1
|
Zambo B, Edelweiss E, Morlet B, Negroni L, Pajkos M, Dosztanyi Z, Ostergaard S, Trave G, Laporte J, Gogl G. Uncovering the BIN1-SH3 interactome underpinning centronuclear myopathy. eLife 2024; 13:RP95397. [PMID: 38995680 PMCID: PMC11245310 DOI: 10.7554/elife.95397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.
Collapse
Affiliation(s)
- Boglarka Zambo
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Evelina Edelweiss
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztanyi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Soren Ostergaard
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Research Park, Maaloev, Denmark
| | - Gilles Trave
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gergo Gogl
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| |
Collapse
|
2
|
Koe ASL, Tan YY, Vora S. X-linked myotubular myopathy in a family of two infant siblings: A case report and review. Pediatr Neonatol 2024:S1875-9572(24)00113-X. [PMID: 39013721 DOI: 10.1016/j.pedneo.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 07/18/2024] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe type of congenital skeletal muscle disorder usually presenting at birth requiring extensive resuscitation. While having phenotypic variability, its diagnosis carries a poor prognosis due to high rates of hospitalization and mortality by early infancy. Management of patients with XLMTM should therefore be guided by shared decision-making with parents, considering the severity and progression of the disease, quality of life, and demands on caregivers. We describe a family unit of two half-siblings presenting with the severe neonatal form of XLMTM, with varying prognosis and outcomes. Furthermore, a novel maternally-derived c.343-1G > A variant in intron-5 of the MTM1 gene was identified in this family. Hereby, we propose an algorithm for the management of XLMTM, outlining important considerations during the antenatal and postnatal follow-up period.
Collapse
Affiliation(s)
- Amelia Suan-Lin Koe
- Department of Neonatology, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899.
| | - Yee Yin Tan
- Department of Neonatology, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899
| | - Shrenik Vora
- Department of Neonatology, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899
| |
Collapse
|
3
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
4
|
Dai N, Groenendyk J, Michalak M. Interplay between myotubularins and Ca 2+ homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119739. [PMID: 38710289 DOI: 10.1016/j.bbamcr.2024.119739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
5
|
Li Q, Lin J, Luo S, Schmitz‐Abe K, Agrawal R, Meng M, Moghadaszadeh B, Beggs AH, Liu X, Perrella MA, Agrawal PB. Integrated multi-omics approach reveals the role of striated muscle preferentially expressed protein kinase in skeletal muscle including its relationship with myospryn complex. J Cachexia Sarcopenia Muscle 2024; 15:1003-1015. [PMID: 38725372 PMCID: PMC11154751 DOI: 10.1002/jcsm.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.
Collapse
Affiliation(s)
- Qifei Li
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Jasmine Lin
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shiyu Luo
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Klaus Schmitz‐Abe
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rohan Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Melissa Meng
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Behzad Moghadaszadeh
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Alan H. Beggs
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Pankaj B. Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
6
|
Kawaguchi K, Fujita N. Shaping transverse-tubules: central mechanisms that play a role in the cytosol zoning for muscle contraction. J Biochem 2024; 175:125-131. [PMID: 37848047 PMCID: PMC10873525 DOI: 10.1093/jb/mvad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
A transverse-tubule (T-tubule) is an invagination of the plasma membrane penetrating deep into muscle cells. An extensive membrane network of T-tubules is crucial for rapid and synchronized signal transmission from the cell surface to the entire sarcoplasmic reticulum for Ca2+ release, leading to muscle contraction. T-tubules are also indispensable for the formation and positioning of other muscle organelles. Their structure and physiological roles are relatively well established; however, the mechanisms shaping T-tubules require further elucidation. Centronuclear myopathy (CNM), an inherited muscular disorder, accompanies structural defects in T-tubules. Membrane traffic-related genes, including MTM1 (Myotubularin 1), DNM2 (Dynamin 2), and BIN1 (Bridging Integrator-1), were identified as causative genes of CNM. In addition, causative genes for other muscle diseases are also reported to be involved in the formation and maintenance of T-tubules. This review summarizes current knowledge on the mechanisms of how T-tubule formation and maintenance is regulated.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Goret M, Laporte J. [The PI3KC2β kinase as a therapeutic target for myotubular myopathy]. Med Sci (Paris) 2024; 40:133-136. [PMID: 38411417 DOI: 10.1051/medsci/2023208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Affiliation(s)
- Marie Goret
- Institut de génétique et de biologie moléculaireet cellulaire (IGBMC), Inserm U1258, CNRS UMR7104,Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de génétique et de biologie moléculaireet cellulaire (IGBMC), Inserm U1258, CNRS UMR7104,Université de Strasbourg, Illkirch, France
| |
Collapse
|
8
|
Fujita N, Girada S, Vogler G, Bodmer R, Kiger AA. PI(4,5)P 2 role in Transverse-tubule membrane formation and muscle function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578124. [PMID: 38352484 PMCID: PMC10862868 DOI: 10.1101/2024.01.31.578124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Transverse (T)-tubules - vast, tubulated domains of the muscle plasma membrane - are critical to maintain healthy skeletal and heart contractions. How the intricate T-tubule membranes are formed is not well understood, with challenges to systematically interrogate in muscle. We established the use of intact Drosophila larval body wall muscles as an ideal system to discover mechanisms that sculpt and maintain the T-tubule membrane network. A muscle-targeted genetic screen identified specific phosphoinositide lipid regulators necessary for T-tubule organization and muscle function. We show that a PI4KIIIα - Skittles/PIP5K pathway is needed for T-tubule localized PI(4)P to PI(4,5)P 2 synthesis, T-tubule organization, calcium regulation, and muscle and heart rate functions. Muscles deficient for PI4KIIIα or Amphiphysin , the homolog of human BIN1 , similarly exhibited specific loss of transversal T-tubule membranes and dyad junctions, yet retained longitudinal membranes and the associated dyads. Our results highlight the power of live muscle studies, uncovering distinct mechanisms and functions for sub-compartments of the T-tubule network relevant to human myopathy. Summary T-tubules - vast, tubulated domains of the muscle plasma membrane - are critical to maintain skeletal and heart contractions. Fujita et al . establish genetic screens and assays in intact Drosophila muscles that uncover PI(4,5)P 2 regulation critical for T-tubule maintenance and function. Key Findings PI4KIIIα is required for muscle T-tubule formation and larval mobility. A PI4KIIIα-Sktl pathway promotes PI(4)P and PI(4,5)P 2 function at T-tubules. PI4KIIIα is necessary for calcium dynamics and transversal but not longitudinal dyads. Disruption of PI(4,5)P 2 function in fly heart leads to fragmented T-tubules and abnormal heart rate.
Collapse
|
9
|
Pascoe JE, Zygmunt A, Ehsan Z, Gurbani N. Sleep in pediatric neuromuscular disorders. Semin Pediatr Neurol 2023; 48:101092. [PMID: 38065635 DOI: 10.1016/j.spen.2023.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
Sleep disordered breathing (SDB) is prevalent among children with neuromuscular disorders (NMD). The combination of respiratory muscle weakness, altered drive, and chest wall distortion due to scoliosis make sleep a stressful state in this population. Symptomatology can range from absent to snoring, nocturnal awakenings, morning headaches, and excessive daytime sleepiness. Sequelae of untreated SDB includes cardiovascular effects, metabolic derangements, and neurocognitive concerns which can be compounded by those innate to the NMD. The clinician should have a low threshold for obtaining polysomnography and recognize the nuances of individual disorders due to disproportionately impacted muscle groups such as hypoventilation in ambulating patients from diaphragm weakness. Non-invasive or invasive ventilation are the mainstay of treatment. In this review we explore the diagnosis and treatment of SDB in children with various NMD.
