1
|
Alhomoud M, Foley M, Sugita M, Fein JA, Yamshon S, Martinez L, Rejeski K, Astorkia M, Betel D, Brentjens R, van Besien K, Galluzzi L, Boyer O, Martinet J, Formenti S, Guzman ML. Total body irradiation primes CD19-directed CAR T cells against large B-cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643462. [PMID: 40166306 PMCID: PMC11957048 DOI: 10.1101/2025.03.17.643462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
CD19-targeting chimeric antigen receptor T cells (CART19) have demonstrated significant effectiveness in treating relapsed or refractory large B-cell lymphoma (LBCL). However, they often fail to sustain durable remissions in more than half of all treated patients. Therefore, there is an urgent need to identify approaches to enhance CART19 efficacy. Here, we studied the impact of low-dose radiation on CART19 activity in vitro and find that radiation enhances the cytotoxicity of CART19 against LBCL by upregulating death receptors. Disrupting the FAS receptor diminishes this benefit, indicating that this pathway plays an important role in enhancing the cytotoxic effects of CAR T cells. To further validate these findings, we conducted in vivo studies using a lymphoma syngeneic mouse model delivering total body irradiation (TBI). We observed that delivering TBI at a single dose of 1Gy prior to CAR T cell infusion significantly improved CART19-mediated tumor elimination and increased overall survival rates. Importantly, we characterized several important effects of TBI, including enhanced lymphodepletion, improved T cell expansion and persistence, better intra-tumoral migration, and a more favorable, anti-tumor phenotypic composition of the T cells. In summary, for the first time, we have demonstrated preclinically that administering TBI before CART19 infusion significantly accelerates tumor elimination and improves overall survival. This approach holds promise for translation into clinical practice and serves as a valuable foundation for further research to enhance outcomes for patients receiving CART19 treatment.
Collapse
|
2
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
3
|
Niu X, Liu Z, Wang J, Wu D. Green tea EGCG inhibits naïve CD4 + T cell division and progression in mice: An integration of network pharmacology, molecular docking and experimental validation. Curr Res Food Sci 2023; 7:100537. [PMID: 37441168 PMCID: PMC10333431 DOI: 10.1016/j.crfs.2023.100537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary green tea epigallocatechin-3-gallate (EGCG) could attenuate experimental autoimmune encephalomyelitis via the modification of the balance of CD4+ T helper (Th) cells. Moreover, EGCG administration in vitro has a direct impact on the regulatory cytokines and differentiation of CD4+ T cells. Here, we aim to determine whether EGCG directly affects the cell division and progression in naive CD4+ T cells. We first investigate the effect of EGCG on naïve CD4+ T cell division and progression in vitro. An integrated analysis of network pharmacology and molecular docking was utilized to further identify the targets of EGCG for T cell-mediated autoimmune diseases and multiple sclerosis (MS). EGCG treatment prevented naïve CD4+ T cells from progressing through the cell cycle when stimulated with anti-CD3/CD28 antibodies. This was achieved by increasing the proportion of cells arrested in the G0/G1 phase by 8.6% and reducing DNA synthesis activity by 51% in the S phase. Furthermore, EGCG treatment inhibited the expression of cyclins (cyclin D1, cyclin D3, cyclin A, and cyclin B1) and CDKs (CDK2 and CDK6) during naïve CD4+ T cell activation in response to anti-CD3/CD28 stimulation. However, EGCG inhibited the decrease of P27Kip1 (CDKN1B) during naïve CD4+ T cell activation, whereas it inhibited the increase of P21Cip1 (CDKN1A) expression 48 h after mitogenic stimulation. The molecular docking analysis confirmed that these proteins (CD4, CCND1, and CDKN1A) are the primary targets for EGCG, T cell-mediated autoimmune diseases, and MS. Finally, target enrichment analysis indicated that EGCG may affect the cell cycle, T cell receptor signaling pathway, Th cell differentiation, and NF-κB signaling pathway. These findings reveal a crucial role of EGCG in the division and progression of CD4+ T cells, and underscore other potential targets of EGCG in T cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Xinli Niu
- Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- College of Life Science, Henan University, Kaifeng, 475000, China
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, USA
| | - Zejin Liu
- Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Junpeng Wang
- Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
4
|
Cai S, Zhang J, Zhou C, Shi W, Gao Y, Chang R, Tan H, Wang Q, Ye X, Cao Q, Zhou Q, Yang P, Hu J. Association of CDK6 gene polymorphisms with Behcet's disease in a Han Chinese population. Exp Eye Res 2022; 223:109203. [DOI: 10.1016/j.exer.2022.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
|
5
|
Li J, Li W, Wang Z, Khalique A, Wang J, Yang M, Ni X, Zeng D, Zhang D, Zeng Y, Luo Q, Jing B, Pan K. Screening of immune-related differentially expressed genes from primary lymphatic organs of broilers fed with probiotic bacillus cereus PAS38 based on suppression subtractive hybridization. PLoS One 2020; 15:e0235476. [PMID: 32609751 PMCID: PMC7329121 DOI: 10.1371/journal.pone.0235476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
To explore the molecular mechanism of the effect of Bacillus cereus PAS38 on the immunity of broilers, sixty 7-day-old broilers were divided into two groups with three replicates. The control group was fed with basal diet, and the treatment group was fed with basal diet containing Bacillus cereus PAS38 1×106 CFU/g. Thymus and bursa of fabricius were taken from two groups of broilers at the age of 42 days, total RNA was extracted, differential gene library was constructed by SSH technology, and immune-related differential genes were screened. Then, we used siRNA to interfere with the expression of some differential genes in the original generation lymphocytes of broiler blood to detect the change of cytokines mRNA expression level. A total of 42 immune-related differentially expressed genes were screened, including 22 up-regulated genes and 20 down-regulated genes. When 7 differentially up-regulated genes associated with enhanced immune function were interfered with in lymphocytes, some immune-promoting cytokines were down-regulated. These results showed that Bacillus cereus PAS38 might up-regulate the expression of JCHAIN, PRDX1, CD3E, CDK6 and other genes in immune organs of broilers, thereby affecting the development of immune organs, the expression of various cytokines and the transduction of immune signals, improving the immune capacity of broilers.
Collapse
Affiliation(s)
- Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Zhenhua Wang
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Junrui Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Miao Yang
- Technology Centre of Chengdu Custom, Chengdu, Sichuan Province, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
6
|
Abstract
CD8 T cells comprising the memory pool display considerable heterogeneity, with individual cells differing in phenotype and function. This review will focus on our current understanding of heterogeneity within the antigen-specific memory CD8 T cell compartment and classifications of memory CD8 T cell subsets with defined and discrete functionalities. Recent data suggest that phenotype and/or function of numerically stable circulatory memory CD8 T cells are defined by the age of memory CD8 T cell (or time after initial antigen-encounter). In addition, history of antigen stimulations has a profound effect on memory CD8 T cell populations, suggesting that repeated infections (or vaccination) have the capacity to further shape the memory CD8 T cell pool. Finally, genetic background of hosts and history of exposure to diverse microorganisms likely contribute to the observed heterogeneity in the memory CD8 T cell compartment. Extending our tool box and exploring alternative mouse models (i.e., "dirty" and/or outbred mice) to encompass and better model diversity observed in humans will remain an important goal for the near future that will likely shed new light into the mechanisms that govern biology of memory CD8 T cells.
