1
|
De Jesús-Rojas W, Reyes-Peña L, Muñiz-Hernandez J, Mena-Ventura R, Camareno-Soto G, Rosario-Ortiz G, Ramos-Benitez MJ, Egozcue-Dionisi M, Rivera-Jimenez E, Román-Carlo R. Application of Forced Oscillation Technique in Assessing Pulmonary Fibrosis in Hermansky-Pudlak Syndrome. Adv Respir Med 2024; 92:444-451. [PMID: 39584851 PMCID: PMC11587036 DOI: 10.3390/arm92060040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by defects in lysosome-related organelles. Given the high mortality rate associated with HPS pulmonary fibrosis (PF) and the significant risks tied to lung transplantation, it is essential to explore new tools for the early surveillance of PF to monitor its progression before clinical symptoms become apparent. This study evaluates the forced oscillation technique (FOT) for assessing PF in five adult patients with HPS, all homozygous for the HPS-1 (c.1472_1487dup p.His497Glnfs*90) founder mutation. Using the Resmon™ Pro V3 device, the FOT measured resistance (Rrs) and reactance (Xrs) at 5, 11, and 19 Hertz (Hz). High-resolution computed tomography (HRCT) scans of the chest were reviewed for radiographic findings. The cohort (n = 5) had a median age of 43 years. All patients exhibited HPS clinical features, including oculocutaneous albinism and respiratory symptoms such as dry cough and dyspnea. Radiographic analysis revealed PF in four patients (80%), with traction bronchiectasis, reticular patterns, honeycombing, and ground-glass opacities. The FOT detected progressive changes in pulmonary resistance and reactance correlating with fibrosis severity. These findings suggest that the FOT is a valuable non-invasive tool for monitoring PF in patients with HPS-1, potentially improving early diagnosis and management.
Collapse
Affiliation(s)
- Wilfredo De Jesús-Rojas
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (G.R.-O.); (M.J.R.-B.); (M.E.-D.); (R.R.-C.)
| | - Luis Reyes-Peña
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (L.R.-P.); (J.M.-H.)
| | - José Muñiz-Hernandez
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (L.R.-P.); (J.M.-H.)
| | - Rolando Mena-Ventura
- Department of Medicine, Universidad Central del Caribe, Bayamón, PR 00960, USA; (R.M.-V.); (G.C.-S.)
| | - Gabriel Camareno-Soto
- Department of Medicine, Universidad Central del Caribe, Bayamón, PR 00960, USA; (R.M.-V.); (G.C.-S.)
| | - Gabriel Rosario-Ortiz
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (G.R.-O.); (M.J.R.-B.); (M.E.-D.); (R.R.-C.)
| | - Marcos J. Ramos-Benitez
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (G.R.-O.); (M.J.R.-B.); (M.E.-D.); (R.R.-C.)
| | - Monica Egozcue-Dionisi
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (G.R.-O.); (M.J.R.-B.); (M.E.-D.); (R.R.-C.)
| | - Enid Rivera-Jimenez
- Department of Pediatrics, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| | - Rosa Román-Carlo
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (G.R.-O.); (M.J.R.-B.); (M.E.-D.); (R.R.-C.)
| |
Collapse
|
2
|
Goff PS, Patel S, Carter T, Marks MS, Sviderskaya EV. Enhanced MC1R-signalling and pH modulation facilitate melanogenesis within late endosomes of BLOC-1-deficient melanocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602505. [PMID: 39026869 PMCID: PMC11257453 DOI: 10.1101/2024.07.08.602505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Photoprotective melanins in the skin are synthesised by epidermal melanocytes within specialised lysosome-related organelles called melanosomes. Melanosomes coexist with lysosomes; thus, melanocytes employ specific trafficking machineries to ensure correct cargo delivery to either the endolysosomal system or maturing melanosomes. Mutations in some of the protein complexes required for melanogenic cargo delivery, such as biogenesis of lysosome-related organelles complex 1 (BLOC-1), result in hypopigmentation due to mistrafficking of cargo to endolysosomes. We show that hypopigmented BLOC-1-deficient melanocytes retain melanogenic capacity that can be enhanced by treatment with cAMP elevating agents despite the mislocalisation of melanogenic proteins. The melanin formed in BLOC-1-deficient melanocytes is not generated in melanosomes but rather within late endosomes/lysosomes to which some cargoes mislocalise. Although these organelles generally are acidic, a cohort of late endosomes/lysosomes have a sufficiently neutral pH to facilitate melanogenesis, perhaps due to mislocalised melanosomal transporters and melanogenic enzymes. Modulation of the pH of late endosomes/lysosomes by genetic manipulation or via treatment with lysosomotropic agents significantly enhances the melanin content of BLOC-1-deficient melanocytes. Our data suggest that upregulation of mistargeted cargoes can facilitate reprogramming of a subset of endolysosomes to generate some functions of lysosome-related organelles.
Collapse
|
3
|
Fournier H, Calcagni N, Morice-Picard F, Quintard B. Psychosocial implications of rare genetic skin diseases affecting appearance on daily life experiences, emotional state, self-perception and quality of life in adults: a systematic review. Orphanet J Rare Dis 2023; 18:39. [PMID: 36823650 PMCID: PMC9951542 DOI: 10.1186/s13023-023-02629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Since the beginning of human genetic research, there are very few publications sharing insights of the negative impact of rare genetic skin diseases (RGSD) on patients' experiences. This systematic review assessed the psychosocial implications of these conditions in terms of daily life experiences, emotional state, self-perception, and Quality of Life (QoL). METHODOLOGY A systematic review was carried out on albinism, neurofibromatosis type 1 (NF1), birthmarks and inherited ichthyosis. The PubMed, Scopus, PsycArticle, PsychInfo, Psychology and Behavioral Sciences Collection, and SOCindex databases were queried. Inclusion criteria were adult patients with one of these RGSDs. Simple descriptive statistics and qualitative content analysis were conducted to summarize the main results reported by the authors. RESULTS Of the 9987 articles retrieved, 48 articles were included: albinism (16), NF1 (16), inherited ichthyosis (10), birthmarks (6). The majority of the studies on albinism were conducted in Africa. Twenty-seven studies quantitatively assessed diverse psychological parameters: 13 showed a significant impact of the disease on QoL, five on emotional state, two on self-representation and two others on psychiatric comorbidities. Disease severity and visibility were good predictors of QoL (except for albinism). Body image and appearance concerns were also associated with QoL and emotional state. The 19 qualitative studies highlighted recurring themes across each of these diseases: discrimination and stigma during childhood and adolescence, discomfort in social interactions, guilt of transmission, the importance of social support from family and friends, altered daily life functioning, altered romantic and sex life, limited academic and professional aspirations, lack of interest and support from the medical field, and the unpredictability of the evolution of the disease. The only two mixed-method studies in this review were unable to contribute to any inferential analyses but could corroborate some of the qualitative findings. CONCLUSION These results showed that RGSDs have a significant impact on different aspects of patients' lives. This review has demonstrated that there is a real need for support systems for patients with these diseases. Such systems should be developed to provide them with necessary information and to guide them through an appropriate care pathway.
Collapse
Affiliation(s)
- Hugo Fournier
- Laboratoire de Psychologie (LabPsy) EA4139, Univ. Bordeaux, 3 ter Place de la Victoire, Bâtiment A - 1er étage, 33000 Bordeaux, France
| | | | | | - Bruno Quintard
- Laboratoire de Psychologie (LabPsy) EA4139, Univ. Bordeaux, 3 ter Place de la Victoire, Bâtiment A - 1er étage, 33000 Bordeaux, France
| |
Collapse
|
4
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
5
|
Iwanami N, Ozaki Y, Sakaguchi H, Watanabe Y, Meng Q, Matsumoto K, Suzuki T, Hitomi K, Matsuda M. Evolutionarily conserved role of hps1 in melanin production and blood coagulation in medaka fish. G3 GENES|GENOMES|GENETICS 2022; 12:6659099. [PMID: 35944207 PMCID: PMC9526055 DOI: 10.1093/g3journal/jkac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
Abstract
Hermansky–Pudlak syndrome is an autosomal recessive disease characterized by albinism, visual impairment, and blood platelet dysfunction. One of the genes responsible for Hermansky–Pudlak syndrome, hps1, regulates organelle biogenesis and thus plays important roles in melanin production, blood clotting, and the other organelle-related functions in humans and mice. However, the function of hps1 in other species remains poorly understood. In this study, we discovered albino medaka fish during the maintenance of a wild-derived population and identified hps1 as the responsible gene using positional cloning. In addition to the specific absence of melanophore pigmentation, the hps1 mutant showed reduced blood coagulation, suggesting that hps1 is involved in clotting caused by both mammalian platelets and fish thrombocytes. Together, the findings of our study demonstrate that hps1 has an evolutionarily conserved role in melanin production and blood coagulation. In addition, our study presents a useful vertebrate model for understanding the molecular mechanisms of Hermansky–Pudlak syndrome.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya 321-8505, Japan
| | - Yuka Ozaki
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya 321-8505, Japan
| | - Hiyori Sakaguchi
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya 321-8505, Japan
| | - Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya 464-8601, Japan
| | - Qi Meng
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya 464-8601, Japan
| | | | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya 321-8505, Japan
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya 464-8601, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya 321-8505, Japan
| |
Collapse
|
6
|
Marek-Yagel D, Abudi-Sinreich S, Macarov M, Veber A, Shalva N, Philosoph AM, Pode-Shakked B, Malicdan MCV, Anikster Y. Oculocutaneous albinism and bleeding diathesis due to a novel deletion in the HPS3 gene. Front Genet 2022; 13:936064. [PMID: 36046236 PMCID: PMC9420964 DOI: 10.3389/fgene.2022.936064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Hermansky–Pudlak syndrome (HPS) is a group of rare autosomal recessive disorders characterized by oculocutaneous albinism (OCA) and bleeding diathesis. To date, 11 HPS types have been reported (HPS-1 to HPS-11), each defined by disease-causing variants in specific genes. Variants in the HPS1 gene were found in approximately 15% of HPS patients, most of whom harbor the Puerto Rican founder mutation. In this study, we report six affected individuals from three nonconsanguineous families of Ashkenazi Jewish descent, who presented with OCA and multiple ecchymoses and had normal platelet number and size. Linkage analysis indicated complete segregation to HPS3. Sequencing of the whole coding region and the intron boundaries of HPS3 revealed a heterozygous c.1163+1G>A variant in all six patients. Long-range PCR amplification revealed that all affected individuals also carry a 14,761bp deletion that includes the 5′UTR and exon 1 of HPS3, encompassing regions with long interspersed nuclear elements. The frequency of the c.1163+1G>A splice site variant was found to be 1:200 in the Ashkenazi Jewish population, whereas the large deletion was not detected in 300 Ashkenazi Jewish controls. These results present a novel HPS3 deletion mutation and suggest that the prevalence of HPS-3 in Ashkenazi Jews is more common than previously thought.