Collapse
Affiliation(s)
- John E Pascoe
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Alexander Zygmunt
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Zarmina Ehsan
- Division of Pulmonary and Sleep Medicine, Children's Mercy-Kansas City, Kansas City, MO, United States; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Neepa Gurbani
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
10
|
He D, Liu H, Wei W, Zhao Y, Cai Q, Shi S, Chu X, Qin X, Zhang N, Xu P, Zhang F. A longitudinal genome-wide association study of bone mineral density mean and variability in the UK Biobank. Osteoporos Int 2023; 34:1907-1916. [PMID: 37500982 DOI: 10.1007/s00198-023-06852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Bone mineral density (BMD) is an essential predictor of osteoporosis and fracture. We conducted a genome-wide trajectory analysis of BMD and analyzed the BMD change. PURPOSE This study aimed to identify the genetic architecture and potential biomarkers of BMD. METHODS Our analysis included 141,261 white participants from the UK Biobank with heel BMD phenotype data. We used a genome-wide trajectory analysis tool, TrajGWAS, to conduct a genome-wide association study (GWAS) of BMD. Then, we validated our findings in previously reported BMD genetic associations and performed replication analysis in the Asian participants. Finally, gene-set enrichment analysis (GSEA) of the identified candidate genes was conducted using the FUMA platform. RESULTS A total of 52 genes associated with BMD trajectory mean were identified, of which the top three significant genes were WNT16 (P = 1.31 × 10-126), FAM3C (P = 4.18 × 10-108), and CPED1 (P = 8.48 × 10-106). In addition, 114 genes associated with BMD within-subject variability were also identified, such as AC092079.1 (P = 2.72 × 10-13) and RGS7 (P = 4.72 × 10-10). The associations for these candidate genes were confirmed in the previous GWASs and replicated successfully in the Asian participants. GSEA results of BMD change identified multiple GO terms related to skeletal development, such as SKELETAL SYSTEM DEVELOPMENT (Padjusted = 2.45 × 10-3) and REGULATION OF OSSIFICATION (Padjusted = 2.45 × 10-3). KEGG enrichment analysis showed that these genes were mainly enriched in WNT SIGNALING PATHWAY. CONCLUSIONS Our findings indicated that the CPED1-WNT16-FAM3C locus plays a significant role in BMD mean trajectories and identified several novel candidate genes contributing to BMD within-subject variability, facilitating the understanding of the genetic architecture of BMD.
Collapse
Affiliation(s)
- Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China.
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China.
| |
Collapse
|
11
|
Bitoun M. [The dynamin-2-gene related centronuclear myopathy]. Med Sci (Paris) 2023; 39 Hors série n° 1:6-10. [PMID: 37975763 DOI: 10.1051/medsci/2023130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Autosomal dominant centronuclear myopathy (AD-CNM) is a rare congenital myopathy characterized by muscle weakness and centrally located nuclei in muscle fibers in the absence of any regeneration. AD-CNM is due to mutations in the DNM2 gene encoding dynamin 2 (DNM2), a large GTPase involved in intracellular membrane trafficking and a regulator of actin and microtubule cytoskeletons. DNM2 mutations are associated with a broad clinical spectrum ranging from severe neonatal to less severe late-onset forms. The histopathological signature includes nuclear centralization, predominance and atrophy of type 1 myofibers and radiating sarcoplasmic strands. To explain the muscle dysfunction, several pathophysiological mechanisms affecting key mechanisms of muscle homeostasis have been identified. They include defects in excitation-contraction coupling, muscle regeneration, mitochondria or autophagy. Several therapeutic approaches are under development by modulating the expression of DNM2 in a pan-allelic manner or by allele-specific silencing targeting only the mutated allele, which open the era of clinical trials for this pathology.
Collapse
Affiliation(s)
- Marc Bitoun
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
12
|
Giraud Q, Spiegelhalter C, Messaddeq N, Laporte J. MTM1 overexpression prevents and reverts BIN1-related centronuclear myopathy. Brain 2023; 146:4158-4173. [PMID: 37490306 PMCID: PMC10545525 DOI: 10.1093/brain/awad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Centronuclear and myotubular myopathies (CNM) are rare and severe genetic diseases associated with muscle weakness and atrophy as well as intracellular disorganization of myofibres. The main mutated proteins control lipid and membrane dynamics and are the lipid phosphatase myotubularin (MTM1), and the membrane remodelling proteins amphiphysin 2 (BIN1) and dynamin 2 (DNM2). There is no available therapy. Here, to validate a novel therapeutic strategy for BIN1- and DNM2-CNM, we evaluated adeno-associated virus-mediated MTM1 (AAV-MTM1 ) overexpression in relevant mouse models. Early systemic MTM1 overexpression prevented the development of the CNM pathology in Bin1mck-/- mice, while late intramuscular MTM1 expression partially reverted the established phenotypes after only 4 weeks of treatment. However, AAV-MTM1 injection did not change the DNM2-CNM mouse phenotypes. We investigated the mechanism of the rescue of the myopathy in BIN1-CNM and found that the lipid phosphatase activity of MTM1 was essential for the rescue of muscle atrophy and myofibre hypotrophy but dispensable for the rescue of myofibre disorganization including organelle mis-position and T-tubule defects. Furthermore, the improvement of T-tubule organization correlated with normalization of key regulators of T-tubule morphogenesis, dysferlin and caveolin. Overall, these data support the inclusion of BIN1-CNM patients in an AAV-MTM1 clinical trial.
Collapse
Affiliation(s)
- Quentin Giraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404, Illkirch, France
| | - Coralie Spiegelhalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404, Illkirch, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404, Illkirch, France
| |
Collapse
|
13
|
Arabiotorre A, Bankaitis VA, Grabon A. Regulation of phosphoinositide metabolism in Apicomplexan parasites. Front Cell Dev Biol 2023; 11:1163574. [PMID: 37791074 PMCID: PMC10543664 DOI: 10.3389/fcell.2023.1163574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 10/05/2023] Open
Abstract
Phosphoinositides are a biologically essential class of phospholipids that contribute to organelle membrane identity, modulate membrane trafficking pathways, and are central components of major signal transduction pathways that operate on the cytosolic face of intracellular membranes in eukaryotes. Apicomplexans (such as Toxoplasma gondii and Plasmodium spp.) are obligate intracellular parasites that are important causative agents of disease in animals and humans. Recent advances in molecular and cell biology of Apicomplexan parasites reveal important roles for phosphoinositide signaling in key aspects of parasitosis. These include invasion of host cells, intracellular survival and replication, egress from host cells, and extracellular motility. As Apicomplexans have adapted to the organization of essential signaling pathways to accommodate their complex parasitic lifestyle, these organisms offer experimentally tractable systems for studying the evolution, conservation, and repurposing of phosphoinositide signaling. In this review, we describe the regulatory mechanisms that control the spatial and temporal regulation of phosphoinositides in the Apicomplexan parasites Plasmodium and T. gondii. We further discuss the similarities and differences presented by Apicomplexan phosphoinositide signaling relative to how these pathways are regulated in other eukaryotic organisms.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| | - Vytas A. Bankaitis
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
- Department of Biochemistry and Biophysics Texas A&M University College Station, College Station, TX, United States
- Department of Chemistry Texas A&M University College Station, College Station, TX, United States
| | - Aby Grabon
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| |
Collapse
|
14
|
Ghosh A, Venugopal A, Shinde D, Sharma S, Krishnan M, Mathre S, Krishnan H, Saha S, Raghu P. PI3P-dependent regulation of cell size and autophagy by phosphatidylinositol 5-phosphate 4-kinase. Life Sci Alliance 2023; 6:e202301920. [PMID: 37316298 PMCID: PMC10267561 DOI: 10.26508/lsa.202301920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 3-phosphate (PI3P) and phosphatidylinositol 5-phosphate (PI5P) are low-abundance phosphoinositides crucial for key cellular events such as endosomal trafficking and autophagy. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) is an enzyme that regulates PI5P in vivo but can act on both PI5P and PI3P in vitro. In this study, we report a role for PIP4K in regulating PI3P levels in Drosophila Loss-of-function mutants of the only Drosophila PIP4K gene show reduced cell size in salivary glands. PI3P levels are elevated in dPIP4K 29 and reverting PI3P levels back towards WT, without changes in PI5P levels, can rescue the reduced cell size. dPIP4K 29 mutants also show up-regulation in autophagy and the reduced cell size can be reverted by depleting Atg8a that is required for autophagy. Lastly, increasing PI3P levels in WT can phenocopy the reduction in cell size and associated autophagy up-regulation seen in dPIP4K 29 Thus, our study reports a role for a PIP4K-regulated PI3P pool in the control of autophagy and cell size.
