1
|
McGinty RJ, Balick DJ, Mirkin SM, Sunyaev SR. Inherent instability of simple DNA repeats shapes an evolutionarily stable distribution of repeat lengths. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631797. [PMID: 39829886 PMCID: PMC11741425 DOI: 10.1101/2025.01.09.631797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Using the Telomere-to-Telomere reference, we assembled the distribution of simple repeat lengths present in the human genome. Analyzing over two hundred mammalian genomes, we found remarkable consistency in the shape of the distribution across evolutionary epochs. All observed genomes harbor an excess of long repeats, which are prone to developing into repeat expansion disorders. We measured mutation rates for repeat length instability, quantitatively modeled the per-generation action of mutations, and observed the corresponding long-term behavior shaping the repeat length distribution. We found that short repetitive sequences appear to be a straightforward consequence of random substitution. Evolving largely independently, longer repeats (10+ nucleotides) emerge and persist in a rapidly mutating dynamic balance between expansion, contraction and interruption. These mutational processes, collectively, are sufficient to explain the abundance of long repeats, without invoking natural selection. Our analysis constrains properties of molecular mechanisms responsible for maintaining genome fidelity that underlie repeat instability.
Collapse
|
2
|
Protic D, Polli R, Bettella E, Usdin K, Murgia A, Tassone F. Somatic Instability Leading to Mosaicism in Fragile X Syndrome and Associated Disorders: Complex Mechanisms, Diagnostics, and Clinical Relevance. Int J Mol Sci 2024; 25:13681. [PMID: 39769443 PMCID: PMC11728179 DOI: 10.3390/ijms252413681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM. Mosaicism has also been reported in carriers of premutation (PM) alleles, which have 55-200 CGG repeats. PM alleles confer risk for the fragile X premutation-associated conditions (FXPAC), including FXTAS, FXPOI, and FXAND, conditions thought to be due to the toxic consequences of transcripts containing large CGG-tracts. Unmethylated FM (UFM) alleles are transcriptionally and translationally active. Thus, they produce transcripts with toxic effects. These transcripts do produce some FMRP, the encoded product of the FMR1 gene, albeit with reduced translational efficiency. As a result, mosaicism can result in a complex clinical presentation. Here, we review the concept of mosaicism in both FXS and in PM carriers, including its potential clinical significance.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11000 Belgrade, Serbia
| | - Roberta Polli
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Elisa Bettella
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Alessandra Murgia
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
3
|
Tu H, Yeo XY, Zhang ZW, Zhou W, Tan JY, Chi L, Chia SY, Li Z, Sim AY, Singh BK, Ma D, Zhou Z, Bonne I, Ling SC, Ng ASL, Jung S, Tan EK, Zeng L. NOTCH2NLC GGC intermediate repeat with serine induces hypermyelination and early Parkinson's disease-like phenotypes in mice. Mol Neurodegener 2024; 19:91. [PMID: 39609868 PMCID: PMC11603791 DOI: 10.1186/s13024-024-00780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The expansion of GGC repeats (typically exceeding 60 repeats) in the 5' untranslated region (UTR) of the NOTCH2NLC gene (N2C) is linked to N2C-related repeat expansion disorders (NREDs), such as neuronal intranuclear inclusion disease (NIID), frontotemporal dementia (FTD), essential tremor (ET), and Parkinson's disease (PD). These disorders share common clinical manifestations, including parkinsonism, dementia, seizures, and muscle weakness. Intermediate repeat sizes ranging from 40 to 60 GGC repeats, particularly those with AGC-encoded serine insertions, have been reported to be associated with PD; however, the functional implications of these intermediate repeats with serine insertion remain unexplored. METHODS Here, we utilized cellular models harbouring different sizes of N2C variant 2 (N2C2) GGC repeat expansion and CRISPR-Cas9 engineered transgenic mouse models carrying N2C2 GGC intermediate repeats with and without serine insertion to elucidate the underlying pathophysiology associated with N2C intermediate repeat with serine insertion in NREDs. RESULTS Our findings revealed that the N2C2 GGC intermediate repeat with serine insertion (32G13S) led to mitochondrial dysfunction and cell death in vitro. The neurotoxicity was influenced by the length of the repeat and was exacerbated by the presence of the serine insertion. In 12-month-old transgenic mice, 32G13S intensified intranuclear aggregation and exhibited early PD-like characteristics, including the formation of α-synuclein fibers in the midbrain and the loss of tyrosine hydroxylase (TH)-positive neurons in both the cortex and striatum. Additionally, 32G13S induced neuronal hyperexcitability and caused locomotor behavioural impairments. Transcriptomic analysis of the mouse cortex indicated dysregulation in calcium signaling and MAPK signaling pathways, both of which are critical for mitochondrial function. Notably, genes associated with myelin sheath components, including MBP and MOG, were dysregulated in the 32G13S mouse. Further investigations using immunostaining and transmission electron microscopy revealed that the N2C intermediate repeat with serine induced mitochondrial dysfunction-related hypermyelination in the cortex. CONCLUSIONS Our in vitro and in vivo investigations provide the first evidence that the N2C-GGC intermediate repeat with serine promotes intranuclear aggregation of N2C, leading to mitochondrial dysfunction-associated hypermyelination and neuronal hyperexcitability. These changes contribute to motor deficits in early PD-like neurodegeneration in NREDs.
Collapse
Affiliation(s)
- Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Zhi-Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wei Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore
| | - Jayne Yi Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Li Chi
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Zhihong Li
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Aik Yong Sim
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore, 169609, Singapore
| | - Zhidong Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Isabelle Bonne
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Shuo-Chien Ling
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, 13488, Republic of Korea
| | - Eng-King Tan
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore.
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore.
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Novena Campus, 308232, Singapore.
| |
Collapse
|
4
|
Hujoel MLA, Handsaker RE, Kamitaki N, Mukamel RE, Rubinacci S, Palamara PF, McCarroll SA, Loh PR. Insights into the causes and consequences of DNA repeat expansions from 700,000 biobank participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625248. [PMID: 39651202 PMCID: PMC11623664 DOI: 10.1101/2024.11.25.625248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Expansions and contractions of tandem DNA repeats are a source of genetic variation in human populations and in human tissues: some expanded repeats cause inherited disorders, and some are also somatically unstable. We analyzed DNA sequence data, derived from the blood cells of >700,000 participants in UK Biobank and the All of Us Research Program, and developed new computational approaches to recognize, measure and learn from DNA-repeat instability at 15 highly polymorphic CAG-repeat loci. We found that expansion and contraction rates varied widely across these 15 loci, even for alleles of the same length; repeats at different loci also exhibited widely variable relative propensities to mutate in the germline versus the blood. The high somatic instability of TCF4 repeats enabled a genome-wide association analysis that identified seven loci at which inherited variants modulate TCF4 repeat instability in blood cells. Three of the implicated loci contained genes ( MSH3 , FAN1 , and PMS2 ) that also modulate Huntington's disease age-at-onset as well as somatic instability of the HTT repeat in blood; however, the specific genetic variants and their effects (instability-increasing or-decreasing) appeared to be tissue-specific and repeat-specific, suggesting that somatic mutation in different tissues-or of different repeats in the same tissue-proceeds independently and under the control of substantially different genetic variation. Additional modifier loci included DNA damage response genes ATAD5 and GADD45A . Analyzing DNA repeat expansions together with clinical data showed that inherited repeats in the 5' UTR of the glutaminase ( GLS) gene are associated with stage 5 chronic kidney disease (OR=14.0 [5.7-34.3]) and liver diseases (OR=3.0 [1.5-5.9]). These and other results point to the dynamics of DNA repeats in human populations and across the human lifespan.
Collapse
|
5
|
Ain Q, Hwang YH, Yeung D, Panpaprai P, Iamurairat W, Chutimongkonkul W, Trachoo O, Tassone F, Jiraanont P. Population-based FMR1 carrier screening among reproductive women. J Assist Reprod Genet 2024; 41:3237-3243. [PMID: 39320553 PMCID: PMC11621265 DOI: 10.1007/s10815-024-03242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE Fragile X syndrome (FXS) is a neurodevelopmental disorder, caused by an CGG repeat expansion (FM, > 200 CGG) in the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Female carriers of a premutation (PM; 55-200 CGG) can transmit the PM allele, which, depending on the CGG allele size, can expand to an allele in the FM range in the offspring. METHODS Carrier screening for FMR1 PM is not available in Thailand. This study aimed to investigate the prevalence of PM carriers among Thai reproductive women at the tertiary hospital. A total of 1250 females participated in this study; ages ranged from 20 to 45 years, mean of 30 years (S.D. = 6.27). RESULTS Two carriers of a premutation allele, with 32,62 and 32,69 CGG repeats respectively, were identified. This corresponds to 1 in 600 women or 0.17% of the population. Further, three women carrying a gray zone allele (45-54 CGG repeats) were identified (29,51; 29,49; and 30,47 CGG repeats) which equals to 1:400 women or 0.25% of the population. No FM case was detected. CONCLUSIONS This study heightens the importance of PM carrier screening of women of reproductive age, particularly for the higher risk of developing fragile X-associated primary ovarian insufficiency (FXPOI). Early identification of PM carrier status enhances family planning and fecundity alternatives and improves reproductive health outcomes leading to a better life.
Collapse
Affiliation(s)
- Quratul Ain
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Daryl Yeung
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Pacharee Panpaprai
- Department of Obstetrics and Gynecology, Medical Service Department, Sirindhorn Hospital, Bangkok, Thailand
| | - Wiwat Iamurairat
- Department of Obstetrics and Gynecology, Medical Service Department, Sirindhorn Hospital, Bangkok, Thailand
| | - Wiboon Chutimongkonkul
- Department of Obstetrics and Gynecology, Medical Service Department, Sirindhorn Hospital, Bangkok, Thailand
| | - Objoon Trachoo
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA.
- UC Davis MIND Institute, University of California Davis, Sacramento, CA, USA.