Collapse
Affiliation(s)
- Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shachar Abudi-Sinreich
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Michal Macarov
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alvit Veber
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
| | - Nechama Shalva
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
| | - Amit Mary Philosoph
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
| | - May Christine V. Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, United States
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director and National Human Genome Research Institute, Bethesda, MD, United States
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
- *Correspondence: Yair Anikster,
| |
Collapse
|
7
|
Chen C, Wang R, Yuan Y, Li J, Yu X. Clinical Features and Novel Genetic Variants Associated with Hermansky-Pudlak Syndrome. Genes (Basel) 2022; 13:genes13071283. [PMID: 35886065 PMCID: PMC9321923 DOI: 10.3390/genes13071283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive syndromic form of albinism, characterized by oculocutaneous albinism (OCA) and other systemic complications. The purpose of this study was to investigate patients with HPS-associated gene mutations and describe associated ocular and extraocular phenotypes. Fifty-four probands clinically diagnosed as albinism were enrolled. Ophthalmic examinations and genetic testing were performed in all subjects. The phenotypic and genetic features were evaluated. HPS-associated gene mutation was identified in four of the patients with albinism phenotype. Clinically, photophobia, and nystagmus was detected in all (4/4) patients, and strabismus was found in one (1/4) patient. Fundus examination revealed fundus hypopigmentation and foveal hypoplasia in all (8/8) eyes. Eight novel causative mutations were detected in these four HPS probands. Five (62.5%, 5/8) of the mutations were nonsense, two of the mutations were missense (25%, 2/8), and one of the mutations was frameshift (12.5%, 1/8). All patients in our study carried compound heterozygous variants, and all these pathogenic variants were identified to be novel, with most (62.5%, 5/8) of the mutations being nonsense. Our results improved the understanding of clinical ocular features, and expanded the spectrum of known variants and the genetic background of HPS.
Collapse
|
8
|
Li W, Hao CJ, Hao ZH, Ma J, Wang QC, Yuan YF, Gong JJ, Chen YY, Yu JY, Wei AH. New insights into the pathogenesis of Hermansky-Pudlak syndrome. Pigment Cell Melanoma Res 2022; 35:290-302. [PMID: 35129281 DOI: 10.1111/pcmr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is characterized by defects of multiple tissue-specific lysosome-related organelles (LROs), typically manifesting with oculocutaneous albinism or ocular albinism, bleeding tendency, and in some cases with pulmonary fibrosis, inflammatory bowel disease or immunodeficiency, neuropsychological disorders. Eleven HPS subtypes in humans and at least 15 subtypes in mice have been molecularly identified. Current understanding of the underlying mechanisms of HPS is focusing on the defective biogenesis of LROs. Compelling evidences have shown that HPS protein-associated complexes (HPACs) function in cargo transport, cargo recycling, and cargo removal to maintain LRO homeostasis. Further investigation on the molecular and cellular mechanism of LRO biogenesis and secretion will be helpful for better understanding of its pathogenesis and for the precise intervention of HPS.
Collapse
Affiliation(s)
- Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Chan-Juan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Zhen-Hua Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Jing Ma
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Qiao-Chu Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Ye-Feng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Juan-Juan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Yuan-Ying Chen
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Jia-Ying Yu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Ai-Hua Wei
- Department of Dermatology, Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Suezawa T, Kanagaki S, Korogi Y, Nakao K, Hirai T, Murakami K, Hagiwara M, Gotoh S. Modeling of lung phenotype of Hermansky-Pudlak syndrome type I using patient-specific iPSCs. Respir Res 2021; 22:284. [PMID: 34736469 PMCID: PMC8570015 DOI: 10.1186/s12931-021-01877-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023] Open
Abstract
Background Somatic cells differentiated from patient-specific human induced pluripotent stem cells (iPSCs) could be a useful tool in human cell-based disease research. Hermansky–Pudlak syndrome (HPS) is an autosomal recessive genetic disorder characterized by oculocutaneous albinism and a platelet dysfunction. HPS patients often suffer from lethal HPS associated interstitial pneumonia (HPSIP). Lung transplantation has been the only treatment for HPSIP. Lysosome-related organelles are impaired in HPS, thereby disrupting alveolar type 2 (AT2) cells with lamellar bodies. HPSIP lungs are characterized by enlarged lamellar bodies. Despite species differences between human and mouse in HPSIP, most studies have been conducted in mice since culturing human AT2 cells is difficult. Methods We generated patient-specific iPSCs from patient-derived fibroblasts with the most common bi-allelic variant, c.1472_1487dup16, in HPS1 for modeling severe phenotypes of HPSIP. We then corrected the variant of patient-specific iPSCs using CRISPR-based microhomology-mediated end joining to obtain isogenic controls. The iPSCs were then differentiated into lung epithelial cells using two different lung organoid models, lung bud organoids (LBOs) and alveolar organoids (AOs), and explored the phenotypes contributing to the pathogenesis of HPSIP using transcriptomic and proteomic analyses. Results The LBOs derived from patient-specific iPSCs successfully recapitulated the abnormalities in morphology and size. Proteomic analysis of AOs involving iPSC-derived AT2 cells and primary lung fibroblasts revealed mitochondrial dysfunction in HPS1 patient-specific alveolar epithelial cells. Further, giant lamellar bodies were recapitulated in patient-specific AT2 cells. Conclusions The HPS1 patient-specific iPSCs and their gene-corrected counterparts generated in this study could be a new research tool for understanding the pathogenesis of HPSIP caused by HPS1 deficiency in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01877-8.