Collapse
Affiliation(s)
- Avishek Ghosh
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | | | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Meera Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Harini Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sankhanil Saha
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| |
Collapse
|
15
|
Carvalho A, Costa C, Pinto M, Taipa R, Gonçalves A, Oliveira ME, Ferreira S, Ribeiro JA. X-Linked Myotubular Myopathy: A Novel Mutation Expanding the Genotypic Spectrum of a Phenotypically Heterogeneous Myopathy. J Pediatr Genet 2023; 12:258-262. [PMID: 37575650 PMCID: PMC10421687 DOI: 10.1055/s-0041-1728745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
X-linked myotubular myopathy (XLMTM), a centronuclear congenital myopathy secondary to pathogenic variants in the MTM1 gene encoding myotubularin, is typically recognized for its classic and severe phenotype which includes neonatal hypotonia, severe muscle weakness, long-term ventilator dependence, markedly delayed gross motor milestones with inability to independently ambulate, and a high neonatal and childhood mortality. However, milder congenital forms of the condition and other phenotypes are recognized. We describe a 6-year-old boy with a mild XLMTM phenotype with independent gait and no respiratory insufficiency even in the neonatal period. The child has a hemizygous novel splice site variant in the MTM1 gene (c.232-25A > T) whose pathogenicity was confirmed by cDNA studies (exon 5 skipping) and muscle biopsy findings. We also compared the phenotype of our patient with the few reported cases that presented a mild XLMTM phenotype and no respiratory distress at birth, and discussed the potential mechanisms underlying this phenotype such as the presence of residual expression of the normal myotubularin transcript.
Collapse
Affiliation(s)
- Andreia Carvalho
- Neurology Department, Centro Hospitalar de Vila Nova de Gaia–Espinho, Portugal
| | - Carmen Costa
- Pediatric Neurology Department, Centro de Desenvolvimento da Criança, Hospital Pediátrico de Coimbra - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Miguel Pinto
- Neuropathology Unit, Hospital de Santo António - Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ricardo Taipa
- Neuropathology Unit, Hospital de Santo António - Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinary Research In Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Gonçalves
- Unit for Multidisciplinary Research In Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Márcia E. Oliveira
- Unit for Multidisciplinary Research In Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sofia Ferreira
- Pulmonology Department, Hospital Pediátrico de Coimbra - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joana Afonso Ribeiro
- Pediatric Neurology Department, Centro de Desenvolvimento da Criança, Hospital Pediátrico de Coimbra - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
17
|
Li Q, Lin J, Luo S, Schmitz-Abe K, Agrawal R, Meng M, Moghadaszadeh B, Beggs AH, Liu X, Perrella MA, Agrawal PB. Integrated multi-omics approach reveals the role of SPEG in skeletal muscle biology including its relationship with myospryn complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538136. [PMID: 37162921 PMCID: PMC10168260 DOI: 10.1101/2023.04.24.538136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy. Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes. We identified that SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and SPEG deficiency results in myospryn complex abnormalities. In addition, transcriptional and protein profiles of SPEG-deficient muscle revealed defective mitochondrial function including aberrant accumulation of enlarged mitochondria on electron microscopy. Furthermore, SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites. On analyzing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction and peroxisome proliferator-activated receptors signaling, which may be due to defective triad and mitochondrial abnormalities. In summary, we have elucidated the critical role of SPEG in triad as it works closely with myospryn complex, phosphorylates JPH2 and RyR1, and demonstrated that its deficiency is associated with mitochondrial abnormalities. This study emphasizes the importance of using multi-omics techniques to comprehensively analyze the molecular anomalies of rare diseases. Synopsis We have previously linked mutations in SPEG (striated preferentially expressed protein) with a recessive form of centronuclear myopathy and/or dilated cardiomyopathy and have characterized a striated muscle-specific SPEG-deficient mouse model that recapitulates human disease with disruption of the triad structure and calcium homeostasis in skeletal muscles. In this study, we applied multi-omics approaches (interactomic, proteomic, phosphoproteomic, and transcriptomic analyses) in the skeletal muscles of SPEG-deficient mice to assess the underlying pathways associated with the pathological and molecular abnormalities. SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and its deficiency results in myospryn complex abnormalities.SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites.SPEGα and SPEGβ have different interacting partners suggestive of differential function.Transcriptome analysis indicates dysregulated pathways of ECM-receptor interaction and peroxisome proliferator-activated receptor signaling.Mitochondrial defects on the transcriptome, proteome, and electron microscopy, may be a consequence of defective calcium signaling.
Collapse
|
18
|
Bhattacharyya T, Ghosh A, Verma S, Raghu P, Sowdhamini R. Structural rationale to understand the effect of disease-associated mutations on Myotubularin. Curr Res Struct Biol 2023; 5:100100. [PMID: 37101954 PMCID: PMC10123148 DOI: 10.1016/j.crstbi.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Myotubularin or MTM1 is a lipid phosphatase that regulates vesicular trafficking in the cell. The MTM1 gene is mutated in a severe form of muscular disease, X-linked myotubular myopathy or XLMTM, affecting 1 in 50,000 newborn males worldwide. There have been several studies on the disease pathology of XLMTM, but the structural effects of missense mutations of MTM1 are underexplored due to the unavailability of a crystal structure. MTM1 consists of three domains-a lipid-binding N-terminal GRAM domain, the phosphatase domain and a coiled-coil domain which aids dimerisation of Myotubularin homologs. While most mutations reported to date map to the phosphatase domain of MTM1, the other two domains on the sequence are also frequently mutated in XLMTM. To understand the overall structural and functional effects of missense mutations on MTM1, we curated several missense mutations and performed in silico and in vitro studies. Apart from significantly impaired binding to substrate, abrogation of phosphatase activity was observed for a few mutants. Possible long-range effects of mutations from non-catalytic domains on phosphatase activity were observed as well. Coiled-coil domain mutants have been characterised here for the first time in XLMTM literature.
Collapse
Affiliation(s)
| | | | - Shailya Verma
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| |
Collapse
|
19
|
A review of major causative genes in congenital myopathies. J Hum Genet 2023; 68:215-225. [PMID: 35668205 DOI: 10.1038/s10038-022-01045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.
Collapse
|
20
|
Younger DS. Congenital myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:533-561. [PMID: 37562885 DOI: 10.1016/b978-0-323-98818-6.00027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The congenital myopathies are inherited muscle disorders characterized clinically by hypotonia and weakness, usually from birth, with a static or slowly progressive clinical course. Historically, the congenital myopathies have been classified according to major morphological features seen on muscle biopsy as nemaline myopathy, central core disease, centronuclear or myotubular myopathy, and congenital fiber type disproportion. However, in the past two decades, the genetic basis of these different forms of congenital myopathy has been further elucidated with the result being improved correlation with histological and genetic characteristics. However, these notions have been challenged for three reasons. First, many of the congenital myopathies can be caused by mutations in more than one gene that suggests an impact of genetic heterogeneity. Second, mutations in the same gene can cause different muscle pathologies. Third, the same genetic mutation may lead to different pathological features in members of the same family or in the same individual at different ages. This chapter provides a clinical overview of the congenital myopathies and a clinically useful guide to its genetic basis recognizing the increasing reliance of exome, subexome, and genome sequencing studies as first-line analysis in many patients.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
21
|
O’Connor TN, van den Bersselaar LR, Chen YS, Nicolau S, Simon B, Huseth A, Todd JJ, Van Petegem F, Sarkozy A, Goldberg MF, Voermans NC, Dirksena RT. RYR-1-Related Diseases International Research Workshop: From Mechanisms to Treatments Pittsburgh, PA, U.S.A., 21-22 July 2022. J Neuromuscul Dis 2023; 10:135-154. [PMID: 36404556 PMCID: PMC10023165 DOI: 10.3233/jnd-221609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Thomas N. O’Connor
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Luuk R. van den Bersselaar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Malignant Hyperthermia Investigation Unit, Department of Anaesthesia, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Nicolau
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Joshua J. Todd
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | | | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert T. Dirksena
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
22
|
Jang W, Puchkov D, Samsó P, Liang Y, Nadler-Holly M, Sigrist SJ, Kintscher U, Liu F, Mamchaoui K, Mouly V, Haucke V. Endosomal lipid signaling reshapes the endoplasmic reticulum to control mitochondrial function. Science 2022; 378:eabq5209. [PMID: 36520888 DOI: 10.1126/science.abq5209] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells respond to fluctuating nutrient supply by adaptive changes in organelle dynamics and in metabolism. How such changes are orchestrated on a cell-wide scale is unknown. We show that endosomal signaling lipid turnover by MTM1, a phosphatidylinositol 3-phosphate [PI(3)P] 3-phosphatase mutated in X-linked centronuclear myopathy in humans, controls mitochondrial morphology and function by reshaping the endoplasmic reticulum (ER). Starvation-induced endosomal recruitment of MTM1 impairs PI(3)P-dependent contact formation between tubular ER membranes and early endosomes, resulting in the conversion of ER tubules into sheets, the inhibition of mitochondrial fission, and sustained oxidative metabolism. Our results unravel an important role for early endosomal lipid signaling in controlling ER shape and, thereby, mitochondrial form and function to enable cells to adapt to fluctuating nutrient environments.
