1
|
He Y, Dong X, Yang Q, Liu H, Zhang S, Xie S, Chi S, Tan B. An integrated study of glutamine alleviates enteritis induced by glycinin in hybrid groupers using transcriptomics, proteomics and microRNA analyses. Front Immunol 2023; 14:1301033. [PMID: 38077360 PMCID: PMC10702536 DOI: 10.3389/fimmu.2023.1301033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Glutamine has been used to improve intestinal development and immunity in fish. We previously found that dietary glutamine enhances growth and alleviates enteritis in juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). This study aimed to further reveal the protective role of glutamine on glycinin-induced enteritis by integrating transcriptome, proteome, and microRNA analyses. Three isonitrogenous and isolipidic trial diets were formulated: a diet containing 10% glycinin (11S group), 10% glycinin diet supplemented with 2% alanine-glutamine (Gln group), and a diet containing neither glycinin nor alanine-glutamine (fishmeal, FM group). Each experimental diet was fed to triplicate hybrid grouper groups for 8 weeks. The analysis of intestinal transcriptomic and proteomics revealed a total of 570 differentially expressed genes (DEGs) and 169 differentially expressed proteins (DEPs) in the 11S and FM comparison group. Similarly, a total of 626 DEGs and 165 DEPs were identified in the Gln and 11S comparison group. Integration of transcriptome and proteome showed that 117 DEGs showed consistent expression patterns at both the transcriptional and translational levels in the Gln and 11S comparison group. These DEGs showed significant enrichment in pathways associated with intestinal epithelial barrier function, such as extracellular matrix (ECM)-receptor interaction, tight junction, and cell adhesion molecules (P < 0.05). Further, the expression levels of genes (myosin-11, cortactin, tenascin, major histocompatibility complex class I and II) related to these pathways above were significantly upregulated at both the transcriptional and translational levels (P < 0.05). The microRNA results showed that the expression levels of miR-212 (target genes colla1 and colla2) and miR-18a-5p (target gene colla1) in fish fed Gln group were significantly lower compared to the 11S group fish (P < 0.05). In conclusion, ECM-receptor interaction, tight junction, and cell adhesion molecules pathways play a key role in glutamine alleviation of hybrid grouper enteritis induced by high-dose glycinin, in which miRNAs and target mRNAs/proteins participated cooperatively. Our findings provide valuable insights into the RNAs and protein profiles, contributing to a deeper understanding of the underlying mechanism for fish enteritis.
Collapse
Affiliation(s)
- Yuanfa He
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- College of Fisheries, Southwest University, Chongqing, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| |
Collapse
|
2
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
3
|
Intestinal anti-inflammatory effects of probiotics in DNBS-colitis via modulation of gut microbiota and microRNAs. Eur J Nutr 2020; 60:2537-2551. [PMID: 33216193 DOI: 10.1007/s00394-020-02441-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Probiotics have been shown to exert beneficial effects in IBD although their exact mechanisms are not completely understood. The aim of the present study was to assess the intestinal anti-inflammatory activity of different probiotics (Lactobacillus fermentum CECT5716, Lactobacillus salivarius CECT5713, Escherichia coli Nissle 1917, Saccharomyces boulardii CNCMI-745 in the dinitrobenzene sulfonic acid (DNBS) model of mouse colitis and correlate it with the modifications of the gut microbiota and the immune response, focusing on miRNA expression. METHODS The probiotics were daily administered orally for 25 days. On day 19 colitis was induced by rectal installation of DNBS. At the end of the treatment, mice were sacrificed and the colonic damage was assessed biochemically by analysing the expression of different markers involved in the immune response, including miRNAs; and the colonic microbiota by pyrosequencing. Probiotics properties were also evaluated in vitro in different immune cell types (CMT-93 intestinal epithelial cells and bone marrow-derived macrophages), where the expression of different mRNAs and miRNAs was examined. RESULTS All the probiotics displayed intestinal anti-inflammatory effects but slightly different, especially regarding miRNAs expression. Likewise, the probiotics ameliorated the colitis-associated dysbiosis, although showing differences in the main bacterial groups affected. CONCLUSION Among the probiotics assayed, Lactobacillus fermentum CECT5716 and Escherichia coli Nissle 1917 appear to present the best intestinal anti-inflammatory effects, being the latter one of the few probiotics with reputed efficacy in human IBD. Therefore, Lactobacillus fermentum CECT5716 could be considered as a complementary nutritional strategy for IBD treatment.