Collapse
Affiliation(s)
- Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Shuhei Kanagaki
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Yohei Korogi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhisa Nakao
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Murakami
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Lansdon LA, Chen D, Rush ET, Engleman K, Zhang L, Saunders CJ, Oroszi G. A novel likely pathogenic variant in a patient with Hermansky-Pudlak syndrome. Cold Spring Harb Mol Case Stud 2021; 7:a006110. [PMID: 34362826 PMCID: PMC8559624 DOI: 10.1101/mcs.a006110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by oculocutaneous albinism and variable pulmonary fibrosis, granulomatous colitis, or immunodeficiency. The diagnosis relies on clinical findings, platelet transmission electron microscopy studies showing absent dense granules, or the identification of a pathogenic genotype in one of 11 associated genes, including HPS1 We report a 2-wk-old male with significant iris transillumination defects, a pale fundus, and mild corectopia found by clinical exome sequencing to have a previously reported pathogenic variant, c.972dupC p.(Met325HisfsTer128), and a variant of uncertain significance, c.1846G>A p.(Glu616Lys), in HPS1 To determine whether his phenotype was consistent with HPS, follow-up studies of whole blood lumiaggregometry and platelet transmission electron microscopy were performed that revealed absent or markedly reduced platelet ATP secretion and virtually absent platelet dense granules, thus confirming the diagnosis. To the best of our knowledge, our case is the first in which the c.1846G>A p.(Glu616Lys) variant is identified in a patient with HPS. In addition, the case also highlights the importance of leveraging appropriate confirmatory clinical testing and reverse phenotyping, which allowed the care team to establish the clinical diagnosis of HPS and reclassify the previously reported variant of uncertain significance in HPS1 to likely pathogenic.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri 64110, USA
| | - Dong Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Eric T Rush
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri 64110, USA
- Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | - Kendra Engleman
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri 64110, USA
| | - Lei Zhang
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri 64110, USA
| | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri 64110, USA
| | - Gabor Oroszi
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri 64110, USA
| |
Collapse
|
11
|
Absence of dense platelet granules and ceroid-laden macrophages: Investigating the diversity of clinical presentations in Hermansky-Pudlak syndrome. HUMAN PATHOLOGY: CASE REPORTS 2021. [DOI: 10.1016/j.ehpc.2021.200535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
12
|
Xue J, Liu J, Yong J, Liang K. Biomedical Applications of Metal–Organic Frameworks at the Subcellular Level. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jueyi Xue
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Jian Liu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
13
|
O'Brien KJ, Parisi X, Shelman NR, Merideth MA, Introne WJ, Heller T, Gahl WA, Malicdan MCV, Gochuico BR. Inflammatory bowel disease in Hermansky-Pudlak syndrome: a retrospective single-centre cohort study. J Intern Med 2021; 290:129-140. [PMID: 33423334 DOI: 10.1111/joim.13224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Knowledge about inflammatory bowel disease (IBD) in patients with Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder characterized by defective biogenesis of lysosome-related organelles, could provide insights into IBD in general. OBJECTIVE To expand the understanding of IBD in patients with HPS. METHODS Retrospective review of records from patients with HPS evaluated at the National Institutes of Health Clinical Center from 1995 to 2019 was conducted. Clinical features of IBD, genotyping results and histologic findings of colectomy specimens were analysed. RESULTS IBD affected 37 (14.2%; 12 male, 25 female) of 261 patients with HPS. Median age of onset was 17 years; range was 1 to 52 years. The most common symptoms of HPS IBD were hematochezia, abdominal pain and loose stools. Fistulae or extra-intestinal manifestations developed in 30% or 22%, respectively. Genotyping showed that patients with biallelic variants in HPS1, HPS3, HPS4 or HPS6 were diagnosed with IBD. Six children had very early-onset IBD. Patients with HPS-3 had mild manifestations of IBD. Medical therapy and bowel resection were utilized to treat 73% and 35% of patients with HPS IBD, respectively; 7 of 13 patients receiving anti-tumor necrosis factor alpha therapy had prolonged clinical responses. Active cryptitis, chronic inflammatory changes, granulomas and ceroid lipofuscinosis were histopathologic findings in three colectomy specimens. CONCLUSIONS IBD resembling Crohn's disease affects some patients with HPS; genetic heterogeneity is a feature of HPS IBD. HPS3 is a new gene associated with human IBD. Very early-onset IBD can develop in HPS.
Collapse
Affiliation(s)
- K J O'Brien
- From the, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - X Parisi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Medical Research Scholars Program, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - N R Shelman
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - M A Merideth
- From the, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - W J Introne
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - W A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - M C V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - B R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Fernández A, Hayashi M, Garrido G, Montero A, Guardia A, Suzuki T, Montoliu L. Genetics of non-syndromic and syndromic oculocutaneous albinism in human and mouse. Pigment Cell Melanoma Res 2021; 34:786-799. [PMID: 33960688 DOI: 10.1111/pcmr.12982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Oculocutaneous albinism (OCA) is the most frequent presentation of albinism, a heterogeneous rare genetic condition generally associated with variable alterations in pigmentation and with a profound visual impairment. There are non-syndromic and syndromic types of OCA, depending on whether the gene product affected impairs essentially the function of melanosomes or, in addition, that of other lysosome-related organelles (LROs), respectively. Syndromic OCA can be more severe and associated with additional systemic consequences, beyond pigmentation and vision alterations. In addition to OCA, albinism can also be presented without obvious skin and hair pigmentation alterations, in ocular albinism (OA), and a related genetic condition known as foveal hypoplasia, optic nerve decussation defects, and anterior segment dysgenesis (FHONDA). In this review, we will focus only in the genetics of skin pigmentation in OCA, both in human and mouse, updating our current knowledge on this subject.
Collapse
Affiliation(s)
- Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Gema Garrido
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Andrea Montero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Ana Guardia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| |
Collapse
|
15
|
Wang C, Shi P, Li Q, Chen C, Zhao X, Zhang R, Kong X. Hermansky-Pudlak syndrome: Five Chinese patients with novel variants in HPS1 and HPS6. Eur J Med Genet 2021; 64:104228. [PMID: 33878481 DOI: 10.1016/j.ejmg.2021.104228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Hermansky-Pudlak syndrome is a rare, autosomal, recessive syndromic form of albinism characterized by oculocutaneous albinism, bleeding diathesis, and a series of clinical complications. It is rarely reported in China, even with its large population base. In this study, we describe the clinical phenotypes and genotypes of five unrelated Chinese Hermansky-Pudlak syndrome pedigrees following clinical observation and next-generation sequencing. We identified three HPS-1 and two HPS-6 cases among 548 Chinese patients with oculocutaneous albinism. Five novel variants [c.1279_1280insGGAG p.(Asp427Glyfs*27) and c.875_878delACAG p.(Asp292Alafs*38) in HPS1 and c.1999C>T p.(Arg667*), c.335G>A p.(W112*), and c.1732C>T p.(R578*) in HPS6] were identified by next-generation sequencing. Our findings expand the spectrum of known variants and the genetic background of Hermansky-Pudlak syndrome, which may help in investigating phenotype-genotype relationships and aid in genetic counselling of patients with Hermansky-Pudlak syndrome.
Collapse
Affiliation(s)
- Conghui Wang
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Panlai Shi
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qianqian Li
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chen Chen
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xuechao Zhao
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Renfeng Zhang
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
16
|
Yokoyama T, Gochuico BR. Hermansky-Pudlak syndrome pulmonary fibrosis: a rare inherited interstitial lung disease. Eur Respir Rev 2021; 30:30/159/200193. [PMID: 33536261 DOI: 10.1183/16000617.0193-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease of unknown aetiology with a poor prognosis. Studying genetic diseases associated with pulmonary fibrosis provides insights into the pathogenesis of the disease. Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder characterised by abnormal biogenesis of lysosome-related organelles, manifests with oculocutaneous albinism and excessive bleeding of variable severity. Pulmonary fibrosis is highly prevalent in three out of 10 genetic types of HPS (HPS-1, HPS-2 and HPS-4). Thus, genotyping of individuals with HPS is clinically relevant. HPS-1 tends to affect Puerto Rican individuals due to a genetic founder effect. HPS pulmonary fibrosis shares some clinical features with idiopathic pulmonary fibrosis (IPF), including dyspnoea, cough, restrictive lung physiology and computed tomography (CT) findings of fibrosis. In contrast to IPF, HPS pulmonary fibrosis generally affects children (HPS-2) or middle-aged adults (HPS-1 or HPS-4) and may be associated with ground-glass opacification in CT scans. Histopathology of HPS pulmonary fibrosis, and not IPF, shows vacuolated hyperplastic type II cells with enlarged lamellar bodies and alveolar macrophages with lipofuscin-like deposits. Antifibrotic drugs approved as treatment for IPF are not approved for HPS pulmonary fibrosis. However, lung transplantation has been performed in patients with severe HPS pulmonary fibrosis. HPS pulmonary fibrosis serves as a model for studying fibrotic lung disease and fibrosis in general.
Collapse
Affiliation(s)
- Tadafumi Yokoyama
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Dept of Pediatrics, Kanazawa University, Kanazawa, Japan
| | - Bernadette R Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Xu C, Xiang Y, Li H, Xu Y, Mao Y, Zhou L, Xu X, Tang S. Genetic analysis and prenatal diagnosis of 20 Chinese families with oculocutaneous albinism. J Clin Lab Anal 2020; 35:e23647. [PMID: 33124154 PMCID: PMC7891544 DOI: 10.1002/jcla.23647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/27/2022] Open
Abstract
Background Oculocutaneous albinism (OCA) is a group of heterogeneous genetic disorders characterized by abnormal melanin synthesis in the hair, skin, and eyes. OCA exhibits obvious genetic and phenotypic heterogeneity. Molecular diagnosis of causal genes can be of help in the classification of OCA subtypes and the study of OCA pathogenesis. Methods In this study, Sanger sequencing and whole exome sequencing were used to genetically diagnose 20 nonconsanguineous Chinese OCA patients. In addition, prenatal diagnosis was provided to six OCA families. Results Variants of TYR, OCA2, and HPS1 were detected in 85%, 10%, and 5% of affected patients, respectively. A total of 21 distinct variants of these three genes were identified. Exons 1 and 2 were the hotspot regions of the TYR variants, and c.895C > A and c.896G > A were the hotspot variants. We also found seven novel variants: c.731G > A, c.741C > A, c.867C > A, and c.1037‐2A > T in TYR, c.695dupT and c.1054A > G in OCA2, and c.9C > A in HPS1. Genetic tests on six fetuses revealed three carrier fetuses, two normal fetuses, and one affected fetus. The follow‐up results after birth were consistent with the results of prenatal diagnosis (one fetus terminated during pregnancy was not followed up). Conclusions This study expands our understanding of the genotypic spectrum of the Chinese OCA population. The findings indicate that prenatal diagnosis can provide important information for genetic counseling.