Collapse
Affiliation(s)
- Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Paula Samsó
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - YongTian Liang
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Stephan J Sigrist
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France
| | - Vincent Mouly
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
23
|
Antagonistic control of active surface integrins by myotubularin and phosphatidylinositol 3-kinase C2β in a myotubular myopathy model. Proc Natl Acad Sci U S A 2022; 119:e2202236119. [PMID: 36161941 DOI: 10.1073/pnas.2202236119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-linked centronuclear myopathy (XLCNM) is a severe human disease without existing therapies caused by mutations in the phosphoinositide 3-phosphatase MTM1. Loss of MTM1 function is associated with muscle fiber defects characterized by impaired localization of β-integrins and other components of focal adhesions. Here we show that defective focal adhesions and reduced active β-integrin surface levels in a cellular model of XLCNM are rescued by loss of phosphatidylinositiol 3-kinase C2β (PI3KC2β) function. Inactivation of the Mtm1 gene impaired myoblast differentiation into myotubes and resulted in reduced surface levels of active β1-integrins as well as corresponding defects in focal adhesions. These phenotypes were rescued by concomitant genetic loss of Pik3c2b or pharmacological inhibition of PI3KC2β activity. We further demonstrate that a hitherto unknown role of PI3KC2β in the endocytic trafficking of active β1-integrins rather than rescue of phosphatidylinositol 3-phosphate levels underlies the ability of Pik3c2b to act as a genetic modifier of cellular XLCNM phenotypes. Our findings reveal a crucial antagonistic function of MTM1 and PI3KC2β in the control of active β-integrin surface levels, thereby providing a molecular mechanism for the adhesion and myofiber defects observed in XLCNM. They further suggest specific pharmacological inhibition of PI3KC2β catalysis as a viable treatment option for XLCNM patients.
Collapse
|
24
|
Novel Splicing Mutation in MTM1 Leading to Two Abnormal Transcripts Causes Severe Myotubular Myopathy. Int J Mol Sci 2022; 23:ijms231810274. [PMID: 36142184 PMCID: PMC9499315 DOI: 10.3390/ijms231810274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe form of centronuclear myopathy, characterized by generalized weakness and respiratory insufficiency, associated with pathogenic variants in the MTM1 gene. NGS targeted sequencing on the DNA of a three-month-old child affected by XLMTM identified the novel hemizygous MTM1 c.1261-5T>G intronic variant, which interferes with the normal splicing process, generating two different abnormal transcripts simultaneously expressed in the patient’s muscular cells. The first aberrant transcript, induced by the activation of a cryptic splice site in intron 11, includes four intronic nucleotides upstream of exon 12, resulting in a shift in the transcript reading frame and introducing a new premature stop codon in the catalytic domain of the protein (p.Arg421SerfsTer7). The second aberrant MTM1 transcript, due to the lack of recognition of the 3′ acceptor splice site of intron 11 from the spliceosome complex, leads to the complete skipping of exon 12. We expanded the genotypic spectrum of XLMTM underlying the importance of intron−exons boundaries sequencing in male patients affected by XLMTM.
Collapse
|
25
|
Volpatti JR, Ghahramani-Seno MM, Mansat M, Sabha N, Sarikaya E, Goodman SJ, Chater-Diehl E, Celik A, Pannia E, Froment C, Combes-Soia L, Maani N, Yuki KE, Chicanne G, Uusküla-Reimand L, Monis S, Alvi SA, Genetti CA, Payrastre B, Beggs AH, Bonnemann CG, Muntoni F, Wilson MD, Weksberg R, Viaud J, Dowling JJ. X-linked myotubular myopathy is associated with epigenetic alterations and is ameliorated by HDAC inhibition. Acta Neuropathol 2022; 144:537-563. [PMID: 35844027 PMCID: PMC9381459 DOI: 10.1007/s00401-022-02468-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Epigenesis, Genetic
- Mice
- Muscle, Skeletal/metabolism
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Valproic Acid/metabolism
- Valproic Acid/pharmacology
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Mehdi M Ghahramani-Seno
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Mélanie Mansat
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Ege Sarikaya
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Sarah J Goodman
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Eric Chater-Diehl
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Alper Celik
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Emanuela Pannia
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Carine Froment
- Institut de Pharmacologie Et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie Et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nika Maani
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Kyoko E Yuki
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Gaëtan Chicanne
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - Liis Uusküla-Reimand
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Simon Monis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Sana Akhtar Alvi
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Casie A Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernard Payrastre
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse Cedex, France
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julien Viaud
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
26
|
Asif M, Kaygusuz E, Shinawi M, Nickelsen A, Hsieh TC, Wagle P, Budde BS, Hochscherf J, Abdullah U, Höning S, Nienberg C, Lindenblatt D, Noegel AA, Altmüller J, Thiele H, Motameny S, Fleischer N, Segal I, Pais L, Tinschert S, Samra NN, Savatt JM, Rudy NL, De Luca C, Paola Fortugno, White SM, Krawitz P, Hurst ACE, Niefind K, Jose J, Brancati F, Nürnberg P, Hussain MS. De novo variants of CSNK2B cause a new intellectual disability-craniodigital syndrome by disrupting the canonical Wnt signaling pathway. HGG ADVANCES 2022; 3:100111. [PMID: 35571680 PMCID: PMC9092267 DOI: 10.1016/j.xhgg.2022.100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
CSNK2B encodes for casein kinase II subunit beta (CK2β), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and β-catenin with mutated CK2β. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated β-catenin and consequent absence of active β-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear β-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.
Collapse
Affiliation(s)
- Maria Asif
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Emrah Kaygusuz
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Bilecik Şeyh Edebali University, Molecular Biology and Genetics, Gülümbe Campus, 11230 Bilecik, Turkey
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich Wilhelms, Universität Bonn, Bonn, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Birgit S Budde
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Stefan Höning
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Nienberg
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117 Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | | | | | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sigrid Tinschert
- Zentrum Medizinische Genetik, Medizinische Universität, Innsbruck, Austria
| | - Nadra Nasser Samra
- Hospital Center, Safed, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Natasha L Rudy
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chiara De Luca
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Paola Fortugno
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy.,IRCCS, San Raffaele Roma, 00163 Roma, Italy
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich Wilhelms, Universität Bonn, Bonn, Germany
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Francesco Brancati
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy.,IRCCS, San Raffaele Roma, 00163 Roma, Italy
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| |
Collapse
|
27
|
Sarikaya E, Sabha N, Volpatti J, Pannia E, Maani N, Gonorazky HD, Celik A, Liang Y, Onofre-Oliveira P, Dowling JJ. Natural history of a mouse model of X-linked myotubular myopathy. Dis Model Mech 2022; 15:276037. [PMID: 35694952 PMCID: PMC9346535 DOI: 10.1242/dmm.049342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe monogenetic disorder of the skeletal muscle. It is caused by loss-of-expression/function mutations in the myotubularin (MTM1) gene. Much of what is known about the disease, as well as the treatment strategies, has been uncovered through experimentation in pre-clinical models, particularly the Mtm1 gene knockout mouse line (Mtm1 KO). Despite this understanding, and the identification of potential therapies, much remains to be understood about XLMTM disease pathomechanisms, and about the normal functions of MTM1 in muscle development. To lay the groundwork for addressing these knowledge gaps, we performed a natural history study of Mtm1 KO mice. This included longitudinal comparative analyses of motor phenotype, transcriptome and proteome profiles, muscle structure and targeted molecular pathways. We identified age-associated changes in gene expression, mitochondrial function, myofiber size and key molecular markers, including DNM2. Importantly, some molecular and histopathologic changes preceded overt phenotypic changes, while others, such as triad structural alternations, occurred coincidentally with the presence of severe weakness. In total, this study provides a comprehensive longitudinal evaluation of the murine XLMTM disease process, and thus provides a critical framework for future investigations. Summary: This study provides a comprehensive and longitudinal molecular and phenotypic evaluation of the disease process of X-linked myotubular myopathy (XLMTM) in a murine model.