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
| |
Collapse
|
6
|
Pan F, Xu P, Roland C, Sagui C, Weninger K. Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases. Biomolecules 2024; 14:1278. [PMID: 39456210 PMCID: PMC11505666 DOI: 10.3390/biom14101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| |
Collapse
|
7
|
Agustí I, Méndez M, Borrás A, Goday A, Guimerà M, Peralta S, Ribera L, Rodriguez-Revenga L, Manau D. Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice. Genes (Basel) 2024; 15:1008. [PMID: 39202368 PMCID: PMC11353426 DOI: 10.3390/genes15081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
The relationship between premature ovarian insufficiency (FXPOI) and premutation in the FMR1 gene is well established. In recent years, though, a potential relationship between the latter and a low ovarian reserve has been suggested. To explore it, we conducted a retrospective study in an IVF program at a university tertiary referral center in Barcelona (Spain). Data were obtained retrospectively from a total of 385 women referred for FMR1 gene testing at our institution from January 2018 to December 2021. We compared the prevalence of FMR1 gene premutation between 93 of them, younger than 35 years, with a diminished ovarian reserve (DOR), characterized by levels of anti-Mullerian hormone < 1.1 ng/mL and antral follicle count < 5; and 132 egg donors screened by protocol that served as the controls. We found a higher prevalence of FMR1 premutation in the DOR group (seven patients (7.69%)) than in the control group (one patient (1.32%)), Fisher-exact test p-value = 0.012). We concluded that compared with the general population represented by young egg donors, the prevalence of FMR1 gene premutation is higher in young patients with a diminished ovarian reserve. Although these findings warrant further prospective validation in a larger cohort of patients within DOR, they suggest that, in clinical practice, FMR1 premutation should be determined in infertile young patients with DOR in order to give them adequate genetic counselling.
Collapse
Affiliation(s)
- Inés Agustí
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Marta Méndez
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Aina Borrás
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
- Fundacio Clinic de Recerca Biomedique-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Anna Goday
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Marta Guimerà
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Sara Peralta
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Laura Ribera
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona—Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Manau
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
- Fundacio Clinic de Recerca Biomedique-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
8
|
Quilichini J, Perol S, Cuisset L, Grotto S, Fouveaut C, Barbot JC, Verebi C, Jordan P, Héron D, Molina-Gomes D, Pipiras E, Grynberg M, Catteau-Jonard S, Touraine P, Christin-Maître S, Plu-Bureau G, El Khattabi L, Bienvenu T. Stratification of the risk of ovarian dysfunction by studying the complexity of intermediate and premutation alleles of the FMR1 gene. Am J Med Genet A 2024; 194:e63479. [PMID: 37987117 DOI: 10.1002/ajmg.a.63479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
FMR1 premutation female carriers are at risk of developing premature/primary ovarian insufficiency (POI) with an incomplete penetrance. In this study, we determined the CGG repeat size among 1095 women with diminished ovarian reserve (DOR) / POI and characterized the CGG/AGG substructure in 44 women carrying an abnormal FMR1 repeat expansion number, compared to a group of 25 pregnant women carrying an abnormal FMR1 CGG repeat size. Allelic complexity scores of the FMR1 gene were calculated and compared between the two groups. In the DOR/POI cohort, 2.1% of women presented with an intermediate repeat size and 1.9% with a premutation. Our results suggest that the risk of POI is highest in the mid-range of CGG repeats. We observed that the allelic score is significantly higher in POI women compared to the pregnant women group (p-value = 0.02). We suggest that a high allelic score due to more than 2 AGG interspersions in the context of an intermediate number of repetitions could favor POI. Larger studies are still needed to evaluate the relevance of this new tool for the determination of the individual risk of developing POI in women with abnormal number of CGG repeats.
Collapse
Affiliation(s)
- Juliette Quilichini
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Sandrine Perol
- Unité de gynécologie médicale, APHP. Centre Université Paris Cité, Hôpital Cochin Port-Royal, Paris, France
| | - Laurence Cuisset
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Sarah Grotto
- Maternité Port-Royal, APHP. Centre Université Paris Cité, Hôpital Cochin, Paris, France
| | - Corinne Fouveaut
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Jean Claude Barbot
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Camille Verebi
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Pénélope Jordan
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Delphine Héron
- Département de Génétique, APHP. Sorbonne Université, Hôpital La Pitié-Salpêtrière, Paris, France
| | - Denise Molina-Gomes
- Service de Biologie de la reproduction, Cytogénétique et Génétique Médicale, CHI Poissy-Saint Germain, Poissy, France
| | - Eva Pipiras
- Unité fonctionnelle de Médecine génomique et génétique clinique, APHP. Université Sorbonne Paris Nord, Hôpital Jean Verdier, Bondy, France
| | - Michael Grynberg
- Gynécologie médicale et médecine de la reproduction, Hôpital Jean Verdier, Bondy, France
| | | | - Philippe Touraine
- Département d'Endocrinologie et médecine de la reproduction, APHP. Sorbonne Université, Pitié-Salpêtrière Hospital, Center for Rare Endocrine and Gynecological Disorders, Paris, France
| | - Sophie Christin-Maître
- Service d'endocrinologie, diabétologie et médecine de la reproduction, APHP. Sorbonne Université, Paris, France
| | - Geneviève Plu-Bureau
- Unité de gynécologie médicale, APHP. Centre Université Paris Cité, Hôpital Cochin Port-Royal, Paris, France
| | - Laila El Khattabi
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, team « From gametes to birth », Paris, France
| | - Thierry Bienvenu
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Shen YI, Cheng KC, Wei YJ, Lee IR. Structural Dynamics Role of AGG Interruptions in Inhibition CGG Repeat Expansion Associated with Fragile X Syndrome. ACS Chem Neurosci 2024; 15:230-235. [PMID: 38133821 DOI: 10.1021/acschemneuro.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Abnormal expansion of trinucleotide CGG repeats is responsible for Fragile X syndrome. AGG interruptions in CGG repeat tracts were found in most healthy individuals, suggesting a crucial role in preventing disease-prone repeat expansion. Previous biophysics studies emphasize a difference in the secondary structure affected by AGG interruptions. However, the mechanism of how AGG interruptions impede repeat expansion remains elusive. We utilized single-molecule fluorescence resonance energy transfer spectroscopy to investigate the structural dynamics of CGG repeats and their AGG-interrupted variants. Tandem CGG repeats fold into a stem-loop hairpin structure with the capability to undergo a conformational rearrangement to modulate the length of the overhang. However, this conformational rearrangement is much more retarded when two AGG interruptions are present. Considering the significance of hairpin slippage in repeat expansion, we present a molecular basis suggesting that the internal loop created by two AGG interruptions acts as a barrier, obstructing the hairpin slippage reconfiguration. This impediment potentially plays a crucial role in curbing abnormal expansion, thereby contributing to the genomic stability.
Collapse
Affiliation(s)
- Yang-I Shen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kai-Chun Cheng
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yu-Jie Wei
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - I-Ren Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Persico T, Tranquillo ML, Seracchioli R, Zuccarello D, Sorrentino U. PGT-M for Premature Ovarian Failure Related to CGG Repeat Expansion of the FMR1 Gene. Genes (Basel) 2023; 15:6. [PMID: 38275588 PMCID: PMC10815814 DOI: 10.3390/genes15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Primary ovarian failure (POF) is caused by follicle exhaustion and is associated with menstrual irregularities and elevated gonadotropin levels, which lead to infertility before the age of 40 years. The etiology of POI is mostly unknown, but a heterogeneous genetic and familial background can be identified in a subset of cases. Abnormalities in the fragile X mental retardation 1 gene (FMR1) are among the most prevalent monogenic causes of POI. These abnormalities are caused by the expansion of an unstable CGG repeat in the 5' untranslated region of FMR1. Expansions over 200 repeats cause fragile X syndrome (FXS), whereas expansions between 55 and 200 CGG repeats, which are defined as a fragile X premutation, have been associated with premature ovarian failure type 1 (POF1) in heterozygous females. Preimplantation genetic testing for monogenic diseases (PGT-M) can be proposed when the female carries a premutation or a full mutation. In this narrative review, we aim to recapitulate the clinical and molecular features of POF1 and their implications in the context of PGT-M.
Collapse
Affiliation(s)
- Tiziana Persico
- Medically Assisted Procreation Center, Maternal and Child Department, Beauregard Hospital, Valle D’Aosta Local Public Health, 11100 Aoste, Italy
| | - Maria Lucrezia Tranquillo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (M.L.T.); (R.S.)
| | - Renato Seracchioli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (M.L.T.); (R.S.)
- Division of Gynaecology and Human Reproduction Physiopathology, IRCCS Azienda Ospedaliero, University of Bologna, 40138 Bologna, Italy
| | - Daniela Zuccarello
- Clinical Genetics and Epidemiology Unit, University of Padova, 35128 Padova, Italy; (D.Z.); (U.S.)
| | - Ugo Sorrentino
- Clinical Genetics and Epidemiology Unit, University of Padova, 35128 Padova, Italy; (D.Z.); (U.S.)
| |
Collapse
|
11
|
Chaisson MJP, Sulovari A, Valdmanis PN, Miller DE, Eichler EE. Advances in the discovery and analyses of human tandem repeats. Emerg Top Life Sci 2023; 7:361-381. [PMID: 37905568 PMCID: PMC10806765 DOI: 10.1042/etls20230074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Long-read sequencing platforms provide unparalleled access to the structure and composition of all classes of tandemly repeated DNA from STRs to satellite arrays. This review summarizes our current understanding of their organization within the human genome, their importance with respect to disease, as well as the advances and challenges in understanding their genetic diversity and functional effects. Novel computational methods are being developed to visualize and associate these complex patterns of human variation with disease, expression, and epigenetic differences. We predict accurate characterization of this repeat-rich form of human variation will become increasingly relevant to both basic and clinical human genetics.
