1
|
da Silva MMR, Bilezikian JP, de Paula FJA. Phosphate metabolism: its impact on disorders of mineral metabolism. Endocrine 2024:10.1007/s12020-024-04092-9. [PMID: 39527339 DOI: 10.1007/s12020-024-04092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Regulatory molecules typically work cooperatively to ensure the efficient functioning of hormonal systems. Examples include LH and FSH in reproductive biology, insulin and glucagon in glucose metabolism. Similarly, calcium and phosphorus are important regulators of skeletal homeostasis. In the circulation, these molecules are under the control of PTH, 1,25(OHD), and FGF23. In turn, these hormones depend upon a mutual and complex interplay among themselves. For example, alterations in calcium metabolism influence phosphorus homeostasis, as occurs in primary hyperparathyroidism (PHPT). Not as well recognized is the influence that abnormalities in phosphorus metabolism can have on calcium homeostasis. In this review, we call attention to the impact that abnormalities in phosphorus can have on calcium metabolism.
Collapse
Affiliation(s)
- Maisa Monseff Rodrigues da Silva
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil
| | - John P Bilezikian
- Department of Medicine, Division of Endocrinology, Vagelos College of Physicians and Surgeons. Columbia University, New York, NY, USA
| | - Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
AlSubaihin A, Harrington J. Hereditary Rickets: A Quick Guide for the Pediatrician. Curr Pediatr Rev 2024; 20:380-394. [PMID: 36475338 DOI: 10.2174/1573396319666221205123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/10/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
With the increased discovery of genes implicated in vitamin D metabolism and the regulation of calcium and phosphate homeostasis, a growing number of genetic forms of rickets are now recognized. These are categorized into calciopenic and phosphopenic rickets. Calciopenic forms of hereditary rickets are caused by genetic mutations that alter the enzymatic activity in the vitamin D activation pathway or impair the vitamin D receptor action. Hereditary forms of phosphopenic rickets, on the other hand, are caused by genetic mutations that lead to increased expression of FGF23 hormone or that impair the absorptive capacity of phosphate at the proximal renal tubule. Due to the clinical overlap between acquired and genetic forms of rickets, identifying children with hereditary rickets can be challenging. A clear understanding of the molecular basis of hereditary forms of rickets and their associated biochemical patterns allow the health care provider to assign the correct diagnosis, avoid non-effective interventions and shorten the duration of the diagnostic journey in these children. In this mini-review, known forms of hereditary rickets listed on the Online Mendelian Inheritance in Man database are discussed. Further, a clinical approach to identify and diagnose children with hereditary forms of rickets is suggested.
Collapse
Affiliation(s)
- Abdulmajeed AlSubaihin
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, Riyadh, Saudi Arabia
| | - Jennifer Harrington
- Division of Endocrinology, Women's and Children's Health Network, North Adelaide, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Courbon G, Kentrup D, Thomas JJ, Wang X, Tsai HH, Spindler J, Von Drasek J, Ndjonko LM, Martinez-Calle M, Lynch S, Hivert L, Wang X, Chang W, Feng JQ, David V, Martin A. FGF23 directly inhibits osteoprogenitor differentiation in Dmp1-knockout mice. JCI Insight 2023; 8:e156850. [PMID: 37943605 PMCID: PMC10807721 DOI: 10.1172/jci.insight.156850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jane Joy Thomas
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hao-Hsuan Tsai
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Von Drasek
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Laura Mazudie Ndjonko
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marta Martinez-Calle
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sana Lynch
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauriane Hivert
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaofang Wang
- Texas A&M School of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Wenhan Chang
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jian Q. Feng
- Shanxi Medical University School and Hospital of Stomatology, Clinical Medical Research Center of Oral Diseases of Shanxi Province, Taiyuan, China
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Root SH, Matthews BG, Torreggiani E, Aguila HL, Kalajzic I. Hematopoietic and stromal DMP1-Cre labeled cells form a unique niche in the bone marrow. Sci Rep 2023; 13:22403. [PMID: 38104230 PMCID: PMC10725438 DOI: 10.1038/s41598-023-49713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Skeletogenesis and hematopoiesis are interdependent. Niches form between cells of both lineages where microenvironmental cues support specific lineage commitment. Because of the complex topography of bone marrow (BM), the identity and function of cells within specialized niches has not been fully elucidated. Dentin Matrix Protein 1 (DMP1)-Cre mice have been utilized in bone studies as mature osteoblasts and osteocytes express DMP1. DMP1 has been identified in CXCL12+ cells and an undefined CD45+ population. We crossed DMP1-Cre with Ai9 reporter mice and analyzed the tdTomato+ (tdT+) population in BM and secondary hematopoietic organs. CD45+tdT+ express myeloid markers including CD11b and are established early in ontogeny. CD45+tdT+ cells phagocytose, respond to LPS and are radioresistant. Depletion of macrophages caused a significant decrease in tdT+CD11b+ myeloid populations. A subset of CD45+tdT+ cells may be erythroid island macrophages (EIM) which are depleted after G-CSF treatment. tdT+CXCL12+ cells are in direct contact with F4/80 macrophages, express RANKL and form a niche with B220+ B cells. A population of resident cells within the thymus are tdT+ and express myeloid markers and RANKL. In conclusion, in addition to targeting osteoblast/osteocytes, DMP1-Cre labels unique cell populations of macrophage and stromal cells within BM and thymus niches and expresses key microenvironmental factors.
Collapse
Affiliation(s)
- Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
- Division of Pediatric Dentistry, MC1610, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Brya G Matthews
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elena Torreggiani
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Kato H, Braddock DT, Ito N. Genetics of Diffuse Idiopathic Skeletal Hyperostosis and Ossification of the Spinal Ligaments. Curr Osteoporos Rep 2023; 21:552-566. [PMID: 37530996 PMCID: PMC10543536 DOI: 10.1007/s11914-023-00814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW The study aims to provide updated information on the genetic factors associated with the diagnoses 'Diffuse Idiopathic Skeletal Hyperostosis' (DISH), 'Ossification of the Posterior Longitudinal Ligament' (OPLL), and in patients with spinal ligament ossification. RECENT FINDINGS Recent studies have advanced our knowledge of genetic factors associated with DISH, OPLL, and other spinal ossification (ossification of the anterior longitudinal ligament [OALL] and the yellow ligament [OYL]). Several case studies of individuals afflicted with monogenic disorders, such as X-linked hypophosphatemia (XLH), demonstrate the strong association of fibroblast growth factor 23-related hypophosphatemia with OPLL, suggesting that pathogenic variants in PHEX, ENPP1, and DMP1 are associated with FGF23-phosphate wasting phenotype and strong genetic factors placing patients at risk for OPLL. Moreover, emerging evidence demonstrates that heterozygous and compound heterozygous ENPP1 pathogenic variants inducing 'Autosomal Recessive Hypophosphatemic Rickets Type 2' (ARHR2) also place patients at risk for DISH and OPLL, possibly due to the loss of inhibitory plasma pyrophosphate (PPi) which suppresses ectopic calcification and enthesis mineralization. Our findings emphasize the importance of genetic and plasma biomarker screening in the clinical evaluation of DISH and OPLL patients, with plasma PPi constituting an important new biomarker for the identification of DISH and OPLL patients whose disease course may be responsive to ENPP1 enzyme therapy, now in clinical trials for rare calcification disorders.
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
6
|
Abdullah SJ, Mahwi TO, Mohamad Salih Saeed A, Abdulateef DS, Rahman HS, Ahmed SF, Abdulqader SA. X-Linked Familial Hypophosphatemia: A Case Report of 27-Year Old Male and Review of Literature. Horm Metab Res 2023; 55:653-664. [PMID: 37813097 PMCID: PMC10562047 DOI: 10.1055/a-2159-8429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/15/2023] [Indexed: 10/11/2023]
Abstract
X-linked hypophosphatemia (XLH) associated with short stature during childhood are mostly referred to the hospital and diagnosed as vitamin D deficiency rickets and received vitamin D before adulthood. A case is presented with clinical features of hypophosphatemia from childhood who did not seek medical care for diagnosis and treatment, nor did his mother or two brothers, who have short statures, bone pain, and fractures. The patient was assessed for sociodemographic, hematological, and biochemical parameters together with a genetic assessment. A DEXA scan and X-ray were done to determine the abnormalities and deformities of joints and bones despite clinical examination by an expert physician. All imaging, laboratory parameters, and the genetic study confirmed the diagnosis of XLH. A detailed follow-up of his condition was performed after the use of phosphate tablets and other treatments. X-linked hypophosphatemia needs a good assessment, care, and follow up through a complementary medical team including several specialties. Phosphate tablets in adulthood significantly affects clinical and physical improvement and prevention of further skeletal abnormality and burden on daily activity. The patients should be maintained with an adequate dose of phosphate for better patient compliance. More awareness is needed in society and for health professionals when conducting medical checkups during the presence of stress fractures, frequent dental and gum problems, rickets, short stature, or abnormality in the skeleton or walking to think of secondary causes such as hypophosphatemia. Further investigations including a visit to a specialist is imperative to check for the primary cause of these disturbances.