Collapse
Affiliation(s)
- Ege Sarikaya
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada.,Departments of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada
| | - Jonathan Volpatti
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada.,Departments of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Emanuela Pannia
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada.,Departments of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Nika Maani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada.,Departments of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Hernan D Gonorazky
- Division of Neurology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada
| | - Alper Celik
- Centre for Computational Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada
| | - Yijng Liang
- Centre for Computational Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada
| | - Paula Onofre-Oliveira
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada.,Departments of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Division of Neurology, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 1X8, Canada.,Departments of Paediatrics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
28
|
Buono S, Monseur A, Menuet A, Robé A, Koch C, Laporte J, Thielemans L, Depla M, Cowling BS. Natural history study and statistical modelling of disease progression in a preclinical model of myotubular myopathy. Dis Model Mech 2022; 15:276036. [PMID: 35642830 PMCID: PMC9346515 DOI: 10.1242/dmm.049284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Generating reliable preclinical data in animal models of disease is essential in therapy development. Here we perform statistical analysis and joint longitudinal-survival modelling of the progressive phenotype observed in Mtm1-/y knock-out mice, a faithful model for myotubular myopathy (XLMTM). Analysis of historical data was used to generate a model for phenotype progression, which was then confirmed with phenotypic data from a new colony of mice derived via in vitro fertilization in an independent animal house, highlighting the reproducibility of disease phenotype in Mtm1-/y mice. This combined data was then used to refine the phenotypic parameters analyzed in these mice, and improve the model generated for expected disease progression. The disease progression model was then used to test therapeutic efficacy of Dnm2 targeting. Dnm2 reduction by antisense oligonucleotides blocked or postponed disease development, and resulted in a significant dose-dependent improvement outside the expected disease progression in untreated Mtm1-/y mice. This provides an example of optimizing disease analysis and testing therapeutic efficacy in a preclinical model, that can be applied by scientists testing therapeutic approaches using neuromuscular disease models in different laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | - Jocelyn Laporte
- IGBMC, Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | | | | | | |
Collapse
|
29
|
Espinosa KG, Geissah S, Groom L, Volpatti J, Scott IC, Dirksen RT, Zhao M, Dowling JJ. Characterization of a novel zebrafish model of SPEG-related centronuclear myopathy. Dis Model Mech 2022; 15:275324. [PMID: 35293586 PMCID: PMC9118044 DOI: 10.1242/dmm.049437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 01/03/2023] Open
Abstract
Centronuclear myopathy (CNM) is a congenital neuromuscular disorder caused by pathogenic variation in genes associated with membrane trafficking and excitation–contraction coupling (ECC). Bi-allelic autosomal-recessive mutations in striated muscle enriched protein kinase (SPEG) account for a subset of CNM patients. Previous research has been limited by the perinatal lethality of constitutive Speg knockout mice. Thus, the precise biological role of SPEG in developing skeletal muscle remains unknown. To address this issue, we generated zebrafish spega, spegb and spega;spegb (speg-DKO) mutant lines. We demonstrated that speg-DKO zebrafish faithfully recapitulate multiple phenotypes associated with CNM, including disruption of the ECC machinery, dysregulation of calcium homeostasis during ECC and impairment of muscle performance. Taking advantage of zebrafish models of multiple CNM genetic subtypes, we compared novel and known disease markers in speg-DKO with mtm1-KO and DNM2-S619L transgenic zebrafish. We observed Desmin accumulation common to all CNM subtypes, and Dnm2 upregulation in muscle of both speg-DKO and mtm1-KO zebrafish. In all, we establish a new model of SPEG-related CNM, and identify abnormalities in this model suitable for defining disease pathomechanisms and evaluating potential therapies. This article has an associated First Person interview with the joint first authors of the paper. Summary: We created a novel zebrafish Speg mutant model of centronuclear myopathy that recapitulates key features of the human disorder and provides insight into pathomechanisms of the disease.
Collapse
Affiliation(s)
- Karla G Espinosa
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Salma Geissah
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Centre, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jonathan Volpatti
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada.,Program for Development and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Centre, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Mo Zhao
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada.,Department of Pediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
30
|
Böhm J, Barthélémy I, Landwerlin C, Blanchard-Gutton N, Relaix F, Blot S, Laporte J, Tiret L. A dog model for centronuclear myopathy carrying the most common DNM2 mutation. Dis Model Mech 2022; 15:274622. [PMID: 35244154 PMCID: PMC9016898 DOI: 10.1242/dmm.049219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
Mutations in DNM2 cause autosomal dominant centronuclear myopathy (ADCNM), a rare disease characterized by skeletal muscle weakness and structural anomalies of the myofibres, including nuclear centralization and mitochondrial mispositioning. Following the clinical report of a Border Collie male with exercise intolerance and histopathological hallmarks of CNM on the muscle biopsy, we identified the c.1393C>T (R465W) mutation in DNM2, corresponding to the most common ADCNM mutation in humans. In order to establish a large animal model for longitudinal and preclinical studies on the muscle disorder, we collected sperm samples from the Border Collie male and generated a dog cohort for subsequent clinical, genetic and histological investigations. Four of the five offspring carried the DNM2 mutation and showed muscle atrophy and a mildly impaired gait. Morphological examinations of transverse muscle sections revealed CNM-typical fibres with centralized nuclei and remodelling of the mitochondrial network. Overall, the DNM2-CNM dog represents a faithful animal model for the human disorder, allows the investigation of ADCNM disease progression, and constitutes a valuable complementary tool to validate innovative therapies established in mice.
Collapse
Affiliation(s)
- Johann Böhm
- Médecine translationnelle et neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Inès Barthélémy
- Neuroscience et psychiatrie, Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France.,Ecole nationale vétérinaire d'Alfort, IMRB, 94700 Maisons-Alfort, France.,EFS, IMRB, 94017 Créteil Cedex, France
| | - Charlène Landwerlin
- Médecine translationnelle et neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Nicolas Blanchard-Gutton
- Neuroscience et psychiatrie, Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France.,Ecole nationale vétérinaire d'Alfort, IMRB, 94700 Maisons-Alfort, France.,EFS, IMRB, 94017 Créteil Cedex, France
| | - Frédéric Relaix
- Neuroscience et psychiatrie, Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France.,Ecole nationale vétérinaire d'Alfort, IMRB, 94700 Maisons-Alfort, France.,EFS, IMRB, 94017 Créteil Cedex, France
| | - Stéphane Blot
- Neuroscience et psychiatrie, Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France.,Ecole nationale vétérinaire d'Alfort, IMRB, 94700 Maisons-Alfort, France.,EFS, IMRB, 94017 Créteil Cedex, France
| | - Jocelyn Laporte
- Médecine translationnelle et neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Laurent Tiret
- Neuroscience et psychiatrie, Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France.,Ecole nationale vétérinaire d'Alfort, IMRB, 94700 Maisons-Alfort, France.,EFS, IMRB, 94017 Créteil Cedex, France
| |
Collapse
|
31
|
Abstract
The mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. DNM2 is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle. Moreover, there is no therapy for DNM2-CNM to date. Here, we overexpressed human amphiphysin 2 (BIN1), a membrane remodeling protein mutated in other CNM forms, in Dnm2 RW/+ and Dnm2 RW/RW mice modeling mild and severe DNM2-CNM, through transgenesis or with adeno-associated virus (AAV). Increasing BIN1 improved muscle atrophy and main histopathological features of Dnm2 RW/+ mice and rescued the perinatal lethality and survival of Dnm2 RW/RW mice. In vitro experiments showed that BIN1 binds and recruits DNM2 to membrane tubules, and that the BIN1-DNM2 complex regulates tubules fission. Overall, BIN1 is a potential therapeutic target for dominant centronuclear myopathy linked to DNM2 mutations.