Collapse
Affiliation(s)
- Chenyang Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Yanbao Xiang
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Huanzheng Li
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Yunzhi Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Yijian Mao
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Lili Zhou
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Xueqin Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Shaohua Tang
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China.,Key Laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
19
|
Okamura K, Suzuki T. Current landscape of Oculocutaneous Albinism in Japan. Pigment Cell Melanoma Res 2020; 34:190-203. [PMID: 32969595 DOI: 10.1111/pcmr.12927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
Oculocutaneous albinism (OCA), which is roughly divided into non-syndromic and syndromic OCA, is a group of autosomal recessive disorders caused by mutations in genes associated with pigmentation. Patients with OCA have hypopigmentation and ocular manifestations such as photophobia, amblyopia, and nystagmus. Hermansky-Pudlak syndrome (HPS), the most common syndromic OCA, is characterized by the additional features of a bleeding tendency and other critical systemic comorbidities such as pulmonary fibrosis and immunodeficiency. NGS-based gene analyses have identified several new causative genes for OCA and have detected rare subtypes of OCA with high accuracy including Japanese patients. In our survey of 190 Japanese OCA patients/families, OCA4 is the most common subtype (25.3%) followed by OCA1 (20.0%), HPS1 (14.7%), and OCA2 (8.4%). Similar to the A481T variant in OCA2, which is associated with a mild form of OCA2 and skin color variation, the c.-492_489delAATG variant located in the promoter region of SLC45A2 has been uniquely identified in Japanese patients with a mild form of OCA4. Further, rare OCA subtypes, including OCA3, HPS2, HPS3, HPS4, HPS5, HPS6, and HPS9, have also been identified in Japanese patients. The clinical characteristics and underlying molecular mechanisms of each subtype of OCA are concisely summarized in this review.
Collapse
Affiliation(s)
- Ken Okamura
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tamio Suzuki
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
20
|
Liu T, Yuan Y, Bai D, Qi Z, Yang L, Zhang T, Yang X, Li W, Wei A. Genetic variants and mutational spectrum of Chinese Hermansky–Pudlak syndrome patients. Pigment Cell Melanoma Res 2020; 34:111-121. [PMID: 32725903 DOI: 10.1111/pcmr.12916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Teng Liu
- Department of Dermatology Beijing Tongren Hospital Capital Medical University Beijing China
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects Beijing Pediatric Research Institute Beijing Children's Hospital Capital Medical University Beijing China
- Genetics and Birth Defects Control Center National Center for Children's HealthBeijing China
- MOE Key Laboratory of Major Diseases in Children Capital Medical University Beijing China
| | - Dayong Bai
- Department of Ophthalmology National Center for Children's Health Beijing Children’s Hospital Capital Medical University Beijing China
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects Beijing Pediatric Research Institute Beijing Children's Hospital Capital Medical University Beijing China
- Genetics and Birth Defects Control Center National Center for Children's HealthBeijing China
- MOE Key Laboratory of Major Diseases in Children Capital Medical University Beijing China
| | - Lin Yang
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Tianjiao Zhang
- Department of Dermatology Beijing Tongren Hospital Capital Medical University Beijing China
| | - Xiumin Yang
- Department of Dermatology Beijing Tongren Hospital Capital Medical University Beijing China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects Beijing Pediatric Research Institute Beijing Children's Hospital Capital Medical University Beijing China
- Genetics and Birth Defects Control Center National Center for Children's HealthBeijing China
- MOE Key Laboratory of Major Diseases in Children Capital Medical University Beijing China
| | - Aihua Wei
- Department of Dermatology Beijing Tongren Hospital Capital Medical University Beijing China
| |
Collapse
|
21
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
22
|
Stearman RS, Cornelius AR, Young LR, Conklin DS, Mickler EA, Lu X, Hara N, Fettig LM, Phang TL, Geraci MW. Familial Pulmonary Fibrosis and Hermansky-Pudlak Syndrome Rare Missense Mutations in Context. Am J Respir Crit Care Med 2020; 200:253-256. [PMID: 30985222 DOI: 10.1164/rccm.201902-0457le] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Lisa R Young
- 3 Vanderbilt University Medical Center Nashville, Tennessee
| | | | | | - Xiao Lu
- 4 St. John Medical Center Westlake, Ohio and
| | - Naoko Hara
- 5 University of Colorado School of Medicine Aurora, Colorado
| | - Lynsey M Fettig
- 5 University of Colorado School of Medicine Aurora, Colorado
| | - Tzu L Phang
- 5 University of Colorado School of Medicine Aurora, Colorado
| | - Mark W Geraci
- 1 Indiana University School of Medicine Indianapolis, Indiana
| |
Collapse
|
23
|
Huizing M, Malicdan MCV, Wang JA, Pri-Chen H, Hess RA, Fischer R, O'Brien KJ, Merideth MA, Gahl WA, Gochuico BR. Hermansky-Pudlak syndrome: Mutation update. Hum Mutat 2020; 41:543-580. [PMID: 31898847 DOI: 10.1002/humu.23968] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of 10 autosomal recessive multisystem disorders, each defined by the deficiency of a specific gene. HPS-associated genes encode components of four ubiquitously expressed protein complexes: Adaptor protein-3 (AP-3) and biogenesis of lysosome-related organelles complex-1 (BLOC-1) through -3. All individuals with HPS exhibit albinism and a bleeding diathesis; additional features occur depending on the defective protein complex. Pulmonary fibrosis is associated with AP-3 and BLOC-3 deficiency, immunodeficiency with AP-3 defects, and gastrointestinal symptoms are more prevalent and severe in BLOC-3 deficiency. Therefore, identification of the HPS subtype is valuable for prognosis, clinical management, and treatment options. The prevalence of HPS is estimated at 1-9 per 1,000,000. Here we summarize 264 reported and novel variants in 10 HPS genes and estimate that ~333 Puerto Rican HPS subjects and ~385 with other ethnicities are reported to date. We provide pathogenicity predictions for missense and splice site variants and list variants with high minor allele frequencies. Current cellular and clinical aspects of HPS are also summarized. This review can serve as a manifest for molecular diagnostics and genetic counseling aspects of HPS.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - May C V Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer A Wang
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hadass Pri-Chen
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard A Hess
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Roxanne Fischer
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Bernadette R Gochuico
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Campbell P, Ellingford JM, Parry NRA, Fletcher T, Ramsden SC, Gale T, Hall G, Smith K, Kasperaviciute D, Thomas E, Lloyd IC, Douzgou S, Clayton-Smith J, Biswas S, Ashworth JL, Black GCM, Sergouniotis PI. Clinical and genetic variability in children with partial albinism. Sci Rep 2019; 9:16576. [PMID: 31719542 PMCID: PMC6851142 DOI: 10.1038/s41598-019-51768-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Individuals who have ocular features of albinism and skin pigmentation in keeping with their familial background present a considerable diagnostic challenge. Timely diagnosis through genomic testing can help avert diagnostic odysseys and facilitates accurate genetic counselling and tailored specialist management. Here, we report the clinical and gene panel testing findings in 12 children with presumed ocular albinism. A definitive molecular diagnosis was made in 8/12 probands (67%) and a possible molecular diagnosis was identified in a further 3/12 probands (25%). TYR was the most commonly mutated gene in this cohort (75% of patients, 9/12). A disease-causing TYR haplotype comprised of two common, functional polymorphisms, TYR c.[575 C > A;1205 G > A] p.[(Ser192Tyr);(Arg402Gln)], was found to be particularly prevalent. One participant had GPR143-associated X-linked ocular albinism and another proband had biallelic variants in SLC38A8, a glutamine transporter gene associated with foveal hypoplasia and optic nerve misrouting without pigmentation defects. Intriguingly, 2/12 individuals had a single, rare, likely pathogenic variant in each of TYR and OCA2 - a significant enrichment compared to a control cohort of 4046 individuals from the 100,000 genomes project pilot dataset. Overall, our findings highlight that panel-based genetic testing is a clinically useful test with a high diagnostic yield in children with partial/ocular albinism.
Collapse
Affiliation(s)
- Patrick Campbell
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jamie M Ellingford
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Neil R A Parry
- Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Tracy Fletcher
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Theodora Gale
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Georgina Hall
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | | | | | - I Chris Lloyd
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Susmito Biswas
- Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jane L Ashworth
- Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Graeme C M Black
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Panagiotis I Sergouniotis
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
25
|
Kook S, Qi A, Wang P, Meng S, Gulleman P, Young LR, Guttentag SH. Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 2019; 58:566-574. [PMID: 29190429 DOI: 10.1165/rcmb.2017-0324ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Defining the mechanisms of cellular pathogenesis in rare lung diseases such as Hermansky-Pudlak syndrome (HPS) is often complicated by loss of the differentiated phenotype of cultured primary alveolar type 2 (AT2) cells, as well as by a lack of durable cell lines that are faithful to both AT2-cell and rare disease phenotypes. We used CRISPR/Cas9 gene editing to generate a series of HPS-specific mutations in the MLE-15 cell line. The resulting MLE-15/HPS cell lines exhibit preservation of AT2 cellular functions, including formation of lamellar body-like organelles, complete processing of surfactant protein B, and known features of HPS specific to each trafficking complex, including loss of protein targeting to lamellar bodies. MLE-15/HPS1 and MLE-15/HPS2 (with a mutation in Ap3β1) express increased macrophage chemotactic protein-1, a well-described mediator of alveolitis in patients with HPS and in mouse models. We show that MLE-15/HPS9 and pallid AT2 cells (with a mutation in Bloc1s6) also express increased macrophage chemotactic protein-1, suggesting that mice and humans with BLOC-1 mutations may also be susceptible to alveolitis. In addition to providing a flexible platform to examine the role of HPS-specific mutations in trafficking AT2 cells, MLE-15/HPS cell lines provide a durable resource for high-throughput screening and studies of cellular pathophysiology that are likely to accelerate progress toward developing novel therapies for this rare lung disease.