Collapse
Affiliation(s)
- Matthew D Martin
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
7
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
8
|
Barberis M, Helikar T, Verbruggen P. Simulation of Stimulation: Cytokine Dosage and Cell Cycle Crosstalk Driving Timing-Dependent T Cell Differentiation. Front Physiol 2018; 9:879. [PMID: 30116196 PMCID: PMC6083814 DOI: 10.3389/fphys.2018.00879] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Triggering an appropriate protective response against invading agents is crucial to the effectiveness of human innate and adaptive immunity. Pathogen recognition and elimination requires integration of a myriad of signals from many different immune cells. For example, T cell functioning is not qualitatively, but quantitatively determined by cellular and humoral signals. Tipping the balance of signals, such that one of these is favored or gains advantage on another one, may impact the plasticity of T cells. This may lead to switching their phenotypes and, ultimately, modulating the balance between proliferating and memory T cells to sustain an appropriate immune response. We hypothesize that, similar to other intracellular processes such as the cell cycle, the process of T cell differentiation is the result of: (i) pleiotropy (pattern) and (ii) magnitude (dosage/concentration) of input signals, as well as (iii) their timing and duration. That is, a flexible, yet robust immune response upon recognition of the pathogen may result from the integration of signals at the right dosage and timing. To investigate and understand how system's properties such as T cell plasticity and T cell-mediated robust response arise from the interplay between these signals, the use of experimental toolboxes that modulate immune proteins may be explored. Currently available methodologies to engineer T cells and a recently devised strategy to measure protein dosage may be employed to precisely determine, for example, the expression of transcription factors responsible for T cell differentiation into various subtypes. Thus, the immune response may be systematically investigated quantitatively. Here, we provide a perspective of how pattern, dosage and timing of specific signals, called interleukins, may influence T cell activation and differentiation during the course of the immune response. We further propose that interleukins alone cannot explain the phenotype variability observed in T cells. Specifically, we provide evidence that the dosage of intercellular components of both the immune system and the cell cycle regulating cell proliferation may contribute to T cell activation, differentiation, as well as T cell memory formation and maintenance. Altogether, we envision that a qualitative (pattern) and quantitative (dosage) crosstalk between the extracellular milieu and intracellular proteins leads to T cell plasticity and robustness. The understanding of this complex interplay is crucial to predict and prevent scenarios where tipping the balance of signals may be compromised, such as in autoimmunity.
Collapse
Affiliation(s)
- Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Verbruggen
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Chen Z, Stelekati E, Kurachi M, Yu S, Cai Z, Manne S, Khan O, Yang X, Wherry EJ. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb. Cell Rep 2018; 20:2584-2597. [PMID: 28903040 DOI: 10.1016/j.celrep.2017.08.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Erietta Stelekati
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sixiang Yu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhangying Cai
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA; College of Life Sciences, Peking University, Beijing, China
| | - Sasikanth Manne
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Mishima T, Fukaya S, Toda S, Ando Y, Matsunaga T, Inobe M. Rapid G0/1 transition and cell cycle progression in CD8 + T cells compared to CD4 + T cells following in vitro stimulation. Microbiol Immunol 2017; 61:168-175. [PMID: 28370382 DOI: 10.1111/1348-0421.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/10/2017] [Accepted: 03/26/2017] [Indexed: 11/29/2022]
Abstract
T-cell population consists of two major subsets, CD4+ T cells and CD8+ T cells, which can be distinguished by the expression of CD4 or CD8 molecules, respectively. Although they play quite different roles in the immune system, many of their basic cellular processes such as proliferation following stimulation are presumably common. In this study, we have carefully analyzed time-course of G0/1 transition as well as cell cycle progression in the two subsets of quiescent T-cell population following in vitro growth stimulation. We found that CD8+ T cells promote G0/1 transition more rapidly and drive their cell cycle progression faster compared to CD4+ T cells. In addition, expression of CD25 and effects of its blockade revealed that IL-2 is implicated in the rapid progression, but not the earlier G0/1 transition, of CD8+ T cells.
Collapse
Affiliation(s)
- Takuya Mishima
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shotaro Fukaya
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shoko Toda
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshiaki Ando
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manabu Inobe
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
11
|
Yan AWC, Cao P, Heffernan JM, McVernon J, Quinn KM, La Gruta NL, Laurie KL, McCaw JM. Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host. J Theor Biol 2016; 413:34-49. [PMID: 27856216 DOI: 10.1016/j.jtbi.2016.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
Abstract
The cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell. Our model explains the experimentally observed shortening of a second infection when cross-reactivity is present, and shows that memory in the cellular adaptive immune response is necessary to protect against a second infection.
Collapse
Affiliation(s)
- Ada W C Yan
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pengxing Cao
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jane M Heffernan
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada M3J 1P3; Modelling Infection and Immunity Lab, Centre for Disease Modelling, York Institute for Health Research, York University, Toronto, Ontario, Canada M3J 1P3
| | - Jodie McVernon
- Doherty Epidemiology, Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3010, Australia; Modelling and Simulation, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Kylie M Quinn
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; School of Applied and Biomedical Sciences, Federation University, Churchill, VIC 3842, Australia; Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - James M McCaw
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3010, Australia; Modelling and Simulation, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia.
| |
Collapse
|
12
|
Budak F, Bal SH, Tezcan G, Guvenc F, Akalin EH, Goral G, Deniz G, Oral HB. MicroRNA Expression Patterns of CD8+ T Cells in Acute and Chronic Brucellosis. PLoS One 2016; 11:e0165138. [PMID: 27824867 PMCID: PMC5100978 DOI: 10.1371/journal.pone.0165138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023] Open
Abstract
Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p <0.05 or fold change > 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis.
Collapse
Affiliation(s)
- Ferah Budak
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - S. Haldun Bal
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Furkan Guvenc
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - E. Halis Akalin
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Guher Goral
- Department of Medical Microbiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - H. Barbaros Oral
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
- * E-mail:
| |
Collapse
|
13
|
Boddupalli CS, Nair S, Gray SM, Nowyhed HN, Verma R, Gibson JA, Abraham C, Narayan D, Vasquez J, Hedrick CC, Flavell RA, Dhodapkar KM, Kaech SM, Dhodapkar MV. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest 2016; 126:3905-3916. [PMID: 27617863 DOI: 10.1172/jci85329] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/04/2016] [Indexed: 12/16/2022] Open
Abstract
Immune surveillance in tissues is mediated by a long-lived subset of tissue-resident memory T cells (Trm cells). A putative subset of tissue-resident long-lived stem cells is characterized by the ability to efflux Hoechst dyes and is referred to as side population (SP) cells. Here, we have characterized a subset of SP T cells (Tsp cells) that exhibit a quiescent (G0) phenotype in humans and mice. Human Trm cells in the gut and BM were enriched in Tsp cells that were predominantly in the G0 stage of the cell cycle. Moreover, in histone 2B-GFP mice, the 2B-GFP label was retained in Tsp cells, indicative of a slow-cycling phenotype. Human Tsp cells displayed a distinct gene-expression profile that was enriched for genes overexpressed in Trm cells. In mice, proteins encoded by Tsp signature genes, including nuclear receptor subfamily 4 group A member 1 (NR4A1) and ATP-binding cassette (ABC) transporters, influenced the function and differentiation of Trm cells. Responses to adoptive transfer of human Tsp cells into immune-deficient mice and plerixafor therapy suggested that human Tsp cell mobilization could be manipulated as a potential cellular therapy. These data identify a distinct subset of human T cells with a quiescent/slow-cycling phenotype, propensity for tissue enrichment, and potential to mobilize into circulation, which may be harnessed for adoptive cellular therapy.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adoptive Transfer
- Animals
- Cells, Cultured
- Humans
- Immunologic Memory
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Organ Specificity
- Resting Phase, Cell Cycle
- T-Lymphocytes/metabolism
- Transcriptome
Collapse
|
14
|
Chaves-Ferreira M, Krenn G, Vasseur F, Barinov A, Gonçalves P, Azogui O, Cumano A, Li Z, Pellegrini S, Rocha B, Laderach D. The cyclin D1 carboxyl regulatory domain controls the division and differentiation of hematopoietic cells. Biol Direct 2016; 11:21. [PMID: 27129404 PMCID: PMC4851827 DOI: 10.1186/s13062-016-0122-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/07/2016] [Indexed: 12/31/2022] Open
Abstract
Background The family of D cyclins has a fundamental role in cell cycle progression, but its members (D1, D2, D3) are believed to have redundant functions. However, there is some evidence that contradicts the notion of mutual redundancy and therefore this concept is still a matter of debate. Results Our data show that the cyclin D1 is indispensable for normal hematopoiesis. Indeed, in the absence of D1, either in genetic deficient mice, or after acute ablation by RNA interference, cyclins D2 and D3 are also not expressed preventing hematopoietic cell division and differentiation at its earliest stage. This role does not depend on the cyclin box, but on the carboxyl regulatory domain of D1 coded by exons 4–5, since hematopoietic differentiation is also blocked by the conditional ablation of this region. Conclusion These results demonstrate that not all functions of individual D cyclins are redundant and highlight a master role of cyclin D1 in hematopoiesis. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0122-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Chaves-Ferreira
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France.,Present addresses: Instituto de Medicina Molecular, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Gerald Krenn
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Florence Vasseur
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France.,Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Aleksandr Barinov
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France.,Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Pedro Gonçalves
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Orly Azogui
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Ana Cumano
- Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Zhi Li
- Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | | | - Benedita Rocha
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France. .,Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France.