Collapse
|
32
|
Yabe T, Itonaga T, Kuga S, Koga H, Kusaba T, Nishida H, Daa T, Maeda T, Ihara K. An autopsy case of recurrent pneumothorax and peliosis-like intrapulmonary hematoma with X-linked myotubular myopathy. Brain Dev 2022; 44:234-238. [PMID: 34840057 DOI: 10.1016/j.braindev.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The typical non-muscle complications of long-surviving X-linked myotubular myopathy (XLMTM) include scoliosis, head deformity, macrocephaly, gastroesophageal reflux disease and peliosis hepatis. Recently, pulmonary blebs and recurrent pneumothorax have also been reported as uncommon complications, whereas no reports on autopsy cases have focused on lung lesions. CASE PRESENTATION An 8-year-old boy with XLMTM presented recurrent pneumothorax requiring bleb resection and pleurodesis. He subsequently developed multiple pulmonary mass lesions. He died of hemorrhagic shock due to peliosis hepatis. Autopsy showed multiple peliosis-like hematomas in the blebs of the lung. The histopathological examination of the hematomas revealed pooled blood without a pathway to bronchus. No apparent increase in desmin- or α-smooth muscle actin (α-SMA)-positive cells, namely myofibroblasts, was observed around hematomas, suggesting that the mutation in the myotubularin gene was involved in the defective repair process in the liver and lung tissues. CONCLUSION Recurrent pneumothorax should be considered as a non-muscle complication of XLMTM. Peliosis-like intrapulmonary hematoma may also be a critical complication caused by poor proliferation of myofibroblasts in the tissue repair process.
Collapse
Affiliation(s)
- Tomona Yabe
- Department of Pediatrics, Oita University Faculty of Medicine, Japan
| | - Tomoyo Itonaga
- Department of Pediatrics, Oita University Faculty of Medicine, Japan
| | - Shuji Kuga
- Department of Pediatrics, Oita University Faculty of Medicine, Japan
| | - Hiroshi Koga
- Department of Pediatrics, National Hospital Organization Beppu Medical Center, Japan
| | - Takahiro Kusaba
- Department of Diagnostic Pathology, Oita University Faculty of Medicine, Japan
| | - Haruto Nishida
- Department of Diagnostic Pathology, Oita University Faculty of Medicine, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Oita University Faculty of Medicine, Japan
| | - Tomoki Maeda
- Department of Pediatrics, Oita University Faculty of Medicine, Japan.
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Japan
| |
Collapse
|
33
|
Manini A, Abati E, Nuredini A, Corti S, Comi GP. Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Duchenne Muscular Dystrophy: The Issue of Transgene Persistence. Front Neurol 2022; 12:814174. [PMID: 35095747 PMCID: PMC8797140 DOI: 10.3389/fneur.2021.814174] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive, infancy-onset neuromuscular disorder characterized by progressive muscle weakness and atrophy, leading to delay of motor milestones, loss of autonomous ambulation, respiratory failure, cardiomyopathy, and premature death. DMD originates from mutations in the DMD gene that result in a complete absence of dystrophin. Dystrophin is a cytoskeletal protein which belongs to the dystrophin-associated protein complex, involved in cellular signaling and myofiber membrane stabilization. To date, the few available therapeutic options are aimed at lessening disease progression, but persistent loss of muscle tissue and function and premature death are unavoidable. In this scenario, one of the most promising therapeutic strategies for DMD is represented by adeno-associated virus (AAV)-mediated gene therapy. DMD gene therapy relies on the administration of exogenous micro-dystrophin, a miniature version of the dystrophin gene lacking unnecessary domains and encoding a truncated, but functional, dystrophin protein. Limited transgene persistence represents one of the most significant issues that jeopardize the translatability of DMD gene replacement strategies from the bench to the bedside. Here, we critically review preclinical and clinical studies of AAV-mediated gene therapy in DMD, focusing on long-term transgene persistence in transduced tissues, which can deeply affect effectiveness and sustainability of gene replacement in DMD. We also discuss the role played by the overactivation of the immune host system in limiting long-term expression of genetic material. In this perspective, further studies aimed at better elucidating the need for immune suppression in AAV-treated subjects are warranted in order to allow for life-long therapy in DMD patients.
Collapse
Affiliation(s)
- Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Andi Nuredini
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, Neuroscience Section, Dino Ferrari Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, Neuroscience Section, Dino Ferrari Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
34
|
Kaur S, Sang Y, Aballay A. Myotubularin-related protein protects against neuronal degeneration mediated by oxidative stress or infection. J Biol Chem 2022; 298:101614. [PMID: 35101447 PMCID: PMC8889260 DOI: 10.1016/j.jbc.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial infections have been linked to the onset and severity of neurodegenerative diseases such as amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, but the underlying mechanisms remain largely unknown. Here, we used a genetic screen for genes involved in protection from infection-associated neurodegeneration and identified the gene mtm-10. We then validated the role of the encoded myotubularin-related protein, MTM-10, in protecting the dendrites of Caenorhabditis elegans from degeneration mediated by oxidative stress or Pseudomonas aeruginosa infection. Further experiments indicated that mtm-10 is expressed in the AWC neurons of C. elegans, where it functions in a cell-autonomous manner to protect the dendrite degeneration caused by pathogen infection. We also confirm that the changes observed in the dendrites of the animals were not because of premature death or overall sickness. Finally, our studies indicated that mtm-10 functions in AWC neurons to preserve chemosensation after pathogen infection. These results reveal an essential role for myotubularin-related protein 10 in the protection of dendrite morphology and function against the deleterious effects of oxidative stress or infection.
Collapse
Affiliation(s)
- Supender Kaur
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Yu Sang
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
35
|
Hirunagi T, Sahashi K, Meilleur KG, Katsuno M. Nucleic Acid-Based Therapeutic Approach for Spinal and Bulbar Muscular Atrophy and Related Neurological Disorders. Genes (Basel) 2022; 13:genes13010109. [PMID: 35052449 PMCID: PMC8775157 DOI: 10.3390/genes13010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
The recent advances in nucleic acid therapeutics demonstrate the potential to treat hereditary neurological disorders by targeting their causative genes. Spinal and bulbar muscular atrophy (SBMA) is an X-linked and adult-onset neurodegenerative disorder caused by the expansion of trinucleotide cytosine-adenine-guanine repeats, which encodes a polyglutamine tract in the androgen receptor gene. SBMA belongs to the family of polyglutamine diseases, in which the use of nucleic acids for silencing a disease-causing gene, such as antisense oligonucleotides and small interfering RNAs, has been intensively studied in animal models and clinical trials. A unique feature of SBMA is that both motor neuron and skeletal muscle pathology contribute to disease manifestations, including progressive muscle weakness and atrophy. As both motor neurons and skeletal muscles can be therapeutic targets in SBMA, nucleic acid-based approaches for other motor neuron diseases and myopathies may further lead to the development of a treatment for SBMA. Here, we review studies of nucleic acid-based therapeutic approaches in SBMA and related neurological disorders and discuss current limitations and perspectives to apply these approaches to patients with SBMA.
Collapse
Affiliation(s)
- Tomoki Hirunagi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550, Japan; (T.H.); (K.S.)
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550, Japan; (T.H.); (K.S.)
| | - Katherine G. Meilleur
- Research and Clinical Development, Neuromuscular Development Unit, Biogen, 300, Binney Street, Cambridge, MA 02142, USA;
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550, Japan; (T.H.); (K.S.)
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550, Japan
- Correspondence:
| |
Collapse
|
36
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
37
|
Lawlor MW, Dowling JJ. X-linked myotubular myopathy. Neuromuscul Disord 2021; 31:1004-1012. [PMID: 34736623 DOI: 10.1016/j.nmd.2021.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital muscle disease caused by mutation in the MTM1 gene. MTM1 encodes myotubularin (MTM1), an endosomal phosphatase that acts to dephosphorylate key second messenger lipids PI3P and PI3,5P2. XLMTM is clinically characterized by profound muscle weakness and associated with multiple disabilities (including ventilator and wheelchair dependence) and early death in most affected individuals. The disease is classically defined by characteristic changes observed on muscle biopsy, including centrally located nuclei, myofiber hypotrophy, and organelle disorganization. In this review, we highlight the clinical and pathologic features of the disease, present concepts related to disease pathomechanisms, and present recent advances in therapy development.