Collapse
Affiliation(s)
| | - Taha Othman Mahwi
- Medicine, University of Sulaimani College of Medicine, Sulaymaniyah,
Kurdistan region, Iraq
| | | | - Darya Saeed Abdulateef
- Medical Education, University of Sulaimani College of Medicine,
Sulaymaniyah, Kurdistan region, Iraq
| | - Heshu Sulaiman Rahman
- Physiology, University of Sulaimani College of Medicine, Sulaymaniyah,
Kurdistan region, Iraq
| | - Shaho Fatah Ahmed
- Endocrine Unit, Internal Medicine, Shar Hospital, Sulaymaniyah,
Kurdistan region, Iraq
| | | |
Collapse
|
7
|
Ni X, Gong Y, Jiang Y, Li X, Pang Q, Liu W, Chi Y, Jiajue R, Wang O, Li M, Xing X, Xia W. The First Compound Heterozygous Mutations of DMP1 Causing Rare Autosomal Recessive Hypophosphatemic Rickets Type 1. J Clin Endocrinol Metab 2023; 108:791-801. [PMID: 36334264 DOI: 10.1210/clinem/dgac640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/11/2022] [Indexed: 11/08/2022]
Abstract
CONTEXT Hereditary hypophosphatemic rickets (HR) consists of a group of inherited hypophosphatemia due to mutations of different genes, which need genetic analysis to make a differential diagnosis. Among them, autosomal recessive hypophosphatemic rickets type 1 (ARHR1), caused by a homozygous mutation of dentin matrix protein 1 (DMP1), is extremely rare, with only 30 reported patients. To date, there has been no case with compound heterozygous DMP1 mutations. OBJECTIVE To report the first compound heterozygous mutations of DMP1 causing ARHR1 and confirm the effect of the mutation on DMP1 protein. METHODS We report the clinical features of a Chinese patient with HR. Whole-exome sequencing (WES) was performed on the proband. Then, Cytoscan HD array, Sanger sequencing, and genomic quantitative PCR (qPCR) were used to confirm the mutations. A cell experiment was conducted to explore the effect of the mutation. RESULTS The proband is a 4-year-old boy, who developed genu varum when he was able to walk at age 1 year and tooth loss after a mild hit at age 3.5 years. Physical examination, biochemical measurement, and imaging finding indicated HR. Family history was negative. WES performed on the proband revealed a novel start codon mutation (c.1A > T, p.Met1Leu) in DMP1 and a large deletion involving most of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family gene, including DSPP, DMP1, IBSP, and MEPE. The novel paternally inherited start codon mutation, which resulted in decreased expression of DMP1 protein with smaller molecular weight and cleavage defect, was confirmed by Sanger sequencing. The maternally inherited deletion was validated by Cytoscan and qPCR, and the breakpoint was finally identified by long-range PCR and Sanger sequencing. Manifestation of dentin dysplasia (DD) or dentinogenesis imperfecta (DGI) caused by DSPP mutations was absent in the patient and his mother, confirming that haploinsufficiency could not lead to DD or DGI. CONCLUSION We report for the first time compound heterozygous DMP1 mutations consisting of a large deletion and a novel start codon mutation (c.1A > T, p.Met1Leu) in a Chinese patient with ARHR1.
Collapse
Affiliation(s)
- Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiyi Gong
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Chi
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
8
|
Hanai A, Kawabata A, Nakajima K, Masuda K, Urakawa I, Abe M, Yamazaki Y, Fukumoto S. Single-cell RNA sequencing identifies Fgf23-expressing osteocytes in response to 1,25-dihydroxyvitamin D 3 treatment. Front Physiol 2023; 14:1102751. [PMID: 36776964 PMCID: PMC9911654 DOI: 10.3389/fphys.2023.1102751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23), a hormone, mainly produced by osteocytes, regulates phosphate and vitamin D metabolism. By contrast, 1,25-dihydroxyvitamin D3, the active form of vitamin D, has been shown to enhance FGF23 production. While it is likely that osteocytes are heterogenous in terms of gene expression profiles, specific subpopulations of Fgf23-expressing osteocytes have not been identified. Single-cell RNA sequencing (scRNA-seq) technology can characterize the transcriptome of an individual cell. Recently, scRNA-seq has been used for bone tissue analysis. However, owing to technical difficulties associated with isolation of osteocytes, studies using scRNA-seq analysis to characterize FGF23-producing osteocytes are lacking. In this study, we characterized osteocytes secreting FGF23 from murine femurs in response to calcitriol (1,25-dihydroxyvitamin D3) using scRNA-seq. We first detected Dmp1, Mepe, and Phex expression in murine osteocytes by in situ hybridization and used these as marker genes of osteocytes. After decalcification, enzyme digestion, and removal of CD45+ cells, femoral bone cells were subjected to scRNA-seq. We identified cell clusters containing osteocytes using marker gene expression. While Fgf23 expression was observed in some osteocytes isolated from femurs of calcitriol-injected mice, no Fgf23 expression was detected in untreated mice. In addition, the expression of several genes which are known to be changed after 1,25-dihydroxyvitamin D3 treatment such as Ccnd2, Fn1, Igfbp7, Pdgfa, and Timp1 was also affected by calcitriol treatment in Fgf23-expressing osteocytes, but not in those lacking Fgf23 expression, even after calcitriol administration. Furthermore, box-and-whisker plots indicated that Fgf23 expression was observed in osteocytes with higher expression levels of the Fam20c, Dmp1, and Phex genes, whose inactivating mutations have been shown to cause FGF23-related hypophosphatemic diseases. These results indicate that osteocytes are heterogeneous with respect to their responsiveness to 1,25-dihydroxyvitamin D3, and sensitivity to 1,25-dihydroxyvitamin D3 is one of the characteristics of osteocytes with Fgf23 expression. It is likely that there is a subpopulation of osteocytes expressing several genes, including Fgf23, involved in phosphate metabolism.
Collapse
Affiliation(s)
- Ayako Hanai
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan,Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan,*Correspondence: Ayako Hanai,
| | | | | | | | | | - Masahiro Abe
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | | | - Seiji Fukumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
9
|
Michigami T. Paracrine and endocrine functions of osteocytes. Clin Pediatr Endocrinol 2023; 32:1-10. [PMID: 36761497 PMCID: PMC9887291 DOI: 10.1297/cpe.2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 11/04/2022] Open
Abstract
Osteocytes are dendritic-shaped cells embedded in the bone matrix and are terminally differentiated from osteoblasts. Inaccessibility due to their location has hindered the understanding of the molecular functions of osteocytes. However, scientific advances in the past few decades have revealed that osteocytes play critical roles in bone and mineral metabolism through their paracrine and endocrine functions. Sclerostin produced by osteocytes regulates bone formation and resorption by inhibiting Wnt/β-catenin signaling in osteoblast-lineage cells. Receptor activator of nuclear factor κ B ligand (RANKL) derived from osteocytes is essential for osteoclastogenesis and osteoclast activation during postnatal life. Osteocytes also secrete fibroblast growth factor 23 (FGF23), an endocrine FGF that regulates phosphate metabolism mainly by increasing phosphate excretion and decreasing 1, 25-dihydroxyvitamin D production in the kidneys. The regulation of FGF23 production in osteocytes is complex and multifactorial, involving many local and systemic regulators. Antibodies against sclerostin, RANKL, and FGF23 have emerged as new strategies for the treatment of metabolic bone diseases. Improved undrstanding of the paracrine and endocrine functions of osteocytes will provide insight into future therapeutic options.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute,
Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Osaka,
Japan
| |
Collapse
|
10
|
He Y, Wang W, Luo P, Wang Y, He Z, Dong W, Jia M, Yu X, Yang B, Wang J. Mettl3 regulates hypertrophic differentiation of chondrocytes through modulating Dmp1 mRNA via Ythdf1-mediated m 6A modification. Bone 2022; 164:116522. [PMID: 35981698 DOI: 10.1016/j.bone.2022.116522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
As the main cells in endochondral osteogenesis, chondrocytes have limited self-repair ability due to weak proliferation activity, low density, and dedifferentiation tendency. Here, a thorough inquiry about the effect and underlying mechanisms of methyltransferase like-3 (Mettl3) on chondrocytes was made. Functionally, it was indicated that Mettl3 promoted the proliferation and hypertrophic differentiation of chondrocytes. Mechanically, Dmp1 (dentin matrix protein 1) was proved to be the downstream direct target of Mettl3 for m6A modification to regulate the differentiation of chondrocytes through bioinformatics analysis and correlated experiments. The Reader protein Ythdf1 mediated Dmp1 mRNA catalyzed by Mettl3. In vivo, the formation of subcutaneous ectopic cartilage-like tissue further supported the in vitro results. In conclusion, the gene regulation of Mettl3/m6A/Ythdf1/Dmp1 axis in hypertrophic differentiation of chondrocytes for the development of endochondral osteogenesis may supply a promising treatment strategy for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Wang
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
11
|
Abstract
Inorganic phosphate (Pi) in the mammalian body is balanced by its influx and efflux through the intestines, kidneys, bones, and soft tissues, at which several sodium/Pi co-transporters mediate its active transport. Pi homeostasis is achieved through the complex counter-regulatory feedback balance between fibroblast growth factor 23 (FGF23), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone. FGF23, which is mainly produced by osteocytes in bone, plays a central role in Pi homeostasis and exerts its effects by binding to the FGF receptor (FGFR) and αKlotho in distant target organs. In the kidneys, the main target, FGF23 promotes the excretion of Pi and suppresses the production of 1,25(OH)2D. Deficient and excess FGF23 result in hyperphosphatemia and hypophosphatemia, respectively. FGF23-related hypophosphatemic rickets/osteomalacia include tumor-induced osteomalacia and various genetic diseases, such as X-linked hypophosphatemic rickets. Coverage by the national health insurance system in Japan for the measurement of FGF23 and the approval of burosumab, an FGF23-neutralizing antibody, have had a significant impact on the diagnosis and treatment of FGF23-related hypophosphatemic rickets/osteomalacia. Some of the molecules responsible for genetic hypophosphatemic rickets/osteomalacia are highly expressed in osteocytes and function as local regulators of FGF23 production. A number of systemic factors also regulate FGF23 levels. Although the mechanisms responsible for Pi sensing in mammals have not yet been elucidated in detail, recent studies have suggested the involvement of FGFR1. The further clarification of the mechanisms by which osteocytes detect Pi levels and regulate FGF23 production will lead to the development of better strategies to treat hyperphosphatemic and hypophosphatemic conditions.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| |
Collapse
|
12
|
Pathogenic Variants of the PHEX Gene. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Twenty-five years ago, a pathogenic variant of the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene was identified as the cause of X-linked hypophosphatemic rickets (XLH). Subsequently, the overproduction of fibroblast growth factor 23 (FGF23) due to PHEX defects has been found to be associated with XLH pathophysiology. However, the mechanism by which PHEX deficiency contributes to the upregulation of FGF23 and the function of PHEX itself remain unclear. To date, over 700 pathogenic variants have been identified in patients with XLH, and functional assays and genotype–phenotype correlation analyses based on pathogenic variant data derived from XLH patients have been reported. Genetic testing for XLH is useful for the diagnosis. Not only have single-nucleotide variants causing missense, nonsense, and splicing variants and small deletion/insertion variants causing frameshift/non-frameshift alterations been observed, but also gross deletion/duplication variants causing copy number variants have been reported as pathogenic variants in PHEX. With the development of new technologies including next generation sequencing, it is expected that an increasing number of pathogenic variants will be identified. This chapter aimed to summarize the genotype of PHEX and related analyses and discusses the pathophysiology of PHEX defects to seek clues on unsolved questions.
