1
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Zhao M, He C, Zheng X, Jiang M, Xie Z, Wei H, Zhang S, Lin Y, Zhang J, Sun X. Self-adjuvanting polymeric nanovaccines enhance IFN production and cytotoxic T cell response. J Control Release 2024; 369:556-572. [PMID: 38580136 DOI: 10.1016/j.jconrel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Vaccines represent one of the most powerful and cost-effective innovations for controlling a wide range of infectious diseases caused by various viruses and bacteria. Unlike mRNA and DNA-based vaccines, subunit vaccines carry no risk of insertional mutagenesis and can be lyophilized for convenient transportation and long-term storage. However, existing adjuvants are often associated with toxic effect and reactogenicity, necessitating expanding the repertoire of adjuvants with better biocompatibility, for instance, designing self-adjuvating polymeric carriers. We herein report a novel subunit vaccine delivery platform constructed via in situ free radical polymerization of C7A (2-(Hexamethyleneimino) ethyl methacrylate) and acrylamide around the surface of individual protein antigens. Using ovalbumin (OVA) as a model antigen, we observed substantial increases in both diameter (∼70 nm) and surface potential (-1.18 mV) following encapsulation, referred to as n(OVA)C7A. C7A's ultra pH sensitivity with a transition pH around 6.9 allows for rapid protonation in acidic environments. This property facilitates crucial processes such as endosomal escape and major histocompatibility complex (MHC)-I-mediated antigen presentation, culminating in the substantial CD8+ T cell activation. Additionally, compared to OVA nanocapsules without the C7A components and native OVA without modifications, we observed heightened B cell activation within the germinal center, along with remarkable increases in serum antibody and cytokine production. It's important to note that mounting evidence suggests that adjuvant effects, particularly its targeted stimulation of type I interferons (IFNs), can contribute to advantageous adaptive immune responses. Beyond its exceptional potency, the nanovaccine also demonstrated robust formation of immune memory and exhibited a favorable biosafety profile. These findings collectively underscore the promising potential of our nanovaccine in the realm of immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Ming Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chunting He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xueyun Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Min Jiang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhiqiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Hongjiao Wei
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Shujun Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China.
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Ibitokou SA, Gbedande K, Opata MM, Carpio VH, Marshall KM, Stephens R. Effects of Low-Level Persistent Infection on Maintenance of Immunity by CD4 T Cell Subsets and Th1 Cytokines. Infect Immun 2023; 91:e0053122. [PMID: 36920200 PMCID: PMC10016079 DOI: 10.1128/iai.00531-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
CD4 T cells are required, along with antibodies, for complete protection from blood-stage infection with Plasmodium spp., which cause malaria. Without continuous exposure, as on emigration of people from endemic areas, protection from malaria decays. As in other persistent infections, low-level Plasmodium chabaudi infection protects the host from reinfection at 2 months postinfection, a phenomenon termed premunition. Premunition is correlated with T cell responses, rather than antibody levels. We previously showed that while both effector T cells (Teff) and memory T cells (Tmem) are present after infection, Teff protect better than Tmem. Here, we studied T cell kinetics post-infection by labeling dividing Ifng+ T cells with 5-bromo-2'-deoxyuridine (BrdU) in infected Ifng reporter mice. Large drops in specific T cell numbers and Ifng+ cells upon clearance of parasites suggest a mechanism for decay of protection. Although protection decays, CD4 Tmem persist, including a highly differentiated CD27- effector memory (Tem) subset that maintains some Ifng expression. In addition, pretreatment of chronically infected animals with neutralizing antibody to interferon gamma (IFN-γ) or with clodronate liposomes before reinfection decreases premunition, supporting a role for Th1-type immunity to reinfection. A pulse-chase experiment comparing chronically infected to treated animals showed that recently divided Ifng+ T cells, particularly IFN-γ+ TNF+ IL-2- T cells, are promoted by persistent infection. These data suggest that low-level persistent infection reduces CD4+ Tmem and multifunctional Teff survival, but promotes IFN-γ+ TNF+ IL-2- T cells and Ifng+ terminally differentiated effector T cells, and prolongs immunity.
Collapse
Affiliation(s)
- Samad A. Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael M. Opata
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Victor H. Carpio
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karis M. Marshall
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Abstract
Conventional CD4+ and CD8+ T lymphocytes comprise a mixture of naive and memory cells. Generation and survival of these T-cell subsets is under strict homeostatic control and reflects contact with self-major histocompatibility complex (MHC) and certain cytokines. Naive T cells arise in the thymus via T-cell receptor (TCR)-dependent positive selection to self-peptide/MHC complexes and are then maintained in the periphery through self-MHC interaction plus stimulation via interleukin-7 (IL-7). By contrast, memory T cells are largely MHC-independent for their survival but depend strongly on stimulation via cytokines. Whereas typical memory T cells are generated in response to foreign antigens, some arise spontaneously through contact of naive precursors with self-MHC ligands; we refer to these cells as memory-phenotype (MP) T cells. In this review, we discuss the generation and homeostasis of naive T cells and these two types of memory T cells, focusing on their relative interaction with MHC ligands and cytokines.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jaeu Yi
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
6
|
Milam AAV, Bartleson JM, Buck MD, Chang CH, Sergushichev A, Donermeyer DL, Lam WY, Pearce EL, Artyomov MN, Allen PM. Tonic TCR Signaling Inversely Regulates the Basal Metabolism of CD4 + T Cells. Immunohorizons 2020; 4:485-497. [PMID: 32769180 DOI: 10.4049/immunohorizons.2000055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
The contribution of self-peptide-MHC signaling in CD4+ T cells to metabolic programming has not been definitively established. In this study, we employed LLO118 and LLO56, two TCRtg CD4+ T cells that recognize the same Listeria epitope. We previously have shown that LLO56 T cells are highly self-reactive and respond poorly in a primary infection, whereas LLO118 cells, which are less self-reactive, respond well during primary infection. We performed metabolic profiling and found that naive LLO118 had a dramatically higher basal respiration rate, a higher maximal respiration rate, and a higher glycolytic rate relative to LLO56. The LLO118 cells also exhibited a greater uptake of 2-NBD-glucose, in vitro and in vivo. We extended the correlation of low self-reactivity (CD5lo) with high basal metabolism using two other CD4+ TCRtg cells with known differences in self-reactivity, AND and Marilyn. We hypothesized that the decreased metabolism resulting from a strong interaction with self was mediated through TCR signaling. We then used an inducible knock-in mouse expressing the Scn5a voltage-gated sodium channel. This channel, when expressed in peripheral T cells, enhanced basal TCR-mediated signaling, resulting in decreased respiration and glycolysis, supporting our hypothesis. Genes and metabolites analysis of LLO118 and LLO56 T cells revealed significant differences in their metabolic pathways, including the glycerol phosphate shuttle. Inhibition of this pathway reverts the metabolic state of the LLO118 cells to be more LLO56 like. Overall, these studies highlight the critical relationship between peripheral TCR-self-pMHC interaction, metabolism, and the immune response to infection.