Collapse
Affiliation(s)
- Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, U.S.A
- The Genomic and Epigenomic Regulation Program, USC Norris Cancer Center, University of Southern California, Los Angeles, CA 90089, U.S.A
| | - Arvis Sulovari
- Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, U.S.A
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, U.S.A
- Department of Pediatrics, University of Washington, Seattle, WA 98195, U.S.A
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
12
|
Ciobanu CG, Nucă I, Popescu R, Antoci LM, Caba L, Ivanov AV, Cojocaru KA, Rusu C, Mihai CT, Pânzaru MC. Narrative Review: Update on the Molecular Diagnosis of Fragile X Syndrome. Int J Mol Sci 2023; 24:9206. [PMID: 37298158 PMCID: PMC10252420 DOI: 10.3390/ijms24119206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
The diagnosis and management of fragile X syndrome (FXS) have significantly improved in the last three decades, although the current diagnostic techniques are not yet able to precisely identify the number of repeats, methylation status, level of mosaicism, and/or the presence of AGG interruptions. A high number of repeats (>200) in the fragile X messenger ribonucleoprotein 1 gene (FMR1) results in hypermethylation of promoter and gene silencing. The actual molecular diagnosis is performed using a Southern blot, TP-PCR (Triplet-Repeat PCR), MS-PCR (Methylation-Specific PCR), and MS-MLPA (Methylation-Specific MLPA) with some limitations, with multiple assays being necessary to completely characterise a patient with FXS. The actual gold standard diagnosis uses Southern blot; however, it cannot accurately characterise all cases. Optical genome mapping is a new technology that has also been developed to approach the diagnosis of fragile X syndrome. Long-range sequencing represented by PacBio and Oxford Nanopore has the potential to replace the actual diagnosis and offers a complete characterization of molecular profiles in a single test. The new technologies have improved the diagnosis of fragile X syndrome and revealed unknown aberrations, but they are a long way from being used routinely in clinical practice.
Collapse
Affiliation(s)
- Cristian-Gabriel Ciobanu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
| | - Irina Nucă
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
- Investigatii Medicale Praxis, St. Moara de Vant No 35, 700376 Iasi, Romania
| | - Roxana Popescu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | - Lucian-Mihai Antoci
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
| | - Lavinia Caba
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
| | - Anca Viorica Ivanov
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania
| | - Karina-Alexandra Cojocaru
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania
| | - Cristina Rusu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | | | - Monica-Cristina Pânzaru
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| |
Collapse
|
13
|
Hamim I, Sekine KT, Komatsu K. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape? PLANT MOLECULAR BIOLOGY 2022; 110:469-484. [PMID: 35962900 DOI: 10.1007/s11103-022-01305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Long-read sequencing technologies are revolutionizing the sequencing and analysis of plant and pathogen genomes and transcriptomes, as well as contributing to emerging areas of interest in plant-pathogen interactions, disease management techniques, and the introduction of new plant varieties or cultivars. Long-read sequencing (LRS) technologies are progressively being implemented to study plants and pathogens of agricultural importance, which have substantial economic effects. The variability and complexity of the genome and transcriptome affect plant growth, development and pathogen responses. Overcoming the limitations of second-generation sequencing, LRS technology has significantly increased the length of a single contiguous read from a few hundred to millions of base pairs. Because of the longer read lengths, new analysis methods and tools have been developed for plant and pathogen genomics and transcriptomics. LRS technologies enable faster, more efficient, and high-throughput ultralong reads, allowing direct sequencing of genomes that would be impossible or difficult to investigate using short-read sequencing approaches. These benefits include genome assembly in repetitive areas, creating more comprehensive and exact genome determinations, assembling full-length transcripts, and detecting DNA and RNA alterations. Furthermore, these technologies allow for the identification of transcriptome diversity, significant structural variation analysis, and direct epigenetic mark detection in plant and pathogen genomic regions. LRS in plant pathology is found efficient for identifying and characterization of effectors in plants as well as known and unknown plant pathogens. In this review, we investigate how these technologies are transforming the landscape of determination and characterization of plant and pathogen genomes and transcriptomes efficiently and accurately. Moreover, we highlight potential areas of interest offered by LRS technologies for future study into plant-pathogen interactions, disease control strategies, and the development of new plant varieties or cultivars.
Collapse
Affiliation(s)
- Islam Hamim
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- International Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ken-Taro Sekine
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan.
| |
Collapse
|
14
|
Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom Med 2022; 7:62. [PMID: 36289212 PMCID: PMC9606279 DOI: 10.1038/s41525-022-00331-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
We developed a diagnostic method for repeat expansion diseases using a long-read sequencer to improve currently available, low throughput diagnostic methods. We employed the real-time target enrichment system of the nanopore GridION sequencer using the adaptive sampling option, in which software-based target assignment is available without prior sample enrichment, and built an analysis pipeline that prioritized the disease-causing loci. Twenty-two patients with various neurological and neuromuscular diseases, including 12 with genetically diagnosed repeat expansion diseases and 10 manifesting cerebellar ataxia, but without genetic diagnosis, were analyzed. We first sequenced the 12 molecularly diagnosed patients and accurately confirmed expanded repeats in all with uniform depth of coverage across the loci. Next, we applied our method and a conventional method to 10 molecularly undiagnosed patients. Our method corrected inaccurate diagnoses of two patients by the conventional method. Our method is superior to conventional diagnostic methods in terms of speed, accuracy, and comprehensiveness.
Collapse
|
15
|
Dawson J, Baine-Savanhu FK, Ciosi M, Maxwell A, Monckton DG, Krause A. A probable cis-acting genetic modifier of Huntington disease frequent in individuals with African ancestry. HGG ADVANCES 2022; 3:100130. [PMID: 35935919 PMCID: PMC9352962 DOI: 10.1016/j.xhgg.2022.100130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Huntington disease (HD)is a dominantly inherited neurodegenerative disorder caused by the expansion of a polyglutamine encoding CAG repeat in the huntingtin gene. Recently, it has been established that disease severity in HD is best predicted by the number of pure CAG repeats rather than total glutamines encoded. Along with uncovering DNA repair gene variants as trans-acting modifiers of HD severity, these data reveal somatic expansion of the CAG repeat as a key driver of HD onset. Using high-throughput DNA sequencing, we have determined the precise sequence and somatic expansion profiles of the HTT repeat tract of 68 HD-affected and 158 HD-unaffected African ancestry individuals. A high level of HTT repeat sequence diversity was observed, with three likely African-specific alleles identified. In the most common disease allele (30 out of 68), the typical proline-encoding CCGCCA sequence was absent. This CCGCCA-loss disease allele was associated with an earlier age of diagnosis of approximately 7.1 years and occurred exclusively on haplotype B2. Although somatic expansion was associated with an earlier age of diagnosis in the study overall, the CCGCCA-loss disease allele displayed reduced somatic expansion relative to the typical HTT expansions in blood DNA. We propose that the CCGCCA loss occurring on haplotype B2 is an African cis-acting modifier that appears to alter disease diagnosis of HD through a mechanism that is not driven by somatic expansion. The assessment of a group of individuals from an understudied population has highlighted population-specific differences that emphasize the importance of studying genetically diverse populations in the context of disease.
Collapse
Affiliation(s)
- Jessica Dawson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Fiona K. Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alastair Maxwell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Corresponding author
| |
Collapse
|
16
|
Tabolacci E, Nobile V, Pucci C, Chiurazzi P. Mechanisms of the FMR1 Repeat Instability: How Does the CGG Sequence Expand? Int J Mol Sci 2022; 23:ijms23105425. [PMID: 35628235 PMCID: PMC9141726 DOI: 10.3390/ijms23105425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
A dynamic mutation in exon 1 of the FMR1 gene causes Fragile X-related Disorders (FXDs), due to the expansion of an unstable CGG repeat sequence. Based on the CGG sequence size, two types of FMR1 alleles are possible: “premutation” (PM, with 56-200 CGGs) and “full mutation” (FM, with >200 triplets). Premutated females are at risk of transmitting a FM allele that, when methylated, epigenetically silences FMR1 and causes Fragile X syndrome (FXS), a very common form of inherited intellectual disability (ID). Expansions events of the CGG sequence are predominant over contractions and are responsible for meiotic and mitotic instability. The CGG repeat usually includes one or more AGG interspersed triplets that influence allele stability and the risk of transmitting FM to children through maternal meiosis. A unique mechanism responsible for repeat instability has not been identified, but several processes are under investigations using cellular and animal models. The formation of unusual secondary DNA structures at the expanded repeats are likely to occur and contribute to the CGG expansion. This review will focus on the current knowledge about CGG repeat instability addressing the CGG sequence expands.
Collapse
Affiliation(s)
- Elisabetta Tabolacci
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Veronica Nobile
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Cecilia Pucci
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Pietro Chiurazzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3015-4606
| |
Collapse
|
17
|
Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, Tchan M, Fung V, Ng K, Cortese A, Houlden H, Dobson-Stone C, Fitzpatrick L, Halliday G, Ravenscroft G, Davis MR, Laing NG, Fellner A, Kennerson M, Kumar KR, Deveson IW. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. SCIENCE ADVANCES 2022; 8:eabm5386. [PMID: 35245110 PMCID: PMC8896783 DOI: 10.1126/sciadv.abm5386] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
More than 50 neurological and neuromuscular diseases are caused by short tandem repeat (STR) expansions, with 37 different genes implicated to date. We describe the use of programmable targeted long-read sequencing with Oxford Nanopore's ReadUntil function for parallel genotyping of all known neuropathogenic STRs in a single assay. Our approach enables accurate, haplotype-resolved assembly and DNA methylation profiling of STR sites, from a list of predetermined candidates. This correctly diagnoses all individuals in a small cohort (n = 37) including patients with various neurogenetic diseases (n = 25). Targeted long-read sequencing solves large and complex STR expansions that confound established molecular tests and short-read sequencing and identifies noncanonical STR motif conformations and internal sequence interruptions. We observe a diversity of STR alleles of known and unknown pathogenicity, suggesting that long-read sequencing will redefine the genetic landscape of repeat disorders. Last, we show how the inclusion of pharmacogenomic genes as secondary ReadUntil targets can further inform patient care.
Collapse
Affiliation(s)
- Igor Stevanovski
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sanjog R. Chintalaphani
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Hasindu Gamaarachchi
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - James M. Ferguson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Carolin K. Scriba
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Michel Tchan
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Victor Fung
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Andrea Cortese
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carol Dobson-Stone
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Lauren Fitzpatrick
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Glenda Halliday
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mark R. Davis
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Avi Fellner
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- The Neurology Department, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
- Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Owens KM, Terhaar C, Zdrodowski J, Johnson LR, Eveleigh D. Refining reproductive risk for FMR1 premutation carriers in the general obstetric population. Am J Med Genet A 2022; 188:1476-1481. [PMID: 35129870 DOI: 10.1002/ajmg.a.62666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/31/2021] [Accepted: 01/06/2022] [Indexed: 11/08/2022]
Abstract
Female FMR1 premutation (FMR1 PM) carriers for fragile X syndrome (FXS) are at risk to have a child with FXS based on their CGG repeat size and AGG interruption number. Studies examining this risk in unselected populations of female PM carriers are lacking. This retrospective cohort study analyzed carrier status, CGG repeat length, AGG interruption result, and reproductive risk refinement in a population of female patients who underwent routine carrier screening for FXS. A total of 1536 PM carriers (0.43%) were identified, 95% of whom had between 55 and 90 CGG repeats. A number of 1334 carriers underwent AGG interruption testing. The majority had at least one AGG interruption and received a lower reproductive risk for FXS following AGG interruption testing (89% and 85%, respectively) as compared to their risk calculated based on CGG repeat size alone. The average change in risk across the population following AGG interruption testing was -3.4%, with a range from -50.8% to 48.9%. This article describes the range of CGG repeats and AGG interruptions in an unselected population of female PM carriers and suggests that most carriers would benefit from AGG interruption testing to refine their reproductive risk of having a child with FXS.