Collapse
Affiliation(s)
| | - Aidong Qi
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | - Peter Gulleman
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lisa R Young
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | |
Collapse
|
26
|
Larribère L, Utikal J. Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Front Mol Neurosci 2019; 12:111. [PMID: 31118886 PMCID: PMC6506783 DOI: 10.3389/fnmol.2019.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
During development, neural crest (NC) cells are early precursors of several lineages including melanocytes. Along their differentiation from multipotent cells to mature melanocytes, NC cells will go through successive steps which require either proliferative or motile capacities. For example, they will undergo Epithelial to Mesenchymal Transition (EMT) in order the separate from the neural tube and migrate to their final location in the epidermis (Larribere and Utikal, 2013; Skrypek et al., 2017). The differentiated melanocytes are the cells of origin of melanoma tumors which progress through several stages such as radial growth phase, vertical growth phase, metastasis formation, and often resistance to current therapies. Interestingly, depending on the stage of the disease, melanoma tumor cells share phenotypes with NC cells (proliferative, motile, EMT). These phenotypes are tightly controlled by specific signaling pathways and transcription factors (TFs) which tend to be reactivated during the onset of melanoma. In this review, we summarize first the main TFs which control these common phenotypes. Then, we focus on the existing strategies used to generate human NCs. Finally we discuss how identification and regulation of NC-associated genes provide an additional approach to improving current melanoma targeted therapies.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
27
|
Iyer S, Suresh S, Guo D, Daman K, Chen JCJ, Liu P, Zieger M, Luk K, Roscoe BP, Mueller C, King OD, Emerson CP, Wolfe SA. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break. Nature 2019; 568:561-565. [PMID: 30944467 PMCID: PMC6483862 DOI: 10.1038/s41586-019-1076-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022]
Abstract
Current programmable nuclease-based (e.g. CRISPR-Cas9) methods for precise correction of a disease-causing genetic mutation harness the Homology Directed Repair (HDR) pathway. However, this repair process requires co-delivery of an exogenous DNA donor to recode the sequence and can be inefficient in many cell types. Here, we show that disease-causing frameshift mutations resulting from microduplications can be efficiently reverted to the wild-type sequence simply by generating a double-strand break (DSB) near the center of the duplication. We demonstrate this in patient-derived cell lines for two diseases: Limb-Girdle Muscular Dystrophy 2G (LGMD2G)1 and Hermansky-Pudlak Syndrome Type 1 (HPS1)2. Clonal analysis of Streptococcus pyogenes Cas9 (SpyCas9) nuclease-treated LGMD2G iPSCs revealed that ~80% contained at least one wild-type allele and that this correction restored TCAP expression in LGMD2G iPSC-derived myotubes. Efficient genotypic correction was also observed upon SpyCas9 treatment of an HPS1 patient-derived B-lymphoblastoid cell line (B-LCL). Inhibition of PARP-1 (poly (ADP-ribose) polymerase) suppresses the nuclease-mediated collapse of the microduplication to the wild-type sequence, confirming that precise correction is mediated by the MMEJ (microhomology-mediated end joining) pathway. Analysis of editing by SpyCas9 and Lachnospiraceae bacterium ND2006 Cas12a (LbaCas12a) at non-pathogenic microduplications within the genome that range in length from 4 bp to 36 bp indicates that the correction strategy is broadly applicable to a wide range of microduplication lengths and can be initiated by a variety of nucleases. The simplicity, reliability and efficacy of this MMEJ-based therapeutic strategy should permit the development of nuclease-based gene correction therapies for a variety of diseases that are associated with microduplications.
Collapse
Affiliation(s)
- Sukanya Iyer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sneha Suresh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dongsheng Guo
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Wellstone Muscular Dystrophy Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katelyn Daman
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Wellstone Muscular Dystrophy Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer C J Chen
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Wellstone Muscular Dystrophy Program, University of Massachusetts Medical School, Worcester, MA, USA.,Office of the Vice-Principal (Research), Queen's University, Kingston, Ontario, Canada
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marina Zieger
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Benjamin P Roscoe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.,COGEN Therapeutics, Cambridge, MA, USA
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Wellstone Muscular Dystrophy Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Charles P Emerson
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA. .,Wellstone Muscular Dystrophy Program, University of Massachusetts Medical School, Worcester, MA, USA. .,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA. .,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
28
|
Rivera-Concepción J, Acevedo-Canabal J, Burés A, Vargas G, Cadilla C, Izquierdo NJ. Bleeding assessment in female patients with the Hermansky-Pudlak syndrome-A case series. Eur J Haematol 2019; 102:432-436. [PMID: 30659653 DOI: 10.1111/ejh.13210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The Hermansky-Pudlak syndrome (HPS) is an autosomal recessive rare disorder characterized by oculocutaneous albinism, bleeding diathesis, chronic granulomatous colitis and/or pulmonary fibrosis. HPS is the most common single-gene disorder in Puerto Rico with a prevalence of 1:1,800 in the Northwest of the island. Risk of menorrhagia and post-partum hemorrhage (PPH) in cases of women with HPS have been described in the medical literature, but data regarding comprehensive description of bleeding diathesis remains lacking. For this reason, we aim to identify bleeding events using the International Society on Thrombosis and Hemostasis Bleeding Assessment Tool (ISTH-BAT), a standardized quantitative tool that translates the range of severity of bleeding symptoms into a cumulative bleeding score (BS). OBJECTIVE To use the ISTH-BAT in HPS in order to describe bleeding symptoms and allow for comparison with other inherited bleeding disorders. METHODS Puerto Rican females and adult participants with HPS based on genetic linkage were enrolled. The ISTH-BAT was administered and results were identified using descriptive statistical analysis. RESULTS Questionnaire answers of twelve women with HPS-1 and HPS-3 were evaluated. Participants' mean BS was HPS-1 (11.4) and HPS-3 (8.0) Participants with HPS-1 and HPS-3 reported abnormal bleeding events that presented during dental extractions, menorrhagia, surgical interventions, gastrointestinal, oral cavity and post-partum. Patients with history of pulmonary fibrosis (PF) showed a higher mean bleeding score than those who had no history of PF. CONCLUSIONS Female patients with HPS type 1 and 3 experienced abnormal bleeding events according to the ISTH-BAT bleeding score. Bleeding medications were inconsistently used and varied independently from healthcare professionals. The benefits of this study were to understand the history of bleeding complications in patients with HPS type 1 and 3 using an international validated system. The results of this study will help design strategies to improve the care we provide to this population.
Collapse
Affiliation(s)
| | | | - Antonio Burés
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Gustavo Vargas
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Carmen Cadilla
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Natalio J Izquierdo
- Department of Surgery, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
29
|
|
30
|
Andres O, König EM, Althaus K, Bakchoul T, Bugert P, Eber S, Knöfler R, Kunstmann E, Manukjan G, Meyer O, Strauß G, Streif W, Thiele T, Wiegering V, Klopocki E, Schulze H. Use of Targeted High-Throughput Sequencing for Genetic Classification of Patients with Bleeding Diathesis and Suspected Platelet Disorder. TH OPEN 2018; 2:e445-e454. [PMID: 31249973 PMCID: PMC6524924 DOI: 10.1055/s-0038-1676813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Inherited platelet disorders (IPD) form a rare and heterogeneous disease entity that is present in about 8% of patients with non-acquired bleeding diathesis. Identification of the defective cellular pathway is an important criterion for stratifying the patient's individual risk profile and for choosing personalized therapeutic options. While costs of high-throughput sequencing technologies have rapidly declined over the last decade, molecular genetic diagnosis of bleeding and platelet disorders is getting more and more suitable within the diagnostic algorithms. In this study, we developed, verified, and evaluated a targeted, panel-based next-generation sequencing approach comprising 59 genes associated with IPD for a cohort of 38 patients with a history of recurrent bleeding episodes and functionally suspected, but so far genetically undefined IPD. DNA samples from five patients with genetically defined IPD with disease-causing variants in
WAS
,
RBM8A
,
FERMT3
,
P2YR12
, and
MYH9
served as controls during the validation process. In 40% of 35 patients analyzed, we were able to finally detect 15 variants, eight of which were novel, in 11 genes,
ACTN1
,
AP3B1
,
GFI1B
,
HPS1
,
HPS4
,
HPS6
,
MPL
,
MYH9
,
TBXA2R
,
TPM4
, and
TUBB1
, and classified them according to current guidelines. Apart from seven variants of uncertain significance in 11% of patients, nine variants were classified as likely pathogenic or pathogenic providing a molecular diagnosis for 26% of patients. This report also emphasizes on potentials and pitfalls of this tool and prospectively proposes its rational implementation within the diagnostic algorithms of IPD.