| | - Diego Laderach
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France. .,IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Regulation of effector and memory CD8(+) T cell function by inflammatory cytokines. Cytokine 2015; 82:16-23. [PMID: 26688544 DOI: 10.1016/j.cyto.2015.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 01/03/2023]
Abstract
Cells communicate with each other through the production and secretion of cytokines, which are integral to the host response to infection. Once recognized by specific cytokine receptors expressed on the cell surface, these exogenous signals direct the biological function of a cell in order to adapt to their microenvironment. CD8(+) T cells are critical immune cells that play an important role in the control and elimination of intracellular pathogens. Current findings have demonstrated that cytokines influence all aspects of the CD8(+) T cell response to infection or immunization. The cytokine milieu induced at the time of activation impacts the overall magnitude and function of the effector CD8(+) T cell response and the generation of functional memory CD8(+) T cells. This review will focus on the impact of inflammatory cytokines on different aspects of CD8(+) T cell biology.
Collapse
|
16
|
Abstract
The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4(+) and CD8(+) cells. The results suggest a degree of programing by early signals for effector differentiation, particularly in the CD8(+) T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4(+) T cell expansion and new avenues toward a molecular understanding of cell cycle regulation in lymphocytes are discussed.
Collapse
Affiliation(s)
- Reinhard Obst
- Institute for Immunology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
17
|
Richer MJ, Pewe LL, Hancox LS, Hartwig SM, Varga SM, Harty JT. Inflammatory IL-15 is required for optimal memory T cell responses. J Clin Invest 2015; 125:3477-90. [PMID: 26241055 DOI: 10.1172/jci81261] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/18/2015] [Indexed: 12/22/2022] Open
Abstract
Due to their ability to rapidly proliferate and produce effector cytokines, memory CD8+ T cells increase protection following reexposure to a pathogen. However, low inflammatory immunizations do not provide memory CD8+ T cells with a proliferation advantage over naive CD8+ T cells, suggesting that cell-extrinsic factors enhance memory CD8+ T cell proliferation in vivo. Herein, we demonstrate that inflammatory signals are critical for the rapid proliferation of memory CD8+ T cells following infection. Using murine models of viral infection and antigen exposure, we found that type I IFN-driven expression of IL-15 in response to viral infection prepares memory CD8+ T cells for rapid division independently of antigen reexposure by transiently inducing cell-cycle progression via a pathway dependent on mTOR complex-1 (mTORC1). Moreover, exposure to IL-15 allowed more rapid division of memory CD8+ T cells following antigen encounter and enhanced their protective capacity against viral infection. Together, these data reveal that inflammatory IL-15 promotes optimal responses by memory CD8+ T cells.
Collapse
|
18
|
Wang P, Fiaschi-Taesch NM, Vasavada RC, Scott DK, García-Ocaña A, Stewart AF. Diabetes mellitus--advances and challenges in human β-cell proliferation. Nat Rev Endocrinol 2015; 11:201-12. [PMID: 25687999 DOI: 10.1038/nrendo.2015.9] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The treatment of diabetes mellitus represents one of the greatest medical challenges of our era. Diabetes results from a deficiency or functional impairment of insulin-producing β cells, alone or in combination with insulin resistance. It logically follows that the replacement or regeneration of β cells should reverse the progression of diabetes and, indeed, this seems to be the case in humans and rodents. This concept has prompted attempts in many laboratories to create new human β cells using stem-cell strategies to transdifferentiate or reprogramme non-β cells into β cells or to discover small molecules or other compounds that can induce proliferation of human β cells. This latter approach has shown promise, but has also proven particularly challenging to implement. In this Review, we discuss the physiology of normal human β-cell replication, the molecular mechanisms that regulate the cell cycle in human β cells, the upstream intracellular signalling pathways that connect them to cell surface receptors on β cells, the epigenetic mechanisms that control human β-cell proliferation and unbiased approaches for discovering novel molecules that can drive human β-cell proliferation. Finally, we discuss the potential and challenges of implementing strategies that replace or regenerate β cells.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Nathalie M Fiaschi-Taesch
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Rupangi C Vasavada
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Adolfo García-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
19
|
Martin MD, Badovinac VP. Influence of time and number of antigen encounters on memory CD8 T cell development. Immunol Res 2015; 59:35-44. [PMID: 24825776 DOI: 10.1007/s12026-014-8522-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CD8 T cells are an important part of the adaptive immune system providing protection against intracellular bacteria, viruses, and protozoa. After infection and/or vaccination, increased numbers of antigen-specific CD8 T cells remain as a memory population that is capable of responding and providing enhanced protection during reinfection. Experimental studies indicate that while memory CD8 T cells can be maintained for great lengths of time, their properties change with time after infection and/or vaccination. However, the full scope of these changes and what effects they have on memory CD8 T cell function remain unknown. In addition, memory CD8 T cells can encounter antigen multiple times through either reinfection or prime-boost vaccine strategies designed to increase numbers of protective memory CD8 T cells. Importantly, recent studies suggest that memory CD8 T cell development following infection and/or vaccination is influenced by the number of times they have encountered cognate antigen. Since protection offered by memory CD8 T cells in response to infection depends on both the numbers and quality (functional characteristics) at the time of pathogen re-encounter, a thorough understanding of how time and antigen stimulation history impacts memory CD8 T cell properties is critical for the design of vaccines aimed at establishing populations of long-lived, protective memory CD8 T cells.
Collapse
Affiliation(s)
- Matthew D Martin
- Department of Pathology, University of Iowa, 1160 Med Labs, Iowa City, IA, 52242, USA
| | | |
Collapse
|
20
|
Laurenti E, Frelin C, Xie S, Ferrari R, Dunant CF, Zandi S, Neumann A, Plumb I, Doulatov S, Chen J, April C, Fan JB, Iscove N, Dick JE. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 2015; 16:302-13. [PMID: 25704240 PMCID: PMC4359055 DOI: 10.1016/j.stem.2015.01.017] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/10/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023]
Abstract
Regulated blood production is achieved through the hierarchical organization of dormant hematopoietic stem cell (HSC) subsets that differ in self-renewal potential and division frequency, with long-term (LT)-HSCs dividing the least. The molecular mechanisms underlying this variability in HSC division kinetics are unknown. We report here that quiescence exit kinetics are differentially regulated within human HSC subsets through the expression level of CDK6. LT-HSCs lack CDK6 protein. Short-term (ST)-HSCs are also quiescent but contain high CDK6 protein levels that permit rapid cell cycle entry upon mitogenic stimulation. Enforced CDK6 expression in LT-HSCs shortens quiescence exit and confers competitive advantage without impacting function. Computational modeling suggests that this independent control of quiescence exit kinetics inherently limits LT-HSC divisions and preserves the HSC pool to ensure lifelong hematopoiesis. Thus, differential expression of CDK6 underlies heterogeneity in stem cell quiescence states that functionally regulates this highly regenerative system.