Collapse
|
4
|
He Y, Ye G, Chi S, Tan B, Dong X, Yang Q, Liu H, Zhang S. Integrative Transcriptomic and Small RNA Sequencing Reveals Immune-Related miRNA-mRNA Regulation Network for Soybean Meal-Induced Enteritis in Hybrid Grouper, Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂. Front Immunol 2020; 11:1502. [PMID: 32903657 PMCID: PMC7438716 DOI: 10.3389/fimmu.2020.01502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
A 10-week feeding experiment was conducted to reveal the immune mechanism for soybean meal-induced enteritis (SBMIE) in hybrid grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. Four isonitrogenous and isolipidic diets were formulated by replacing 0, 10, 30, and 50% fish meal protein with soybean meal (namely FM, SBM10, SBM30, and SBM50, respectively). The weight gain rate of the SBM50 group was significantly lower than those of the other groups. Plica height, muscular layer thickness, and goblet cells of the distal intestine in the SBM50 group were much lower than those in the FM group. The intestinal transcriptomic data, including the transcriptome and miRNAome, showed that a total of 6,390 differentially expressed genes (DEGs) and 92 DEmiRNAs were identified in the SBM50 and FM groups. DEmiRNAs (10 known and 1 novel miRNAs) and their DE target genes were involved in immune-related phagosome, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated phagocytosis, and the intestinal immune network for IgA production pathways. Our study is the first to offer transcriptomic and small RNA profiling for SBMIE in hybrid grouper. Our findings offer important insights for the understanding of the RNA profile and further elucidation of the underlying molecular immune mechanism for SBMIE in carnivorous fish.
Collapse
Affiliation(s)
- Yuanfa He
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Guanlin Ye
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
5
|
Chen J, Zhang S, Tong J, Teng X, Zhang Z, Li S, Teng X. Whole transcriptome-based miRNA-mRNA network analysis revealed the mechanism of inflammation-immunosuppressive damage caused by cadmium in common carp spleens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137081. [PMID: 32070891 DOI: 10.1016/j.scitotenv.2020.137081] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/20/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a well-known environmental pollutant and can damage fish. MicroRNAs (miRNAs) can involve in inflammation and immunosuppression. However, the mechanisms of miRNAs are still unclear in common carp (Cyprinus carpio L.) treated by Cd. In current study, 54 juvenile common carp were randomly divided into the control group and the Cd group (0.26 mg L-1 Cd) and were cultured for 30 days. The results revealed inflammatory damage in the spleens of common carp after Cd exposure using morphological construction. There were 23 differentially expressed miRNAs including 17 up-regulated differentially expressed miRNAs (miR-1-4-3p, miR-7-1-5p, miR-7-2-5p, miR-10-43-5p, miR-34-3-5p, miR-128-4-3p, miR-128-5-3p, miR-132-2-5p, miR-132-6-5p, miR-216-3-5p, miR-216-4-5p, miR-375-2-3p, miR-375-4-3p, miR-375-5-3p, miR-375-7-3p, miR-375-8-3p, and miR-724-5p) and 6 down-regulated differentially expressed miRNAs (miR-9-6-5p, miR-25-9-3p, miR-31-3-5p, miR-31-12-5p, miR-103-5-5p, and miR-122-1-3p). The 23 miRNAs regulated 2022 target mRNAs. There were 10 pathways and 9 annotation clusters on 2022 target mRNAs using KEGG and GO analysis, respectively. Among them, 5 pathways (NF-κB signaling pathway, Jak-STAT signaling pathway, MAPK signaling pathway, Th1 and Th2 cell differentiation, and Toll-like receptor signaling pathway) and 7 GO terms (negative regulation of immune system process, T cell mediated immunity, regulation of immune response, inflammatory response, positive regulation of inflammatory response, regulation of inflammatory response, and inflammasome complex) were associated with inflammatory response and immunosuppression. miR-375-4-3p, NF-κB, COX-2, PTGES, and IL-4/13A increased and miR-31-12-5p, miR-9-6-5p, MMP9, IL-11, SPI1, and T-Bet decreased using transcriptome sequencing and RT-qPCR in Cd-treated common carp spleens, which revealed that our results were reliable. Our data indicated that miRNAs mediated inflammation-immunosuppressive injury caused by Cd in common carp spleens using whole transcriptome-based miRNA-mRNA network analysis. Our study provided new insights into the toxicology of Cd exposure.