Collapse
|
19
|
Annear DJ, Vandeweyer G, Sanchis-Juan A, Raymond FL, Kooy RF. Non-Mendelian inheritance patterns and extreme deviation rates of CGG repeats in autism. Genome Res 2022; 32:1967-1980. [PMID: 36351771 PMCID: PMC9808627 DOI: 10.1101/gr.277011.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
As expansions of CGG short tandem repeats (STRs) are established as the genetic etiology of many neurodevelopmental disorders, we aimed to elucidate the inheritance patterns and role of CGG STRs in autism-spectrum disorder (ASD). By genotyping 6063 CGG STR loci in a large cohort of trios and quads with an ASD-affected proband, we determined an unprecedented rate of CGG repeat length deviation across a single generation. Although the concept of repeat length being linked to deviation rate was solidified, we show how shorter STRs display greater degrees of size variation. We observed that CGG STRs did not segregate by Mendelian principles but with a bias against longer repeats, which appeared to magnify as repeat length increased. Through logistic regression, we identified 19 genes that displayed significantly higher rates and degrees of CGG STR expansion within the ASD-affected probands (P < 1 × 10-5). This study not only highlights novel repeat expansions that may play a role in ASD but also reinforces the hypothesis that CGG STRs are specifically linked to human cognition.
Collapse
Affiliation(s)
- Dale J. Annear
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom;,Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, CB2 0PT, United Kingdom
| | - F. Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom;,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| |
Collapse
|
20
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
21
|
Arning L, Nguyen HP. Huntington disease update: new insights into the role of repeat instability in disease pathogenesis. MED GENET-BERLIN 2021; 33:293-300. [PMID: 38835439 PMCID: PMC11006308 DOI: 10.1515/medgen-2021-2101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 06/06/2024]
Abstract
The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (HTT) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease-modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely HTT transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified cis- (DNA repair genes) and trans- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.
Collapse
Affiliation(s)
- Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| |
Collapse
|
22
|
Frequency of FMR1 Premutation Alleles in Patients with Undiagnosed Cerebellar Ataxia and Multiple System Atrophy in the Japanese Population. CEREBELLUM (LONDON, ENGLAND) 2021; 21:954-962. [PMID: 34845661 DOI: 10.1007/s12311-021-01329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 10/19/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder caused by FMR1 premutation expansion of CGG repeats. FXTAS can be misdiagnosed with many neurodegenerative disorders manifesting with cerebellar ataxias owing to their overlapping clinical and radiological features. The frequency of the FMR1 premutation allele in Japan has not been fully determined. Herein, we aimed to determine the frequency of FMR1 premutation alleles in Japanese patients with undiagnosed cerebellar ataxia and multiple system atrophy, using repeat-primed PCR in 186 patients with adult onset of undiagnosed cerebellar ataxia and 668 patients with multiple system atrophy, to identify expanded CGG repeats as well as to detect AGG interruptions within the expanded alleles. The size of expansions was estimated using fragment length analysis of PCR products obtained by conventional PCR employing a pair of unique primers flanking the repeat sequence. We identified FMR1 premutation alleles in three male patients. One patient revealed 84 repeat units with one AGG interruption and another patient showed 103 repeat units. Both had presented with sporadic cerebellar ataxia, giving an estimated frequency of 3.7% among Japanese male patients with sporadic cerebellar ataxia with age at onset above 50 years. One patient with the clinical diagnosis of multiple system atrophy harbored 60 repeat units with four AGG interruptions. FMR1 intermediate alleles were observed in two males and one female among the multiple system atrophy patients. We found that genetic tests for FMR1 premutation should be considered in Japanese male patients with cerebellar ataxia with the age at onset above 50 years.
Collapse
|
23
|
Fukuda H, Yamaguchi D, Nyquist K, Yabuki Y, Miyatake S, Uchiyama Y, Hamanaka K, Saida K, Koshimizu E, Tsuchida N, Fujita A, Mitsuhashi S, Ohbo K, Satake Y, Sone J, Doi H, Morihara K, Okamoto T, Takahashi Y, Wenger AM, Shioda N, Tanaka F, Matsumoto N, Mizuguchi T. Father-to-offspring transmission of extremely long NOTCH2NLC repeat expansions with contractions: genetic and epigenetic profiling with long-read sequencing. Clin Epigenetics 2021; 13:204. [PMID: 34774111 PMCID: PMC8590777 DOI: 10.1186/s13148-021-01192-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background GGC repeat expansions in NOTCH2NLC are associated with neuronal intranuclear inclusion disease. Very recently, asymptomatic carriers with NOTCH2NLC repeat expansions were reported. In these asymptomatic individuals, the CpG island in NOTCH2NLC is hypermethylated, suggesting that two factors repeat length and DNA methylation status should be considered to evaluate pathogenicity. Long-read sequencing can be used to simultaneously profile genomic and epigenomic alterations. We analyzed four sporadic cases with NOTCH2NLC repeat expansion and their phenotypically normal parents. The native genomic DNA that retains base modification was sequenced on a per-trio basis using both PacBio and Oxford Nanopore long-read sequencing technologies. A custom workflow was developed to evaluate DNA modifications. With these two technologies combined, long-range DNA methylation information was integrated with complete repeat DNA sequences to investigate the genetic origins of expanded GGC repeats in these sporadic cases. Results In all four families, asymptomatic fathers had longer expansions (median: 522, 390, 528 and 650 repeats) compared with their affected offspring (median: 93, 117, 162 and 140 repeats, respectively). These expansions are much longer than the disease-causing range previously reported (in general, 41–300 repeats). Repeat lengths were extremely variable in the father, suggesting somatic mosaicism. Instability is more frequent in alleles with uninterrupted pure GGCs. Single molecule epigenetic analysis revealed complex DNA methylation patterns and epigenetic heterogeneity. We identified an aberrant gain-of-methylation region (2.2 kb in size beyond the CpG island and GGC repeats) in asymptomatic fathers. This methylated region was unmethylated in the normal allele with bilateral transitional zones with both methylated and unmethylated CpG dinucleotides, which may be protected from methylation to ensure NOTCH2NLC expression. Conclusions We clearly demonstrate that the four sporadic NOTCH2NLC-related cases are derived from the paternal GGC repeat contraction associated with demethylation. The entire genetic and epigenetic landscape of the NOTCH2NLC region was uncovered using the custom workflow of long-read sequence data, demonstrating the utility of this method for revealing epigenetic/mutational changes in repetitive elements, which are difficult to characterize by conventional short-read/bisulfite sequencing methods. Our approach should be useful for biomedical research, aiding the discovery of DNA methylation abnormalities through the entire genome. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01192-5.
Collapse
Affiliation(s)
- Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Genomic Function and Diversity, Medical Research Institute Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Satake
- Department of Neurology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Morihara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoko Okamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
24
|
Zhuang X, Cheng CHC. Propagation of a De Novo Gene under Natural Selection: Antifreeze Glycoprotein Genes and Their Evolutionary History in Codfishes. Genes (Basel) 2021; 12:genes12111777. [PMID: 34828383 PMCID: PMC8622921 DOI: 10.3390/genes12111777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
The de novo birth of functional genes from non-coding DNA as an important contributor to new gene formation is increasingly supported by evidence from diverse eukaryotic lineages. However, many uncertainties remain, including how the incipient de novo genes would continue to evolve and the molecular mechanisms underlying their evolutionary trajectory. Here we address these questions by investigating evolutionary history of the de novo antifreeze glycoprotein (AFGP) gene and gene family in gadid (codfish) lineages. We examined AFGP phenotype on a phylogenetic framework encompassing a broad sampling of gadids from freezing and non-freezing habitats. In three select species representing different AFGP-bearing clades, we analyzed all AFGP gene family members and the broader scale AFGP genomic regions in detail. Codon usage analyses suggest that motif duplication produced the intragenic AFGP tripeptide coding repeats, and rapid sequence divergence post-duplication stabilized the recombination-prone long repetitive coding region. Genomic loci analyses support AFGP originated once from a single ancestral genomic origin, and shed light on how the de novo gene proliferated into a gene family. Results also show the processes of gene duplication and gene loss are distinctive in separate clades, and both genotype and phenotype are commensurate with differential local selective pressures.
Collapse
Affiliation(s)
- Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: (X.Z.); (C.-H.C.C.)
| | - C.-H. Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
- Correspondence: (X.Z.); (C.-H.C.C.)
| |
Collapse
|
25
|
Beyond Trinucleotide Repeat Expansion in Fragile X Syndrome: Rare Coding and Noncoding Variants in FMR1 and Associated Phenotypes. Genes (Basel) 2021; 12:genes12111669. [PMID: 34828275 PMCID: PMC8623550 DOI: 10.3390/genes12111669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
FMR1 (FMRP translational regulator 1) variants other than repeat expansion are known to cause disease phenotypes but can be overlooked if they are not accounted for in genetic testing strategies. We collected and reanalyzed the evidence for pathogenicity of FMR1 coding, noncoding, and copy number variants published to date. There is a spectrum of disease-causing FMR1 variation, with clinical and functional evidence supporting pathogenicity of five splicing, five missense, one in-frame deletion, one nonsense, and four frameshift variants. In addition, FMR1 deletions occur in both mosaic full mutation patients and as constitutional pathogenic alleles. De novo deletions arise not only from full mutation alleles but also alleles with normal-sized CGG repeats in several patients, suggesting that the CGG repeat region may be prone to genomic instability even in the absence of repeat expansion. We conclude that clinical tests for potentially FMR1-related indications such as intellectual disability should include methods capable of detecting small coding, noncoding, and copy number variants.