Collapse
Affiliation(s)
- Elisa Laurenti
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Catherine Frelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Stephanie Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Robin Ferrari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Ecole Normale Supérieure de Cachan, Département de Biologie, Cachan, 94235, France
| | - Cyrille F Dunant
- Ecole Polytechnique Fédérale de Lausanne, LMC, Station 12, Lausanne, CH-1015, Switzerland
| | - Sasan Zandi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrea Neumann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Ian Plumb
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sergei Doulatov
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | | | | | | | - Norman Iscove
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Kinjyo I, Qin J, Tan SY, Wellard CJ, Mrass P, Ritchie W, Doi A, Cavanagh LL, Tomura M, Sakaue-Sawano A, Kanagawa O, Miyawaki A, Hodgkin PD, Weninger W. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat Commun 2015; 6:6301. [PMID: 25709008 PMCID: PMC4346633 DOI: 10.1038/ncomms7301] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/15/2015] [Indexed: 01/08/2023] Open
Abstract
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. CD8+ memory T cells appear during infection via a process of selection and differentiation that remains poorly understood. Using a fluorescent indicator of cell cycle progression, Kinjyo et al. show that slow-cycling memory precursors are derived from fast-cycling-activated T cells in influenza-infected mice.
Collapse
Affiliation(s)
- Ichiko Kinjyo
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Jim Qin
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Sioh-Yang Tan
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Cameron J Wellard
- 1] Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Paulus Mrass
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - William Ritchie
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Atsushi Doi
- Cell Innovator Co., Ltd., Fukuoka 812-8581, Japan
| | - Lois L Cavanagh
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Michio Tomura
- Laboratory for Autoimmune Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Osami Kanagawa
- Laboratory for Autoimmune Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Philip D Hodgkin
- 1] Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Wolfgang Weninger
- 1] Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia [2] Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia [3] Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
22
|
Wang H, Yang YG. The complex and central role of interferon-γ in graft-versus-host disease and graft-versus-tumor activity. Immunol Rev 2015; 258:30-44. [PMID: 24517424 DOI: 10.1111/imr.12151] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is increasingly being performed to treat patients with hematologic malignancies. However, separating the beneficial graft-versus-tumor (GVT) or graft-versus-leukemia effects from graft-versus-host disease (GVHD) has been difficult and remains a significant challenge toward improving therapeutic efficacy and reducing toxicity of allo-HCT. GVHD is induced by donor T cells that also mediate potent anti-tumor responses. However, despite the largely shared effector mechanisms, extensive animal studies have demonstrated the potential of dissociating the GVT effect from GVHD. Also in many clinical cases, long-term remission was achieved following allo-HCT, without significant GVHD. A better mechanistic understanding of the immunopathophysiology of GVHD and GVT effects may potentially help to improve allo-HCT as well as maximize the benefit of GVT effects while minimizing GVHD. In this article, we review the role of IFN-γ in regulation of alloresponses following allo-HCT, with a focus on the mechanisms of how this cytokine may separate GVHD from GVT effects.
Collapse
Affiliation(s)
- Hui Wang
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | |
Collapse
|
23
|
Almeida ARM, Fonseca-Pereira D, Arroz-Madeira S, Ribeiro H, Labão-Almeida C, Veiga-Fernandes H. The neurotrophic factor receptor RET regulates IL-10 production by in vitro polarised T helper 2 cells. Eur J Immunol 2014; 44:3605-13. [DOI: 10.1002/eji.201344422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 08/06/2014] [Accepted: 08/26/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Afonso R. M. Almeida
- Instituto de Medicina Molecular; Faculdade de Medicina de Lisboa; Lisboa Portugal
| | | | - Sílvia Arroz-Madeira
- Instituto de Medicina Molecular; Faculdade de Medicina de Lisboa; Lisboa Portugal
| | - Hélder Ribeiro
- Instituto de Medicina Molecular; Faculdade de Medicina de Lisboa; Lisboa Portugal
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular; Faculdade de Medicina de Lisboa; Lisboa Portugal
| | | |
Collapse
|
24
|
Cdk4 and Cdk6 cooperate in counteracting the INK4 family of inhibitors during murine leukemogenesis. Blood 2014; 124:2380-90. [PMID: 25157181 DOI: 10.1182/blood-2014-02-555292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cdk4 and Cdk6 are related protein kinases that bind d-type cyclins and regulate cell-cycle progression. Cdk4/6 inhibitors are currently being used in advanced clinical trials and show great promise against many types of tumors. Cdk4 and Cdk6 are inhibited by INK4 proteins, which exert tumor-suppressing functions. To test the significance of this inhibitory mechanism, we generated knock-in mice that express a Cdk6 mutant (Cdk6 R31C) insensitive to INK4-mediated inhibition. Cdk6(R/R) mice display altered development of the hematopoietic system without enhanced tumor susceptibility, either in the presence or absence of p53. Unexpectedly, Cdk6 R31C impairs the potential of hematopoietic progenitors to repopulate upon adoptive transfer or after 5-fluorouracil-induced damage. The defects are overcome by eliminating sensitivity of cells to INK4 inhibitors by introducing the INK4-insensitive Cdk4 R24C allele, and INK4-resistant mice are more susceptible to hematopoietic and endocrine tumors. In BCR-ABL-transformed hematopoietic cells, Cdk6 R31C causes increased binding of p16(INK4a) to wild-type Cdk4, whereas cells harboring Cdk4 R24C and Cdk6 R31C are fully insensitive to INK4 inhibitors, resulting in accelerated disease onset. Our observations reveal that Cdk4 and Cdk6 cooperate in hematopoietic tumor development and suggest a role for Cdk6 in sequestering INK4 proteins away from Cdk4.
Collapse
|
25
|
Gammaherpesvirus latency differentially impacts the generation of primary versus secondary memory CD8+ T cells during subsequent infection. J Virol 2014; 88:12740-51. [PMID: 25142586 DOI: 10.1128/jvi.02106-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Unlike laboratory animals, humans are infected with multiple pathogens, including the highly prevalent herpesviruses. The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. Mice were first infected with murine gammaherpesvirus 68 (MHV68), a model of Epstein-Barr virus (EBV) infection, and then after latency was established, they were challenged with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV). The initial replication of LCMV was lower in latently infected mice, and the maturation of dendritic cells was abated. Although the number of LCMV-specific effector CD8(+) T cells was not altered, they were skewed to a memory phenotype. In contrast, LCMV-specific effector CD4(+) T cells were increased in latently infected mice compared to those in mice infected solely with LCMV. When the memory phase was reached, latently infected mice had an LCMV-specific memory T cell pool that was increased relative to that found in singly infected mice. Importantly, LCMV-specific memory CD8(+) T cells had decreased CD27 and increased killer cell lectin-like receptor G1 (KLRG1) expression. Upon secondary challenge, LCMV-specific secondary effector CD8(+) T cells expanded and cleared the infection. However, the LCMV-specific secondary memory CD8(+) T cell pool was decreased in latently infected animals, abrogating the boosting effect normally observed following rechallenge. Taken together, these results demonstrate that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. IMPORTANCE CD8(+) T cells are critical for the clearance of intracellular pathogens, including viruses, certain bacteria, and tumors. However, current models for memory CD8(+) T cell differentiation are derived from pathogen-free laboratory mice challenged with a single pathogen or vaccine vector. Unlike laboratory animals, all humans are infected with multiple acute and chronic pathogens, including the highly prevalent herpesviruses Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex viruses (HSV), and varicella-zoster virus (VZV). The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. We observed that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. These results suggest that unlike pathogen-free laboratory mice, infection or immunization of latently infected humans may result in the generation of T cells with limited potential for long-term protection.