Collapse
Affiliation(s)
- Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jianyu Tong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojie Teng
- Grassland Workstation in Heilongjiang Province, Harbin 150067, China
| | - Zhongyuan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Harbin Hualong Feed Development Co., Ltd., Harbin 150078, China.
| |
Collapse
|
6
|
Garrido-Mesa J, Algieri F, Rodríguez-Nogales A, Vezza T, Utrilla M, Garcia F, Chueca N, Rodríguez-Cabezas M, Garrido-Mesa N, Gálvez J. Immunomodulatory tetracyclines ameliorate DNBS-colitis: Impact on microRNA expression and microbiota composition. Biochem Pharmacol 2018; 155:524-536. [DOI: 10.1016/j.bcp.2018.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|
7
|
Heigwer F, Port F, Boutros M. RNA Interference (RNAi) Screening in Drosophila. Genetics 2018; 208:853-874. [PMID: 29487145 PMCID: PMC5844339 DOI: 10.1534/genetics.117.300077] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decade, RNA interference (RNAi), a cellular mechanism that uses RNA-guided degradation of messenger RNA transcripts, has had an important impact on identifying and characterizing gene function. First discovered in Caenorhabditis elegans, RNAi can be used to silence the expression of genes through introduction of exogenous double-stranded RNA into cells. In Drosophila, RNAi has been applied in cultured cells or in vivo to perturb the function of single genes or to systematically probe gene function on a genome-wide scale. In this review, we will describe the use of RNAi to study gene function in Drosophila with a particular focus on high-throughput screening methods applied in cultured cells. We will discuss available reagent libraries and cell lines, methodological approaches for cell-based assays, and computational methods for the analysis of high-throughput screens. Furthermore, we will review the generation and use of genome-scale RNAi libraries for tissue-specific knockdown analysis in vivo and discuss the differences and similarities with the use of genome-engineering methods such as CRISPR/Cas9 for functional analysis.
Collapse
Affiliation(s)
- Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Fillip Port
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| |
Collapse
|
8
|
Zhu Y, Wang W, Yuan T, Fu L, Zhou L, Lin G, Zhao S, Zhou H, Wu G, Wang J. MicroRNA-29a mediates the impairment of intestinal epithelial integrity induced by intrauterine growth restriction in pig. Am J Physiol Gastrointest Liver Physiol 2017; 312:G434-G442. [PMID: 28280141 DOI: 10.1152/ajpgi.00020.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/22/2017] [Accepted: 03/06/2017] [Indexed: 01/31/2023]
Abstract
An important characteristic of intrauterine growth restricted (IUGR) neonate is the impaired intestinal barrier function. With the use of a pig model, this study was conducted to identify the responsible microRNA (miRNA) for the intestinal damage in IUGR neonates through comparing the miRNA profile of IUGR and normal porcine neonates and to investigate the regulation mechanism. Compared with the normal ones, we identified 83 upregulated and 76 downregulated miRNAs in the jejunum of IUGR pigs. Notably, IUGR is associated with profoundly increasesd miR-29 family and decreased expression of extracellular matrix (ECM) and tight junction (TJ) proteins in the jejunum. Furthermore, in vitro study using theporcine intestinal epithelial cell line (IPEC-1) showed that inhibition of miR-29a expression could improve the monolayer integrity by increasing cell proliferation and transepithelial resistance. Also, overexpression/inhibition of miR-29a in IPEC-1 cells can suppress/increase the expression of integrin-β1, collagen I, collagen IV, fibronectin, and claudin 1, both at transcriptional and translational levels. Subsequent luciferase reporter assay confirmed a direct interaction between miR-29a and the 3'-untranslated regions of these genes. In conclusion, this study reveals that IUGR-impaired intestinal barrier function is associated with downregulated ECM and TJ protein expression mediated by the upregulation of miR-29a.NEW & NOTEWORTHY Intrauterine growth restricted (IUGR) remains a major problem for both human health and animal production due to its association with high rates of preweaning morbidity and mortality. We have identified the abnormal expression of microRNA-29a (miR-29a) in the small intestine of IUGR neonates, as well as its targets and mechanisms. These results provide new information about biological characteristics of IUGR-affected intestinal dysfunction and can lead to the development of potentially solution for preventing and treating IUGR in the future.
Collapse
Affiliation(s)
- Yuhua Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Taolin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lian Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gang Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, Texas
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China;
| |
Collapse
|
9
|
Abstract
Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis.