Collapse
Affiliation(s)
- Ashley A Viehmann Milam
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Juliet M Bartleson
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael D Buck
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.,The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | | | - David L Donermeyer
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Wing Y Lam
- Amgen Research, Amgen, Inc., South San Francisco, CA 94080
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Maxim N Artyomov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul M Allen
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
7
|
Liu Q, Zhou Y, Li M, Zhao L, Ren J, Li D, Tan Z, Wang K, Li H, Hussain M, Zhang L, Shen G, Zhu J, Tao J. Polyethylenimine Hybrid Thin-Shell Hollow Mesoporous Silica Nanoparticles as Vaccine Self-Adjuvants for Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47798-47809. [PMID: 31773941 DOI: 10.1021/acsami.9b19446] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Conventional adjuvants (e.g., aluminum) are insufficient to trigger cell-mediated immunity, which plays a crucial role in triggering specific immunity against cancer. Therefore, developing appropriate adjuvants for cancer vaccines is a central way to stimulate the antitumor immune response. Hollow mesoporous silica nanoparticles (HMSNs) have been proven to stimulate Th1 antitumor immunity in vivo and promote immunological memory in the formulation of novel cancer vaccines. Yet, immune response rates of existing HMSNs for anticancer immunity still remain low. Here, we demonstrate the generation of polyethylenimine (PEI)-incorporated thin-shell HMSNs (THMSNs) through a facile PEI etching strategy for cancer immunotherapy. Interestingly, incorporation of PEI and thin-shell hollow structures of THMSNs not only improved the antigen-loading efficacy and sustained drug release profiles but also enhanced the phagocytosis efficiency by dendritic cells (DCs), enabled DC maturation and Th1 immunity, and sustained immunological memory, resulting in the enhancement of the adjuvant effect of THMSNs. Moreover, THMSNs vaccines without significant side effects can significantly reduce the potentiality of tumor growth and metastasis in tumor challenge and rechallenge models, respectively. THMSNs are considered to be promising vehicles and excellent adjuvants for the formulation of cancer vaccines for immunotherapy.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Yajie Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College , HUST , Wuhan 430022 , China
| | - Mo Li
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Liang Zhao
- Department of Dermatology, Union Hospital, Tongji Medical College , HUST , Wuhan 430022 , China
| | - Jingli Ren
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Danqi Li
- Department of Dermatology, Union Hospital, Tongji Medical College , HUST , Wuhan 430022 , China
| | - Zhengping Tan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Ke Wang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Heli Li
- Department of Immunology, Tongji Medical College , HUST , Wuhan 430030 , China
| | - Mubashir Hussain
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Lianbin Zhang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College , HUST , Wuhan 430030 , China
| | - Jintao Zhu
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College , HUST , Wuhan 430022 , China
| |
Collapse
|
8
|
Zacharias ZR, Legge KL. Chronic Ethanol Consumption Reduces Existing CD8 T Cell Memory and Is Associated with Lesions in Protection against Secondary Influenza A Virus Infections. THE JOURNAL OF IMMUNOLOGY 2019; 203:3313-3324. [PMID: 31712384 DOI: 10.4049/jimmunol.1900770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
Chronic alcohol consumption is associated with an increased incidence of disease severity during pulmonary infections. Our previous work in a mouse model of chronic alcohol consumption has detailed that the primary influenza A virus (IAV)-specific CD8 T cell response in mice that consumed ethanol (EtOH) had a reduced proliferative capacity as well as the ability to kill IAV target cells. Interestingly, recent studies have highlighted that human alcoholics have an increased susceptibility to IAV infections, even though they likely possess pre-existing immunity to IAV. However, the effects of chronic alcohol consumption on pre-existing immune responses (i.e., memory) to IAV have not been explored. Our results presented in this study show that IAV-immune mice that then chronically consumed alcohol (X31→EtOH) exhibited increased morbidity and mortality following IAV re-exposure compared with IAV-immune mice that had consumed water (X31→H2O). This increased susceptibility in X31→EtOH mice was associated with reduced IAV-specific killing of target cells and a reduction in the number of IAV-specific CD8 T cells within the lungs. Furthermore, upon IAV challenge, recruitment of the remaining memory IAV-specific CD8 T cells into the lungs is reduced in X31→EtOH mice. This altered recruitment is associated with a reduced pulmonary expression of CXCL10 and CXCL11, which are chemokines that are important for T cell recruitment to the lungs. Overall, these results demonstrate that chronic alcohol consumption negatively affects the resting memory CD8 T cell response and reduces the ability of memory T cells to be recruited to the site of infection upon subsequent exposures, therein contributing to an enhanced susceptibility to IAV infections.
Collapse
Affiliation(s)
- Zeb R Zacharias
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242.,Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| | - Kevin L Legge
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242; .,Department of Pathology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
9
|
Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O. The role of cytokines in T-cell memory in health and disease. Immunol Rev 2018; 283:176-193. [DOI: 10.1111/imr.12644] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miro E. Raeber
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | - Yves Zurbuchen
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | | | - Onur Boyman
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
- Faculty of Medicine; University of Zurich; Zurich Switzerland
| |
Collapse
|
10
|
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. THE JOURNAL OF IMMUNOLOGY 2017; 197:407-17. [PMID: 27382129 DOI: 10.4049/jimmunol.1600343] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Abstract
Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.
Collapse
Affiliation(s)
- Alexandra J Murray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032; Department of Surgery, Columbia University Medical Center, New York, NY 10032; and
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Howard Hughes Medical Institute, Baltimore MD 21250
| |
Collapse
|
11
|
The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol 2017; 38:498-512. [PMID: 28549714 PMCID: PMC7185415 DOI: 10.1016/j.it.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV), how viral infections promote MS remains unclear. However, there is increasing evidence that the CNS is continuously surveyed by virus-specific T cells, which protect against reactivating neurotropic viruses. Here, we discuss how viral infections could lead to the breakdown of self-tolerance in genetically predisposed individuals, and how the reactivations of viruses in the CNS could induce the recruitment of both autoaggressive and virus-specific T cell subsets, causing relapses and progressive disability. A disturbed immune surveillance in MS would explain several experimental findings, and has important implications for prognosis and therapy. A huge body of evidence suggests that viral infections promote MS; however, no single causal virus has been identified. Multiple viruses could promote MS via bystander effects. Molecular mimicry is an established pathogenic mechanism in selected autoimmune diseases. It is also well documented in MS, but its contribution to MS pathogenesis is still unclear. Bystander activation upon viral infection could be involved in the generation of the autoreactive and potentially encephalitogenic T helper (Th)-1/17 central memory (Th1/17CM) cells found in the circulation of patients with MS. Autoreactive Th1/17CM cells could expand at the cost of antiviral Th1CM cells in patients with MS, in particular in those undergoing natalizumab therapy, because these cells are expected to compete for the same homeostatic niche. Autoreactive Th1/17 cells and antiviral Th1 cells are recruited to the CSF of patients with MS following attacks, suggesting that viral reactivations in the CNS induce the recruitment of pathogenic Th1/17 cells. Autoreactive Th1/17 cells in the CNS might also induce de novo viral reactivations in a circuit of self-induced inflammation.