Collapse
|
13
|
Michigami T, Tachikawa K, Yamazaki M, Nakanishi T, Kawai M, Ozono K. Growth-related skeletal changes and alterations in phosphate metabolism. Bone 2022; 161:116430. [PMID: 35577326 DOI: 10.1016/j.bone.2022.116430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022]
Abstract
Serum inorganic phosphate (Pi) levels are higher in children than in adults; however, the underlying mechanisms remain unclear. Therefore, we herein attempted to elucidate the mechanisms altering Pi metabolism from youth to adulthood using 4-week-old (young) and 12-week-old (adult) mice. Despite higher serum Pi levels, serum fibroblast growth factor 23 (FGF23) levels were lower in young mice, and the amount of FGF23 in bone tended to increase from youth to adulthood. Increases in serum FGF23 levels during growth were associated with the up- and down-regulation of the renal expression of Cyp24a1 encoding vitamin D-24-hydroxylase and Slc34a3 encoding the type IIc sodium/phosphate (Na+/Pi) co-transporter, respectively, suggesting an enhancement in the FGF23-mediated bone-kidney axis from youth to adulthood. We then isolated osteoblasts and osteocytes from young and adult mice and compared the expression of genes involved in Pi metabolism and/or mineralization. In contrast to the growth-related increase in Fgf23 expression, the expression of some genes, including the dentin matrix protein 1 (Dmp1) and phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex) markedly decreased from youth to adulthood. The down-regulation of Dmp1 and Phex may contribute to growth-related increases in FGF23. The responses of isolated osteoblasts and osteocytes to high Pi levels also markedly differed between young and adult mice. Treatment of isolated osteocytes with high Pi increased the production of FGF23 in adult mice but not in young mice. These results indicate a close relationship between skeletal changes from youth to adulthood and an alteration in Pi metabolism, and provide insights into the mechanisms by which osteoblasts and osteocytes maintain Pi homeostasis.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
15
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
16
|
Pathogenesis of FGF23-Related Hypophosphatemic Diseases Including X-linked Hypophosphatemia. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since phosphate is indispensable for skeletal mineralization, chronic hypophosphatemia causes rickets and osteomalacia. Fibroblast growth factor 23 (FGF23), which is mainly produced by osteocytes in bone, functions as the central regulator of phosphate metabolism by increasing the renal excretion of phosphate and suppressing the production of 1,25-dihydroxyvitamin D. The excessive action of FGF23 results in hypophosphatemic diseases, which include a number of genetic disorders such as X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia (TIO). Phosphate-regulating gene homologous to endopeptidase on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), ectonucleotide pyrophosphatase phosphodiesterase-1, and family with sequence similarity 20c, the inactivating variants of which are responsible for FGF23-related hereditary rickets/osteomalacia, are highly expressed in osteocytes, similar to FGF23, suggesting that they are local negative regulators of FGF23. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by cleavage-resistant variants of FGF23, and iron deficiency increases serum levels of FGF23 and the manifestation of symptoms in ADHR. Enhanced FGF receptor (FGFR) signaling in osteocytes is suggested to be involved in the overproduction of FGF23 in XLH and autosomal recessive hypophosphatemic rickets type 1, which are caused by the inactivation of PHEX and DMP1, respectively. TIO is caused by the overproduction of FGF23 by phosphaturic tumors, which are often positive for FGFR. FGF23-related hypophosphatemia may also be associated with McCune-Albright syndrome, linear sebaceous nevus syndrome, and the intravenous administration of iron. This review summarizes current knowledge on the pathogenesis of FGF23-related hypophosphatemic diseases.
Collapse
|
17
|
Dzamukova M, Brunner TM, Miotla-Zarebska J, Heinrich F, Brylka L, Mashreghi MF, Kusumbe A, Kühn R, Schinke T, Vincent TL, Löhning M. Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nat Commun 2022; 13:3059. [PMID: 35650194 PMCID: PMC9160028 DOI: 10.1038/s41467-022-30618-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.
Collapse
Affiliation(s)
- Maria Dzamukova
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Tobias M Brunner
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jadwiga Miotla-Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Frederik Heinrich
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anjali Kusumbe
- Tissue and Tumour Microenvironments Group, University of Oxford, Oxford, UK
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Trombetti A, Al-Daghri N, Brandi ML, Cannata-Andía JB, Cavalier E, Chandran M, Chaussain C, Cipullo L, Cooper C, Haffner D, Harvengt P, Harvey NC, Javaid MK, Jiwa F, Kanis JA, Laslop A, Laurent MR, Linglart A, Marques A, Mindler GT, Minisola S, Yerro MCP, Rosa MM, Seefried L, Vlaskovska M, Zanchetta MB, Rizzoli R. Interdisciplinary management of FGF23-related phosphate wasting syndromes: a Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia. Nat Rev Endocrinol 2022; 18:366-384. [PMID: 35484227 DOI: 10.1038/s41574-022-00662-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
X-linked hypophosphataemia (XLH) is the most frequent cause of hypophosphataemia-associated rickets of genetic origin and is associated with high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23). In addition to rickets and osteomalacia, patients with XLH have a heavy disease burden with enthesopathies, osteoarthritis, pseudofractures and dental complications, all of which contribute to reduced quality of life. This Consensus Statement presents the outcomes of a working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, and provides robust clinical evidence on management in XLH, with an emphasis on patients' experiences and needs. During growth, conventional treatment with phosphate supplements and active vitamin D metabolites (such as calcitriol) improves growth, ameliorates leg deformities and dental manifestations, and reduces pain. The continuation of conventional treatment in symptom-free adults is still debated. A novel therapeutic approach is the monoclonal anti-FGF23 antibody burosumab. Although promising, further studies are required to clarify its long-term efficacy, particularly in adults. Given the diversity of symptoms and complications, an interdisciplinary approach to management is of paramount importance. The focus of treatment should be not only on the physical manifestations and challenges associated with XLH and other FGF23-mediated hypophosphataemia syndromes, but also on the major psychological and social impact of the disease.
Collapse
Affiliation(s)
- Andrea Trombetti
- Division of Bone Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Jorge B Cannata-Andía
- Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Retic REDinREN-RICORS, 2040-ISCIII, Madrid, Spain
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liege, CHU de Liège, Liège, Belgium
| | - Manju Chandran
- Complicated Metabolic Bone Disorders Clinic, Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Catherine Chaussain
- Université de Paris, Institut des maladies musculo-squelettiques, URP2496, UFR Odontologie, Montrouge, France
- AP-HP, FHU DDS-Net, Centre de Référence des Maladies Rares du Métabolisme du Calcium et du Phosphore, Service médecine bucco-dentaire, Hôpital Bretonneau, GH Paris Nord Université de Paris, Paris, France
| | - Lucia Cipullo
- Patient representative with XLH, Geneva, Switzerland
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Pol Harvengt
- XLH Belgium, Belgian association of patients with XLH (a member of the International XLH Alliance), Waterloo, Belgium
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Famida Jiwa
- Chair of the Committee of Patients Societies at the International Osteoporosis Foundation, Osteoporosis Canada, Toronto, Canada
| | - John A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
| | - Andrea Laslop
- Scientific Office, Federal Office for Safety in Health Care, Vienna, Austria
| | - Michaël R Laurent
- Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Agnès Linglart
- Paris-Saclay University, INSERM U1185, Le Kremlin-Bicêtre, France
- AP-HP, endocrinology and diabetes for children, Reference centre for rare diseases of calcium and phosphate metabolism, OSCAR network, Platform of expertise for rare diseases of Paris Saclay Hospital, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, France
| | - Andréa Marques
- Rheumatology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Health Sciences Research Unit: Nursing (UICiSA:E), Nursing School of Coimbra, Coimbra, Portugal
| | - Gabriel T Mindler
- Department of Paediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | | | - Mario Miguel Rosa
- Departamento de Neurociências, Laboratório de Farmacologia Clínica E Terapêutica Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Lothar Seefried
- Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Mila Vlaskovska
- Medical Faculty, Department of Pharmacology, Medical University Sofia, Sofia, Bulgaria
| | - María Belén Zanchetta
- Instituto de Investigaciones Metabólicas (IDIM), Universidad del Salvador, Buenos Aires, Argentina
| | - René Rizzoli
- Division of Bone Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
19
|
The Emerging Role of Cell Transdifferentiation in Skeletal Development and Diseases. Int J Mol Sci 2022; 23:ijms23115974. [PMID: 35682655 PMCID: PMC9180549 DOI: 10.3390/ijms23115974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.