Collapse
|
26
|
Mehlhop-Williams ER, Bevan MJ. Memory CD8+ T cells exhibit increased antigen threshold requirements for recall proliferation. ACTA ACUST UNITED AC 2014; 211:345-56. [PMID: 24493801 PMCID: PMC3920562 DOI: 10.1084/jem.20131271] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Memory CD8+ T cells require stronger TCR stimulation than naive cells to enter cell cycle due to reduced Zap70 activation and increased levels of protein tyrosine phosphatases. A hallmark of immunological memory is the ability of previously primed T cells to undergo rapid recall responses upon antigen reencounter. Classic work has suggested that memory T cells proliferate in response to lower doses of antigen than naive T cells and with reduced requirements for co-stimulation. In contrast to this premise, we observed that naive but not memory T cells proliferate in vivo in response to limited antigen presentation. To reconcile these observations, we tested the antigen threshold requirement for cell cycle entry in naive and central memory CD8+ T cells. Although both naive and memory T cells detect low dose antigen, only naive T cells activate cell cycle effectors. Direct comparison of TCR signaling on a single cell basis indicated that central memory T cells do not activate Zap70, induce cMyc expression, or degrade p27 in response to antigen levels that activate these functions in naive T cells. The reduced sensitivity of memory T cells may result from both decreased surface TCR expression and increased expression of protein tyrosine phosphatases as compared with naive T cells. Our data describe a novel aspect of memory T cell antigen threshold sensitivity that may critically regulate recall expansion.
Collapse
Affiliation(s)
- Erin R Mehlhop-Williams
- Department of Immunology and 2 the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109
| | | |
Collapse
|
27
|
Opata MM, Stephens R. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. ACTA ACUST UNITED AC 2014; 9:190-206. [PMID: 24790593 PMCID: PMC4000274 DOI: 10.2174/1573395509666131126231209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/08/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections,
increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from
central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory
T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also
lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells
remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the
potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the
data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an
immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only
appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells,
such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as
perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to
determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It
would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory
T cells at early time points has masked this important decision point. This does not rule out an effect of repeated
stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that
Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a
testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated
effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much
debated since.
Collapse
Affiliation(s)
- Michael M Opata
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| | - Robin Stephens
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| |
Collapse
|
28
|
Palanisamy AP, Cheng G, Sutter AG, Evans ZP, Polito CC, Jin L, Liu J, Schmidt MG, Chavin KD. Mitochondrial uncoupling protein 2 induces cell cycle arrest and necrotic cell death. Metab Syndr Relat Disord 2013; 12:132-42. [PMID: 24320727 DOI: 10.1089/met.2013.0096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that regulates energy metabolism and reactive oxygen species (ROS) production. We generated mouse carboxy- and amino-terminal green fluorescent protein (GFP)-tagged UCP2 constructs to investigate the effect of UCP2 expression on cell proliferation and viability. UCP2-transfected Hepa 1-6 cells did not show reduced cellular adenosine triphosphate (ATP) but showed increased levels of glutathione. Flow cytometry analysis indicated that transfected cells were less proliferative than nontransfected controls, with most cells blocked at the G1 phase. The effect of UCP2 on cell cycle arrest could not be reversed by providing exogenous ATP or oxidant supply, and was not affected by the chemical uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP). However, this effect of UCP2 was augmented by treatment with genistein, a tyrosine kinase inhibitor, which by itself did not affect cell proliferation on control hepatocytes. Western blotting analysis revealed decreased expression levels of CDK6 but not CDK2 and D-type cyclins. Examination of cell viability in UCP2-transfected cells with Trypan Blue and Annexin-V staining revealed that UCP2 transfection led to significantly increased cell death. However, characteristics of apoptosis were absent in UCP2-transfected Hepa 1-6 cells, including lack of oligonucleosomal fragmentation (laddering) of chromosomal DNA, release of cytochrome c from mitochondria, and cleavage of caspase-3. In conclusion, our results indicate that UCP2 induces cell cycle arrest at G1 phase and causes nonapoptotic cell death, suggesting that UCP2 may act as a powerful influence on hepatic regeneration and cell death in the steatotic liver.
Collapse
Affiliation(s)
- Arun P Palanisamy
- 1 Department of Transplant Surgery, Medical University of South Carolina , Charleston, South Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Z, Liu Q, Leskov KS, Wu X, Duan J, Zhang GL, Hall M, Rosenbaum JT. Roscovitine suppresses CD4+ T cells and T cell-mediated experimental uveitis. PLoS One 2013; 8:e81154. [PMID: 24260551 PMCID: PMC3832440 DOI: 10.1371/journal.pone.0081154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
Background T cells are essential for the development of uveitis and other autoimmune diseases. After initial activation, CD4+ lymphocytes express the co-stimulatory molecule OX40 that plays an important role in T cell proliferation. Cyclin dependent kinase 2 (CdK2) plays a pivotal role in the cell cycle transition from G1 to S phase. In addition, recent research has implicated CdK2 in T cell activation. Thus, we sought to test the immunosuppressive effect of roscovitine, a potent CdK2 inhibitor, on CD4+ T cell activation, proliferation, and function. Design and Methods Mouse CD4+ T cells were activated by anti-CD3 and anti-CD28 antibodies. The expression of OX40, CD44, and CdK2 were analyzed by flow cytometry. In addition, cell cycle progression and apoptosis of control and roscovitine-treated T lymphocytes were measured by BrdU incorporation and annexin V assay, respectively. Furthermore, the immunoregulatory effect of roscovitine was evaluated in both ovalbumin-induced uveitis and experimental autoimmune uveitis (EAU) models. Results In this study, we found that T cell activation induced OX40 expression. Cell cycle analysis showed that more CD4+OX40+ cells entered S phase than OX40- T cells. Concurrently, CD4+OX40+ cells had a higher level of CdK2 expression. Roscovitine treatment blocked activated CD4+ cells from entering S phase. In addition, roscovitine not only reduced the viability of CD4+ lymphocytes but also suppressed T cell activation and cytokine production. Finally, roscovitine significantly attenuated the severity of T cell-dependent, OX40-enhanced uveitis. Conclusion These results implicate CdK2 in OX40-augmented T cell response and expansion. Furthermore, this study suggests that roscovitine is a novel, promising, therapeutic agent for treating T cell-mediated diseases such as uveitis.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Qi Liu
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Konstantin S. Leskov
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiumei Wu
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jie Duan
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gary L. Zhang
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Mark Hall
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - James T. Rosenbaum
- Departments of Medicine and Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
- Devers Eye Institute, Legacy Health System, Portland, Oregon, United States of America
| |
Collapse
|
30
|
Abstract
Previous studies revealed the existence of foreign antigen-specific memory phenotype CD8 T cells in unimmunized mice. Considerable evidence suggests this population, termed "virtual memory" (VM) CD8 T cells, arise via physiological homeostatic mechanisms. However, the antigen-specific function of VM cells is poorly characterized, and hence their potential contribution to immune responses against pathogens is unclear. Here we show that naturally occurring, polyclonal VM cells have unique functional properties, distinct from either naïve or antigen-primed memory CD8 T cells. In striking contrast to conventional memory cells, VM cells showed poor T cell receptor-induced IFN-γ synthesis and preferentially differentiated into central memory phenotype cells after priming. Importantly, VM cells showed efficient control of Listeria monocytogenes infection, indicating memory-like capacity to eliminate certain pathogens. These data suggest naturally arising VM cells display unique functional traits, allowing them to form a bridge between the innate and adaptive phase of a response to pathogens.