Collapse
|
12
|
Hojyo S, Sarkander J, Männe C, Mursell M, Hanazawa A, Zimmel D, Zhu J, Paul WE, Fillatreau S, Löhning M, Radbruch A, Tokoyoda K. B Cells Negatively Regulate the Establishment of CD49b(+)T-bet(+) Resting Memory T Helper Cells in the Bone Marrow. Front Immunol 2016; 7:26. [PMID: 26870041 PMCID: PMC4735404 DOI: 10.3389/fimmu.2016.00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022] Open
Abstract
During an immune reaction, some antigen-experienced CD4 T cells relocate from secondary lymphoid organs (SLOs) to the bone marrow (BM) in a CD49b-dependent manner and reside and rest there as professional memory CD4 T cells. However, it remains unclear how the precursors of BM memory CD4 T cells are generated in the SLOs. While several studies have so far shown that B cell depletion reduces the persistence of memory CD4 T cells in the spleen, we here show that B cell depletion enhances the establishment of memory CD4 T cells in the BM and that B cell transfer conversely suppresses it. Interestingly, the number of antigen-experienced CD4 T cells in the BM synchronizes the number of CD49b+T-bet+ antigen-experienced CD4 T cells in the spleen. CD49b+T-bet+ antigen-experienced CD4 T cells preferentially localize in the red pulp area of the spleen and the BM in a T-bet-independent manner. We suggest that B cells negatively control the generation of CD49b+T-bet+ precursors of resting memory CD4 T cells in the spleen and may play a role in bifurcation of activated effector and resting memory CD4 T cell lineages.
Collapse
Affiliation(s)
- Shintaro Hojyo
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Jana Sarkander
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Christian Männe
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Mathias Mursell
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Asami Hanazawa
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - David Zimmel
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Max Löhning
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| |
Collapse
|
13
|
Stepwise B-cell-dependent expansion of T helper clonotypes diversifies the T-cell response. Nat Commun 2016; 7:10281. [PMID: 26728651 PMCID: PMC4728444 DOI: 10.1038/ncomms10281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor diversity underpins adaptive immunity by providing the ground for clonal selection of lymphocytes with the appropriate antigen reactivity. Current models attribute T cell clonal selection during the immune response to T-cell receptor (TCR) affinity for either foreign or self peptides. Here, we report that clonal selection of CD4(+) T cells is also extrinsically regulated by B cells. In response to viral infection, the antigen-specific TCR repertoire is progressively diversified by staggered clonotypic expansion, according to functional avidity, which correlates with self-reactivity. Clonal expansion of lower-avidity T-cell clonotypes depends on availability of MHC II-expressing B cells, in turn influenced by B-cell activation. B cells clonotypically diversify the CD4(+) T-cell response also to vaccination or tumour challenge, revealing a common effect.
Collapse
|
14
|
Abstract
T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
15
|
Riccomi A, Palma C. B Cells and Programmed Death-Ligand 2 Signaling Are Required for Maximal Interferon-γ Recall Response by Splenic CD4⁺ Memory T Cells of Mice Vaccinated with Mycobacterium tuberculosis Ag85B. PLoS One 2015; 10:e0137783. [PMID: 26379242 PMCID: PMC4574766 DOI: 10.1371/journal.pone.0137783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
CD4+ T cells producing interferon-γ are crucial for protection against Mycobacterium tuberculosis infection and are the cornerstone of tuberculosis vaccination and immunological diagnostic assays. Since emerging evidence indicates that B cells can modulate T cell responses to M. tuberculosis infection, we investigated the contribution of B cells in regulating interferon-γ recall response by memory Thelper1 cells specific for Ag85B, a leading candidate for tuberculosis sub-unit vaccines. We found that B cells were able to maximize the reactivation of CD4+ memory T cells and the interferon-γ response against ex vivo antigen recall in spleens of mice vaccinated with Ag85B. B cell-mediated increase of interferon-γ response was particular evident for high interferon-γ producer CD4+ memory T cells, likely because those T cells were required for triggering and amplification of B cell activation. A positive-feedback loop of mutual activation between B cells, not necessarily antigen-experienced but with integral phosphatidylinositol-3 kinase (PI3K) pathway and a peculiar interferon-γ-producing CD4highT cell subset was established. Programed death-ligand 2 (PD-L2), expressed both on B and the highly activated CD4high T cells, contributed to the increase of interferon-γ recall response through a PD1-independent pathway. In B cell-deficient mice, interferon-γ production and activation of Ag85B-specific CD4+ T cells were blunted against ex vivo antigen recall but these responses could be restored by adding B cells. On the other hand, B cells appeared to down-regulate interleukin-22 recall response. Our data point out that nature of antigen presenting cells determines quality and size of T cell cytokine recall responses. Thus, antigen presenting cells, including B cells, deserve to be considered for a better prediction of cytokine responses by peripheral memory T cells specific for M. tuberculosis antigens. We also invite to consider B cells, PD-L2 and PI3K as potential targets for therapeutic modulation of T cell cytokine responses for tuberculosis control.
Collapse
Affiliation(s)
- Antonella Riccomi
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Carla Palma
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| |
Collapse
|
16
|
TIR Domain-Containing Adapter-Inducing Beta Interferon (TRIF) Mediates Immunological Memory against Bacterial Pathogens. Infect Immun 2015; 83:4404-15. [PMID: 26351279 DOI: 10.1128/iai.00674-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023] Open
Abstract
Induction of adaptive immunity leads to the establishment of immunological memory; however, how innate immunity regulates memory T cell function remains obscure. Here we show a previously undefined mechanism in which innate and adaptive immunity are linked by TIR domain-containing adapter-inducing beta interferon (TRIF) during establishment and reactivation of memory T cells against Gram-negative enteropathogens. Absence of TRIF in macrophages (Mϕs) but not dendritic cells led to a predominant generation of CD4(+) central memory T cells that express IL-17 during enteric bacterial infection in mice. TRIF-dependent type I interferon (IFN) signaling in T cells was essential to Th1 lineage differentiation and reactivation of memory T cells. TRIF activated memory T cells to facilitate local neutrophil influx and enhance bacterial elimination. These results highlight the importance of TRIF as a mediator of the innate and adaptive immune interactions in achieving the protective properties of memory immunity against Gram-negative bacteria and suggest TRIF as a potential therapeutic target.
Collapse
|
17
|
Merkenschlager J, Kassiotis G. Narrowing the Gap: Preserving Repertoire Diversity Despite Clonal Selection during the CD4 T Cell Response. Front Immunol 2015; 6:413. [PMID: 26322045 PMCID: PMC4531291 DOI: 10.3389/fimmu.2015.00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/28/2015] [Indexed: 01/14/2023] Open
Abstract
T cell immunity relies on the generation and maintenance of a diverse repertoire of T cell antigen receptors (TCRs). The strength of signaling emanating from the TCR dictates the fate of T cells during development, as well as during the immune response. Whereas development of new T cells in the thymus increases the available TCR repertoire, clonal selection during the immune response narrows TCR diversity through the outgrowth of clonotypes with the fittest TCR. To ensure maintenance of TCR diversity in the antigen-selected repertoire, specific mechanisms can be envisaged that facilitate the participation of T cell clonotypes with less than best fit TCRs. Here, we summarize the evidence for the existence of such mechanisms that can prevent the loss of diversity. A number of T cell-autonomous or extrinsic factors can reverse clonotypic hierarchies set by TCR affinity for given antigen. Although not yet complete, understanding of these factors and their mechanism of action will be critical in interventional attempts to mold the antigen-selected TCR repertoire.
Collapse
Affiliation(s)
| | - George Kassiotis
- Mill Hill Laboratory, The Francis Crick Institute , London , UK ; Department of Medicine, Faculty of Medicine, Imperial College London , London , UK
| |
Collapse
|
18
|
Martin SF. Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci 2014; 71:4115-30. [PMID: 24997561 PMCID: PMC11113124 DOI: 10.1007/s00018-014-1676-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 01/05/2023]
Abstract
The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.