Collapse
Affiliation(s)
- Oliver Andres
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Eva-Maria König
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Peter Bugert
- DRK-Blutspendedienst Baden-Württemberg-Hessen, Institute for Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Stefan Eber
- University Children's Hospital, Technical University Munich, Munich, Germany
| | - Ralf Knöfler
- Department of Pediatrics, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Meyer
- Institute for Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Strauß
- Department for Pediatric Oncology and Hematology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Werner Streif
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Thiele
- Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Verena Wiegering
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
31
|
Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 2018; 563:646-651. [PMID: 30405244 DOI: 10.1038/s41586-018-0686-x] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/10/2018] [Indexed: 12/26/2022]
Abstract
Following Cas9 cleavage, DNA repair without a donor template is generally considered stochastic, heterogeneous and impractical beyond gene disruption. Here, we show that template-free Cas9 editing is predictable and capable of precise repair to a predicted genotype, enabling correction of disease-associated mutations in humans. We constructed a library of 2,000 Cas9 guide RNAs paired with DNA target sites and trained inDelphi, a machine learning model that predicts genotypes and frequencies of 1- to 60-base-pair deletions and 1-base-pair insertions with high accuracy (r = 0.87) in five human and mouse cell lines. inDelphi predicts that 5-11% of Cas9 guide RNAs targeting the human genome are 'precise-50', yielding a single genotype comprising greater than or equal to 50% of all major editing products. We experimentally confirmed precise-50 insertions and deletions in 195 human disease-relevant alleles, including correction in primary patient-derived fibroblasts of pathogenic alleles to wild-type genotype for Hermansky-Pudlak syndrome and Menkes disease. This study establishes an approach for precise, template-free genome editing.
Collapse
|
32
|
O'Brien KJ, Introne WJ, Akal O, Akal T, Barbu A, McGowan MP, Merideth MA, Seward SL, Gahl WA, Gochuico BR. Prolonged treatment with open-label pirfenidone in Hermansky-Pudlak syndrome pulmonary fibrosis. Mol Genet Metab 2018; 125:168-173. [PMID: 30055995 DOI: 10.1016/j.ymgme.2018.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE Limited information is available regarding chronic treatment with pirfenidone, an anti-fibrotic drug. Effects of long-term open-label pirfenidone were evaluated in a small cohort with Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder with highly penetrant pulmonary fibrosis. RESULTS Three patients with HPS pulmonary fibrosis treated with open-label pirfenidone and twenty-one historical controls randomized to placebo were studied at a single center. Mean duration of treatment with pirfenidone for 3 patients with HPS pulmonary fibrosis was 13.1 years. Annual changes in FVC and DLCO with pirfenidone treatment were 0.46 and - 0.93% predicted, respectively. In comparison, historical controls randomized to receive placebo experienced mean annual changes in FVC and DLCO of -4.4 and - 2.3% predicted, respectively. High-resolution computed tomography (HRCT) scans revealed improved ground glass opacities with development of minimal interstitial reticulations in 1 patient after 12.8 years of treatment with pirfenidone. Slowly progressive increase in bilateral interstitial fibrosis developed in a different patient, who received pirfenidone for 18.1 years and died at 73 years of age due to HPS pulmonary fibrosis. Another patient treated with pirfenidone for 8.4 years had attenuated ground glass opacification on HRCT scan and improved oxygenation; this patient died due to chronic complications from colitis, and not pulmonary fibrosis. Adverse effects were generally limited to mild gastrointestinal discomfort and transient elevations of alanine aminotransferase in one patient. CONCLUSIONS Chronic treatment with pirfenidone may provide clinical benefit with few adverse effects for some patients with HPS pulmonary fibrosis. These results suggest that compassionate use of pirfenidone could be considered on a case-by-case basis for patients with HPS pulmonary fibrosis.
Collapse
Affiliation(s)
- Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Orhan Akal
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | - Tulay Akal
- Department of Statistics, Middle East Technical University, Ankara, Turkey
| | - Adrian Barbu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Melissa P McGowan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa A Merideth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel L Seward
- Department of Medicine, Mount Sinai St. Luke's and Mount Sinai West, New York, NY, USA
| | - William A Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
El-Chemaly S, O’Brien KJ, Nathan SD, Weinhouse GL, Goldberg HJ, Connors JM, Cui Y, Astor TL, Camp PC, Rosas IO, Lemma M, Speransky V, Merideth MA, Gahl WA, Gochuico BR. Clinical management and outcomes of patients with Hermansky-Pudlak syndrome pulmonary fibrosis evaluated for lung transplantation. PLoS One 2018; 13:e0194193. [PMID: 29547626 PMCID: PMC5856338 DOI: 10.1371/journal.pone.0194193] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
Pulmonary fibrosis is a progressive, fatal manifestation of Hermansky-Pudlak syndrome (HPS). Some patients with advanced HPS pulmonary fibrosis undergo lung transplantation despite their disease-associated bleeding tendency; others die while awaiting donor organs. The objective of this study is to determine the clinical management and outcomes of a cohort with advanced HPS pulmonary fibrosis who were evaluated for lung transplantation. Six patients with HPS-1 pulmonary fibrosis were evaluated at the National Institutes of Health Clinical Center and one of two regional lung transplant centers. Their median age was 41.5 years pre-transplant. Three of six patients died without receiving a lung transplant. One of these was referred with end-stage pulmonary fibrosis and died before a donor organ became available, and donor organs were not identified for two other patients sensitized from prior blood product transfusions. Three of six patients received bilateral lung transplants; they did not have a history of excessive bleeding. One patient received peri-operative desmopressin, one was transfused with intra-operative platelets, and one received extracorporeal membrane oxygenation and intra-operative prothrombin complex concentrate, platelet transfusion, and desmopressin. One transplant recipient experienced acute rejection that responded to pulsed steroids. No evidence of chronic lung allograft dysfunction or recurrence of HPS pulmonary fibrosis was detected up to 6 years post-transplant in these three lung transplant recipients. In conclusion, lung transplantation and extracorporeal membrane oxygenation are viable options for patients with HPS pulmonary fibrosis. Alloimmunization in HPS patients is an important and potentially preventable barrier to lung transplantation; interventions to limit alloimmunization should be implemented in HPS patients at risk of pulmonary fibrosis to optimize their candidacy for future lung transplants.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kevin J. O’Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven D. Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, United States of America
| | - Gerald L. Weinhouse
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Hilary J. Goldberg
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jean M. Connors
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Todd L. Astor
- Division of Pulmonary & Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Philip C. Camp
- Division of Thoracic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Merte Lemma
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, United States of America
| | - Vladislav Speransky
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melissa A. Merideth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William A. Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Okamura K, Abe Y, Araki Y, Wakamatsu K, Seishima M, Umetsu T, Kato A, Kawaguchi M, Hayashi M, Hozumi Y, Suzuki T. Characterization of melanosomes and melanin in Japanese patients with Hermansky-Pudlak syndrome types 1, 4, 6, and 9. Pigment Cell Melanoma Res 2017; 31:267-276. [DOI: 10.1111/pcmr.12662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Ken Okamura
- Department of Dermatology; Faculty of Medicine; Yamagata University; Yamagata Japan
| | - Yuko Abe
- Department of Dermatology; Faculty of Medicine; Yamagata University; Yamagata Japan
| | - Yuta Araki
- Department of Dermatology; Faculty of Medicine; Yamagata University; Yamagata Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry; School of Health Sciences; Fujita Health University; Toyoake Japan
| | - Mariko Seishima
- Department of Dermatology; Graduate School of Medicine; Gifu University; Gifu Japan
| | - Takafumi Umetsu
- Department of Pulmonary Medicine and Clinical Immunology; Dokkyo Medical University School of Medicine; Mibu Japan
| | - Atsushi Kato
- Division of Hematology; Tokyo Kyosai Hospital; Tokyo Japan
| | - Masakazu Kawaguchi
- Department of Dermatology; Faculty of Medicine; Yamagata University; Yamagata Japan
| | - Masahiro Hayashi
- Department of Dermatology; Faculty of Medicine; Yamagata University; Yamagata Japan
| | - Yutaka Hozumi
- Department of Dermatology; Faculty of Medicine; Yamagata University; Yamagata Japan
| | - Tamio Suzuki
- Department of Dermatology; Faculty of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
35
|
Loredana Asztalos M, Schafernak KT, Gray J, Berry A, Paller AS, Mancini AJ. Hermansky-Pudlak syndrome: Report of two patients with updated genetic classification and management recommendations. Pediatr Dermatol 2017; 34:638-646. [PMID: 29044644 DOI: 10.1111/pde.13266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder caused by mutations in one of nine genes involved in the packaging and formation of specialized lysosomes, including melanosomes and platelet-dense granules. The cardinal features are pigmentary dilution, bleeding diathesis, and accumulation of ceroid-like material in reticuloendothelial cells. Pulmonary fibrosis induced by tissue damage is seen in the most severe forms, and one subtype is characterized by immunodeficiency. We describe two patients with HPS type 1 and review the updated gene-based classification, clinical features, and recommendations for evaluation and follow-up.