Collapse
|
31
|
Fiaschi-Taesch NM, Kleinberger JW, Salim FG, Troxell R, Wills R, Tanwir M, Casinelli G, Cox AE, Takane KK, Srinivas H, Scott DK, Stewart AF. Cytoplasmic-nuclear trafficking of G1/S cell cycle molecules and adult human β-cell replication: a revised model of human β-cell G1/S control. Diabetes 2013; 62:2460-70. [PMID: 23493571 PMCID: PMC3712040 DOI: 10.2337/db12-0778] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Harnessing control of human β-cell proliferation has proven frustratingly difficult. Most G1/S control molecules, generally presumed to be nuclear proteins in the human β-cell, are in fact constrained to the cytoplasm. Here, we asked whether G1/S molecules might traffic into and out of the cytoplasmic compartment in association with activation of cell cycle progression. Cdk6 and cyclin D3 were used to drive human β-cell proliferation and promptly translocated into the nucleus in association with proliferation. In contrast, the cell cycle inhibitors p15, p18, and p19 did not alter their location, remaining cytoplasmic. Conversely, p16, p21, and p27 increased their nuclear frequency. In contrast once again, p57 decreased its nuclear frequency. Whereas proliferating β-cells contained nuclear cyclin D3 and cdk6, proliferation generally did not occur in β-cells that contained nuclear cell cycle inhibitors, except p21. Dynamic cytoplasmic-nuclear trafficking of cdk6 was confirmed using green fluorescent protein-tagged cdk6 and live cell imaging. Thus, we provide novel working models describing the control of cell cycle progression in the human β-cell. In addition to known obstacles to β-cell proliferation, cytoplasmic-to-nuclear trafficking of G1/S molecules may represent an obstacle as well as a therapeutic opportunity for human β-cell expansion.
Collapse
Affiliation(s)
- Nathalie M Fiaschi-Taesch
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fiaschi-Taesch NM, Kleinberger JW, Salim FG, Troxell R, Wills R, Tanwir M, Casinelli G, Cox AE, Takane KK, Scott DK, Stewart AF. Human pancreatic β-cell G1/S molecule cell cycle atlas. Diabetes 2013; 62:2450-9. [PMID: 23493570 PMCID: PMC3712053 DOI: 10.2337/db12-0777] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical "atlas" of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion.
Collapse
Affiliation(s)
- Nathalie M Fiaschi-Taesch
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Giardino Torchia ML, Conze DB, Jankovic D, Ashwell JD. Balance between NF-κB p100 and p52 regulates T cell costimulation dependence. THE JOURNAL OF IMMUNOLOGY 2012; 190:549-55. [PMID: 23248260 DOI: 10.4049/jimmunol.1201697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
c-IAP1 and c-IAP2 are ubiquitin protein ligases (E3s) that repress noncanonical NF-κB activation. We have created mice that bear a mutation in c-IAP2 that inactivates its E3 activity and interferes, in a dominant-negative fashion, with c-IAP1 E3 activity (c-IAP2(H570A)). The immune response of these animals was explored by infecting them with the Th1-inducing parasite Toxoplasma gondii. Surprisingly, c-IAP2(H570A) mice succumbed because of T cell production of high levels of proinflammatory cytokines. Unlike naive wild-type (WT) cells, which require signals generated by the TCR and costimulatory receptors to become fully activated, naive c-IAP2(H570A) T cells proliferated and produced high levels of IL-2 and IFN-γ to stimulation via TCR alone. c-IAP2(H570A) T cells had constitutive noncanonical NF-κB activation, and IκB kinase inhibition reduced their proliferation to anti-TCR alone to WT levels but had no effect when costimulation via CD28 was provided. Notably, T cells from nfkb2(-/-) mice, which cannot generate the p52 component of noncanonical NF-κB, were also costimulation independent, consistent with the negative role of this unprocessed protein in canonical NF-κB activation. Whereas T cells from nfkb2(+/-) mice behaved like WT, coexpression of a single copy of c-IAP2(H570A) resulted in cleavage of p100, upregulation of p52, and T cell costimulation independence. Thus, p100 represses and p52 promotes costimulation, and the ratio regulates T cell dependence on costimulatory signals.
Collapse
|
35
|
Abstract
CD8 T cells exhibit dynamic alterations in proliferation and apoptosis during various phases of the CD8 T cell response, but the mechanisms that regulate cellular proliferation from the standpoint of CD8 T cell memory are not well defined. The cyclin-dependent kinase inhibitor p27Kip1 functions as a negative regulator of the cell cycle in various cell types including T cells and it has been implicated in regulating cellular processes including differentiation, transcription and migration. Here, we investigated whether p27Kip1 regulates CD8 T cell memory by T cell-intrinsic or T cell-extrinsic mechanisms, by conditional ablation of p27Kip1 in T cells or non-T cells. Studies of T cell responses to an acute viral infection show that p27Kip1 negatively regulates the proliferation of CD8 T cells by T cell-intrinsic mechanisms. However, the enhanced proliferation of CD8 T cells induced by T cell-specific p27Kip1 deficiency minimally affects the primary expansion or the magnitude of CD8 T cell memory. Unexpectedly, p27Kip1 ablation in non-T cells markedly augmented the number of high quality memory CD8 T cells by enhancing the accumulation of memory precursor effector cells without increasing their proliferation. Further studies show that p27Kip1 deficiency in immunizing DCs fail to enhance CD8 T cell memory. Nevertheless, we have delineated the T cell-intrinsic, anti-proliferative activities of p27Kip1 in CD8 T cells from its role as a factor in non-T cells that restricts the development of CD8 T cell memory. These findings have implications in vaccine development and understanding the mechanisms that maintain T cell homeostasis.
Collapse
|
36
|
Patel A, Harker N, Moreira-Santos L, Ferreira M, Alden K, Timmis J, Foster K, Garefalaki A, Pachnis P, Andrews P, Enomoto H, Milbrandt J, Pachnis V, Coles MC, Kioussis D, Veiga-Fernandes H. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci Signal 2012; 5:ra55. [PMID: 22855506 DOI: 10.1126/scisignal.2002734] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the early development of the gastrointestinal tract, signaling through the receptor tyrosine kinase RET is required for initiation of lymphoid organ (Peyer's patch) formation and for intestinal innervation by enteric neurons. RET signaling occurs through glial cell line-derived neurotrophic factor (GDNF) family receptor α co-receptors present in the same cell (signaling in cis). It is unclear whether RET signaling in trans, which occurs in vitro through co-receptors from other cells, has a biological role. We showed that the initial aggregation of hematopoietic cells to form lymphoid clusters occurred in a RET-dependent, chemokine-independent manner through adhesion-mediated arrest of lymphoid tissue initiator (LTin) cells. Lymphoid tissue inducer cells were not necessary for this initiation phase. LTin cells responded to all RET ligands in trans, requiring factors from other cells, whereas RET was activated in enteric neurons exclusively by GDNF in cis. Furthermore, genetic and molecular approaches revealed that the versatile RET responses in LTin cells were determined by distinct patterns of expression of the genes encoding RET and its co-receptors. Our study shows that a trans RET response in LTin cells determines the initial phase of enteric lymphoid organ morphogenesis, and suggests that differential co-expression of Ret and Gfra can control the specificity of RET signaling.