Collapse
Affiliation(s)
- Antoaneta Belcheva
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Tao X, Men X, Xu Z. Bioinformatic analysis of the ssc-miR-146b upstream promoter region. ACTA ACUST UNITED AC 2015; 1:368-372. [PMID: 29766997 PMCID: PMC5940987 DOI: 10.1016/j.aninu.2015.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/04/2022]
Abstract
Sus Scrofa microRNA-146b-5p (ssc-miR-146b) was found to be one of differentially expressional microRNAs (miRNA) in our previous study. Not only it is highly expressed but also it maintains the largest up-regulated differences on the expressional level at different time points in the small intestinal mucosa of weaned piglets. To further explore the regulation mechanism of microRNA-146b-5p (miR-146b) during the stressful progress in weaned piglets, the present study predicted the functions of the ssc-miR-146b upstream promoter region using biological analysis. The analytical results showed that ssc-miR-146b is an intergenic miRNA. The length of the promoter region of ssc-miR-146b was predicted to be 2,249 bp using the Ensemble database. The length of the CpG island in the ssc-miR-146b promoter region was found to be 167 bp and it was located from 464 to 630 bp. Twenty six binding sites of 9 transcription factors in the upstream promoter region, including the sites of genes such as Sp1, AP-1, MyoD, GATA etc, were discovered using different kinds of analytical software. The predictions of the CpG island and transcription factor binding sites provided significant information for further studying the transcriptional regulation mechanism of ssc-miR-146b on the small intestinal injury due to weaning stress.
Collapse
|
11
|
Pan X, Yang Y, Zhang JR. Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 2014; 3:e23. [PMID: 26038515 PMCID: PMC3974339 DOI: 10.1038/emi.2014.23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/08/2023]
Abstract
Pathogenic bacteria display various levels of host specificity or tropism. While many bacteria can infect a wide range of hosts, certain bacteria have strict host selectivity for humans as obligate human pathogens. Understanding the genetic and molecular basis of host specificity in pathogenic bacteria is important for understanding pathogenic mechanisms, developing better animal models and designing new strategies and therapeutics for the control of microbial diseases. The molecular mechanisms of bacterial host specificity are much less understood than those of viral pathogens, in part due to the complexity of the molecular composition and cellular structure of bacterial cells. However, important progress has been made in identifying and characterizing molecular determinants of bacterial host specificity in the last two decades. It is now clear that the host specificity of bacterial pathogens is determined by multiple molecular interactions between the pathogens and their hosts. Furthermore, certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature. This review focuses on selected human pathogenic bacteria and our current understanding of their host specificity.
Collapse
Affiliation(s)
- Xiaolei Pan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Yang Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| |
Collapse
|
12
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
13
|
L⊘kka G, Austb⊘ L, Falk K, Bjerkås I, Koppang EO. Intestinal morphology of the wild atlantic salmon (Salmo salar). J Morphol 2013; 274:859-76. [DOI: 10.1002/jmor.20142] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 01/08/2013] [Accepted: 01/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Guro L⊘kka
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo; Norway
| | - Lars Austb⊘
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo; Norway
| | - Knut Falk
- Department of Laboratory Services; National Veterinary Institute; Oslo; Norway
| | - Inge Bjerkås
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo; Norway
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo; Norway
| |
Collapse
|
14
|
Wu RJ, Liu CQ, Liu ZJ. Role of miRNAs in pathogenesis of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2013; 21:602-606. [DOI: 10.11569/wcjd.v21.i7.602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miRNA) is a kind of endogenous small-molecule RNAs that can direct mRNA degradation and translational inhibition post-transcriptionally by binding to complementary sequences in the 3'untranslated regions of specific target mRNAs. The pathogenesis of inflammatory bowel disease (IBD) is associated with immune response, inflammatory injury, and genetic factors. MiRNAs play multiple important roles in the intestinal epithelium, influencing a number of intestinal disease processes. This review summarizes the regulatory role of miRNAs in intestinal epithelial differentiation, architecture, membrane permeability, immunological function, and more importantly, intestinal mucosal barrier dysfunction in IBD. It has been found that many miRNAs in the serum and intestinal mucosa of IBD patients show abnormal expression. In active UC miR-192, miR-375 and miR-422b were significantly down-regulated, and miR-16, miR-21 and let-7 up-regulated compared with normal intestinal mucosa. In active CD miR-19b and miR-629 were significantly down-regulated, and miR-23b, miR-106 and miR-191 were up-regulated. MicroRNAs provide molecular targets for prevention, early diagnosis and treatment of IBD.
Collapse
|
15
|
Masotti A. Interplays between gut microbiota and gene expression regulation by miRNAs. Front Cell Infect Microbiol 2012; 2:137. [PMID: 23130352 PMCID: PMC3487149 DOI: 10.3389/fcimb.2012.00137] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/18/2012] [Indexed: 01/01/2023] Open
Affiliation(s)
- Andrea Masotti
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|