Collapse
|
26
|
Grosso V, Marcolungo L, Maestri S, Alfano M, Lavezzari D, Iadarola B, Salviati A, Mariotti B, Botta A, D’Apice MR, Novelli G, Delledonne M, Rossato M. Characterization of FMR1 Repeat Expansion and Intragenic Variants by Indirect Sequence Capture. Front Genet 2021; 12:743230. [PMID: 34646309 PMCID: PMC8504923 DOI: 10.3389/fgene.2021.743230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Traditional methods for the analysis of repeat expansions, which underlie genetic disorders, such as fragile X syndrome (FXS), lack single-nucleotide resolution in repeat analysis and the ability to characterize causative variants outside the repeat array. These drawbacks can be overcome by long-read and short-read sequencing, respectively. However, the routine application of next-generation sequencing in the clinic requires target enrichment, and none of the available methods allows parallel analysis of long-DNA fragments using both sequencing technologies. In this study, we investigated the use of indirect sequence capture (Xdrop technology) coupled to Nanopore and Illumina sequencing to characterize FMR1, the gene responsible of FXS. We achieved the efficient enrichment (> 200×) of large target DNA fragments (~60-80 kbp) encompassing the entire FMR1 gene. The analysis of Xdrop-enriched samples by Nanopore long-read sequencing allowed the complete characterization of repeat lengths in samples with normal, pre-mutation, and full mutation status (> 1 kbp), and correctly identified repeat interruptions relevant for disease prognosis and transmission. Single-nucleotide variants (SNVs) and small insertions/deletions (indels) could be detected in the same samples by Illumina short-read sequencing, completing the mutational testing through the identification of pathogenic variants within the FMR1 gene, when no typical CGG repeat expansion is detected. The study successfully demonstrated the parallel analysis of repeat expansions and SNVs/indels in the FMR1 gene at single-nucleotide resolution by combining Xdrop enrichment with two next-generation sequencing approaches. With the appropriate optimization necessary for the clinical settings, the system could facilitate both the study of genotype-phenotype correlation in FXS and enable a more efficient diagnosis and genetic counseling for patients and their relatives.
Collapse
Affiliation(s)
- Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Marcolungo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Denise Lavezzari
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Barbara Iadarola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Salviati
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Barbara Mariotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
- IRCCS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| |
Collapse
|
27
|
Nobile V, Pucci C, Chiurazzi P, Neri G, Tabolacci E. DNA Methylation, Mechanisms of FMR1 Inactivation and Therapeutic Perspectives for Fragile X Syndrome. Biomolecules 2021; 11:biom11020296. [PMID: 33669384 PMCID: PMC7920310 DOI: 10.3390/biom11020296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
Among the inherited causes of intellectual disability and autism, Fragile X syndrome (FXS) is the most frequent form, for which there is currently no cure. In most FXS patients, the FMR1 gene is epigenetically inactivated following the expansion over 200 triplets of a CGG repeat (FM: full mutation). FMR1 encodes the Fragile X Mental Retardation Protein (FMRP), which binds several mRNAs, mainly in the brain. When the FM becomes methylated at 10-12 weeks of gestation, the FMR1 gene is transcriptionally silent. The molecular mechanisms involved in the epigenetic silencing are not fully elucidated. Among FXS families, there is a rare occurrence of males carrying a FM, which remains active because it is not methylated, thus ensuring enough FMRPs to allow for an intellectual development within normal range. Which mechanisms are responsible for sparing these individuals from being affected by FXS? In order to answer this critical question, which may have possible implications for FXS therapy, several potential epigenetic mechanisms have been described. Here, we focus on current knowledge about the role of DNA methylation and other epigenetic modifications in FMR1 gene silencing.
Collapse
Affiliation(s)
- Veronica Nobile
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
| | - Cecilia Pucci
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, 00168 Rome, Italy
| | - Giovanni Neri
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
- Greenwood Genetic Center, JC Self Research Institute, Greenwood, SC 29646, USA
| | - Elisabetta Tabolacci
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
- Correspondence: ; Tel.: +39-06-30154606
| |
Collapse
|
28
|
Monckton DG. The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington's Disease: A Historical Perspective. J Huntingtons Dis 2021; 10:7-33. [PMID: 33579863 PMCID: PMC7990401 DOI: 10.3233/jhd-200429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery in the early 1990s of the expansion of unstable simple sequence repeats as the causative mutation for a number of inherited human disorders, including Huntington's disease (HD), opened up a new era of human genetics and provided explanations for some old problems. In particular, an inverse association between the number of repeats inherited and age at onset, and unprecedented levels of germline instability, biased toward further expansion, provided an explanation for the wide symptomatic variability and anticipation observed in HD and many of these disorders. The repeats were also revealed to be somatically unstable in a process that is expansion-biased, age-dependent and tissue-specific, features that are now increasingly recognised as contributory to the age-dependence, progressive nature and tissue specificity of the symptoms of HD, and at least some related disorders. With much of the data deriving from affected individuals, and model systems, somatic expansions have been revealed to arise in a cell division-independent manner in critical target tissues via a mechanism involving key components of the DNA mismatch repair pathway. These insights have opened new approaches to thinking about how the disease could be treated by suppressing somatic expansion and revealed novel protein targets for intervention. Exciting times lie ahead in turning these insights into novel therapies for HD and related disorders.
Collapse
Affiliation(s)
- Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Goo N, Bae HJ, Park K, Kim J, Jeong Y, Cai M, Cho K, Jung SY, Kim DH, Ryu JH. The effect of fecal microbiota transplantation on autistic-like behaviors in Fmr1 KO mice. Life Sci 2020; 262:118497. [DOI: 10.1016/j.lfs.2020.118497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
|
30
|
Tomé S, Gourdon G. Fast Assays to Detect Interruptions in CTG.CAG Repeat Expansions. Methods Mol Biol 2020; 2056:11-23. [PMID: 31586339 DOI: 10.1007/978-1-4939-9784-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Different interrupted repeat expansions have been found in several trinucleotide repeat (TNR) diseases such as fragile X syndrome (FXS), spinocerebellar ataxias (SCAs), and myotonic dystrophies (DMs). Their origins and roles remain poorly understood, especially in myotonic dystrophy type 1 (DM1). We present here the triplet repeat primed polymerase chain reaction (TP-PCR) and restriction enzyme-digested PCR to detect and identify interrupted triplet repeat alleles in DM1. TP-PCR consists of a PCR amplification using a fluoresceinated (FAM) primer flanking the repeat region and a primer pair in CTG.CAG repeats. A detailed analysis of interrupted triplet repeat tracts is essential to fully understand the role of interruptions in the pathogenesis and molecular mechanisms observed in TNR diseases.
Collapse
Affiliation(s)
- Stéphanie Tomé
- Laboratory CTGDM, Inserm UMR1163, Paris, France. .,Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France. .,Centre de Recherche en Myologie, CRM, Association Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France.
| | - Geneviève Gourdon
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France.,Centre de Recherche en Myologie, CRM, Association Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| |
Collapse
|
31
|
Komaravalli PL, Rani S V, Dalal A, Jahan P. Association analysis of FMR1 genetic variants and primary ovarian insufficiency in South Indian women with a novel approach of CGG repeats classification. Eur J Med Genet 2020; 63:104081. [PMID: 33039683 DOI: 10.1016/j.ejmg.2020.104081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/27/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Around 20-28% of FMR1gene CGG premutation (PM) carriers are at augmented risk towards an infertility related disorder, Fragile X-associated primary ovarian insufficiency (FXPOI). Except the effect of CGG repeats, reports are not available on the mechanism through which the cis-acting variations, namely, SNPs involved in POI susceptibility. Addressing the hypothesis that the FMR1 gene polymorphisms [CGG repeats, rs25731(T > A) and rs4949(A > G)] might increase their individual and combined impact in disease predisposition, we tested the genetic variants in 200 south Indian DNA samples consists of 100 patients and 100 healthy volunteers. We used gene scan method to score the CGG repeat length, and ARMS and RFLP methods to genotype the SNPs. Only 0.5% of each Gray zone and PM alleles were found among patient group, however, no disease association was noticed with repeat length. The rs25731 showed protection [OR:0.32; (0.13-0.76), p = 0.006] and rs4949 reported a 2.5-fold risk towards the disease predisposition [OR:2.46; (1.06-5.74), p = 0.031] but, both found insignificant after Bonferroni correction was done under different Genetic Models. Novel classification of genotype combinations, 'Normal&Variant Homozygote' [OR:2.89,(1.12-7.9), p < 0.05] and 'Allele2-T-G' haplotype block (6%vs.1%, p = 0.08) were noticed to be at marginal risk for POI. We demonstrated a susceptible role of the combined effect of variant allele-G and Allele-2 (repeat allele outside the normal range) for FXPOI. To support our findings of its first kind, further studies with large samples are warranted in understanding the role of FMR1 genetic variants in FXPOI etio-pathophysiology, the outcome might help in providing better reproductive treatment options for females, who are at risk for FXPOI.