Collapse
Affiliation(s)
- Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104, Freiburg, Germany,
| |
Collapse
|
19
|
Thorborn G, Young GR, Kassiotis G. Effective T helper cell responses against retroviruses: are all clonotypes equal? J Leukoc Biol 2014; 96:27-37. [PMID: 24737804 DOI: 10.1189/jlb.2ri0613-347r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The critical importance of CD4(+) T cells in coordinating innate and adaptive immune responses is evidenced by the susceptibility to various pathogenic and opportunistic infections that arises from primary or acquired CD4(+) T cell immunodeficiency, such as following HIV-1 infection. However, despite the clearly defined roles of cytotoxic CD8(+) T cells and antibodies in host protection from retroviruses, the ability of CD4(+) T cells to exert a similar function remains unclear. Recent studies in various settings have drawn attention to the complexity of the T cell response within and between individuals. Distinct TCR clonotypes within an individual differ substantially in their response to the same epitope. Functionally similar, "public" TCR clonotypes can also dominate the response of different individuals. TCR affinity for antigen directly influences expansion and differentiation of responding T cells, also likely affecting their ultimate protective capacity. With this increasing understanding of the parameters that determine the magnitude and effector type of the T cell response, we are now better equipped to address the protective capacity against retroviruses of CD4(+) T cell clonotypes induced by natural infection or vaccination.
Collapse
Affiliation(s)
| | - George R Young
- Divisions of Immunoregulation and Virology, Medical Research Council National Institute for Medical Research, The Ridgeway, London, United Kingdom; and
| | - George Kassiotis
- Divisions of Immunoregulation and Department of Medicine, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
20
|
Opata MM, Stephens R. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. ACTA ACUST UNITED AC 2014; 9:190-206. [PMID: 24790593 PMCID: PMC4000274 DOI: 10.2174/1573395509666131126231209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/08/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections,
increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from
central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory
T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also
lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells
remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the
potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the
data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an
immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only
appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells,
such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as
perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to
determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It
would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory
T cells at early time points has masked this important decision point. This does not rule out an effect of repeated
stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that
Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a
testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated
effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much
debated since.
Collapse
Affiliation(s)
- Michael M Opata
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| | - Robin Stephens
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| |
Collapse
|
21
|
Abstract
Influenza A virus is a significant cause of morbidity and mortality worldwide, particularly among young children and the elderly. Current vaccines induce neutralizing antibody responses directed toward highly variable viral surface proteins, resulting in limited heterosubtypic protection to new viral serotypes. By contrast, memory CD4 T cells recognize conserved viral proteins and are cross-reactive to multiple influenza strains. In humans, virus-specific memory CD4 T cells were found to be the protective correlate in human influenza challenge studies, suggesting their key role in protective immunity. In mouse models, memory CD4 T cells can mediate protective responses to secondary influenza infection independent of B cells or CD8 T cells, and can influence innate immune responses. Importantly, a newly defined, tissue-resident CD4 memory population has been demonstrated to be retained in lung tissue and promote optimal protective responses to an influenza infection. Here, we review the current state of results regarding the generation of memory CD4 T cells following primary influenza infection, mechanisms for their enhanced efficacy in protection from secondary challenge including their phenotype, localization, and function in the context of both mouse models and human infection. We also discuss the generation of memory CD4 T cells in response to influenza vaccines and its future implications for vaccinology.
Collapse
|
22
|
Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 2014; 14:24-35. [PMID: 24336101 PMCID: PMC4032067 DOI: 10.1038/nri3567] [Citation(s) in RCA: 631] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Memory T cells constitute the most abundant lymphocyte population in the body for the majority of a person's lifetime; however, our understanding of memory T cell generation, function and maintenance mainly derives from mouse studies, which cannot recapitulate the exposure to multiple pathogens that occurs over many decades in humans. In this Review, we discuss studies focused on human memory T cells that reveal key properties of these cells, including subset heterogeneity and diverse tissue residence in multiple mucosal and lymphoid tissue sites. We also review how the function and the adaptability of human memory T cells depend on spatial and temporal compartmentalization.
Collapse
Affiliation(s)
- Donna L Farber
- 1] Columbia Center for Translational Immunology and Department of Microbiology and Immunology, Columbia University Medical Center, 650 West 168th Street, BB1501, New York, New York 10032, USA. [2] Department of Surgery, Columbia University Medical Center, 650 West 168th Street, BB1501, New York 10032, USA
| | - Naomi A Yudanin
- Columbia Center for Translational Immunology and Department of Microbiology and Immunology, Columbia University Medical Center, 650 West 168th Street, BB1501, New York, New York 10032, USA
| | - Nicholas P Restifo
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Frison H, Giono G, Thébault P, Fournier M, Labrecque N, Bijl JJ. Hoxb4 overexpression in CD4 memory phenotype T cells increases the central memory population upon homeostatic proliferation. PLoS One 2013; 8:e81573. [PMID: 24324706 PMCID: PMC3855745 DOI: 10.1371/journal.pone.0081573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/14/2013] [Indexed: 11/22/2022] Open
Abstract
Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.
Collapse
Affiliation(s)
- Héloïse Frison
- Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Gloria Giono
- Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Paméla Thébault
- Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada
| | - Marilaine Fournier
- Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Janet J. Bijl
- Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Misumi I, Alirezaei M, Eam B, Su MA, Whitton JL, Whitmire JK. Differential T cell responses to residual viral antigen prolong CD4+ T cell contraction following the resolution of infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:5655-68. [PMID: 24146043 DOI: 10.4049/jimmunol.1301215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contraction phase of the T cell response is a poorly understood period after the resolution of infection when virus-specific effector cells decline in number and memory cells emerge with increased frequencies. CD8(+) T cells plummet in number and quickly reach stable levels of memory following acute lymphocytic choriomeningitis virus infection in mice. In contrast, virus-specific CD4(+) T cells gradually decrease in number and reach homeostatic levels only after many weeks. In this study, we provide evidence that MHCII-restricted viral Ag persists during the contraction phase following this prototypical acute virus infection. We evaluated whether the residual Ag affected the cell division and number of virus-specific naive and memory CD4(+) T cells and CD8(+) T cells. We found that naive CD4(+) T cells underwent cell division and accumulated in response to residual viral Ag for >2 mo after the eradication of infectious virus. Surprisingly, memory CD4(+) T cells did not undergo cell division in response to the lingering Ag, despite their heightened capacity to recognize Ag and make cytokine. In contrast to CD4(+) T cells, CD8(+) T cells did not undergo cell division in response to the residual Ag. Thus, CD8(+) T cells ceased division within days after the infection was resolved, indicating that CD8(+) T cell responses are tightly linked to endogenous processing of de novo synthesized virus protein. Our data suggest that residual viral Ag delays the contraction of CD4(+) T cell responses by recruiting new populations of CD4(+) T cells.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | | | | | | | | | | |
Collapse
|
25
|
Palma C, Schiavoni G, Abalsamo L, Mattei F, Piccaro G, Sanchez M, Fernandez C, Singh M, Gabriele L. Mycobacterium tuberculosis PstS1 amplifies IFN-γ and induces IL-17/IL-22 responses by unrelated memory CD4+ T cells via dendritic cell activation. Eur J Immunol 2013; 43:2386-97. [PMID: 23719937 DOI: 10.1002/eji.201243245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/10/2013] [Accepted: 05/27/2013] [Indexed: 12/31/2022]
Abstract
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN-γ and, to a lesser extent, of IL-17 by CD4(+) T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag-unrelated CD4(+) T-cell responses. Here we demonstrate that PstS1, a 38 kDa-lipoprotein of Mtb, promotes Ag-independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4(+) and CD8(+) memory T cells, amplifies secretion of IFN-γ and IL-22 and induces IL-17 production by effector memory cells in an Ag-unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α(-) subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL-6, IL-1β and, to a lower extent, IL-23. IL-6 secretion by PstS1-stimulated DCs was required for IFN-γ, and to a lesser extent for IL-22 responses by Ag85B-specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis.