Collapse
Affiliation(s)
- Manuela Loredana Asztalos
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kristian T Schafernak
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jayla Gray
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam Berry
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy S Paller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anthony J Mancini
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
36
|
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive genetic disorder characterized by oculocutaneous albinism and a bleeding diathesis due to platelet dysfunction. More than 50% of cases worldwide are diagnosed on the Caribbean island of Puerto Rico. Genetic testing plays a growing role in diagnosis; however, not all patients with HPS have identified genetic mutations. In Puerto Rico, patients with HPS are often identified shortly after birth by their albinism, although the degree of hypopigmentation is highly variable. Ten subtypes have been described. Patients with HPS-1, HPS-2, and HPS-4 tend to develop pulmonary fibrosis in Puerto Rico; 100% of patients with HPS-1 develop HPS-PF. HPS-PF and idiopathic pulmonary fibrosis are considered similar entities (albeit with distinct causes) because both can show similar histological disease patterns. However, in contrast to idiopathic pulmonary fibrosis, HPS-PF manifests much earlier, often at 30-40 years of age. The progression of HPS-PF is characterized by the development of dyspnea and increasingly debilitating hypoxemia. No therapeutic interventions are currently approved by the U.S. Food and Drug Administration for the treatment of HPS and HPS-PF. However, the approval of two new antifibrotic drugs, pirfenidone and nintedanib, has prompted new interest in identifying drugs capable of reversing or halting the progression of HPS-PF. Thus, lung transplantation remains the only potentially life-prolonging treatment. At present, two clinical trials are recruiting patients with HPS-PF to identify biomarkers for disease progression. Advances in the diagnosis and management of these patients will require the establishment of multidisciplinary centers of excellence staffed by experts in this disease.
Collapse
|
37
|
Abstract
Platelet dense granules (DGs) are membrane bound compartments that store polyphosphate and small molecules such as ADP, ATP, Ca2+, and serotonin. The release of DG contents plays a central role in platelet aggregation to form a hemostatic plug. Accordingly, congenital deficiencies in the biogenesis of platelet DGs underlie human genetic disorders that cause storage pool disease and manifest with prolonged bleeding. DGs belong to a family of lysosome-related organelles, which also includes melanosomes, the compartments where the melanin pigments are synthesized. These organelles share several characteristics including an acidic lumen and, at least in part, the molecular machinery involved in their biogenesis. As a result, many genes affect both DG and melanosome biogenesis and the corresponding patients present not only with bleeding but also with oculocutaneous albinism. The identification and characterization of such genes has been instrumental in dissecting the pathways responsible for organelle biogenesis. Because the study of melanosome biogenesis has advanced more rapidly, this knowledge has been extrapolated to explain how DGs are produced. However, some progress has recently been made in studying platelet DG biogenesis directly in megakaryocytes and megakaryocytoid cells. DGs originate from an endosomal intermediate compartment, the multivesicular body. Maturation and differentiation into a DG begins when newly synthesized DG-specific proteins are delivered from early/recycling endosomal compartments. The machinery that orchestrates this vesicular trafficking is composed of a combination of both ubiquitous and cell type-specific proteins. Here, we review the current knowledge on DG biogenesis. In particular, we focus on the individual human and murine genes encoding the molecular machinery involved in this process and how their deficiencies result in disease.
Collapse
Affiliation(s)
- Andrea L Ambrosio
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , Colorado , USA
| | - Santiago M Di Pietro
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , Colorado , USA
| |
Collapse
|
38
|
Abstract
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder that is associated with oculocutaneous albinism, bleeding diatheses, granulomatous colitis, and highly penetrant pulmonary fibrosis in some subtypes, including HPS-1, HPS-2, and HPS-4. HPS pulmonary fibrosis shows many of the clinical, radiologic, and histologic features found in idiopathic pulmonary fibrosis, but occurs at a younger age. Despite knowledge of the underlying genetic defects, there are currently no definitive therapeutic or preventive approaches for HPS pulmonary fibrosis other than lung transplant.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Lisa R Young
- Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Doctor's Office Tower 11215, Nashville, TN 37232, USA; Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, 1161 21st Avenue South, B-1220 Medical Center North, Nashville, TN 37232, USA.
| |
Collapse
|
39
|
Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127:2814-23. [PMID: 27095789 DOI: 10.1182/blood-2016-03-378588] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Variations in platelet number, volume, and function are largely genetically controlled, and many loci associated with platelet traits have been identified by genome-wide association studies (GWASs).(1) The genome also contains a large number of rare variants, of which a tiny fraction underlies the inherited diseases of humans. Research over the last 3 decades has led to the discovery of 51 genes harboring variants responsible for inherited platelet disorders (IPDs). However, the majority of patients with an IPD still do not receive a molecular diagnosis. Alongside the scientific interest, molecular or genetic diagnosis is important for patients. There is increasing recognition that a number of IPDs are associated with severe pathologies, including an increased risk of malignancy, and a definitive diagnosis can inform prognosis and care. In this review, we give an overview of these disorders grouped according to their effect on platelet biology and their clinical characteristics. We also discuss the challenge of identifying candidate genes and causal variants therein, how IPDs have been historically diagnosed, and how this is changing with the introduction of high-throughput sequencing. Finally, we describe how integration of large genomic, epigenomic, and phenotypic datasets, including whole genome sequencing data, GWASs, epigenomic profiling, protein-protein interaction networks, and standardized clinical phenotype coding, will drive the discovery of novel mechanisms of disease in the near future to improve patient diagnosis and management.
Collapse
|
40
|
Maguire JA, Lu L, Mills JA, Sullivan LM, Gagne A, Gadue P, French DL. Generation of Hermansky–Pudlak Syndrome Type 1 (HPS1) induced pluripotent stem cells (iPSCs). Stem Cell Res 2016; 16:233-5. [DOI: 10.1016/j.scr.2016.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
|
41
|
Hull S, Arno G, Holder GE, Plagnol V, Gomez K, Liesner R, Webster AR, Moore AT. The ophthalmic presentation of Hermansky-Pudlak syndrome 6. Br J Ophthalmol 2016; 100:1521-1524. [PMID: 26823395 DOI: 10.1136/bjophthalmol-2015-308067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/02/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND Hermansky-Pudlak syndrome (HPS) may present to the ophthalmologist with signs suggestive of oculocutaneous albinism. Consideration of HPS as a differential diagnosis is important due to its potential systemic complications. HPS6 is a rarely reported subtype. METHODS Three patients from two families underwent clinical examination, imaging and targeted systemic investigations. Electrophysiology with visual-evoked potentials (VEPs) was performed in both children of family 1. Whole exome sequencing (WES) was performed on the proband of family 1. Bidirectional Sanger sequencing of the single exon and intron-exon boundaries of HPS6 was performed on all affected patients and segregation confirmed in available relatives. RESULTS Two siblings presented in infancy with nystagmus and reduced vision. They were initially diagnosed with isolated foveal hypoplasia with no aberrant chiasmal misrouting on VEPs. WES performed in the proband when 10 years of age identified a novel homozygous missense variant in HPS6 and further questioning elicited a history of nose bleeds and mild bruising. Segregation supported causality of this variant in the affected younger sibling. In the third unrelated patient, an initial diagnosis of ocular albinism was made at 3 months with HPS only diagnosed at 26 years. Biallelic, truncating mutations in HPS6 were identified by candidate Sanger sequencing and included a novel variant. Abnormal platelet function consistent with HPS was confirmed in all patients. CONCLUSIONS The diagnosis of HPS in all patients was delayed due to a mild systemic phenotype. Next-generation sequencing can aid diagnosis of syndromic conditions with important consequences for preventing morbidity.