Collapse
Affiliation(s)
| | - Vasantha Rani S
- Human and Medical Genetics Laboratory, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana state, 500039, India
| | - Ashwin Dalal
- Human and Medical Genetics Laboratory, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana state, 500039, India
| | - Parveen Jahan
- School of Sciences, Moulana Azad National Urdu University, Hyderabad, Telangana state, 500032, India.
| |
Collapse
|
32
|
Budimirovic DB, Schlageter A, Filipovic-Sadic S, Protic DD, Bram E, Mahone EM, Nicholson K, Culp K, Javanmardi K, Kemppainen J, Hadd A, Sharp K, Adayev T, LaFauci G, Dobkin C, Zhou L, Brown WT, Berry-Kravis E, Kaufmann WE, Latham GJ. A Genotype-Phenotype Study of High-Resolution FMR1 Nucleic Acid and Protein Analyses in Fragile X Patients with Neurobehavioral Assessments. Brain Sci 2020; 10:E694. [PMID: 33008014 PMCID: PMC7601415 DOI: 10.3390/brainsci10100694] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene, which encodes a protein with a critical role in synaptic plasticity. The molecular abnormality underlying FMR1 silencing, CGG repeat expansion, is well characterized; however, delineation of the pathway from DNA to RNA to protein using biosamples from well characterized patients with FXS is limited. Since FXS is a common and prototypical genetic disorder associated with intellectual disability (ID) and autism spectrum disorder (ASD), a comprehensive assessment of the FMR1 DNA-RNA-protein pathway and its correlations with the neurobehavioral phenotype is a priority. We applied nine sensitive and quantitative assays evaluating FMR1 DNA, RNA, and FMRP parameters to a reference set of cell lines representing the range of FMR1 expansions. We then used the most informative of these assays on blood and buccal specimens from cohorts of patients with different FMR1 expansions, with emphasis on those with FXS (N = 42 total, N = 31 with FMRP measurements). The group with FMRP data was also evaluated comprehensively in terms of its neurobehavioral profile, which allowed molecular-neurobehavioral correlations. FMR1 CGG repeat expansions, methylation levels, and FMRP levels, in both cell lines and blood samples, were consistent with findings of previous FMR1 genomic and protein studies. They also demonstrated a high level of agreement between blood and buccal specimens. These assays further corroborated previous reports of the relatively high prevalence of methylation mosaicism (slightly over 50% of the samples). Molecular-neurobehavioral correlations confirmed the inverse relationship between overall severity of the FXS phenotype and decrease in FMRP levels (N = 26 males, mean 4.2 ± 3.3 pg FMRP/ng genomic DNA). Other intriguing findings included a significant relationship between the diagnosis of FXS with ASD and two-fold lower levels of FMRP (mean 2.8 ± 1.3 pg FMRP/ng genomic DNA, p = 0.04), in particular observed in younger age- and IQ-adjusted males (mean age 6.9 ± 0.9 years with mean 3.2 ± 1.2 pg FMRP/ng genomic DNA, 57% with severe ASD), compared to FXS without ASD. Those with severe ID had even lower FMRP levels independent of ASD status in the male-only subset. The results underscore the link between FMR1 expansion, gene methylation, and FMRP deficit. The association between FMRP deficiency and overall severity of the neurobehavioral phenotype invites follow up studies in larger patient cohorts. They would be valuable to confirm and potentially extend our initial findings of the relationship between ASD and other neurobehavioral features and the magnitude of FMRP deficit. Molecular profiling of individuals with FXS may have important implications in research and clinical practice.
Collapse
Affiliation(s)
- Dejan B. Budimirovic
- Departments of Psychiatry and Neurogenetics, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Annette Schlageter
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Stela Filipovic-Sadic
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Dragana D. Protic
- Departments of Psychiatry and Neurogenetics, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Eran Bram
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - E. Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
| | - Kimberly Nicholson
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kristen Culp
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kamyab Javanmardi
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Jon Kemppainen
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Andrew Hadd
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kevin Sharp
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
| | - Tatyana Adayev
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Giuseppe LaFauci
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Carl Dobkin
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
| | - William Ted Brown
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
- Departments of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Walter E. Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gary J. Latham
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| |
Collapse
|
33
|
Miller JN, van der Plas E, Hamilton M, Koscik TR, Gutmann L, Cumming SA, Monckton DG, Nopoulos PC. Variant repeats within the DMPK CTG expansion protect function in myotonic dystrophy type 1. NEUROLOGY-GENETICS 2020; 6:e504. [PMID: 32851192 PMCID: PMC7428360 DOI: 10.1212/nxg.0000000000000504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
Abstract
Objective We tested the hypothesis that variant repeat interruptions (RIs) within the DMPK CTG repeat tract lead to milder symptoms compared with pure repeats (PRs) in myotonic dystrophy type 1 (DM1). Methods We evaluated motor, neurocognitive, and behavioral outcomes in a group of 6 participants with DM1 with RI compared with a case-matched sample of 12 participants with DM1 with PR and a case-matched sample of 12 unaffected healthy comparison participants (UA). Results In every measure, the RI participants were intermediate between UA and PR participants. For muscle strength, the RI group was significantly less impaired than the PR group. For measures of Full Scale IQ, depression, and sleepiness, all 3 groups were significantly different from each other with UA > RI > PR in order of impairment. The RI group was different from unaffected, but not significantly different from PR (UA > RI = PR) in apathy and working memory. Finally, in finger tapping and processing speed, RI did not differ from UA comparisons, but PR had significantly lower scores than the UA comparisons (UA = RI > PR). Conclusions Our results support the notion that patients affected by DM1 with RI demonstrate a milder phenotype with the same pattern of deficits as those with PR indicating a similar disease process.
Collapse
Affiliation(s)
- Jacob N Miller
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Ellen van der Plas
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Mark Hamilton
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Timothy R Koscik
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Laurie Gutmann
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Sarah A Cumming
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Darren G Monckton
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Peggy C Nopoulos
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| |
Collapse
|
34
|
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, Tuft SJ, Davidson AE. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res 2020; 81:100883. [PMID: 32735996 PMCID: PMC7988464 DOI: 10.1016/j.preteyeres.2020.100883] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a common cause for heritable visual loss in the elderly. Since the first description of an association between FECD and common polymorphisms situated within the transcription factor 4 (TCF4) gene, genetic and molecular studies have implicated an intronic CTG trinucleotide repeat (CTG18.1) expansion as a causal variant in the majority of FECD patients. To date, several non-mutually exclusive mechanisms have been proposed that drive and/or exacerbate the onset of disease. These mechanisms include (i) TCF4 dysregulation; (ii) toxic gain-of-function from TCF4 repeat-containing RNA; (iii) toxic gain-of-function from repeat-associated non-AUG dependent (RAN) translation; and (iv) somatic instability of CTG18.1. However, the relative contribution of these proposed mechanisms in disease pathogenesis is currently unknown. In this review, we summarise research implicating the repeat expansion in disease pathogenesis, define the phenotype-genotype correlations between FECD and CTG18.1 expansion, and provide an update on research tools that are available to study FECD as a trinucleotide repeat expansion disease. Furthermore, ongoing international research efforts to develop novel CTG18.1 expansion-mediated FECD therapeutics are highlighted and we provide a forward-thinking perspective on key unanswered questions that remain in the field. FECD is a common, age-related corneal dystrophy. The majority of cases are associated with expansion of a CTG repeat (CTG18.1). FECD is the most common trinucleotide repeat expansion disease in humans. Evidence supports multiple molecular mechanisms underlying the pathophysiology. Novel CTG18.1-targeted therapeutics are in development.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA.
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Amanda N Sadan
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| | | | - Stephen J Tuft
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK; Moorfields Eye Hospital, London, EC1V 2PD, UK.
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| |
Collapse
|
35
|
Villate O, Ibarluzea N, Maortua H, de la Hoz AB, Rodriguez-Revenga L, Izquierdo-Álvarez S, Tejada MI. Effect of AGG Interruptions on FMR1 Maternal Transmissions. Front Mol Biosci 2020; 7:135. [PMID: 32766278 PMCID: PMC7381193 DOI: 10.3389/fmolb.2020.00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022] Open
Abstract
There are four classes of CGG repeat alleles in the FMR1 gene: normal alleles have up to 44 repeats; patients with Fragile X Syndrome have more than 200 repeats; those between 55 and 200 CGGs are considered FMR1 premutation alleles, because they are associated with maternal expansions of the number of CGGs in the next generation and finally, alleles between 45 and 54 CGGs are called intermediate or gray zone alleles. In these last categories, the stability depends on the presence of AGG interruptions, which usually occurs between 9 and 10 CGGs. In this context, we have studied retrospectively 66 women with CGG repeats between 45 and 65, and their offspring. In total 87 transmissions were analyzed with triplet repeat primed PCR using AmplideX® FMR1 PCR (Asuragen, Austin, TX, USA) and we found that alleles with CGG repeats between 45 and 58 do not expand in the next generation except two cases with 56 repeats and 0 AGG interruptions. Furthermore, we have found four females with alleles with more than 59 CGG repeats and 2 AGG interruptions that do not expand either. Alleles from 56 CGG repeats without AGGs expand in all cases. In light of these results and those of the literature, we consider that the risk of unstable transmissions should be based on the presence or absence of AGG interruptions and not on the classical cutoffs which define each category of FMR1 alleles. The application of these results in the genetic and reproductive counseling is essential and AGG interruptions should always be studied.
Collapse
Affiliation(s)
- Olatz Villate
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nekane Ibarluzea
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Hiart Maortua
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ana Belén de la Hoz
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Laia Rodriguez-Revenga
- Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer IDIBAPS, Barcelona, Spain
| | - Silvia Izquierdo-Álvarez
- Genetics Department of Clinical Biochemistry, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - María Isabel Tejada
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
36
|
Xu P, Pan F, Roland C, Sagui C, Weninger K. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts. Nucleic Acids Res 2020; 48:2232-2245. [PMID: 31974547 PMCID: PMC7049705 DOI: 10.1093/nar/gkaa036] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/11/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
DNA trinucleotide repeats (TRs) can exhibit dynamic expansions by integer numbers of trinucleotides that lead to neurodegenerative disorders. Strand slipped hairpins during DNA replication, repair and/or recombination may contribute to TR expansion. Here, we combine single-molecule FRET experiments and molecular dynamics studies to elucidate slipping dynamics and conformations of (CAG)n TR hairpins. We directly resolve slipping by predominantly two CAG units. The slipping kinetics depends on the even/odd repeat parity. The populated states suggest greater stability for 5′-AGCA-3′ tetraloops, compared with alternative 5′-CAG-3′ triloops. To accommodate the tetraloop, even(odd)-numbered repeats have an even(odd) number of hanging bases in the hairpin stem. In particular, a paired-end tetraloop (no hanging TR) is stable in (CAG)n = even, but such situation cannot occur in (CAG)n = odd, where the hairpin is “frustrated’’ and slips back and forth between states with one TR hanging at the 5′ or 3′ end. Trinucleotide interrupts in the repeating CAG pattern associated with altered disease phenotypes select for specific conformers with favorable loop sequences. Molecular dynamics provide atomic-level insight into the loop configurations. Reducing strand slipping in TR hairpins by sequence interruptions at the loop suggests disease-associated variations impact expansion mechanisms at the level of slipped hairpins.
Collapse
Affiliation(s)
- Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
37
|
Ranathunge C, Wheeler GL, Chimahusky ME, Perkins AD, Pramod S, Welch ME. Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations. Mol Ecol 2020; 29:1704-1716. [PMID: 32285554 DOI: 10.1111/mec.15440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA-Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%-86% when controlling for population and allele-by-population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis- and trans-regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.
