elegans proteins, and thorough analysis of the finished and unfinished genomic sequences, we have identified 411 full length protein kinases and 21 partial kinase fragments. We also describe 82 additional proteins that are predicted to be structurally similar to conventional protein kinases even though they share minimal primary sequence identity. Finally, the richness of phosphorylation-dependent signaling pathways in worms is further supported with the identification of 185 protein phosphatases and 128 phosphoprotein-binding domains (SH2, PTB, STYX, SBF, 14-3-3, FHA, and WW) in the worm genome.
Collapse
Affiliation(s)
- G D Plowman
- SUGEN, 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Integrins are major adhesion- and signaling-receptor proteins that mediate cell migration and invasion. They also trigger a variety of signal transduction pathways and regulate cytoskeletal organization, specific gene expression, growth control, and apoptosis (programmed cell death). Consequently, integrins are thought to play important roles in embryonic development and in the biology of cancers. The functions of integrins can be negatively regulated by the recently discovered tumor suppressor PTEN, a protein with homology to protein tyrosine phosphatases and tensin. The PTEN gene is mutated in a wide range of human cancers. PTEN inhibits cell migration and invasion by directly dephosphorylating two key tyrosine-phosphorylated proteins, thereby antagonizing interactions of integrins with the extracellular matrix and integrin-triggered signaling pathways. Other studies demonstrate important roles for PTEN in dephosphorylating a key signal transduction lipid. In the absence of PTEN, this lipid signal transduction pathway can protect tumor cells from apoptosis. Thus, PTEN appears to be a unique tumor suppressor-with both lipid phosphatase and protein tyrosine phosphatase activities-that negatively regulates cell interactions with the extracellular matrix and that maintains cell sensitivity to apoptosis, e.g., after loss of cell contact with the extracellular matrix. The complex signal transduction pathways regulated by PTEN are described in this review. PTEN and the signaling pathways it regulates may provide novel targets for potential therapy.
Collapse
Affiliation(s)
- M Tamura
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | | | | | | |
Collapse
|
32
|
Lim KL, Ng CH, Pallen CJ. Catalytic activation of the membrane distal domain of protein tyrosine phosphatase epsilon, but not CD45, by two point mutations. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1434:275-83. [PMID: 10525146 DOI: 10.1016/s0167-4838(99)00189-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most, if not all, of the catalytic activity of the tandem catalytic domain-containing receptor-like protein tyrosine phosphatases (PTPs) resides in the membrane proximal domains (D1), with little to no activity associated with the membrane distal domains (D2). Two point mutations in the D2 domain of PTPalpha, which restore invariant amino acids found in the KNRY motif and WPD loop of all active D1 domains, synergistically confer D1-equivalent kinetic properties towards the phosphotyrosine analogue pNPP, and activate PTPalpha-D2 catalysed phosphopeptide hydrolysis (Lim et al., J. Biol. Chem. 273 (1998) 28986-28993; Buist et al., Biochemistry 38 (1999) 914-922). As all D2 domains lack these two D1-invariant amino acids, we have investigated whether other D2 domains are activated by such point mutations. Mutant PTPepsilon-D2, closely related to PTPalpha-D2 and belonging to a subgroup of D2 domains with minimal and conservative substitutions of D1-invariant amino acids, exhibits synergistic activation towards pNPP but not towards a phosphopeptide substrate. CD45-D2, belonging to another subgroup of D2 domains with considerable substitutions in D1-invariant amino acids, is not activated by these mutations, even in the context of a third mutation which restores the minimal essential active site sequence C(X(5))R, indicating that additional defects are sufficient to preclude catalysis. The ability of the KNRY and WPD replacements to activate PTPepsilon-D2 and PTPalpha-D2, but not CD45-D2, in conjunction with the extent and nature of their wild-type amino acid substitutions, suggests that these D2 domains are representative of two functionally distinct groups of D2 domain.
Collapse
Affiliation(s)
- K L Lim
- Cell Regulation Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore, Singapore
| | | | | |
Collapse
|
33
|
Abstract
One of the most important mechanisms of eukaryotic signalling is protein phosphorylation on tyrosine residues, which plays a pivotal role in development by regulating cell proliferation, differentiation and migration. Cellular phosphotyrosine (P.Tyr) levels are regulated by the antagonistic activities of the protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs). We have good insight into the function of PTKs at the molecular level and into the role of PTK-mediated signalling in development. Intuitively, PTPs and PTKs are equally important in development. Over the past decade, much emphasis has been placed on elucidation of the function of PTPs, which has led to good insights into the mechanism of PTP-mediated dephosphorylation. Although still relatively little is known about the role of PTPs in cell signalling and development, evidence is now emerging that several PTPs are crucial for proper development. Here I will introduce PTP-mediated signalling and discuss recent findings regarding the function of PTPs in development.
Collapse
Affiliation(s)
- J den Hertog
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Affiliation(s)
- Y F Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VAMC-111C5, University of California, San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
35
|
Laporte J, Blondeau F, Buj-Bello A, Tentler D, Kretz C, Dahl N, Mandel JL. Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human. Hum Mol Genet 1998; 7:1703-12. [PMID: 9736772 DOI: 10.1093/hmg/7.11.1703] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital muscle disorder due to mutations in the MTM1 gene. The corresponding protein, myotubularin, contains the consensus active site of tyrosine phosphatases (PTP) but otherwise shows no homology to other phosphatases. Myotubularin is able to hydrolyze a synthetic analogue of tyrosine phosphate, in a reaction inhibited by orthovanadate, and was recently shown to act on both phosphotyrosine and phosphoserine. This gene is conserved down to yeast and strong homologies were found with human ESTs, thus defining a new dual specificity phosphatase (DSP) family. We report the presence of novel members of the MTM gene family in Schizosaccharomyces pombe, Caenorhabditis elegans, zebrafish, Drosophila, mouse and man. This represents the largest family of DSPs described to date. Eight MTM-related genes were found in the human genome and we determined the chromosomal localization and expression pattern for most of them. A subclass of the myotubularin homologues lacks a functional PTP active site. Missense mutations found in XLMTM patients affect residues conserved in a Drosophila homologue. Comparison of the various genes allowed construction of a phylogenetic tree and reveals conserved residues which may be essential for function. These genes may be good candidates for other genetic diseases.
Collapse
Affiliation(s)
- J Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Wishart MJ, Dixon JE. Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci 1998; 23:301-6. [PMID: 9757831 DOI: 10.1016/s0968-0004(98)01241-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of tyrosine phosphorylation are manifested and regulated through protein domains that bind to specific phosphotyrosine motifs. STYX is a unique modular domain found within proteins implicated in mediating the effects of tyrosine phosphorylation in vivo. Individual STYX domains are not catalytically active; however, they resemble protein tyrosine phosphatase (PTP) domains and, like PTPs, contain core sequences that recognize phosphorylated substrates. Thus, the STYX domain adds to the repertoire of modular domains that can mediate intracellular signaling in response to protein phosphorylation.
Collapse
Affiliation(s)
- M J Wishart
- Dept of Physiology, University of Michigan, Ann Arbor 48109-0606, USA
| | | |
Collapse
|