Collapse
|
20
|
Li T, Geng Y, Hu Y, Zhang L, Cui X, Zhang W, Gao F, Liu Z, Luo X. Dentin Matrix Protein 1 Silencing Inhibits Phosphorus Utilization in Primary Cultured Tibial Osteoblasts of Broiler Chicks. Front Vet Sci 2022; 9:875140. [PMID: 35558889 PMCID: PMC9087580 DOI: 10.3389/fvets.2022.875140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Three experiments were carried out in the present study to investigate whether dentin matrix protein 1 (DMP1) was involved in regulating phosphorus (P) metabolic utilization in primary cultured tibial osteoblasts of broiler chicks. Experiment 1 was conducted to select the optimal osteogenic inductive culture medium and the optimal induction time in primary cultured tibial osteoblasts of broiler chicks. In experiment 2, the siRNAs against DMP1 were designed, synthesized and transfected into primary cultured tibial osteoblasts of broiler chicks, and then the inhibitory efficiencies of siRNAs against DMP1 were determined, and the most efficacious siRNA was selected to be used for the DMP1 silencing. In experiment 3, with or without siRNA against DMP1, primary cultured tibial osteoblasts of broiler chicks were treated with the medium supplemented with 0.0, 1.0 or 2.0 mmol/L of P as NaH2PO4 for 12 days. The P metabolic utilization-related parameters were measured. The results showed that the osteogenic induced medium 2 and 12 days of the optimal induction time were selected; Among the designed siRNAs, the si340 was the most effective (P < 0.05) in inhibiting the DMP1 expression; DMP1 silencing decreased (P < 0.05) the expressions of DMP1 mRNA and protein, P retention rate, mineralization formation, alkaline phosphatase activity and bone gla-protein content in tibial osteoblasts at all of added P levels. It is concluded that DMP1 silencing inhibited P utilization, and thus DMP1 was involved in regulating P metabolic utilization in primary cultured tibial osteoblasts of broiler chicks, which provides a novel insight into the regulation of the P utilization in the bone of broilers, and will contribute to develop feasible strategies to improve the bone P utilization efficiency of broilers so as to decrease its excretion.
Collapse
Affiliation(s)
- Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Feiyu Gao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Xugang Luo
| |
Collapse
|
21
|
The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch 2022; 474:281-292. [PMID: 35084563 PMCID: PMC8837506 DOI: 10.1007/s00424-022-02668-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an important bone hormone that regulates phosphate homeostasis in the kidney along with active vitamin D (1,25(OH)2D3) and parathyroid hormone (PTH). Endocrine effects of FGF23 depend, at least in part, on αKlotho functioning as a co-receptor whereas further paracrine effects in other tissues are αKlotho-independent. Regulation of FGF23 production is complex under both, physiological and pathophysiological conditions. Physiological regulators of FGF23 include, but are not limited to, 1,25(OH)2D3, PTH, dietary phosphorus intake, and further intracellular and extracellular factors, kinases, cytokines, and hormones. Moreover, several acute and chronic diseases including chronic kidney disease (CKD) or further cardiovascular disorders are characterized by early rises in the plasma FGF23 level pointing to further mechanisms effective in the regulation of FGF23 under pathophysiological conditions. Therefore, FGF23 also serves as a prognostic marker in several diseases. Our review aims to comprehensively summarize the regulation of FGF23 in health and disease.
Collapse
|
22
|
Kato H, Hidaka N, Koga M, Ogawa N, Takahashi S, Miyazaki H, Nangaku M, Makita N, Ito N. Performance evaluation of the new chemiluminescent intact FGF23 assay relative to the existing assay system. J Bone Miner Metab 2022; 40:101-108. [PMID: 34351500 DOI: 10.1007/s00774-021-01258-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION This study assessed the performance of a new fully automated immunoassay for fibroblast growth factor (FGF) 23 (Determinar CL FGF23 CL) among healthy individuals and those with chronic hypophosphatemia compared with the previous assay (Kainos FGF23 KI). MATERIALS AND METHODS A total of 380 serum samples from healthy participants were collected to determine the reference range of FGF23 levels with CL. A total of 200 serum samples from 22 hypophosphatemic patients were collected simultaneously to compare the difference in FGF23 levels between CL and KI. The Mann-Whitney U test and linear regression analysis were adopted to assess the differences and linearity between the two assays. RESULTS The median FGF23 levels among healthy individuals was 31.7 (interquartile: 26.4-37.5) pg/mL. When the reference range was calculated as the mean ± 2 standard deviation (2SD), it was 16.1-49.3 pg/mL. A total of 363 individuals (96%) among normal cases fell in this range. Among 200 samples from patients with chronic hypophosphatemic disorder, the median FGF23 levels analyzed by CL and KI were 123.0 (90.2-237.7) and 172.5 (115.8-290.7) pg/mL. KI yielded significantly higher FGF23 values than CL (p < 0.001). A linear regression model revealed the correlation between KI (x) and CL (y), which had a slope of 0.76 with a y-intercept of -0.32 and high linearity (R2 = 0.99). CONCLUSION The new measurement kit yielded lower FGF23 values when compared with the previous assay. Clinicians should consider this discrepancy when they assay intact FGF23 values with CL.
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Minae Koga
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriyuki Ogawa
- Minaris Medical Co., Ltd., 600-1, Minami-ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-0932, Japan
| | - Shichihiro Takahashi
- Minaris Medical Co., Ltd., 600-1, Minami-ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-0932, Japan
| | - Hiromi Miyazaki
- Minaris Medical Co., Ltd., 600-1, Minami-ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-0932, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
23
|
Abstract
Osteocytes are dendritic cells in the mineralized bone matrix that descend from osteoblasts. They play critical roles in controlling bone mass through the production of sclerostin, an inhibitor of bone formation, and receptor activator of nuclear factor κ B ligand, an inducer of osteoblastic bone resorption. Osteocytes also govern phosphate homeostasis through the production of fibroblast growth factor 23 (FGF23), which lowers serum phosphate levels by increasing renal phosphate excretion and reducing the synthesis of 1,25-dihydroxyvitamin D (1,25(OH)2D), an active metabolite of vitamin D. The production of FGF23 in osteocytes is regulated by various local and systemic factors. Phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C function as local negative regulators of FGF23 production in osteocytes, and their inactivation causes the overproduction of FGF23 and hypophosphatemia. Sclerostin has been suggested to regulate the production of FGF23, which may link the two functions of osteocytes, namely, the control of bone mass and regulation of phosphate homeostasis. Systemic regulators of FGF23 production include 1,25(OH)2D, phosphate, parathyroid hormone, insulin, iron, and inflammation. Therefore, the regulation of FGF23 in osteocytes is complex and multifactorial. Recent mouse studies have suggested that decreases in serum phosphate levels from youth to adulthood are caused by growth-related increases in FGF23 production by osteocytes, which are associated with the down-regulation of Phex and Dmp1.
Collapse
|
24
|
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part I-diagnostic workup. Pediatr Nephrol 2022; 37:2013-2036. [PMID: 34910242 PMCID: PMC9307538 DOI: 10.1007/s00467-021-05328-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/22/2023]
Abstract
Rickets is a disease of the growing child arising from alterations in calcium and phosphate homeostasis resulting in impaired apoptosis of hypertrophic chondrocytes in the growth plate. Its symptoms depend on the patients' age, duration of disease, and underlying disorder. Common features include thickened wrists and ankles due to widened metaphyses, growth failure, bone pain, muscle weakness, waddling gait, and leg bowing. Affected infants often show delayed closure of the fontanelles, frontal bossing, and craniotabes. The diagnosis of rickets is based on the presence of these typical clinical symptoms and radiological findings on X-rays of the wrist or knee, showing metaphyseal fraying and widening of growth plates, in conjunction with elevated serum levels of alkaline phosphatase. Nutritional rickets due to vitamin D deficiency and/or dietary calcium deficiency is the most common cause of rickets. Currently, more than 20 acquired or hereditary causes of rickets are known. The latter are due to mutations in genes involved in vitamin D metabolism or action, renal phosphate reabsorption, or synthesis, or degradation of the phosphaturic hormone fibroblast growth factor 23 (FGF23). There is a substantial overlap in the clinical features between the various entities, requiring a thorough workup using biochemical analyses and, if necessary, genetic tests. Part I of this review focuses on the etiology, pathophysiology and clinical findings of rickets followed by the presentation of a diagnostic approach for correct diagnosis. Part II focuses on the management of rickets, including new therapeutic approaches based on recent clinical practice guidelines.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| |
Collapse
|
25
|
Michigami T, Yamazaki M, Razzaque MS. Extracellular Phosphate, Inflammation and Cytotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:15-25. [DOI: 10.1007/978-3-030-91623-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Yamazaki M, Michigami T. Osteocytes and the pathogenesis of hypophosphatemic rickets. Front Endocrinol (Lausanne) 2022; 13:1005189. [PMID: 36246908 PMCID: PMC9556901 DOI: 10.3389/fendo.2022.1005189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Since phosphorus is a component of hydroxyapatite, its prolonged deprivation affects bone mineralization. Fibroblast growth factor 23 (FGF23) is essential for maintaining phosphate homeostasis and is mainly produced by osteocytes. FGF23 increases the excretion of inorganic phosphate (Pi) and decreases the production of 1,25-dihydroxyvitamin D in the kidneys. Osteocytes are cells of osteoblastic lineage that have undergone terminal differentiation and become embedded in mineralized bone matrix. Osteocytes express FGF23 and other multiple genes responsible for hereditary hypophosphatemic rickets, which include phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C (FAM20C). Since inactivating mutations in PHEX, DMP1, and FAM20C boost the production of FGF23, these molecules might be considered as local negative regulators of FGF23. Mouse studies have suggested that enhanced FGF receptor (FGFR) signaling is involved in the overproduction of FGF23 in PHEX-deficient X-linked hypophosphatemic rickets (XLH) and DMP1-deficient autosomal recessive hypophosphatemic rickets type 1. Since FGFR is involved in the transduction of signals evoked by extracellular Pi, Pi sensing in osteocytes may be abnormal in these diseases. Serum levels of sclerostin, an inhibitor Wnt/β-catenin signaling secreted by osteocytes, are increased in XLH patients, and mouse studies have suggested the potential of inhibiting sclerostin as a new therapeutic option for the disease. The elucidation of complex abnormalities in the osteocytes of FGF23-related hypophosphatemic diseases will provide a more detailed understanding of their pathogenesis and more effective treatments.