Collapse
Affiliation(s)
- Chathurani Ranathunge
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Gregory L Wheeler
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Melody E Chimahusky
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Andy D Perkins
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS, USA
| | - Sreepriya Pramod
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
38
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
39
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
40
|
Sulovari A, Li R, Audano PA, Porubsky D, Vollger MR, Logsdon GA, Warren WC, Pollen AA, Chaisson MJP, Eichler EE. Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc Natl Acad Sci U S A 2019; 116:23243-23253. [PMID: 31659027 PMCID: PMC6859368 DOI: 10.1073/pnas.1912175116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Short tandem repeats (STRs) and variable number tandem repeats (VNTRs) are important sources of natural and disease-causing variation, yet they have been problematic to resolve in reference genomes and genotype with short-read technology. We created a framework to model the evolution and instability of STRs and VNTRs in apes. We phased and assembled 3 ape genomes (chimpanzee, gorilla, and orangutan) using long-read and 10x Genomics linked-read sequence data for 21,442 human tandem repeats discovered in 6 haplotype-resolved assemblies of Yoruban, Chinese, and Puerto Rican origin. We define a set of 1,584 STRs/VNTRs expanded specifically in humans, including large tandem repeats affecting coding and noncoding portions of genes (e.g., MUC3A, CACNA1C). We show that short interspersed nuclear element-VNTR-Alu (SVA) retrotransposition is the main mechanism for distributing GC-rich human-specific tandem repeat expansions throughout the genome but with a bias against genes. In contrast, we observe that VNTRs not originating from retrotransposons have a propensity to cluster near genes, especially in the subtelomere. Using tissue-specific expression from human and chimpanzee brains, we identify genes where transcript isoform usage differs significantly, likely caused by cryptic splicing variation within VNTRs. Using single-cell expression from cerebral organoids, we observe a strong effect for genes associated with transcription profiles analogous to intermediate progenitor cells. Finally, we compare the sequence composition of some of the largest human-specific repeat expansions and identify 52 STRs/VNTRs with at least 40 uninterrupted pure tracts as candidates for genetically unstable regions associated with disease.
Collapse
Affiliation(s)
- Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Ruiyang Li
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Peter A Audano
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Wesley C Warren
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201
| | - Alex A Pollen
- Department of Neurology, University of California, San Francisco, CA 94143
| | - Mark J P Chaisson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195;
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| |
Collapse
|
41
|
Manor E, Gonen R, Sarussi B, Keidar-Friedman D, Kumar J, Tang HT, Tassone F. The role of AGG interruptions in the FMR1 gene stability: A survey in ethnic groups with low and high rate of consanguinity. Mol Genet Genomic Med 2019; 7:e00946. [PMID: 31453660 PMCID: PMC6785435 DOI: 10.1002/mgg3.946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 11/07/2022] Open
Abstract
Background The prevalence and the role of AGG interruptions within the FMR1 gene in the normal population is unknown. In this study, we investigated the frequent of AGG loss, in one or two alleles within the normal population. The role of AGG in the FMR1 stability has been assessed by correlating AGG loss to the prevalence of premutation/full mutation in two ethnic groups differing in their consanguinity rate: high versus low consanguinity rate (HCR vs. LCR). Methods The CGG repeat allele size and AGG presence were measured in 6,865 and 6,204 females belonging to the LCR (5%) and HCR (>45%) groups, respectively, by Tripled‐Primed‐PCR technique. Results A lower prevalence of the premutation was observed in the HCR (1:158) as compared to the LCR group (1:128). No full mutation was found in the HCR females while in the LCR group the prevalence found was 1:1,149. Homozygosity rate was higher in the HCR population compared to the LCR group.The overall AGG loss was higher in the HCR population than in the LCR and increased with increased CGG repeat number in both ethnic groups. Conclusions Although we observed a significantly higher rate of homozygosity and AGG loss in the HCR group, this did not affect the prevalence of the premutation and full mutation in this population. Their prevalence was significantly lower than in the LCR population. Finally, we discuss whether the loss of AGG could be also a polymorphic event but not only a stabilizing factor.
Collapse
Affiliation(s)
- Esther Manor
- Faculty of Health Science, Ben-Gurion University of the Negev Genetic Institute, Soroka University Medical Center, Beer Sheva, Israel
| | | | | | | | - Jay Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA.,MIND Institute, Medical Center, University of California Davis, Sacramento, USA
| |
Collapse
|
42
|
Movaghar A, Page D, Brilliant M, Baker MW, Greenberg J, Hong J, DaWalt LS, Saha K, Kuusisto F, Stewart R, Berry-Kravis E, Mailick MR. Data-driven phenotype discovery of FMR1 premutation carriers in a population-based sample. SCIENCE ADVANCES 2019; 5:eaaw7195. [PMID: 31457090 PMCID: PMC6703870 DOI: 10.1126/sciadv.aaw7195] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/15/2019] [Indexed: 05/18/2023]
Abstract
The impact of the FMR1 premutation on human health is the subject of considerable controversy. A fundamental unanswered question is whether carrying the premutation allele is directly correlated with clinical phenotypes. A challenging problem in past genotype-phenotype studies of the FMR1 premutation is ascertainment bias, which could lead to invalid research conclusions and negatively affect clinical practice. Here, we created the first population-based FMR1-informed biobank to find the pattern of health characteristics in premutation carriers. Our extensive phenotyping shows that premutation carriers experience a clinical profile that is significantly different from controls and is evident throughout adulthood. Comprehensive understanding of the clinical risk associated with this genetic variant is critical for premutation carriers, their families, and clinicians and has important implications for public health.
Collapse
Affiliation(s)
- Arezoo Movaghar
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | - David Page
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA
| | | | | | - Jan Greenberg
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | | | - Krishanu Saha
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | | | - Ron Stewart
- Morgridge Institute for Research, Madison, WI, USA
| | | | - Marsha R. Mailick
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- Corresponding author.
| |
Collapse
|
43
|
Nolin SL, Glicksman A, Tortora N, Allen E, Macpherson J, Mila M, Vianna‐Morgante AM, Sherman SL, Dobkin C, Latham GJ, Hadd AG. Expansions and contractions of the FMR1 CGG repeat in 5,508 transmissions of normal, intermediate, and premutation alleles. Am J Med Genet A 2019; 179:1148-1156. [PMID: 31050164 PMCID: PMC6619443 DOI: 10.1002/ajmg.a.61165] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Instability of the FMR1 repeat, commonly observed in transmissions of premutation alleles (55-200 repeats), is influenced by the size of the repeat, its internal structure and the sex of the transmitting parent. We assessed these three factors in unstable transmissions of 14/3,335 normal (~5 to 44 repeats), 54/293 intermediate (45-54 repeats), and 1561/1,880 premutation alleles. While most unstable transmissions led to expansions, contractions to smaller repeats were observed in all size classes. For normal alleles, instability was more frequent in paternal transmissions and in alleles with long 3' uninterrupted repeat lengths. For premutation alleles, contractions also occurred more often in paternal than maternal transmissions and the frequency of paternal contractions increased linearly with repeat size. All paternal premutation allele contractions were transmitted as premutation alleles, but maternal premutation allele contractions were transmitted as premutation, intermediate, or normal alleles. The eight losses of AGG interruptions in the FMR1 repeat occurred exclusively in contractions of maternal premutation alleles. We propose a refined model of FMR1 repeat progression from normal to premutation size and suggest that most normal alleles without AGG interruptions are derived from contractions of maternal premutation alleles.
Collapse
Affiliation(s)
- Sarah L. Nolin
- Department of Human GeneticsNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew York
| | - Anne Glicksman
- Department of Human GeneticsNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew York
| | - Nicole Tortora
- Department of Human GeneticsNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew York
| | - Emily Allen
- Department of Human GeneticsEmory University School of MedicineAtlantaGeorgia
| | - James Macpherson
- Wessex Regional Genetics LaboratorySalisbury NHS District HospitalSalisburyUnited Kingdom
| | - Montserrat Mila
- Biochemical and Molecular GeneticsHospital Clinic de Barcelona, IDIBAPS and CIBERERBarcelonaSpain
| | - Angela M. Vianna‐Morgante
- Department of Genetics and Evolutionary Biology, Institute of BiosciencesUniversidade de São PauloSão PauloBrazil
| | | | - Carl Dobkin
- Department of Human GeneticsNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew York
| | | | | |
Collapse
|
44
|
Crowley JJ, Szatkiewicz J, Kähler AK, Giusti-Rodriguez P, Ancalade N, Booker JK, Carr MT JL, Crawford GE, Losh M, Stockmeier CA, Taylor AK, Piven J, Sullivan PF. Common-variant associations with fragile X syndrome. Mol Psychiatry 2019; 24:338-344. [PMID: 30531935 PMCID: PMC6457435 DOI: 10.1038/s41380-018-0290-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Fragile X syndrome is rare but a prominent cause of intellectual disability. It is usually caused by a de novo mutation that occurs on multiple haplotypes and thus would not be expected to be detectible using genome-wide association (GWA). We conducted GWA in 89 male FXS cases and 266 male controls, and detected multiple genome-wide significant signals near FMR1 (odds ratio = 8.10, P = 2.5 × 10-10). These findings withstood robust attempts at falsification. Fine-mapping yielded a minimum P = 1.13 × 10-14, but did not narrow the interval. Comprehensive functional genomic integration did not provide a mechanistic hypothesis. Controls carrying a risk haplotype had significantly longer FMR1 CGG repeats than controls with the protective haplotype (P = 4.75 × 10-5), which may predispose toward increases in CGG number to the premutation range over many generations. This is a salutary reminder of the complexity of even "simple" monogenetic disorders.