Collapse
Affiliation(s)
- Sarah Hull
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Graham E Holder
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | | | - Keith Gomez
- Haematology Department, Royal Free London NHS Foundation Trust, London, UK
| | - Ri Liesner
- Haematology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Haematology Department, University College London Hospitals, London, UK
| | - Andrew R Webster
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
- San Francisco Medical Centre, University of California, San Francisco, California, USA
| |
Collapse
|
42
|
Sánchez-Guiu I, Torregrosa JM, Velasco F, Antón AI, Lozano ML, Vicente V, Rivera J. Hermansky-Pudlak syndrome. Overview of clinical and molecular features and case report of a new HPS-1 variant. Hamostaseologie 2014; 34:301-9. [PMID: 25117010 DOI: 10.5482/hamo-14-06-0024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/04/2014] [Indexed: 12/30/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare, autosomal recessive disorder affecting lysosome-related organelles (LRO), including dense platelet granules. HPS causes oculocutaneous hypopigmentation, bleeding diathesis and granulomatous colitis or pulmonary fibrosis. To date, there is no curative treatment and the clinical management depends on the severity of symptoms. A prompt diagnosis of HPS patients could improve their quality of life and clinical management. However, the absence of a specific platelet function test, the wide molecular heterogeneity, and the lack of phenotype-genotype correlations hamper the rapid diagnosis. Nine subtypes of HPS have been identified as a result of mutations in nine genes that codify for proteins involved in formation and shuttle of the LRO. The molecular characterization of patients and knowledge derived from animal models of HPS contribute to the understanding of biogenesis and function of the LRO. This paper describes a patient with a novel homozygous nonsense mutation causing HPS and provides a review of the literature focusing on recent advances in the molecular characterization and physiopathology of HPS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Rivera
- José Rivera, PhD., Centro Regional de Hemodonación, C/ Ronda de Garay s/n, Murcia, 30003, Spain, Tel. +34/968/34 19 90; Fax +34/968/261 91, E-mail:
| |
Collapse
|
43
|
Okamura K, Yoshizawa J, Abe Y, Hanaoka K, Higashi N, Togawa Y, Nakagawa S, Kambe N, Funasaka Y, Ohko K, Hozumi Y, Suzuki T. Oculocutaneous albinism (OCA) in Japanese patients: Five novel mutations. J Dermatol Sci 2014; 74:173-4. [DOI: 10.1016/j.jdermsci.2013.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/30/2022]
|
44
|
Jardón J, Izquierdo NJ, Renta JY, García-Rodríguez O, Cadilla CL. Ocular Findings in Patients with the Hermansky-Pudlak Syndrome (Types 1 and 3). Ophthalmic Genet 2014; 37:89-94. [PMID: 24766090 DOI: 10.3109/13816810.2014.907920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To describe and compare ocular findings in patients with Hermansky-Pudlak syndrome (HPS) type 1 and 3. METHODS This is a retrospective case series of 64 patients with HPS from 1999 to 2009 evaluated at an outpatient private ophthalmologic clinic. Patients underwent genetic analysis of selected albinism (Tyrosine and P gene) and HPS genes (HPS-1 and HPS-3) by screening for common mutations and exon sequencing with DNA screening. Descriptive and non-parametric statistical analyses were carried out. RESULTS Nearly 70% of the patients were homozygous for common Puerto Rican mutations leading to the HPS1 gene (16-BP DUP, 53.6%), while 30% had the 3904-BP DEL HPS3 gene mutation. Best corrected visual acuity (BCVA) was poorer in patients with type 1 HPS than in patients with type 3 HPS (p < 0.001), esotropia was more common among type 1 HPS patients (p < 0.018), while exotropia was more common among patients with type 3 HPS. Total iris transillumination was more common in patients with type 1 HPS and minimal iris transillumination in patients with type 3 HPS (p < 0.001). The maculae were translucent in patients with type 1 HPS, while patients with type 3 HPS had opaque maculae (p < 0.001). CONCLUSIONS Patients with type 1 HPS had poorer BCVA, increased incidence of esotropia, lighter iris and macular appearance. In contrast, patients with type 3 HPS had more exotropia. In addition, to our knowledge this is the largest series type 3 HPS ever reported.
Collapse
Affiliation(s)
- Javier Jardón
- a Ophthalmology Department , School of Medicine, Medical Sciences Campus, University of Puerto Rico , San Juan , Puerto Rico
| | - Natalio J Izquierdo
- b Surgery Department , School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, & Universidad Central del Caribe, School of Medicine , Bayamón , Puerto Rico
| | - Jessica Y Renta
- c Biochemistry Department , School of Medicine, Medical Sciences Campus, University of Puerto Rico , San Juan , Puerto Rico , and
| | - Omar García-Rodríguez
- d Environmental Health Department , Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico , San Juan , Puerto Rico
| | - Carmen L Cadilla
- c Biochemistry Department , School of Medicine, Medical Sciences Campus, University of Puerto Rico , San Juan , Puerto Rico , and
| |
Collapse
|
45
|
Wei AH, He X, Li W. Hypopigmentation in Hermansky-Pudlak syndrome. J Dermatol 2014; 40:325-9. [PMID: 23668540 DOI: 10.1111/1346-8138.12025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding tendency, and ceroid deposition which often leads to death in midlife. Currently, nine genes have been identified as causative for HPS in humans. Hypopigmentation is the prominent feature of HPS, attributable to the disrupted biogenesis of melanosome, a member of the lysosome-related organelle (LRO) family. Current understanding of the cargo transporting mechanisms into the melanosomes expands our knowledge of the pathogenesis of hypopigmentation in HPS patients.
Collapse
Affiliation(s)
- Ai-Hua Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
46
|
Delahaye JL, Foster OK, Vine A, Saxton DS, Curtin TP, Somhegyi H, Salesky R, Hermann GJ. Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1. Mol Biol Cell 2014; 25:1073-96. [PMID: 24501423 PMCID: PMC3967972 DOI: 10.1091/mbc.e13-09-0521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome-lysosome fusion and the consumption of AP-3-containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type-specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1-related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences.
Collapse
Affiliation(s)
- Jared L Delahaye
- Department of Biology, Lewis & Clark College, Portland, OR 97219 Program in Biochemistry and Molecular Biology, Lewis & Clark College, Portland, OR 97219
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Harada T, Ishimatsu Y, Nakashima S, Miura S, Tomonaga M, Kakugawa T, Hara S, Sakamoto N, Yoshii C, Mukae H, Kawabata Y, Kohno S. An autopsy case of Hermansky-Pudlak syndrome: a case report and review of the literature on treatment. Intern Med 2014; 53:2705-9. [PMID: 25447654 DOI: 10.2169/internalmedicine.53.2239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder, the most common complication of which influencing the prognosis is pulmonary fibrosis. In the present report, we describe an autopsy case of a Japanese woman with HPS. The patient was diagnosed at 50 years of age based on the presence of oculocutaneous albinism, hemorrhagic diathesis, ceroid-lipofuscin accumulation and pulmonary fibrosis. Although systemic steroids, immunosuppressants and pirfenidone were administered for pulmonary involvement, she died from respiratory failure two years later. Obtaining an early diagnosis and taking into consideration the need for lung transplantation is necessary in order to improve the prognosis of HPS. We herein report this very rare Japanese case of HPS with a review of the treatment approaches for HPS complicated with pulmonary fibrosis.
Collapse
Affiliation(s)
- Tatsuhiko Harada
- The Second Department of Internal Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Montoliu L, Grønskov K, Wei AH, Martínez-García M, Fernández A, Arveiler B, Morice-Picard F, Riazuddin S, Suzuki T, Ahmed ZM, Rosenberg T, Li W. Increasing the complexity: new genes and new types of albinism. Pigment Cell Melanoma Res 2013; 27:11-8. [PMID: 24066960 DOI: 10.1111/pcmr.12167] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/08/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022]
Abstract
Albinism is a rare genetic condition globally characterized by a number of specific deficits in the visual system, resulting in poor vision, in association with a variable hypopigmentation phenotype. This lack or reduction in pigment might affect the eyes, skin, and hair (oculocutaneous albinism, OCA), or only the eyes (ocular albinism, OA). In addition, there are several syndromic forms of albinism (e.g. Hermansky-Pudlak and Chediak-Higashi syndromes, HPS and CHS, respectively) in which the described hypopigmented and visual phenotypes coexist with more severe pathological alterations. Recently, a locus has been mapped to the 4q24 human chromosomal region and thus represents an additional genetic cause of OCA, termed OCA5, while the gene is eventually identified. In addition, two new genes have been identified as causing OCA when mutated: SLC24A5 and C10orf11, and hence designated as OCA6 and OCA7, respectively. This consensus review, involving all laboratories that have reported these new genes, aims to update and agree upon the current gene nomenclature and types of albinism, while providing additional insights from the function of these new genes in pigment cells.
Collapse
Affiliation(s)
- Lluís Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain; CIBERER, ISCIII, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:157-79. [PMID: 24050627 DOI: 10.1146/annurev-pathol-012513-104706] [Citation(s) in RCA: 604] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease associated with aging that is characterized by the histopathological pattern of usual interstitial pneumonia. Although an understanding of the pathogenesis of IPF is incomplete, recent advances delineating specific clinical and pathologic features of IPF have led to better definition of the molecular pathways that are pathologically activated in the disease. In this review we highlight several of these advances, with a focus on genetic predisposition to IPF and how genetic changes, which occur primarily in epithelial cells, lead to activation of profibrotic pathways in epithelial cells. We then discuss the pathologic changes within IPF fibroblasts and the extracellular matrix, and we conclude with a summary of how these profibrotic pathways may be interrelated.
Collapse
Affiliation(s)
- Paul J Wolters
- Department of Medicine, School of Medicine, University of California, San Francisco, California 94143; ,
| | | | | |
Collapse
|
50
|
Abstract
Hermansky-Pudlak Syndrome (HPS) is a set of genetically heterogeneous diseases caused by mutations in one of nine known HPS genes. HPS patients display oculocutaneous hypopigmentation and bleeding diathesis and, depending on the disease subtype, pulmonary fibrosis, congenital nystagmus, reduced visual acuity, and platelet aggregation deficiency. Mouse models for all known HPS subtypes have contributed greatly to our understanding of the disease, but many of the molecular and cellular mechanisms underlying HPS remain unknown. Here, we characterize ocular defects in the zebrafish (Danio rerio) mutant snow white (snw), which possesses a recessive, missense mutation in hps5 (hps5I76N). Melanosome biogenesis is disrupted in snw/hps5 mutants, resulting in hypopigmentation, a significant decrease in the number, size, and maturity of melanosomes, and the presence of ectopic multi-melanosome clusters throughout the mutant retina and choroid. snw/hps5I76N is the first Hps5 mutation identified within the N-terminal WD40 repeat protein-protein binding domain. Through in vitro coexpression assays, we demonstrate that Hps5I76N retains the ability to bind its protein complex partners, Hps3 and Hps6. Furthermore, while Hps5 and Hps6 stabilize each other's expression, this stabilization is disrupted by Hps5I76N. The snw/hps5I76N mutant provides a valuable resource for structure-function analyses of Hps5 and enables further elucidation of the molecular and cellular mechanisms underlying HPS.
Collapse
|