Collapse
|
27
|
Leifheit-Nestler M, Vogt I, Haffner D, Richter B. Phosphate Is a Cardiovascular Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:107-134. [DOI: 10.1007/978-3-030-91623-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Induction of FGF23-related hypophosphatemic osteomalacia by alcohol consumption. Bone Rep 2021; 15:101144. [PMID: 34901334 PMCID: PMC8640868 DOI: 10.1016/j.bonr.2021.101144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023] Open
Abstract
Context Fibroblast growth factor (FGF) 23 is a hormone that regulates serum phosphate levels, the excess action of which causes chronic hypophosphatemic rickets/osteomalacia. To date, there are only two identified causes of acquired FGF23-related hypophosphatemic osteomalacia: tumor-induced osteomalacia (TIO) and osteomalacia induced by the intravenous infusion of some forms of iron preparations. In the current study, two cases of FGF23-related hypophosphatemia probably induced by chronic alcohol consumption were first introduced. Case description Case 1 and case 2 had been drinking high amounts of alcohol for more than twenty years until they were admitted to the hospital. Case 1 was a 43-year-old man with progressive worsening multiple pains and muscle weakness who exhibited chronic hypophosphatemia with increased intact FGF23 levels. A week after admission, the serum phosphate level recovered to the reference range, and the intact FGF23 level declined. Case 1 resumed drinking after discharge, and hypophosphatemia concomitant with high intact FGF23 levels recurred. The alleviation of FGF23-related hypophosphatemia was observed each time he temporarily abstained from drinking for a short period. Case 2 was a 60-year-old man with recurrent fractures and exacerbation of pain in multiple joints who also exhibited hypophosphatemia with increased intact FGF23 levels. After admission, the serum phosphate level gradually increased to the lower limit of the normal range. The intact FGF23 level decreased, but it was still higher than 30 pg/ml, and causative FGF23-producing tumors were not identified even with thorough examinations, including somatostatin receptor scintigraphy, fluorine-18-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) and systemic venous FGF23 sampling. He completely abstained from alcohol after discharge. Along with the serum phosphate level, intact FGF23 was subsequently decreased and had been normalized for 5 months. Both patients had no genetic mutation related to hereditary FGF23-related hypophosphatemic rickets/osteomalacia, including autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR). Conclusion Two cases of FGF23-related hypophosphatemia probably induced by alcohol were first introduced in this study. Identifying this reversible condition among acquired FGF23-related hypophosphatemic osteomalacia is critical to obtain better patient outcomes and save medical resources. This condition is similar to iron infusion-induced FGF23-related hypophosphatemia in terms of the dysregulation of FGF23 due to exogenous factors. Future research to elucidate the precise mechanism of these conditions is warranted. Two adults with acquired FGF23-related hypophosphatemic osteomalacia were studied. Tumor-induced osteomalacia was suspected initially, but no tumor was identified. Cessation of alcohol led to recovery from FGF23-related hypophosphatemia. Alcohol is a well-recognized cause of hypophosphatemia, but osteomalacia is uncommon. Alcohol-induced FGF23-related osteomalacia is a totally new and distinct phenomenon.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
30
|
A 5-year-old girl with bony deformities and disproportionate short stature: Answers. Pediatr Nephrol 2021; 36:3117-3121. [PMID: 33730275 DOI: 10.1007/s00467-021-05038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
|
31
|
Bizzari S, Nair P, Deepthi A, Hana S, Al-Ali MT, Megarbané A, El-Hayek S. Catalogue for Transmission Genetics in Arabs (CTGA) Database: Analysing Lebanese Data on Genetic Disorders. Genes (Basel) 2021; 12:1518. [PMID: 34680914 PMCID: PMC8535931 DOI: 10.3390/genes12101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Lebanon has a high annual incidence of birth defects at 63 per 1000 live births, most of which are due to genetic factors. The Catalogue for Transmission Genetics in Arabs (CTGA) database, currently holds data on 642 genetic diseases and 676 related genes, described in Lebanese subjects. A subset of disorders (14/642) has exclusively been described in the Lebanese population, while 24 have only been reported in CTGA and not on OMIM. An analysis of all disorders highlights a preponderance of congenital malformations, deformations and chromosomal abnormalities and demonstrates that 65% of reported disorders follow an autosomal recessive inheritance pattern. In addition, our analysis reveals that at least 58 known genetic disorders were first mapped in Lebanese families. CTGA also hosts 1316 variant records described in Lebanese subjects, 150 of which were not reported on ClinVar or dbSNP. Most variants involved substitutions, followed by deletions, duplications, as well as in-del and insertion variants. This review of genetic data from the CTGA database highlights the need for screening programs, and is, to the best of our knowledge, the most comprehensive report on the status of genetic disorders in Lebanon to date.
Collapse
Affiliation(s)
- Sami Bizzari
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Pratibha Nair
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Asha Deepthi
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Sayeeda Hana
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Mahmoud Taleb Al-Ali
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - André Megarbané
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 13-5053, Lebanon;
| | - Stephany El-Hayek
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| |
Collapse
|
32
|
Ito N, Prideaux M, Wijenayaka AR, Yang D, Ormsby RT, Bonewald LF, Atkins GJ. Sclerostin Directly Stimulates Osteocyte Synthesis of Fibroblast Growth Factor-23. Calcif Tissue Int 2021; 109:66-76. [PMID: 33616712 DOI: 10.1007/s00223-021-00823-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Osteocyte produced fibroblast growth factor 23 (FGF23) is the key regulator of serum phosphate (Pi) homeostasis. The interplay between parathyroid hormone (PTH), FGF23 and other proteins that regulate FGF23 production and serum Pi levels is complex and incompletely characterised. Evidence suggests that the protein product of the SOST gene, sclerostin (SCL), also a PTH target and also produced by osteocytes, plays a role in FGF23 expression, however the mechanism for this effect is unclear. Part of the problem of understanding the interplay of these mediators is the complex multi-organ system that achieves Pi homeostasis in vivo. In the current study, we sought to address this using a cell line model of the osteocyte, IDG-SW3, known to express FGF23 at both the mRNA and protein levels. In cultures of differentiated IDG-SW3 cells, both PTH1-34 and recombinant human (rh) SCL remarkably induced Fgf23 mRNA expression dose-dependently within 3 h. Both rhPTH1-34 and rhSCL also strongly induced C-terminal FGF23 protein secretion. Secreted intact FGF23 levels remained unchanged, consistent with constitutive post-translational cleavage of FGF23 in this cell model. Both rhPTH1-34 and rhSCL treatments significantly suppressed mRNA levels of Phex, Dmp1 and Enpp1 mRNA, encoding putative negative regulators of FGF23 levels, and induced Galnt3 mRNA expression, encoding N-acetylgalactosaminyl-transferase 3 (GalNAc-T3), which protects FGF23 from furin-like proprotein convertase-mediated cleavage. The effect of both rhPTH1-34 and rhSCL was antagonised by pre-treatment with the NF-κβ signalling inhibitors, BAY11 and TPCK. RhSCL also stimulated FGF23 mRNA expression in ex vivo cultures of human bone. These findings provide evidence for the direct regulation of FGF23 expression by sclerostin. Locally expressed sclerostin via the induction of FGF23 in osteocytes thus has the potential to contribute to the regulation of Pi homeostasis.
Collapse
Affiliation(s)
- Nobuaki Ito
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Matthew Prideaux
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
- School of Medicine, Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Asiri R Wijenayaka
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Dongqing Yang
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renee T Ormsby
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
- Brigham and Women's Hospital, Boston, MA, USA
| | - Lynda F Bonewald
- School of Medicine, Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
33
|
Rickets in Children: An Update. Biomedicines 2021; 9:biomedicines9070738. [PMID: 34199067 PMCID: PMC8301330 DOI: 10.3390/biomedicines9070738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Rickets refers to a deficient mineralization of the growth plate cartilage, predominantly affecting longer bones. Despite the fact that preventive measures are available, it is still a common disease worldwide; nutritional rickets, due to vitamin D deficiency or dietary calcium inadequate intake, remains the most common form. Medical history, physical examination, radiologic features and biochemical tests are essential for diagnosis. Although recent studies suggest hypophosphatemia as the leading alteration, rickets is classically divided into two categories: calcipenic rickets and phosphopenic rickets. Knowledge of this categorization and of respective clinical and laboratory features is essential for rapid diagnosis and correct management. The aim of this review is to analyze the epidemiological, pathogenetic, clinical, and therapeutic aspects of the different forms of rickets, describing the novelties on this “long-lived” disease.