Collapse
Affiliation(s)
- James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - NaEshia Ancalade
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Jessica K Booker
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Jennifer L Carr MT
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC, USA
| | | | - Molly Losh
- Department of Communication Sciences, Northwestern University, Evanston, IL, USA
| | | | | | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. .,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Single-Molecule Sequencing: Towards Clinical Applications. Trends Biotechnol 2019; 37:72-85. [DOI: 10.1016/j.tibtech.2018.07.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
|
46
|
Domniz N, Ries-Levavi L, Cohen Y, Marom-Haham L, Berkenstadt M, Pras E, Glicksman A, Tortora N, Latham GJ, Hadd AG, Nolin SL, Elizur SE. Absence of AGG Interruptions Is a Risk Factor for Full Mutation Expansion Among Israeli FMR1 Premutation Carriers. Front Genet 2018; 9:606. [PMID: 30619448 PMCID: PMC6300753 DOI: 10.3389/fgene.2018.00606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fragile X syndrome (FXS) is a common form of X-linked intellectual and developmental disability with a prevalence of 1/4000-5000 in males and 1/6000-8000 in females. Most cases of the syndrome result from expansion of a premutation (55-200 CGGs) to a full mutation (>200 CGGs) repeat located in the 5' untranslated region of the fragile X mental retardation (FMR1) gene. The risk for full mutation expansions increases dramatically with increasing numbers of CGG repeats. Recent studies, however, revealed AGG interruptions within the repeat area function as a "protective factor" decreasing the risk of intergenerational expansion. Materials and Methods: This study was conducted to validate the relevance of AGG analysis for the ethnically diverse Israeli population. To increase the accuracy of our results, we combined results from Israel with those from the New York State Institute for Basic Research in Developmental Disabilities (IBR). To the best of our knowledge this is the largest cohort of different ethnicities to examine risks of unstable transmissions and full mutation expansions among FMR1 premutation carriers. Results: The combined data included 1471 transmissions of maternal premutation alleles: 369 (25.1%) stable and 1,102 (74.9%) unstable transmissions. Full mutation expansions were identified in 20.6% (303/1471) of transmissions. A total of 97.4% (388/397) of transmissions from alleles with no AGGs were unstable, 79.6% (513/644) in alleles with 1 AGG and 46.7% (201/430) in alleles with 2 or more AGGs. The same trend was seen with full mutation expansions where 40% (159/397) of alleles with no AGGs expanded to a full mutation, 20.2% (130/644) for alleles with 1 AGG and only 3.2% (14/430) in alleles with 2 AGGs or more. None of the alleles with 3 or more AGGs expanded to full mutations. Conclusion: We recommend that risk estimates for FMR1 premutation carriers be based on AGG interruptions as well as repeat size in Israel and worldwide.
Collapse
Affiliation(s)
- Noam Domniz
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Ries-Levavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Danek Genetic Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Yoram Cohen
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Marom-Haham
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Berkenstadt
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Danek Genetic Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Elon Pras
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Danek Genetic Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Anne Glicksman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Nicole Tortora
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | | | | | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Shai E Elizur
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Pastore LM, Christianson MS, McGuinness B, Vaught KC, Maher JY, Kearns WG. Does theFMR1 gene affect IVF success? Reprod Biomed Online 2018; 38:560-569. [PMID: 30711457 DOI: 10.1016/j.rbmo.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/13/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
FMR1 CGG trinucleotide repeat expansions are associated with Fragile X syndrome (full mutations) and primary ovarian insufficiency (premutation range); the effect of FMR1 on the success of fertility treatment is unclear. The effect of FMR1 CGG repeat lengths on IVF outcomes after ovarian stimulation was reviewed. PubMed was searched for studies on IVF-related outcomes reported by FMR1 trinucleotide repeat length published between 2002 and December 2017. For women with CGG repeats in the normal (<45 CGG), intermediate range (45-54 CGG), or both, research supports a minimal effect on IVF outcomes, including pregnancy rates; although one study reported lower oocyte yields after IVF stimulation in women with lower CGG repeat lengths and normal ovarian reserve. Meta-analysis revealed no association within subcategories of normal repeat length (<45 CGG) and IVF pregnancy rates (summary OR 1.0, 95% CI 0.87 to 1.15). Premutation carriers (CGG 55-200) may have reduced success with IVF treatment (lower oocyte yield) than women with a normal CGG repeat length or a full mutation, although findings are inconsistent. Direct implications of the repeat length on inheritance and the risk of Fragile X syndrome have been observed. Patients may require clinical and psychological counselling, and further preimplantation genetic testing options should be considered. Thus, there are clinical and psychological counseling implications for patients and potential further patient decisions regarding preimplantation genetic testing options.
Collapse
Affiliation(s)
- Lisa M Pastore
- OB/GYN and Reproductive Medicine Department, Stony Brook Medicine, Stony Brook, New York USA
| | - Mindy S Christianson
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | | | - Kamaria Cayton Vaught
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Jacqueline Y Maher
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | | |
Collapse
|
48
|
Fink DA, Nelson LM, Pyeritz R, Johnson J, Sherman SL, Cohen Y, Elizur SE. Fragile X Associated Primary Ovarian Insufficiency (FXPOI): Case Report and Literature Review. Front Genet 2018; 9:529. [PMID: 30542367 PMCID: PMC6278244 DOI: 10.3389/fgene.2018.00529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
Abnormalities in the X-linked FMR1 gene are associated with a constellation of disorders, which have broad and profound implications for the person first diagnosed, and extended family members of all ages. The rare and pleiotropic nature of the associated disorders, both common and not, place great burdens on (1) the affected families, (2) their care providers and clinicians, and (3) investigators striving to conduct research on the conditions. Fragile X syndrome, occurring more severely in males, is the leading genetic cause of intellectual disability. Fragile X associated tremor and ataxia syndrome (FXTAS) is a neurodegenerative disorder seen more often in older men. Fragile X associated primary ovarian insufficiency (FXPOI) is a chronic disorder characterized by oligo/amenorrhea and hypergonadotropic hypogonadism before age 40 years. There may be significant morbidity due to: (1) depression and anxiety related to the loss of reproductive hormones and infertility; (2) reduced bone mineral density; and (3) increased risk of cardiovascular disease related to estrogen deficiency. Here we report the case of a young woman who never established regular menses and yet experienced a 5-year diagnostic odyssey before establishing a diagnosis of FXPOI despite a known family history of fragile X syndrome and early menopause. Also, despite having clearly documented FXPOI the woman conceived spontaneously and delivered two healthy children. We review the pathophysiology and management of FXPOI. As a rare disease, the diagnosis of FXPOI presents special challenges. Connecting patients and community health providers with investigators who have the requisite knowledge and expertise about the FMR1 gene and FXPOI would facilitate both patient care and research. There is a need for an international natural history study on FXPOI. The effort should be coordinated by a global virtual center, which takes full advantage of mobile device communication systems.
Collapse
Affiliation(s)
- Dorothy A Fink
- Hospital for Special Surgery, New York, NY, United States
| | | | - Reed Pyeritz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Josh Johnson
- University of Colorado, Denver, CO, United States
| | | | - Yoram Cohen
- Sheba Medical Center, Tel Hashomer and Tel Aviv University, Tel Aviv, Israel
| | - Shai E Elizur
- Sheba Medical Center, Tel Hashomer and Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Qiu S, Wu Y, Lv X, Li X, Zhuo M, Koga K. Reduced synaptic function of Kainate receptors in the insular cortex of Fmr1 Knock-out mice. Mol Brain 2018; 11:54. [PMID: 30241548 PMCID: PMC6151036 DOI: 10.1186/s13041-018-0396-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/11/2018] [Indexed: 01/26/2023] Open
Abstract
Fragile X syndrome is caused by the loss of fragile X mental retardation protein (FMRP). Kainate receptor (KAR) is a subfamily of ionotropic glutamate receptors (iGluR) that acts mainly as a neuromodulator of synaptic transmission and neuronal excitability. However, little is known about the changes of synaptic KAR in the cortical area of Fmr1 KO mice. In this study, we performed whole-cell patch-clamp recordings from layer II/III pyramidal neurons in the insular cortex of Fmr1 KO mice. We found that KARs mediated currents were reduced in Fmr1 KO mice. KARs were mainly located in the synaptosomal fraction of the insular cortex. The abundance of KAR subunit GluK1 and GluK2/3 in the synaptosome was reduced in Fmr1 KO mice, whereas the total expressions of these KARs subunits were not changed. Finally, lack of FMRP impairs subsequent internalization of surface GluK2 after KAR activation, while having no effect on the surface GluK2 expression. Our studies provide evidence indicating that loss of FMRP leads to the abnormal function and localization of KARs. This finding implies a new molecular mechanism for Fragile X syndrome.
Collapse
Affiliation(s)
- Shuang Qiu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Yu Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Xinyou Lv
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Xia Li
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
50
|
Allen EG, Glicksman A, Tortora N, Charen K, He W, Amin A, Hipp H, Shubeck L, Nolin SL, Sherman SL. FXPOI: Pattern of AGG Interruptions Does not Show an Association With Age at Amenorrhea Among Women With a Premutation. Front Genet 2018; 9:292. [PMID: 30123240 PMCID: PMC6086008 DOI: 10.3389/fgene.2018.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) occurs in about 20% of women who carry a premutation allele (55–200 CGG repeats). These women develop hypergonadotropic hypogonadism and have secondary amenorrhea before age 40. A non-linear association with repeat size and risk for FXPOI has been seen in multiple studies women with a premutation: those with a mid-range of repeats are at highest risk (∼70–100 CGG repeats). Importantly, not all carriers with 70–100 repeats experience FXPOI. We investigated whether AGG interruptions, adjusted for repeat size, impacted age at secondary amenorrhea. We have reproductive history information and AGG interruption data on 262 premutation women: 164 had an established age at amenorrhea (AAA) (for some, age at onset of FXPOI) or menopause, 16 had a surgery involving the reproductive system such as a hysterectomy, and 82 women were still cycling at the last interview. Reproductive status was determined using self-report reproductive questionnaires and interviews with a reproductive endocrinologist. For each of these 262 women, FMR1 repeat size and number of AGG interruptions were determined. We confirmed the association of repeat size with AAA or menopause among women with a premutation. As expected, both premutation repeat size and the quadratic form of repeat size (i.e., squared term) were significant in a survival analysis model predicting AAA (p < 0.0001 for both variables). When number of AGG interruptions was added to the model, this variable was not significant (p = 0.59). Finally, we used a regression model based on the 164 women with established AAA to estimate the proportion of variance in AAA explained by repeat size and its squared term. Both terms were again highly significant (p < 0.0001 for both), but together only explained 13% of the variation in AAA. The non-linear association between AAA and FMR1 repeat size has been described in several studies. We have determined that AGG interruption pattern does not contribute to this association. Because only 13% of the variation is described using repeat size, it is clear that further research of FXPOI is needed to identify other factors that affect the risk for FXPOI.
Collapse
Affiliation(s)
- Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Anne Glicksman
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Nicole Tortora
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ashima Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Heather Hipp
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|