Collapse
Affiliation(s)
- Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James J Dowling
- Division of Neurology and Program for Genetics and Genome Biology, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Departments of Paediatrics and Molecular Genetics, University of Toronto, Canada.
| |
Collapse
|
38
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
39
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
40
|
Jirka C, Pak JH, Grosgogeat CA, Marchetii MM, Gupta VA. Dysregulation of NRAP degradation by KLHL41 contributes to pathophysiology in nemaline myopathy. Hum Mol Genet 2021; 28:2549-2560. [PMID: 30986853 DOI: 10.1093/hmg/ddz078] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Nemaline myopathy (NM) is the most common form of congenital myopathy that results in hypotonia and muscle weakness. This disease is clinically and genetically heterogeneous, but three recently discovered genes in NM encode for members of the Kelch family of proteins. Kelch proteins act as substrate-specific adaptors for Cullin 3 (CUL3) E3 ubiquitin ligase to regulate protein turnover through the ubiquitin-proteasome machinery. Defects in thin filament formation and/or stability are key molecular processes that underlie the disease pathology in NM; however, the role of Kelch proteins in these processes in normal and diseases conditions remains elusive. Here, we describe a role of NM causing Kelch protein, KLHL41, in premyofibil-myofibil transition during skeletal muscle development through a regulation of the thin filament chaperone, nebulin-related anchoring protein (NRAP). KLHL41 binds to the thin filament chaperone NRAP and promotes ubiquitination and subsequent degradation of NRAP, a process that is critical for the formation of mature myofibrils. KLHL41 deficiency results in abnormal accumulation of NRAP in muscle cells. NRAP overexpression in transgenic zebrafish resulted in a severe myopathic phenotype and absence of mature myofibrils demonstrating a role in disease pathology. Reducing Nrap levels in KLHL41 deficient zebrafish rescues the structural and function defects associated with disease pathology. We conclude that defects in KLHL41-mediated ubiquitination of sarcomeric proteins contribute to structural and functional deficits in skeletal muscle. These findings further our understanding of how the sarcomere assembly is regulated by disease-causing factors in vivo, which will be imperative for developing mechanism-based specific therapeutic interventions.
Collapse
Affiliation(s)
- Caroline Jirka
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmine H Pak
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire A Grosgogeat
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Vandana A Gupta
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Ghasemizadeh A, Christin E, Guiraud A, Couturier N, Abitbol M, Risson V, Girard E, Jagla C, Soler C, Laddada L, Sanchez C, Jaque-Fernandez FI, Jacquemond V, Thomas JL, Lanfranchi M, Courchet J, Gondin J, Schaeffer L, Gache V. MACF1 controls skeletal muscle function through the microtubule-dependent localization of extra-synaptic myonuclei and mitochondria biogenesis. eLife 2021; 10:e70490. [PMID: 34448452 PMCID: PMC8500715 DOI: 10.7554/elife.70490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscles are composed of hundreds of multinucleated muscle fibers (myofibers) whose myonuclei are regularly positioned all along the myofiber's periphery except the few ones clustered underneath the neuromuscular junction (NMJ) at the synaptic zone. This precise myonuclei organization is altered in different types of muscle disease, including centronuclear myopathies (CNMs). However, the molecular machinery regulating myonuclei position and organization in mature myofibers remains largely unknown. Conversely, it is also unclear how peripheral myonuclei positioning is lost in the related muscle diseases. Here, we describe the microtubule-associated protein, MACF1, as an essential and evolutionary conserved regulator of myonuclei positioning and maintenance, in cultured mammalian myotubes, in Drosophila muscle, and in adult mammalian muscle using a conditional muscle-specific knockout mouse model. In vitro, we show that MACF1 controls microtubules dynamics and contributes to microtubule stabilization during myofiber's maturation. In addition, we demonstrate that MACF1 regulates the microtubules density specifically around myonuclei, and, as a consequence, governs myonuclei motion. Our in vivo studies show that MACF1 deficiency is associated with alteration of extra-synaptic myonuclei positioning and microtubules network organization, both preceding NMJ fragmentation. Accordingly, MACF1 deficiency results in reduced muscle excitability and disorganized triads, leaving voltage-activated sarcoplasmic reticulum Ca2+ release and maximal muscle force unchanged. Finally, adult MACF1-KO mice present an improved resistance to fatigue correlated with a strong increase in mitochondria biogenesis.
Collapse
Affiliation(s)
- Alireza Ghasemizadeh
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Emilie Christin
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Alexandre Guiraud
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Nathalie Couturier
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Marie Abitbol
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
- Université Marcy l’Etoile, VetAgro SupLyonFrance
| | - Valerie Risson
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Emmanuelle Girard
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Christophe Jagla
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRSClermont-FerrandFrance
| | - Cedric Soler
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRSClermont-FerrandFrance
| | - Lilia Laddada
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRSClermont-FerrandFrance
| | - Colline Sanchez
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Francisco-Ignacio Jaque-Fernandez
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Vincent Jacquemond
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Jean-Luc Thomas
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Marine Lanfranchi
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Julien Courchet
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Julien Gondin
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Laurent Schaeffer
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| | - Vincent Gache
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon ILyon CedexFrance
| |
Collapse
|
42
|
Djeddi S, Reiss D, Menuet A, Freismuth S, de Carvalho Neves J, Djerroud S, Massana-Muñoz X, Sosson AS, Kretz C, Raffelsberger W, Keime C, Dorchies OM, Thompson J, Laporte J. Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Mol Ther 2021; 29:2514-2534. [PMID: 33940157 DOI: 10.1016/j.ymthe.2021.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Omics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression, or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. In this study, we used RNA sequencing and mass spectrometry to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNMs), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of DNM2 or amphiphysin 2 (BIN1) through genetic crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve CNM molecular signatures. Longitudinal studies before, at, and after disease onset highlighted potential disease causes and consequences. Main pathways in the common CNM disease signature include muscle contraction, regeneration and inflammation. The common therapy signature revealed novel potential therapeutic targets, including the calcium regulator sarcolipin. We identified several novel biomarkers validated in muscle and/or plasma through RNA quantification, western blotting, and enzyme-linked immunosorbent assay (ELISA) assays, including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to identify molecular signatures common to different disease forms and therapeutic strategies.
Collapse
Affiliation(s)
- Sarah Djeddi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Alexia Menuet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Sébastien Freismuth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Juliana de Carvalho Neves
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Sarah Djerroud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Xènia Massana-Muñoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Anne-Sophie Sosson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Wolfgang Raffelsberger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Olivier M Dorchies
- Pharmaceutical Biochemistry, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1211 Geneva, Switzerland
| | - Julie Thompson
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory-CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW There has been an explosion of advancement in the field of genetic therapies. The first gene-based treatments are now in clinical practice, with several additional therapeutic programs in various stages of development. Novel technologies are being developed that will further advance the breadth and success of genetic medicine.Congenital myopathies are an important group of neuromuscular disorders defined by structural changes in the muscle and characterized by severe clinical symptoms caused by muscle weakness. At present, there are no approved drug therapies for any subtype of congenital myopathy.In this review, we present an overview of genetic therapies and discuss their application to congenital myopathies. RECENT FINDINGS Several candidate therapeutics for congenital myopathies are in the development pipeline, including ones in clinical trial. These include genetic medicines such as gene replacement therapy and antisense oligonucleotide-based gene knockdown. We highlight the programs related to genetic medicine, and also discuss congenital myopathy subtypes where genetic therapy could be applied. SUMMARY Genetic therapies are ushering in an era of precision medicine for neurological diseases. Congenital myopathies are conditions ideally suited for genetic medicine approaches, and the first such therapies will hopefully soon be reaching congenital myopathy patients.
Collapse
|
44
|
Mattei AM, Smailys JD, Hepworth EMW, Hinton SD. The Roles of Pseudophosphatases in Disease. Int J Mol Sci 2021; 22:ijms22136924. [PMID: 34203203 PMCID: PMC8269279 DOI: 10.3390/ijms22136924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets.