Collapse
|
34
|
Silvent J, Robin M, Bussola Tovani C, Wang Y, Soncin F, Delgado S, Azaïs T, Sassoye C, Giraud-Guille MM, Sire JY, Nassif N. Collagen Suprafibrillar Confinement Drives the Activity of Acidic Calcium-Binding Polymers on Apatite Mineralization. Biomacromolecules 2021; 22:2802-2814. [PMID: 34101426 DOI: 10.1021/acs.biomac.1c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone collagenous extracellular matrix provides a confined environment into which apatite crystals form. This biomineralization process is related to a cascade of events partly controlled by noncollagenous proteins. Although overlooked in bone models, concentration and physical environment influence their activities. Here, we show that collagen suprafibrillar confinement in bone comprising intra- and interfibrillar spaces drives the activity of biomimetic acidic calcium-binding polymers on apatite mineralization. The difference in mineralization between an entrapping dentin matrix protein-1 (DMP1) recombinant peptide (rpDMP1) and the synthetic polyaspartate validates the specificity of the 57-KD fragment of DMP1 in the regulation of mineralization, but strikingly without phosphorylation. We show that all the identified functions of rpDMP1 are dedicated to preclude pathological mineralization. Interestingly, transient apatite phases are only found using a high nonphysiological concentration of additives. The possibility to combine biomimetic concentration of both collagen and additives ensures specific chemical interactions and offers perspectives for understanding the role of bone components in mineralization.
Collapse
Affiliation(s)
- Jérémie Silvent
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France.,MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Marc Robin
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Yan Wang
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Fabrice Soncin
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Sidney Delgado
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Capucine Sassoye
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Marie-Madeleine Giraud-Guille
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Jean-Yves Sire
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| |
Collapse
|
35
|
Turan I, Erdem S, Kotan LD, Ozdemir Dilek S, Tastan M, Gurbuz F, Bişgin A, Karabay Bayazıt A, Topaloglu AK, Yuksel B. Experience with the targeted next-generation sequencing in the diagnosis of hereditary hypophosphatemic rickets. J Pediatr Endocrinol Metab 2021; 34:639-648. [PMID: 33852231 DOI: 10.1515/jpem-2020-0624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hereditary Hypophosphatemic Rickets (HHR) is a heterogeneous group of disorders characterized by hypophosphatemia. Although the X-linked dominant HHR is the most common form, the genetic etiology of HHR is variable. Recently, developed next-generation sequencing techniques may provide opportunities for making HHR diagnosis in a timely and efficient way. METHODS We investigated clinical and genetic features for 18 consecutive probands and their 17 affected family members with HHR. All patient's clinical and biochemical data were collected. We first analyzed a single gene with Next-generation sequencing if the patients have a strong clue for an individual gene. For the remaining cases, a Hypophosphatemic Rickets gene panel, including all known HHR genes by Next-generation sequencing, was employed. RESULTS We were able to diagnosis all of the consecutive 35 patients in our tertiary care center. We detected nine novel and 10 previously described variants in PHEX (9; 50%), SLC34A3 (3; 17%), ENPP1 (3; 17%), SLC34A1 (1; 5%), CLCN5 (1; 5%), and DMP1 (1; 5%). CONCLUSIONS To delineate the etiology of HHR cases in a cost and time-efficient manner, we propose single gene analysis by next-generation sequencing if findings of patients indicate a strong clue for an individual gene. If that analysis is negative or for all other cases, a Next-generation Sequence gene panel, which includes all known HHR genes, should be employed.
Collapse
Affiliation(s)
- Ihsan Turan
- Department of Pediatrics, Division of Pediatric Endocrinology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Sevcan Erdem
- Department of Pediatrics, Division of Pediatric Cardiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Leman Damla Kotan
- Department of Pediatrics, Division of Pediatric Endocrinology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Semine Ozdemir Dilek
- Department of Pediatrics, Division of Pediatric Endocrinology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Mehmet Tastan
- Department of Pediatrics, Division of Pediatric Endocrinology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Fatih Gurbuz
- Department of Pediatrics, Division of Pediatric Endocrinology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Atıl Bişgin
- AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University, Adana, Turkey.,and Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Aysun Karabay Bayazıt
- Department of Pediatrics, Division of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ali Kemal Topaloglu
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bilgin Yuksel
- Department of Pediatrics, Division of Pediatric Endocrinology, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
36
|
Diaz Escagedo P, Fiscaletti M, Olivier P, Hudon C, Miranda V, Miron MC, Campeau PM, Alos N. Rickets manifestations in a child with metaphyseal anadysplasia, report of a spontaneously resolving case. BMC Pediatr 2021; 21:248. [PMID: 34022834 PMCID: PMC8140414 DOI: 10.1186/s12887-021-02716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/12/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction Rickets is not an unusual diagnosis for pediatricians even currently in developed countries. Children typically present with leg bowing, enlargement of wrists, rachitic rosary (swelling of costochondral junctions) and/or waddling gait. But not every child with growth delay and enlarged metaphyses is diagnosed with rickets. Metaphyseal anadysplasia (MAD) is a disorder of variable severity with metaphyseal flaring and irregularities, without vertebral abnormalities. MAD is characterized by an early onset and a regressive course in late childhood without treatment, despite persistent short stature. Autosomal dominant or recessive variants in the matrix metalloproteinase 13 gene (MMP13) are responsible for these transient metaphyseal changes. Case presentation We report a new pathogenic heterozygous variant in MMP13 (NM_002427.4: c.216G>C, p.Gln72His) in a toddler, initially thought to have rickets, and his father, with MAD phenotypes. Additionally, we review the seven reported MMP13 variants. Conclusion One should keep a wide differential diagnosis in cases of suspected rickets, including skeletal dysplasias which might have a regressive course. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02716-x.
Collapse
Affiliation(s)
- Patricia Diaz Escagedo
- Bone and mineral Clinic, Sainte-Justine Hospital Center, Department of Pediatrics, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Melissa Fiscaletti
- Bone and mineral Clinic, Sainte-Justine Hospital Center, Department of Pediatrics, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Patricia Olivier
- Bone and mineral Clinic, Sainte-Justine Hospital Center, Department of Pediatrics, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Chloé Hudon
- Medical Genetics Service, Sainte-Justine Hospital Center, Department of Pediatrics, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Valancy Miranda
- Medical Genetics Service, Sainte-Justine Hospital Center, Department of Pediatrics, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Marie-Claude Miron
- Radiology Department, Sainte-Justine Hospital Center, Department of Pediatrics, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Philippe M Campeau
- Medical Genetics Service, Sainte-Justine Hospital Center, Department of Pediatrics, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada. .,Research Center, Sainte-Justine Hospital Center, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada.
| | - Nathalie Alos
- Bone and mineral Clinic, Sainte-Justine Hospital Center, Department of Pediatrics, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada. .,Research Center, Sainte-Justine Hospital Center, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada.
| |
Collapse
|
37
|
Papadopoulou A, Bountouvi E, Karachaliou FE. The Molecular Basis of Calcium and Phosphorus Inherited Metabolic Disorders. Genes (Basel) 2021; 12:genes12050734. [PMID: 34068220 PMCID: PMC8153134 DOI: 10.3390/genes12050734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca) and Phosphorus (P) hold a leading part in many skeletal and extra-skeletal biological processes. Their tight normal range in serum mirrors their critical role in human well-being. The signalling “voyage” starts at Calcium Sensing Receptor (CaSR) localized on the surface of the parathyroid glands, which captures the “oscillations” of extracellular ionized Ca and transfers the signal downstream. Parathyroid hormone (PTH), Vitamin D, Fibroblast Growth Factor (FGF23) and other receptors or ion-transporters, work synergistically and establish a highly regulated signalling circuit between the bone, kidneys, and intestine to ensure the maintenance of Ca and P homeostasis. Any deviation from this well-orchestrated scheme may result in mild or severe pathologies expressed by biochemical and/or clinical features. Inherited disorders of Ca and P metabolism are rare. However, delayed diagnosis or misdiagnosis may cost patient’s quality of life or even life expectancy. Unravelling the thread of the molecular pathways involving Ca and P signaling, we can better understand the link between genetic alterations and biochemical and/or clinical phenotypes and help in diagnosis and early therapeutic intervention.
Collapse
|
38
|
Zhang H, Xu Q, Lu Y, Qin C. Effect of high phosphate diet on the formation of dentin in Fam20c-deficient mice. Eur J Oral Sci 2021; 129:e12795. [PMID: 33905141 DOI: 10.1111/eos.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/28/2022]
Abstract
FAM20C (family with sequence similarity 20-member C), a kinase that phosphorylates secretory proteins, plays essential roles in various biological processes. In humans, mutations in FAM20C gene cause Raine syndrome, an autosomal recessive hereditary disease manifesting a broad spectrum of developmental defects including skeletal and craniofacial deformities. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets and that high phosphate (hPi) diet significantly improved the development of the skeleton in Fam20c-deficient mice. In this study, we evaluated the effects of hPi diet on the formation of dentin in Fam20c-deficient mice, using plain x-ray radiography, micro-computed tomography (µCT), histology, and immunohistochemistry. Plain x-ray radiography and µCT analyses showed that the hPi diet improved the dentin volume fraction and dentin mineral density of the Fam20c-deficient mice. Histology analyses further demonstrated that the hPi diet dramatically improved the integrity of the mandibular first molars and prevented pulp infection and dental abscesses in Fam20c-deficient mice. Our results support that the hPi diet significantly increased the formation and mineralization of dentin in Fam20c-deficient mice, implying that hypophosphatemia is a significant contributor to the dentin defects in Fam20c-deficient subjects.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Qian Xu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
39
|
Shu Y, Huang J, Gao M, Gan S, Zhu S, Xu S, Yang Z, Liao Y, Lu W. Small Interfering RNA Targeting DMP1 Protects Mice Against Blood-Brain Barrier Disruption and Brain Injury After Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:105760. [PMID: 33845422 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/30/2023] Open
Abstract
Dentin matrix protein 1 (DMP1) is an extracellular matrix phosphoprotein that is known to facilitate mineralization of collagen in bone and promote osteoblast/odontoblast differentiation. Blood-brain barrier (BBB) disruption is the major pathogenesis in secondary brain injury after intracerebral hemorrhage (ICH). This study aimed to investigate the expression pattern of DMP1 in the mouse brain and explore the role of DMP1 in BBB disruption and brain injury in a mouse model of ICH. Mice were subjected to autologous blood injection-induced ICH. Immunofluorescence staining, western blot analysis, neurobehavioral tests, brain water content measurements, Evans blue permeability assay, and transmission electron microscopy were performed. Small interfering RNA targeting DMP1 (DMP1 siRNA) was administered at 72 h prior to ICH. Results showed that DMP1 is expressed extensively in the mouse brain, and is upregulated in the ICH model. Administration of DMP1 siRNA effectively ameliorated BBB disruption, attenuated brain edema, and improved neurological function after ICH. Moreover, the expression of zonula occludens-1 (ZO-1) and occludin were upregulated, and matrix metalloproteinase-9 (MMP-9) was downregulated in the ICH model. DMP1 siRNA administration reversed the expression of ZO-1, occludin, and MMP-9. These results demonstrated that DMP1 upregulation plays an essential role in inducing BBB disruption and brain injury after ICH. The inhibition of DMP1 could be a potential therapeutic strategy for ICH treatment.