Collapse
Affiliation(s)
- Amisha Patel
- Division of Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hamilton SE, Jameson SC. CD8 T cell quiescence revisited. Trends Immunol 2012; 33:224-30. [PMID: 22361353 DOI: 10.1016/j.it.2012.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 01/19/2023]
Abstract
Naïve T cells are typically considered to be in a default state of quiescence, whereas memory T cells undergo basal proliferation and quickly exhibit effector responses when stimulated. Over the past few years, however, a more complex picture has emerged, with evidence that naïve T cell quiescence is actively enforced, and that heterogeneity among naïve T cells influences their capacity to escape quiescence in response to homeostatic cues. Furthermore, the active state of memory T cells may also be instructed, requiring contact with dendritic cells to avoid reversion to quiescence. Here, we discuss these new findings and propose that there is much more flexibility in the quiescent state of naïve and memory T cells than previously thought.
Collapse
Affiliation(s)
- Sara E Hamilton
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55414, USA.
| | | |
Collapse
|
38
|
Sherrill JD, Sparks M, Dennis J, Mansour M, Kemppainen BW, Bartol FF, Morrison EE, Akingbemi BT. Developmental exposures of male rats to soy isoflavones impact Leydig cell differentiation. Biol Reprod 2010; 83:488-501. [PMID: 20554919 PMCID: PMC6366397 DOI: 10.1095/biolreprod.109.082685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/20/2010] [Accepted: 05/16/2010] [Indexed: 01/03/2023] Open
Abstract
Testicular Leydig cells, which are the predominant source of the male sex steroid hormone testosterone, express estrogen receptors (ESRs) and are subject to regulation by estrogen. Following ingestion, the two major isoflavones in soybeans, genistin and daidzin, are hydrolyzed by gut microflora to form genistein and daidzein, which have the capacity to bind ESRs and affect gene expression. Thus, the increasing use of soy-based products as nondairy sources of protein has raised concerns about the potential of these products to cause reproductive toxicity. In the present study, perinatal exposure of male rats to isoflavones induced proliferative activity in Leydig cells. Isoflavones have the capacity to act directly as mitogens in Leydig cells, because genistein treatment induced Leydig cell division in vitro. Genistein action regulating Leydig cell division involved ESRs, acting in concert with signaling molecules in the transduction pathway mediated by protein kinase B (AKT) and mitogen-activated protein kinase (MAPK). Enhanced proliferative activity in the prepubertal period increased Leydig cell numbers, which alleviated deficits in androgen biosynthesis and/or augmented serum and testicular testosterone concentrations in adulthood. Together, these observations indicate that the perinatal exposures of male rats to isoflavones affected Leydig cell differentiation, and they imply that including soy products in the diets of neonates has potential implications for testis function.
Collapse
Affiliation(s)
- Jessica D Sherrill
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Regulation of memory CD8 T-cell differentiation by cyclin-dependent kinase inhibitor p27Kip1. Mol Cell Biol 2010; 30:5145-59. [PMID: 20805358 DOI: 10.1128/mcb.01045-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of potent T-cell memory is the goal of vaccinations, but the molecular mechanisms that regulate the formation of memory CD8 T cells are not well understood. Despite the recognition that controls of cellular proliferation and apoptosis govern the number of memory T cells, the cell cycle regulatory mechanisms that control these key cellular processes in CD8 T cells during an immune response are poorly defined. Here, we have identified the cyclin-dependent kinase inhibitor p27(Kip1) as a critical regulator of the CD8 T-cell homeostasis at all phases of the T-cell response to an acute viral infection in mice. By acting as a timer for cell cycle exit, p27(Kip1) curtailed the programmed expansion of interleukin-2-producing memory precursors and markedly limited the magnitude and quality of CD8 T-cell memory. In the absence of p27(Kip1), CD8 T cells showed superior recall responses shortly after vaccination with recombinant Listeria monocytogenes. Additionally, we show that p27(Kip1) constrains proliferative renewal of memory CD8 T cells, especially of the effector memory subset. These findings provide critical insights into the cell cycle regulation of CD8 T-cell homeostasis and suggest that modulation of p27(Kip1) could bolster vaccine-induced T-cell memory and protective immunity.
Collapse
|
40
|
Criswell LA. Gene discovery in rheumatoid arthritis highlights the CD40/NF-kappaB signaling pathway in disease pathogenesis. Immunol Rev 2010; 233:55-61. [PMID: 20192992 DOI: 10.1111/j.0105-2896.2009.00862.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During the past several years, substantial progress has been made in the identification of genetic variants that predispose to rheumatoid arthritis (RA) and other autoimmune disorders. Progress in this area has been facilitated by the availability of new technology that allows for a much more comprehensive screen of the genome than was possible before, in conjunction with large samples of RA patients with well-characterized disease. Recent RA genetic studies have identified genes with important functions related to intracellular signaling mechanisms, transcription factors, cytokines, membrane receptors, costimulatory molecules, and enzymes. In particular, recent discoveries highlight the importance of the CD40/NF-kappaB signaling pathway in RA, based on genetic association with several genes relevant to this pathway, including CD40, TRAF1, TNFAIP3, and REL. Progress in the identification of genes that contribute to RA is proceeding at a very rapid pace. These genetic discoveries shed light on underlying disease mechanisms in RA and provide targets for the development of novel diagnostic and therapeutic tools for future use in this chronic inflammatory disorder.
Collapse
Affiliation(s)
- Lindsey A Criswell
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Hand TW, Kaech SM. Intrinsic and extrinsic control of effector T cell survival and memory T cell development. Immunol Res 2010; 45:46-61. [PMID: 18629449 DOI: 10.1007/s12026-008-8027-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following infection or vaccination T cells expand exponentially and differentiate into effector T cells in order to control infection and coordinate the multiple effector arms of the immune system. Soon after this expansion, the majority of antigen-specific T cells die to reattain homeostasis and a small pool of memory T cells forms to provide long-term immunity to subsequent re-infection. Our understanding of how this process is controlled has improved considerably over the recent years, but many questions remain outstanding. This review focuses on the recent advancements in this area with an emphasis on how the contraction of activated T cells is coordinately regulated by a combination of factors extrinsic and intrinsic to the activated T cells.
Collapse
Affiliation(s)
- Timothy W Hand
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar St., TACS641B, P.O. Box 208011, New Haven, CT 06520, USA
| | | |
Collapse
|
42
|
Abstract
In response to infection or effective vaccination, naive antigen-specific CD8+ T cells undergo a dramatic highly orchestrated activation process. Initial encounter with an appropriately activated antigen-presenting cell leads to blastogenesis and an exponential increase in antigen-specific CD8+ T cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in formation of both primary effector and long-lived memory cells. Current findings have emphasized the heterogeneity of effector and memory cell populations with the description of multiple cellular subsets based on phenotype, function, and anatomic location. Yet, only recently have we begun to dissect the underlying factors mediating the temporal control of the development of distinct effector and memory CD8+ T cell sublineages. In this review we will focus on the requirements for mounting an effective CD8+ T cell response and highlight the elements regulating the differentiation of effector and memory subsets.
Collapse
Affiliation(s)
- Joshua J Obar
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06107, USA
| | | |
Collapse
|
43
|
Increased antigen responsiveness of naive CD8 T cells exposed to IL‐7 and IL‐21 is associated with decreased CD5 expression. Immunol Cell Biol 2010; 88:451-60. [DOI: 10.1038/icb.2009.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Kalia V, Sarkar S, Ahmed R. CD8 T-Cell Memory Differentiation during Acute and Chronic Viral Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:79-95. [DOI: 10.1007/978-1-4419-6451-9_7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Abstract
The functional roles of memory B and T lymphocytes underlie the phenomenal success of prophylactic vaccinations, which have decreased morbidities and mortalities from infectious diseases globally over the last 50 years. However, it is becoming increasingly appreciated that memory cells are also capable of mediating the pathology associated with autoimmune disorders and transplant rejection, and may pose a significant barrier to future clinical advancement in immunoregulation. Therefore, understanding the unique properties of memory lymphocytes (as compared to their naive precursors) is a major area of investigation. Here, we focus on one of those singular properties of memory T cells (T(M))-rapid recall. As will be discussed in more detail, rapid recall refers to the ability of quiescent T(M) cells to efficiently and robustly express 'effector functions' following stimulation. Studies that have advanced our understanding of T(M) cells' rapid recall using CD4(+) T cells have been expertly reviewed elsewhere, so we will focus primarily on studies of CD8(+) T cells. We will first review the different ways that CD8(+) T(M) cells can be generated, followed by discussing how this influences their functional properties in the settings of immune protection and pathology. Then, rapid recall ability will be discussed, with emphasis placed on what is currently known about the mechanisms that underlie this unique property of T(M) cells.