Collapse
Affiliation(s)
- Carla Palma
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Isolation and characterization of class I MHC genes in the giant panda (Ailuropoda melanoleuca). CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Nemoto Y, Kanai T, Takahara M, Oshima S, Okamoto R, Tsuchiya K, Matsumoto S, Watanabe M. Th1/Th17-Mediated Interstitial Pneumonia in Chronic Colitis Mice Independent of Intestinal Microbiota. THE JOURNAL OF IMMUNOLOGY 2013; 190:6616-25. [DOI: 10.4049/jimmunol.1202930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Akulian JA, Pipeling MR, John ER, Orens JB, Lechtzin N, McDyer JF. High-quality CMV-specific CD4+ memory is enriched in the lung allograft and is associated with mucosal viral control. Am J Transplant 2013; 13:146-56. [PMID: 23016698 PMCID: PMC3827914 DOI: 10.1111/j.1600-6143.2012.04282.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/19/2012] [Indexed: 01/25/2023]
Abstract
The maintenance of CMV-specific T cell memory in lung transplant recipients (LTRs) is critical for host defense and allograft durability, particularly in donor(+) /recipient(-) (D(+) R(-) ) individuals who demonstrate increased mortality. We studied CD4(+) and CD8(+) CMV-specific memory responses to phosphoprotein 65 (pp65) in a prospective cohort of 18 D(+) R(-) LTRs, from bronchoalveolar lavage (BAL)-obtained lung mononuclear cells (LMNC) and PBMC. Unexpectedly, pp65-specific CD4(+) and CD8(+) IFN-γ memory responses from LMNC were similar, in contrast to persistent CD8(+) predominance in PBMC. Unlike the pulmonary CD8(+) predominance during acute primary infection, compartmental equalization occurred in the CMV-specific CD8(+) memory pool during chronic infection, whereas CMV-specific CD4(+) memory was enriched in the bronchoalveolar space. Moreover, CMV-specific CD4(+) memory T cells with multifunctional production of IFN-γ, TNF-α, IL-2 and MIP-1β were significantly increased in LMNCs, in contrast to similar intercompartmental CD8(+) memory function. Moreover, the absolute number of CMV-specific CD4(+) IFN-γ(+) memory cells in BAL was significantly increased in LTRs exhibiting viral control compared to those with CMV early antigen positivity. Collectively, these data demonstrate both preferential distribution and functional quality of CMV-specific CD4(+) memory in the lung allograft during chronic infection, and show an important association with CMV mucosal immunity and viral control.
Collapse
Affiliation(s)
- J. A. Akulian
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - M. R. Pipeling
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - E. R. John
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - J. B. Orens
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - N. Lechtzin
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - J. F. McDyer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: John F. McDyer,
| |
Collapse
|
29
|
Corbo-Rodgers E, Wiehagen KR, Staub ES, Maltzman JS. Homeostatic division is not necessary for antigen-specific CD4+ memory T cell persistence. THE JOURNAL OF IMMUNOLOGY 2012; 189:3378-85. [PMID: 22956580 DOI: 10.4049/jimmunol.1201583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) memory T cells are generated in response to infection or vaccination, provide protection to the host against reinfection, and persist through a combination of enhanced survival and slow homeostatic turnover. We used timed deletion of the TCR-signaling adaptor molecule Src homology 2 domain-containing phosphoprotein of 76 kDa (SLP-76) with MHC:peptide tetramers to study the requirements for tonic TCR signals in the maintenance of polyclonal Ag-specific CD4(+) memory T cells. SLP-76-deficient I-A(b):gp61 cells are unable to rapidly generate effector cytokines or proliferate in response to secondary infection. In mice infected with lymphocytic choriomeningitis virus (LCMV) or Listeria monocytogenes expressing the LCMV gp61-80 peptide, SLP-76-deficient I-A(b):gp61(+) cells exhibit reduced division, similar to that seen in in vitro-generated CD44(hi) and endogenous CD4(+)CD44(hi) cells. Competitive bone marrow chimera experiments demonstrated that the decrease in homeostatic turnover in the absence of SLP-76 is a cell-intrinsic process. Surprisingly, despite the reduction in turnover, I-A(b):gp61(+) Ag-specific memory cells persist in normal numbers for >30 wk after LCMV infection in the absence of SLP-76. These data suggest the independent maintenance of a population of Ag-specific CD4(+) memory T cells in the absence of SLP-76 and normal levels of homeostatic division.
Collapse
Affiliation(s)
- Evann Corbo-Rodgers
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
30
|
Le Campion A, Pommier A, Delpoux A, Stouvenel L, Auffray C, Martin B, Lucas B. IL-2 and IL-7 Determine the Homeostatic Balance between the Regulatory and Conventional CD4+ T Cell Compartments during Peripheral T Cell Reconstitution. THE JOURNAL OF IMMUNOLOGY 2012; 189:3339-46. [DOI: 10.4049/jimmunol.1103152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Mittelstadt PR, Monteiro JP, Ashwell JD. Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J Clin Invest 2012; 122:2384-94. [PMID: 22653054 DOI: 10.1172/jci63067] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022] Open
Abstract
Generation of a self-tolerant but antigen-responsive T cell repertoire occurs in the thymus. Although glucocorticoids are usually considered immunosuppressive, there is also evidence that they play a positive role in thymocyte selection. To address the question of how endogenous glucocorticoids might influence the adaptive immune response, we generated GRlck-Cre mice, in which the glucocorticoid receptor gene (GR) is deleted in thymocytes prior to selection. These mice were immunocompromised, with reduced polyclonal T cell proliferative responses to alloantigen, defined peptide antigens, and viral infection. This was not due to an intrinsic proliferation defect, because GR-deficient T cells responded normally when the TCR was cross-linked with antibodies or when the T cell repertoire was "fixed" with αβ TCR transgenes. Varying the affinity of self ligands in αβ TCR transgenic mice showed that affinities that would normally lead to thymocyte-positive selection caused negative selection, and alterations in the TCR repertoire of polyclonal T cells were confirmed by analysis of TCR Vβ CDR3 regions. Thus, endogenous glucocorticoids are required for a robust adaptive immune response because of their promotion of the selection of T cells that have sufficient affinity for self, and the absence of thymocyte glucocorticoid signaling results in an immunocompromised state.