Collapse
Affiliation(s)
- Yue Shu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Juan Huang
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Meng Gao
- Department of Clinical Laboratory, 521 Hospital of Ordnance Industry, Xi'an 7100065, China.
| | - Shengwei Gan
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Shujuan Zhu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Shiye Xu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Zhengyu Yang
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Yuhui Liao
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Weitian Lu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
40
|
Kaur S, Roberts DD. Differential intolerance to loss of function and missense mutations in genes that encode human matricellular proteins. J Cell Commun Signal 2021; 15:93-105. [PMID: 33415696 PMCID: PMC7904989 DOI: 10.1007/s12079-020-00598-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Targeted gene disruption in mice has provided valuable insights into the functions of matricellular proteins. Apart from missense and loss of function mutations that have been associated with inherited diseases, however, their functions in humans remain unclear. The availability of deep exome sequencing data from over 140,000 individuals in the Genome Aggregation Database provided an opportunity to examine intolerance to loss of function and missense mutations in human matricellular genes. The probability of loss-of-function intolerance (pLI) differed widely within members of the thrombospondin, CYR61/CTGF/NOV (CCN), tenascin, small integrin-binding ligand N-linked glycoproteins (SIBLING), and secreted protein, acidic and rich in cysteine (SPARC) gene families. Notably, pLI values in humans had limited correlation with viability of the corresponding homozygous null mice. Among the thrombospondins, only THBS1 was highly loss-intolerant (pLI = 1). In contrast, Thbs1 is not essential for viability in mice. Several known thrombospondin-1 receptors were similarly loss-intolerant, although thrombospondin-1 is not the exclusive ligand for some of these receptors. The frequencies of missense mutations in THBS1 and the gene encoding its signaling receptor CD47 indicated conservation of some residues implicated in specific receptor binding. Deficits in missense mutations were also observed for other thrombospondin genes and for SPARC, SPOCK1, SPOCK2, TNR, and DSPP. The intolerance of THBS1 to loss of function in humans and elevated pLI values for THBS2, SPARC, SPOCK1, TNR, and CCN1 support important functions for these matricellular protein genes in humans, some of which may relate to functions in reproduction or responding to environmental stresses.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Building 10 Room 2S235, 10 Center Drive MSC1500, Bethesda, MD, 20892-1500, USA.
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Building 10 Room 2S235, 10 Center Drive MSC1500, Bethesda, MD, 20892-1500, USA.
| |
Collapse
|
41
|
Koumakis E, Cormier C, Roux C, Briot K. The Causes of Hypo- and Hyperphosphatemia in Humans. Calcif Tissue Int 2021; 108:41-73. [PMID: 32285168 DOI: 10.1007/s00223-020-00664-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Phosphate homeostasis involves several major organs that are the skeleton, the intestine, the kidney, and parathyroid glands. Major regulators of phosphate homeostasis are parathormone, fibroblast growth factor 23, 1,25-dihydroxyvitamin D, which respond to variations of serum phosphate levels and act to increase or decrease intestinal absorption and renal tubular reabsorption, through the modulation of expression of transcellular transporters at the intestinal and/or renal tubular level. Any acquired or genetic dysfunction in these major organs or regulators may induce hypo- or hyperphosphatemia. The causes of hypo- and hyperphosphatemia are numerous. This review develops the main causes of acquired and genetic hypo- and hyperphosphatemia.
Collapse
Affiliation(s)
- Eugénie Koumakis
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.
| | - Catherine Cormier
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Christian Roux
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Karine Briot
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
42
|
Abstract
Great strides over the past few decades have increased our understanding of the pathophysiology of hypophosphatemic disorders. Phosphate is critically important to a variety of physiologic processes, including skeletal growth, development and mineralization, as well as DNA, RNA, phospholipids, and signaling pathways. Consequently, hypophosphatemic disorders have effects on multiple systems, and may cause a variety of nonspecific signs and symptoms. The acute effects of hypophosphatemia include neuromuscular symptoms and compromise. However, the dominant effects of chronic hypophosphatemia are the effects on musculoskeletal function including rickets, osteomalacia and impaired growth during childhood. While the most common causes of chronic hypophosphatemia in children are congenital, some acquired conditions also result in hypophosphatemia during childhood through a variety of mechanisms. Improved understanding of the pathophysiology of these congenital conditions has led to novel therapeutic approaches. This article will review the pathophysiologic causes of congenital hypophosphatemia, their clinical consequences and medical therapy.
Collapse
Affiliation(s)
- Erik Allen Imel
- Division of Endocrinology, Departments of Medicine and Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, Gatch Building Room 365, Indianapolis, IN, 46112, USA.
| |
Collapse
|
43
|
Ma C, Jing Y, Li H, Wang K, Wang Z, Xu C, Sun X, Kaji D, Han X, Huang A, Feng J. Scx Lin cells directly form a subset of chondrocytes in temporomandibular joint that are sharply increased in Dmp1-null mice. Bone 2021; 142:115687. [PMID: 33059101 PMCID: PMC7749445 DOI: 10.1016/j.bone.2020.115687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
It has been assumed that the secondary cartilage in the temporomandibular joint (TMJ), which is the most complex and mystery joint and expands rapidly after birth, is formed by periochondrium-derived chondrocytes. The TMJ condyle has rich attachment sites of tendon, which is thought to be solely responsible for joint movement with a distinct cell lineage. Here, we used a Scx-Cre ERT2 mouse line (the tracing line for progenitor and mature tendon cells) to track the fate of tendon cells during TMJ postnatal growth. Our data showed a progressive differentiation of Scx lineage cells started at tendon and the fibrous layer, to cells at the prechondroblasts (Sox9 -/Col I +), and then to cells at the chondrocytic layer (Sox9 +/Col I -). Importantly, the Scx + chondrocytes remained as "permanent" chondrocytes to maintain cartilage mass with no further cell trandifferentiation to bone cells. This notion was substantiated in an assessment of these cells in Dmp1 -null mice (a hypophosphatemic rickets model), where there was a significant increase in the number of Scx lineage cells in response to hypophosphatemia. In addition, we showed the origin of disc, which is derived from Scx + cells. Thus, we propose Scx lineage cells play an important role in TMJ postnatal growth by forming the disc and a new subset of Scx + chondrocytes that do not undergo osteogenesis as the Scx - chondrocytes and are sensitive to the level of phosphorous.
Collapse
Affiliation(s)
- Chi Ma
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Jing
- Department of Orthodontics, Texas A&M College of Dentistry, Dallas, TX, USA
- Corresponding authors Yan Jing, Assistant professor, Department of Orthodontics, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707237, Jian Feng, Professor, Department of Biomedical sciences, Texas A&M College of Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707235
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Chunmei Xu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xiaolin Sun
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA; Zhongshan Affiliated Hospital of Dalian University, Dalian, China
| | - Deepak Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xianglong Han
- Department of Orthodontics & Pediatric Dentistry, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Alice Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jian Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
- Corresponding authors Yan Jing, Assistant professor, Department of Orthodontics, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707237, Jian Feng, Professor, Department of Biomedical sciences, Texas A&M College of Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707235
| |
Collapse
|
44
|
Abstract
FGF23 is a phosphotropic hormone produced by the bone. FGF23 works by binding to the FGF receptor-Klotho complex. Klotho is expressed in several limited tissues including the kidney and parathyroid glands. This tissue-restricted expression of Klotho is believed to determine the target organs of FGF23. FGF23 reduces serum phosphate by suppressing the expression of type 2a and 2c sodium-phosphate cotransporters in renal proximal tubules. FGF23 also decreases 1,25-dihydroxyvitamin D levels by regulating the expression of vitamin D-metabolizing enzymes, which results in reduced intestinal phosphate absorption. Excessive actions of FGF23 cause several types of hypophosphatemic rickets/osteomalacia characterized by impaired mineralization of bone matrix. In contrast, deficient actions of FGF23 result in hyperphosphatemic tumoral calcinosis with high 1,25-dihydroxyvitamin D levels. These results indicate that FGF23 is a physiological regulator of phosphate and vitamin D metabolism and indispensable for the maintenance of serum phosphate levels.