Collapse
|
46
|
Sandau MM, Kohlmeier JE, Woodland DL, Jameson SC. IL-15 regulates both quantitative and qualitative features of the memory CD8 T cell pool. THE JOURNAL OF IMMUNOLOGY 2009; 184:35-44. [PMID: 19949092 DOI: 10.4049/jimmunol.0803355] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Memory T cells are critical for immunity to various intracellular pathogens. Recent studies have indicated that CD8 secondary memory cells, induced by prime-boost approaches, show enhanced protective function compared with primary memory cells and exhibit phenotypic and functional characteristics that distinguish them from primary memory cells. However, little is known about the cytokine requirements for generation and maintenance of boosted memory CD8 T cells. We studied the role of IL-15 in determining the size and composition of the secondary (2 degrees) memory CD8 T cell pool induced by Listeria monocytogenes infection in mice. Following boosting, IL-15-deficient animals failed to generate a subset of CD8 effector memory cells, including a population of IL-7Ralpha(low) cells, which were prominent among secondary memory cells in normal mice. IL-15 deficiency also resulted in changes within the IL-7Ralpha(high)CD62L(low) subset of 2 degrees memory CD8 T cells, which expressed high levels of CD27 but minimal granzyme B. In addition to these qualitative changes, IL-15 deficiency resulted in reduced cell cycle and impaired Bcl-2 expression by 2 degrees memory CD8 T cells, suggesting a role for IL-15 in supporting both basal proliferation and survival of the pool. Analogous qualitative differences in memory CD8 T cell populations were observed following a primary response to Sendai virus in IL-15(-/-) animals. Collectively, these findings demonstrate that IL-15 plays an important role in dictating the composition rather than simply the maintenance of the CD8 memory pool.
Collapse
Affiliation(s)
- Michelle M Sandau
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
47
|
Allam A, Conze DB, Giardino Torchia ML, Munitic I, Yagita H, Sowell RT, Marzo AL, Ashwell JD. The CD8+ memory T-cell state of readiness is actively maintained and reversible. Blood 2009; 114:2121-30. [PMID: 19617575 PMCID: PMC2744573 DOI: 10.1182/blood-2009-05-220087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/08/2009] [Indexed: 11/20/2022] Open
Abstract
The ability of the adaptive immune system to respond rapidly and robustly upon repeated antigen exposure is known as immunologic memory, and it is thought that acquisition of memory T-cell function is an irreversible differentiation event. In this study, we report that many phenotypic and functional characteristics of antigen-specific CD8 memory T cells are lost when they are deprived of contact with dendritic cells. Under these circumstances, memory T cells reverted from G(1) to the G(0) cell-cycle state and responded to stimulation like naive T cells, as assessed by proliferation, dependence upon costimulation, and interferon-gamma production, without losing cell surface markers associated with memory. The memory state was maintained by signaling via members of the tumor necrosis factor receptor superfamily, CD27 and 4-1BB. Foxo1, a transcription factor involved in T-cell quiescence, was reduced in memory cells, and stimulation of naive CD8 cells via CD27 caused Foxo1 to be phosphorylated and emigrate from the nucleus in a phosphatidylinositol-3 kinase-dependent manner. Consistent with these results, maintenance of G(1) in vivo was compromised in antigen-specific memory T cells in vesicular stomatitis virus-infected CD27-deficient mice. Therefore, sustaining the functional phenotype of T memory cells requires active signaling and maintenance.
Collapse
Affiliation(s)
- Atef Allam
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Parish IA, Kaech SM. Diversity in CD8(+) T cell differentiation. Curr Opin Immunol 2009; 21:291-7. [PMID: 19497720 DOI: 10.1016/j.coi.2009.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 12/24/2022]
Abstract
CD8(+) T cells are key effector cells of the adaptive immune system, however their activity must be tightly regulated to allow pathogen clearance whilst preventing immunopathology and autoimmunity. In this review, we summarise the diversity of responses that CD8(+) T cells make to antigenic stimulation with a focus on how CD8(+) T cell responses are regulated to achieve different immune outcomes. In particular, we discuss phenotypic diversity during tolerance induction as well as signals that drive effector and memory cell differentiation in response to infection.
Collapse
Affiliation(s)
- Ian A Parish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
49
|
Bancos S, Cao Q, Bowers WJ, Crispe IN. Dysfunctional memory CD8+ T cells after priming in the absence of the cell cycle regulator E2F4. Cell Immunol 2009; 257:44-54. [PMID: 19306992 DOI: 10.1016/j.cellimm.2009.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 01/19/2023]
Abstract
The transcriptional repressor E2F4 is important for cell cycle exit and terminal differentiation in epithelial cells, neuronal cells and adipocytes but its role in T lymphocytes proliferation and memory formation is not known. Herein, we investigated the function of E2F4 protein for the formation of functional murine memory T cells. Murine transgenic CD8+ T cells were infected in vitro with lentivirus vector expressing a shRNA targeted against E2F4 followed by in vitro stimulation with SIINFEKL antigenic peptide. For in vivo assays, transduced cells were injected into congenic mice which were then infected with HSV-OVA. The primary response, memory formation and secondary stimulation were determined for CD8+ lentivirus transduced cells. In the absence of E2F4 cell cycle repressor, activated CD8+ T cells underwent intensive proliferation in vitro and in vivo. These cells had the ability to differentiate into memory cells in vivo, but they were defective in recall proliferation. We show that transient suppression of E2F4 during CD8+ T cell priming enhances primary proliferation and has a negative effect on secondary stimulation. These findings demonstrate that the cell cycle repressor E2F4 is essential for the formation of functional memory T cells. A decrease in CD8+ T-lymphocyte compartment would diminish our capacity to control viral infections.
Collapse
Affiliation(s)
- Simona Bancos
- David H Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642USA.
| | | | | | | |
Collapse
|
50
|
Yamada T, Park CS, Mamonkin M, Lacorazza HD. Transcription factor ELF4 controls the proliferation and homing of CD8+ T cells via the Krüppel-like factors KLF4 and KLF2. Nat Immunol 2009; 10:618-26. [PMID: 19412182 PMCID: PMC2774797 DOI: 10.1038/ni.1730] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/24/2009] [Indexed: 12/13/2022]
Abstract
Transcription factors that regulate the quiescence, proliferation and homing of lymphocytes are critical for effective immune system function. Here we demonstrate that the transcription factor ELF4 directly activated the tumor suppressor KLF4 'downstream' of T cell antigen receptor signaling to induce cell cycle arrest in naive CD8(+) T cells. Elf4- and Klf4-deficient mice accumulated CD8(+)CD44(hi) T cells during steady-state conditions and generated more memory T cells after immunization. The homeostatic population expansion of CD8(+)CD44(hi) T cells in Elf4-null mice resulted in a redistribution of cells to nonlymphoid tissue because of lower expression of the transcription factor KLF2 and the surface proteins CCR7 and CD62L. Our work describes the combinatorial effect of lymphocyte-intrinsic factors on the homeostasis, activation and homing of T cells.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | | | | | | |
Collapse
|