Collapse
|
45
|
Cannata G, Caporilli C, Grassi F, Perrone S, Esposito S. Management of Congenital Diaphragmatic Hernia (CDH): Role of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22126353. [PMID: 34198563 PMCID: PMC8231903 DOI: 10.3390/ijms22126353] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common major life-threatening birth defect that results in significant mortality and morbidity depending primarily on lung hypoplasia, persistent pulmonary hypertension, and cardiac dysfunction. Despite its clinical relevance, CDH multifactorial etiology is still not completely understood. We reviewed current knowledge on normal diaphragm development and summarized genetic mutations and related pathways as well as cellular mechanisms involved in CDH. Our literature analysis showed that the discovery of harmful de novo variants in the fetus could constitute an important tool for the medical team during pregnancy, counselling, and childbirth. A better insight into the mechanisms regulating diaphragm development and genetic causes leading to CDH appeared essential to the development of new therapeutic strategies and evidence-based genetic counselling to parents. Integrated sequencing, development, and bioinformatics strategies could direct future functional studies on CDH; could be applied to cohorts and consortia for CDH and other birth defects; and could pave the way for potential therapies by providing molecular targets for drug discovery.
Collapse
Affiliation(s)
- Giulia Cannata
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
- Correspondence: ; Tel.: +39-0521-7047
| |
Collapse
|
46
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
47
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|
48
|
Reumers SFI, Braun F, Spillane JE, Böhm J, Pennings M, Schouten M, van der Kooi AJ, Foley AR, Bönnemann CG, Kamsteeg EJ, Erasmus CE, Schara-Schmidt U, Jungbluth H, Voermans NC. Spectrum of Clinical Features in X-Linked Myotubular Myopathy Carriers: An International Questionnaire Study. Neurology 2021; 97:e501-e512. [PMID: 34011573 DOI: 10.1212/wnl.0000000000012236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the spectrum of clinical features in a cohort of X-linked myotubular myopathy (XL-MTM) carriers, including prevalence, genetic features, clinical symptoms, and signs, as well as associated disease burden. METHODS We performed a cross-sectional online questionnaire study among XL-MTM carriers. Participants were recruited from patient associations, medical centers, and registries in the United Kingdom, Germany, and the Netherlands. We used a custom-made questionnaire, the Checklist Individual Strength (CIS), the Frenchay Activities Index (FAI), the Short Form 12 (SF-12) health survey, and the McGill Pain Questionnaire. Carriers were classified as manifesting or nonmanifesting on the basis of self-reported ambulation and muscle weakness. RESULTS The prevalence of manifesting carriers in this study population (n = 76) was 51%, subdivided into mild (independent ambulation, 39%), moderate (assisted ambulation, 9%), and severe (wheelchair dependent, 3%) phenotypes. In addition to muscle weakness, manifesting carriers frequently reported fatigue (70%) and exercise intolerance (49%). Manifesting carriers scored higher on the overall CIS (p = 0.001), the fatigue subscale (p < 0.001), and least severe pain subscale (p = 0.005) than nonmanifesting carriers. They scored lower on the FAI (p = 0.005) and the physical component of the SF-12 health survey (p < 0.001). CONCLUSIONS The prevalence of manifesting XL-MTM carriers may be higher than currently assumed, most having a mild phenotype and a wide variety of symptoms. Manifesting carriers are particularly affected by fatigue, limitations of daily activities, pain, and reduced quality of life. Our findings should increase awareness and provide useful information for health care providers and future clinical trials.
Collapse
Affiliation(s)
- Stacha F I Reumers
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Frederik Braun
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Jennifer E Spillane
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Johann Böhm
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Maartje Pennings
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Meyke Schouten
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Anneke J van der Kooi
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - A Reghan Foley
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Carsten G Bönnemann
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Erik-Jan Kamsteeg
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Corrie E Erasmus
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Ulrike Schara-Schmidt
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Heinz Jungbluth
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Nicol C Voermans
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK.
| |
Collapse
|
49
|
Manzéger A, Tagscherer K, Lőrincz P, Szaker H, Lukácsovich T, Pilz P, Kméczik R, Csikós G, Erdélyi M, Sass M, Kovács T, Vellai T, Billes VA. Condition-dependent functional shift of two Drosophila Mtmr lipid phosphatases in autophagy control. Autophagy 2021; 17:4010-4028. [PMID: 33779490 PMCID: PMC8726729 DOI: 10.1080/15548627.2021.1899681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myotubularin (MTM) and myotubularin-related (MTMR) lipid phosphatases catalyze the removal of a phosphate group from certain phosphatidylinositol derivatives. Because some of these substrates are required for macroautophagy/autophagy, during which unwanted cytoplasmic constituents are delivered into lysosomes for degradation, MTM and MTMRs function as important regulators of the autophagic process. Despite its physiological and medical significance, the specific role of individual MTMR paralogs in autophagy control remains largely unexplored. Here we examined two Drosophila MTMRs, EDTP and Mtmr6, the fly orthologs of mammalian MTMR14 and MTMR6 to MTMR8, respectively, and found that these enzymes affect the autophagic process in a complex, condition-dependent way. EDTP inhibited basal autophagy, but did not influence stress-induced autophagy. In contrast, Mtmr6 promoted the process under nutrient-rich settings, but effectively blocked its hyperactivation in response to stress. Thus, Mtmr6 is the first identified MTMR phosphatase with dual, antagonistic roles in the regulation of autophagy, and shows conditional antagonism/synergism with EDTP in modulating autophagic breakdown. These results provide a deeper insight into the adjustment of autophagy. Abbreviations: Atg, autophagy-related; BDSC, Bloomington Drosophila Stock Center; DGRC, Drosophila Genetic Resource Center; EDTP, Egg-derived tyrosine phosphatase; FYVE, zinc finger domain from Fab1 (yeast ortholog of PIKfyve), YOTB, Vac1 (vesicle transport protein) and EEA1 cysteine-rich proteins; LTR, LysoTracker Red; MTM, myotubularin; MTMR, myotubularin-related; PI, phosphatidylinositol; Pi3K59F, Phosphotidylinositol 3 kinase 59F; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(3,5)P2, phosphatidylinositol-3,5-bisphosphate; PtdIns5P, phosphatidylinositol-5-phosphate; ref(2)P, refractory to sigma P; Syx17, Syntaxin 17; TEM, transmission electron microscopy; UAS, upstream activating sequence; Uvrag, UV-resistance associated gene; VDRC, Vienna Drosophila RNAi Center; Vps34, Vacuolar protein sorting 34.
Collapse
Affiliation(s)
- Anna Manzéger
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Genetics Research Group, Budapest, Hungary
| | - Kinga Tagscherer
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Hungarian Academy of Sciences, Premium Postdoctoral Research Program, Budapest, Hungary
| | - Henrik Szaker
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Lukácsovich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Petra Pilz
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Regina Kméczik
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - George Csikós
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Genetics Research Group, Budapest, Hungary
| | - Viktor A Billes
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Genetics Research Group, Budapest, Hungary
| |
Collapse
|
50
|
F Almeida C, Bitoun M, Vainzof M. Satellite cells deficiency and defective regeneration in dynamin 2-related centronuclear myopathy. FASEB J 2021; 35:e21346. [PMID: 33715228 DOI: 10.1096/fj.202001313rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Dynamin 2 (DNM2) is a ubiquitously expressed protein involved in many functions related to trafficking and remodeling of membranes and cytoskeleton dynamics. Mutations in the DNM2 gene cause the autosomal dominant centronuclear myopathy (AD-CNM), characterized mainly by muscle weakness and central nuclei. Several defects have been identified in the KI-Dnm2R465W/+ mouse model of the disease to explain the muscle phenotype, including reduction of the satellite cell pool in muscle, but the functional consequences of this depletion have not been characterized until now. Satellite cells (SC) are the main source for muscle growth and regeneration of mature tissue. Here, we investigated muscle regeneration in the KI-Dnm2R465W/+ mouse model for AD-CNM. We found a reduced number of Pax7-positive SCs, which were also less activated after induced muscle injury. The muscles of the KI-Dnm2R465W/+ mouse regenerated more slowly and less efficiently than wild-type ones, formed fewer new myofibers, and did not recover its normal mass 15 days after injury. Altogether, our data provide evidence that the muscle regeneration is impaired in the KI-Dnm2R465W/+ mouse and contribute with one more layer to the comprehension of the disease, by identifying a new pathomechanism linked to DNM2 mutations which may be involved in the muscle-specific impact occurring in AD-CNM.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.,INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Marc Bitoun
- INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|