Collapse
Affiliation(s)
- Paul R Mittelstadt
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
32
|
Chronic HIV infection affects the expression of the 2 transcription factors required for CD8 T-cell differentiation into cytolytic effectors. Blood 2012; 119:4928-38. [PMID: 22490682 DOI: 10.1182/blood-2011-12-395186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD8 T cells lose the capacity to control HIV infection, but the extent of the impairment of CD8 T-cell functions and the mechanisms that underlie it remain controversial. Here we report an extensive ex vivo analysis of HIV-specific CD8 T cells, covering the expression of 16 different molecules involved in CD8 function or differentiation. This approach gave remarkably homogeneous readouts in different donors and showed that CD8 dysfunction in chronic HIV infection was much more severe than described previously: some Ifng transcription was observed, but most cells lost the expression of all cytolytic molecules and Eomesodermin and T-bet by chronic infection. These results reveal a cellular mechanism explaining the dysfunction of CD8 T cells during chronic HIV infection, as CD8 T cells are known to maintain some functionality when either of these transcription factors is present, but to lose all cytotoxic activity when both are not expressed. Surprisingly, they also show that chronic HIV and lymphocytic choriomeningitis virus infections have a very different impact on fundamental T-cell functions, "exhausted" lymphocytic choriomeningitis virus-specific cells losing the capacity to secrete IFN-γ but maintaining some cytotoxic activity as granzyme B and FasL are overexpressed and, while down-regulating T-bet, up-regulating Eomesodermin expression.
Collapse
|
33
|
Baaten BJG, Tinoco R, Chen AT, Bradley LM. Regulation of Antigen-Experienced T Cells: Lessons from the Quintessential Memory Marker CD44. Front Immunol 2012; 3:23. [PMID: 22566907 PMCID: PMC3342067 DOI: 10.3389/fimmu.2012.00023] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/08/2012] [Indexed: 01/13/2023] Open
Abstract
Despite the widespread use of the cell-surface receptor CD44 as a marker for antigen (Ag)-experienced, effector and memory T cells, surprisingly little is known regarding its function on these cells. The best-established function of CD44 is the regulation of cell adhesion and migration. As such, the interactions of CD44, primarily with its major ligand, the extracellular matrix (ECM) component hyaluronic acid (HA), can be crucial for the recruitment and function of effector and memory T cells into/within inflamed tissues. However, little is known about the signaling events following engagement of CD44 on T cells and how cooperative interactions of CD44 with other surface receptors affect T cell responses. Recent evidence suggests that the CD44 signaling pathway(s) may be shared with those of other adhesion receptors, and that these provide contextual signals at different anatomical sites to ensure the correct T cell effector responses. Furthermore, CD44 ligation may augment T cell activation after Ag encounter and promote T cell survival, as well as contribute to regulation of the contraction phase of an immune response and the maintenance of tolerance. Once the memory phase is established, CD44 may have a role in ensuring the functional fitness of memory T cells. Thus, the summation of potential signals after CD44 ligation on T cells highlights that migration and adhesion to the ECM can critically impact the development and homeostasis of memory T cells, and may differentially affect subsets of T cells. These aspects of CD44 biology on T cells and how they might be modulated for translational purposes are discussed.
Collapse
Affiliation(s)
- Bas J G Baaten
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | | | | | | |
Collapse
|
34
|
Costantino CM, Spooner E, Ploegh HL, Hafler DA. Class II MHC self-antigen presentation in human B and T lymphocytes. PLoS One 2012; 7:e29805. [PMID: 22299025 PMCID: PMC3267721 DOI: 10.1371/journal.pone.0029805] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Human CD4+ T cells process and present functional class II MHC-peptide complexes, but the endogenous peptide repertoire of these non-classical antigen presenting cells remains unknown. We eluted and sequenced HLA-DR-bound self-peptides presented by CD4+ T cells in order to compare the T cell-derived peptide repertoire to sequences derived from genetically identical B cells. We identified several novel epitopes derived from the T cell-specific proteome, including fragments of CD4 and IL-2. While these data confirm that T cells can present peptides derived from the T-cell specific proteome, the vast majority of peptides sequenced after elution from MHC were derived from the common proteome. From this pool, we identified several identical peptide epitopes in the T and B cell repertoire derived from common endogenous proteins as well as novel endogenous epitopes with promiscuous binding. These findings indicate that the endogenous HLA-DR-bound peptide repertoire, regardless of APC type and across MHC isotype, is largely derived from the same pool of self-protein.
Collapse
Affiliation(s)
| | - Eric Spooner
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hidde L. Ploegh
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - David A. Hafler
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
35
|
Stephens R, Seddon B, Langhorne J. Homeostatic proliferation and IL-7R alpha expression do not correlate with enhanced T cell proliferation and protection in chronic mouse malaria. PLoS One 2011; 6:e26686. [PMID: 22039531 PMCID: PMC3198788 DOI: 10.1371/journal.pone.0026686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 10/02/2011] [Indexed: 12/25/2022] Open
Abstract
While chronic infection has been shown to enhance protection from disease caused by several pathogens, the mechanisms are not known. The gamma-c family of cytokines IL-7, IL-2, and IL-15 are implicated in homeostatic proliferation, which is thought to maintain T cell memory. However in chronic infection, prolonged antigen exposure itself may contribute to lymphocyte survival. We have previously observed that chronic malaria infection enhances protection to re-infection, as well as enhancing B cell responses. Here, we show that chronic Plasmodium chabaudi malaria infection in mice enhances the expansion of CD4+ T cells in a second infection, and that this correlates with increased expression of the IL-2/15 Receptor beta (CD122) on memory T cells, as well as increasing IL-2 producers on re-infection. IL-2 has been recently linked to improved secondary proliferation, while the role of IL-7 in maintenance of CD4+ memory cells has been demonstrated in homeostatic proliferation, but its role in protective memory populations in infectious disease protective has not been fully investigated. Increased IL-7Rα (CD127) expression correlated, as previously reported with increased turnover of CD4 memory cells, however, this was not linked to protection or enhanced response to rechallenge, These data support the idea that antigen or IL-2 production resulting from chronic stimulation may play a role in an enhanced secondary T cell response.
Collapse
Affiliation(s)
- Robin Stephens
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Benedict Seddon
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Lin Y, Dai H, Su J, Yan G, Xi Y, Ekberg H, Chen J, Qi Z. Arsenic trioxide is a novel agent for combination therapy to prolong heart allograft survival in allo-primed T cells transferred mice. Transpl Immunol 2011; 25:194-201. [PMID: 21856422 DOI: 10.1016/j.trim.2011.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 02/01/2023]
Abstract
Alloreactive memory T cells are major barriers to transplantation acceptance due to their capacity to accelerate rejection. Here, we investigated the effects of combined treatment with arsenic trioxide (As(2)O(3)) and blocking monoclonal antibodies (mAb) against CD154 and LFA-1 (anti-CD154/LFA-1) on graft survival as well as changes in pathology and immunological responses in mice with adoptively transferred allo-primed T cells. The mean survival time (MST) for the cardiac allografts in recipient mice receiving the combination of As(2)O(3) and anti-CD154/LFA-1 was significantly longer (>113.7days) compared to those receiving anti-CD154/LFA-1 (23.2days), As(2)O(3) (12.5days) alone or no treatment (5.5days). This combined strategy distinctly inhibited lymphocyte infiltration in grafts, proliferation of splenic T cells and the generation of memory T cells in spleens. Moreover, the combined treatment caused the significant down-regulation of IL-2 and IFN-γ accompanied by increased expression of TGF-β and regulatory T cells (Tregs) in spleens, which led to long-term cardiac allograft survival in recipient mice. These results highlight the potential application of As(2)O(3) and its contribution in combination therapy with antibody blockade to delay rejection by memory T cells.