Collapse
|
45
|
Ni X, Li X, Zhang Q, Liu C, Gong Y, Wang O, Li M, Xing X, Jiang Y, Xia W. Clinical Characteristics and Bone Features of Autosomal Recessive Hypophosphatemic Rickets Type 1 in Three Chinese Families: Report of Five Chinese Cases and Review of the Literature. Calcif Tissue Int 2020; 107:636-648. [PMID: 32920683 DOI: 10.1007/s00223-020-00755-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Autosomal recessive hypophosphatemic rickets type 1 (ARHR1) was reported to be caused by homozygous mutation of dentin matrix protein 1 (DMP1). To date, very few cases have been reported. Here, we summarized clinical, laboratory and imaging findings of ARHR1 patients in our hospital. Literature review was performed to analyze genotype-phenotype correlation. Five Chinese patients from three unrelated pedigrees presented with lower extremity deformity and short stature. Hypophosphatemia, elevated alkaline phosphatase, high intact fibroblast growth factor 23 and sclerostin were found. X-ray uncovered coexistence of osteomalacia and osteosclerosis. Although areal bone mineral density (aBMD) of axial bone measured by dual-energy X-ray absorptiometry was relatively high in all patients, volumetric BMD (vBMD) and microstructure of one adult patient's peripheral bone detected by HR-pQCT were damaged. Mutation analyses of DMP1 revealed three homozygous mutations including two novel mutations, c.54 + 1G > C and c.94C > A (p.E32X), and a reported mutation c.184-1G > A. Genotype-phenotype correlation analysis including 30 cases (25 from literature review and 5 from our study) revealed that patients harboring mutations affecting C-terminal fragment of DMP1 presented with shorter stature (Z score of height = - 3.4 ± 1.6 vs - 1.0 ± 1.6, p = 0.001) and lower serum phosphate level (0.70 ± 0.15 vs 0.84 ± 0.16, p = 0.03) than those harboring mutations only affecting N-terminal fragment. In summary, we reported five Chinese ARHR1 patients and identified two novel DMP1 mutations. High aBMD and local osteosclerosis in axial bone with low vBMD and damaged microstructure in peripheral bone were featured. Genotype-phenotype correlation analysis confirmed the important role of C-terminal fragment of DMP1.
Collapse
Affiliation(s)
- Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qi Zhang
- Laboratory Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chang Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yiyi Gong
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
46
|
Thiele S, Werner R, Stubbe A, Hiort O, Hoeppner W. Validation of a next-generation sequencing (NGS) panel to improve the diagnosis of X-linked hypophosphataemia (XLH) and other genetic disorders of renal phosphate wasting. Eur J Endocrinol 2020; 183:497-504. [PMID: 33107440 PMCID: PMC7592643 DOI: 10.1530/eje-20-0275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/14/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hypophosphataemic rickets (HR) comprise a clinically and genetically heterogeneous group of conditions, defined by renal-tubular phosphate wasting and consecutive loss of bone mineralisation. X-linked hypophosphataemia (XLH) is the most common form, caused by inactivating dominant mutations in PHEX, a gene encompassing 22 exons located at Xp22.1. XLH is treatable by anti-Fibroblast Growth Factor 23 antibody, while for other forms of HR such as therapy may not be indicated. Therefore, a genetic differentiation of HR is recommended. OBJECTIVE To develop and validate a next-generation sequencing panel for HR with special focus on PHEX. DESIGN AND METHODS We designed an AmpliSeq gene panel for the IonTorrent PGM next-generation platform for PHEX and ten other HR-related genes. For validation of PHEX sequencing 50 DNA-samples from XLH-patients, in whom 42 different mutations in PHEX and 1 structural variation have been proven before, were blinded, anonymised and investigated with the NGS panel. In addition, we analyzed one known homozygous DMP1 mutation and two samples of HR-patients, where no pathogenic PHEX mutation had been detected by conventional sequencing. RESULTS The panel detected all 42 pathogenic missense/nonsense/splice-site/indel PHEX-mutations and in one the known homozygous DMP1 mutation. In the remaining two patients, we revealed a somatic mosaicism of a PHEX mutation in one; as well as two variations in DMP1 and a very rare compound heterozygous variation in ENPP1 in the second patient. CONCLUSIONS This developed NGS panel is a reliable tool with high sensitivity and specificity for the diagnosis of XLH and related forms of HR.
Collapse
Affiliation(s)
- Susanne Thiele
- Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Ralf Werner
- Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
- Institute for Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Annika Stubbe
- Labor Dr. Heidrich und Kollegen MVZ GmbH, Hamburg, Germany
| | - Olaf Hiort
- Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
- Correspondence should be addressed to O Hiort;
| | - Wolfgang Hoeppner
- Labor Dr. Heidrich und Kollegen MVZ GmbH, Hamburg, Germany
- Bioglobe GmbH, Hamburg, Germany
| |
Collapse
|
47
|
Vesela B, Kratochvilova A, Svandova E, Benes P, Rihova K, Poliard A, Matalova E. Caspase-12 Is Present During Craniofacial Development and Participates in Regulation of Osteogenic Markers. Front Cell Dev Biol 2020; 8:589136. [PMID: 33178702 PMCID: PMC7593616 DOI: 10.3389/fcell.2020.589136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Caspases are evolutionary conserved proteases traditionally known as participating in apoptosis and inflammation but recently discovered also in association with other processes such as proliferation or differentiation. This investigation focuses on caspase-12, ranked among inflammatory caspases but displaying other, not yet defined functions. A screening analysis pointed to statistically significant (P < 0.001) increase in expression of caspase-12 in a decisive period of mandibular bone formation when the original mesenchymal condensation turns into vascularized bone tissue. Immunofluorescence analysis confirmed the presence of caspase-12 protein in osteoblasts. Therefore, the osteoblastic cell line MC3T3-E1 was challenged to investigate any impact of caspase-12 on the osteogenic pathways. Pharmacological inhibition of caspase-12 in MC3T3-E1 cells caused a statistically significant decrease in expression of some major osteogenic genes, including those for alkaline phosphatase, osteocalcin and Phex. This downregulation was further confirmed by an alkaline phosphatase activity assay and by a siRNA inhibition approach. Altogether, this study demonstrates caspase-12 expression and points to its unknown physiological engagement in bone cells during the course of craniofacial development.
Collapse
Affiliation(s)
- Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Petr Benes
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Kamila Rihova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anne Poliard
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, UFR Odontology Montrouge, Paris University, Paris, France
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
48
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
49
|
Hurst EA, Homer NZ, Mellanby RJ. Vitamin D Metabolism and Profiling in Veterinary Species. Metabolites 2020; 10:E371. [PMID: 32942601 PMCID: PMC7569877 DOI: 10.3390/metabo10090371] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
The demand for vitamin D analysis in veterinary species is increasing with the growing knowledge of the extra-skeletal role vitamin D plays in health and disease. The circulating 25-hydroxyvitamin-D (25(OH)D) metabolite is used to assess vitamin D status, and the benefits of analysing other metabolites in the complex vitamin D pathway are being discovered in humans. Profiling of the vitamin D pathway by liquid chromatography tandem mass spectrometry (LC-MS/MS) facilitates simultaneous analysis of multiple metabolites in a single sample and over wide dynamic ranges, and this method is now considered the gold-standard for quantifying vitamin D metabolites. However, very few studies report using LC-MS/MS for the analysis of vitamin D metabolites in veterinary species. Given the complexity of the vitamin D pathway and the similarities in the roles of vitamin D in health and disease between humans and companion animals, there is a clear need to establish a comprehensive, reliable method for veterinary analysis that is comparable to that used in human clinical practice. In this review, we highlight the differences in vitamin D metabolism between veterinary species and the benefits of measuring vitamin D metabolites beyond 25(OH)D. Finally, we discuss the analytical challenges in profiling vitamin D in veterinary species with a focus on LC-MS/MS methods.
Collapse
Affiliation(s)
- Emma A. Hurst
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG, UK;
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, The University of Edinburgh, Little France Crescent, Edinburgh, Scotland EH16 4TJ, UK;
| | - Natalie Z. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, The University of Edinburgh, Little France Crescent, Edinburgh, Scotland EH16 4TJ, UK;
| | - Richard J. Mellanby
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG, UK;
| |
Collapse
|
50
|
Sun M, Wu X, Yu Y, Wang L, Xie D, Zhang Z, Chen L, Lu A, Zhang G, Li F. Disorders of Calcium and Phosphorus Metabolism and the Proteomics/Metabolomics-Based Research. Front Cell Dev Biol 2020; 8:576110. [PMID: 33015068 PMCID: PMC7511772 DOI: 10.3389/fcell.2020.576110] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Since calcium and phosphorus play vital roles in a multitude of physiologic systems, disorders of calcium and phosphorus metabolism always lead to severe consequences such as skeletal-related and cardiovascular morbidity, or even life-threatening. Physiologically, the maintenance of calcium and phosphorus homeostasis is achieved via a variety of concerted actions of hormones such as parathyroid hormone (PTH), vitamin D, and fibroblast growth factor (FGF23), which could be regulated mainly at three organs, the intestine, kidney, and bone. Disruption of any organ or factor might lead to disorders of calcium and phosphorus metabolism. Currently, lacking of accurate diagnostic approaches and unknown molecular basis of pathophysiology will result in patients being unable to receive a precise diagnosis and personalized treatment timely. Therefore, it is urgent to identify early diagnostic biomarkers and develop therapeutic strategies. Fortunately, proteomics and metabolomics offer promising tools to discover novel indicators and further understanding of pathological mechanisms. Therefore, in this review, we will give a systematic introduction on PTH-1,25(OH)2D-FGF23 axis in the disorders of calcium and phosphorus metabolism, diagnostic biomarkers identified, and potential altered metabolic pathways involved.
Collapse
Affiliation(s)
- Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|