Collapse
Affiliation(s)
- Yingying Lin
- Organ Transplantation Institute, Xiamen University, Fujian Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The present review summarizes the current challenges for the design of new therapeutic strategies toward HIV eradication in individuals receiving suppressive highly active antiretroviral therapy (HAART). We will focus on the experimental evidence suggesting that immunological mechanisms involved in the generation and maintenance of memory CD4+ T cells are also responsible for the establishment and persistence of a stable reservoir for HIV. RECENT FINDINGS Recent studies performed on clinical samples obtained from virally suppressed HIV-infected individuals indicate that T-cell survival and homeostatic proliferation, two major mechanisms involved in the maintenance of immunological memory, contribute to the persistence of latently infected memory CD4+ T cells. Thus, the long lifespan characteristic of the HIV reservoir is likely a consequence of the capacity of the immune system to generate and maintain memory CD4+ T cells for a long period. SUMMARY These findings suggest that strategies aimed at reducing the pool of latently infected cells should interfere with the survival pathways responsible for the long-term maintenance of memory CD4+ T cells. Because memory CD4+ T cells are critical for appropriate immune defense, targeted approaches are needed to interfere only with the long-term survival of discrete fractions of memory T cells carrying proviral DNA.
Collapse
|
38
|
Richards KA, Chaves FA, Sant AJ. The memory phase of the CD4 T-cell response to influenza virus infection maintains its diverse antigen specificity. Immunology 2011; 133:246-56. [PMID: 21517839 DOI: 10.1111/j.1365-2567.2011.03435.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A major gap in our understanding of the immune response to pathogens and vaccines is how closely the antigen specificity in the memory phase mimics repertoire that is rapidly expanded upon priming. Understanding the diversity of the CD4 T-cell memory compartment after a primary response to pathogens is hampered by the technical challenges of epitope discovery and suitable models to study primary immune responses. Recently, we have used overlapping synthetic peptides to empirically map most of the specificities present in the primary response to live influenza infection. We found that the CD4 T-cell response can be exceptionally diverse, depending on the allele(s) of MHC class II molecules expressed. In the current study, using a mouse model of primary influenza infection and peptide-specific cytokine EliSpots, we have asked how this broad CD4 T-cell immunodominance hierarchy changes as the immune response contracts and memory is established. Our studies revealed that, for the most part, diversity is maintained, and most specificities, including those for relatively minor epitopes, are preserved in the memory CD4 T-cell compartment. A modest, but reproducible shift in specificity toward haemagglutinin-derived epitopes was observed, raising the possibility that protein or peptide persistence might play a role in the evolution of the memory phase of the CD4 T-cell response.
Collapse
Affiliation(s)
- Katherine A Richards
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
39
|
Storim J, Bröcker EB, Friedl P. A dynamic immunological synapse mediates homeostatic TCR-dependent and -independent signaling. Eur J Immunol 2010; 40:2741-50. [PMID: 20821730 DOI: 10.1002/eji.201040575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For homeostasis, T cells integrate non-cognate TCR-dependent and -independent signals to survive and weakly proliferate. In contrast to antigen-specific, stable, and long-lived contacts, signaling in short-lived homeostatic interactions depends upon the coordination of ongoing T-cell migration on the surface of DC and signaling at the cell-cell junction. To mimic peripheral tissues and analyze how T-cell migration and cell-cell signaling are integrated, we used live-cell imaging and 3-D reconstruction of fixed conjugates between DO11.10 T cells and DC in 3-D low-density collagen matrices. T cells simultaneously maintained amoeboid migration and polarized towards the DC, leading to a fully dynamic interaction plane that delivered signals for homeostatic T-cell survival and proliferation. The contact plane comprised three zones, the actin-rich leading edge poor in signal but driving migration, a mid-zone mediating TCR/MHC-induced signal associated with proliferation, and the rear uropod mediating predominantly MHC-independent signals. Thus a dynamic immunological synapse with distinct signaling sectors enables moving T cells to serially sample resident tissue cells and acquire molecular information "en passant".
Collapse
Affiliation(s)
- Julian Storim
- Department of Dermatology and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | | | | |
Collapse
|
40
|
Abstract
The development of immune memory mediated by T lymphocytes is central to durable, long-lasting protective immunity. A key issue in the field is how to direct the generation and persistence of memory T cells to elicit the appropriate secondary response to provide protection to a specific pathogen. Two prevailing views have emerged; that cellular and molecular regulators control the lineage fate and functional capacities of memory T cells early after priming, or alternatively, that populations of memory T cells are inherently plastic and subject to alterations in function and/or survival at many stages during their long-term maintenance. Here, we will review current findings in CD4 T-cell memory that suggest inherent plasticity in populations of memory CD4 T cells at all stages of their development--originating with their generation from multiple types of primed CD4 T cells, during their persistence and homeostatic turnover in response to T-cell receptor signals, and also following secondary challenge. These multiple aspects of memory CD4 T-cell flexibility contrast the more defined lineages and functions ascribed to memory CD8 T cells, suggesting a dynamic nature to memory CD4 T-cell populations and responses. The flexible attributes of CD4 T-cell memory suggest opportunities and mechanisms for therapeutic manipulation at all phases of immune memory development, maintenance and recall.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
41
|
Persaud SP, Donermeyer DL, Weber KS, Kranz DM, Allen PM. High-affinity T cell receptor differentiates cognate peptide-MHC and altered peptide ligands with distinct kinetics and thermodynamics. Mol Immunol 2010; 47:1793-801. [PMID: 20334923 DOI: 10.1016/j.molimm.2010.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/21/2010] [Indexed: 01/13/2023]
Abstract
Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low-affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor.
Collapse
Affiliation(s)
- Stephen P Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
42
|
Rivino L, Gruarin P, Häringer B, Steinfelder S, Lozza L, Steckel B, Weick A, Sugliano E, Jarrossay D, Kühl AA, Loddenkemper C, Abrignani S, Sallusto F, Lanzavecchia A, Geginat J. CCR6 is expressed on an IL-10-producing, autoreactive memory T cell population with context-dependent regulatory function. ACTA ACUST UNITED AC 2010; 207:565-77. [PMID: 20194631 PMCID: PMC2839148 DOI: 10.1084/jem.20091021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interleukin (IL)-10 produced by regulatory T cell subsets is important for the prevention of autoimmunity and immunopathology, but little is known about the phenotype and function of IL-10–producing memory T cells. Human CD4+CCR6+ memory T cells contained comparable numbers of IL-17– and IL-10–producing cells, and CCR6 was induced under both Th17-promoting conditions and upon tolerogenic T cell priming with transforming growth factor (TGF)–β. In normal human spleens, the majority of CCR6+ memory T cells were in the close vicinity of CCR6+ myeloid dendritic cells (mDCs), and strikingly, some of them were secreting IL-10 in situ. Furthermore, CCR6+ memory T cells produced suppressive IL-10 but not IL-2 upon stimulation with autologous immature mDCs ex vivo, and secreted IL-10 efficiently in response to suboptimal T cell receptor (TCR) stimulation with anti-CD3 antibodies. However, optimal TCR stimulation of CCR6+ T cells induced expression of IL-2, interferon-γ, CCL20, and CD40L, and autoreactive CCR6+ T cell lines responded to various recall antigens. Notably, we isolated autoreactive CCR6+ T cell clones with context-dependent behavior that produced IL-10 with autologous mDCs alone, but that secreted IL-2 and proliferated upon stimulation with tetanus toxoid. We propose the novel concept that a population of memory T cells, which is fully equipped to participate in secondary immune responses upon recognition of a relevant recall antigen, contributes to the maintenance of tolerance under steady-state conditions.
Collapse
Affiliation(s)
- Laura Rivino
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The adaptive immune response meets the needs of the organism to generate effector cells capable of controlling pathogens but also leads to production of memory cells, which mediate more effective protection during rechallenge. In this review, we focus on the generation, maintenance, and function of memory T cells, with a special emphasis on the increasing evidence for great diversity among functional memory T cell subsets.
Collapse
Affiliation(s)
- Stephen C Jameson
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
44
|
Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proc Natl Acad Sci U S A 2009; 107:827-31. [PMID: 20080760 DOI: 10.1073/pnas.0908126107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular signaling mechanisms regulating the generation and long-term persistence of memory T cells in vivo remain unclear. In this study, we used mouse models with conditional deletion of the key T cell receptor (TCR)-coupled adaptor molecule SH2-domain-containing phosphoprotein of 76 kDa (SLP-76), to analyze signaling mechanisms for memory CD4 T cell generation, maintenance, and homeostasis. We found that ablation of SLP-76 expression after T cell priming did not inhibit generation of phenotypic effector or memory CD4 T cells; however, the resultant SLP-76-deficient memory CD4 T cells could not produce recall cytokines in response to TCR-mediated stimulation and showed decreased persistence in vivo. In addition, SLP-76-deficient memory CD4 T cells exhibited reduced steady-state homeostasis and were impaired in their ability to homeostatically expand in vivo in response to the gamma(c) cytokine IL-7, despite intact proximal signaling through the IL-7R-coupled JAK3/STAT5 pathway. Direct in vivo deletion of SLP-76 in polyclonal memory CD4 T cells likewise led to impaired steady-state homeostasis as well as impaired homeostatic responses to IL-7. Our findings demonstrate a dominant role for SLP-76-dependent TCR signals in regulating turnover and perpetuation of memory CD4 T cells and their responses to homeostatic cytokines, with implications for the selective survival of memory CD4 T cells following pathogen exposure, vaccination, and aging.
Collapse
|
45
|
Osborne LC, Abraham N. Regulation of memory T cells by γc cytokines. Cytokine 2009; 50:105-13. [PMID: 19879771 DOI: 10.1016/j.cyto.2009.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
T cells rely on a duality of TCR and gammac cytokine signals for development, activation and peripheral T cell homeostasis. Previous data had suggested that the requirements for CD4 and CD8 memory T cell regulation were qualitatively distinct, but emerging data has shown that the requirements for true antigen specific memory T cells are very similar between these two cell types. This review will focus on contributions made by members of the gammac cytokine family (IL-2, IL-4, IL-7, IL-15 and IL-21) to homeostasis of naïve, memory phenotype and antigen experienced memory T cells.
Collapse
Affiliation(s)
- Lisa Colleen Osborne
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
46
|
Gress RE, Emerson SG, Drobyski WR. Immune reconstitution: how it should work, what's broken, and why it matters. Biol Blood Marrow Transplant 2009; 16:S133-7. [PMID: 19819340 DOI: 10.1016/j.bbmt.2009.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ronald E Gress
- Experimental Transplantation and Immunology Branch, CCR, NCI, Bethesda, Maryland 20892-1907, USA.
| | | | | |
Collapse
|
47
|
Nemoto Y, Kanai T, Kameyama K, Shinohara T, Sakamoto N, Totsuka T, Okamoto R, Tsuchiya K, Nakamura T, Sudo T, Matsumoto S, Watanabe M. Long-Lived Colitogenic CD4+ Memory T Cells Residing Outside the Intestine Participate in the Perpetuation of Chronic Colitis. THE JOURNAL OF IMMUNOLOGY 2009; 183:5059-68. [DOI: 10.4049/jimmunol.0803684] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Boyman O, Létourneau S, Krieg C, Sprent J. Homeostatic proliferation and survival of naïve and memory T cells. Eur J Immunol 2009; 39:2088-94. [PMID: 19637200 DOI: 10.1002/eji.200939444] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The immune system relies on homeostatic mechanisms in order to adapt to the changing requirements encountered during steady-state existence and activation by antigen. For T cells, this involves maintenance of a diverse repertoire of naïve cells, rapid elimination of effector cells after pathogen clearance, and long-term survival of memory cells. The reduction of T-cell counts by either cytotoxic drugs, irradiation, or certain viruses is known to lead to lymphopenia-induced proliferation and restoration of normal T-cell levels. Such expansion is governed by the interaction of TCR with self-peptide/MHC (p/MHC) molecules plus contact with cytokines, especially IL-7. These same ligands, i.e. p/MHC molecules and IL-7, maintain naïve T lymphocytes as resting cells under steady-state T-cell-sufficient conditions. Unlike naïve cells, typical "central" memory T cells rely on a combination of IL-7 and IL-15 for their survival in interphase and for occasional cell division without requiring signals from p/MHC molecules. Other memory T-cell subsets are less quiescent and include naturally occurring activated memory-phenotype cells, memory cells generated during chronic viral infections, and effector memory cells. These subsets of activated memory cells differ from central memory T cells in their requirements for homeostatic proliferation and survival. Thus, the factors controlling T-cell homeostasis can be seen to vary considerably from one subset to another as described in detail in this review.
Collapse
Affiliation(s)
- Onur Boyman
- Division of Immunology and Allergy, University Hospital of Lausanne (CHUV), CH-1011 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
49
|
Takada K, Jameson SC. Self-class I MHC molecules support survival of naive CD8 T cells, but depress their functional sensitivity through regulation of CD8 expression levels. ACTA ACUST UNITED AC 2009; 206:2253-69. [PMID: 19752186 PMCID: PMC2757867 DOI: 10.1084/jem.20082553] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have suggested that naive CD8 T cells require self-peptide–major histocompatability complex (MHC) complexes for maintenance. However, interpretation of such studies is complicated because of the involvement of lymphopenic animals, as lymphopenia drastically alters naive T cell homeostasis and function. In this study, we explored naive CD8 T cell survival and function in nonlymphopenic conditions by using bone marrow chimeric donors and hosts in which class I MHC expression is absent or limited to radiosensitive versus radioresistant cells. We found that long-term survival of naive CD8 T cells (but not CD4 T cells) was impaired in the absence of class I MHC. However, distinct from this effect, class I MHC deprivation also enhanced naive CD8 T cell responsiveness to low-affinity (but not high-affinity) peptide–MHC ligands. We found that this improved sensitivity was a consequence of up-regulated CD8 levels, which was mediated through a transcriptional mechanism. Hence, our data suggest that, in a nonlymphopenic setting, self-class I MHC molecules support CD8 T cell survival, but that these interactions also attenuate naive T cell sensitivity by dynamic tuning of CD8 levels.
Collapse
Affiliation(s)
- Kensuke Takada
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
50
|
Abortive activation of CD4 T cell responses during competitive priming in vivo. Proc Natl Acad Sci U S A 2009; 106:8647-52. [PMID: 19423666 DOI: 10.1073/pnas.0811584106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunodominance refers to the highly selective peptide reactivity of T cells during an immune response. In this study, we tested the hypothesis that persistence of peptide:class II complexes is one key parameter that selects the final specificity of CD4 T cells. We found that low-stability peptide:class II complexes support the initial priming and expansion of CD4 T cells, but the expansion becomes strikingly aborted in the presence of competitive T cell responses to unrelated peptides. Our experiments revealed that for inhibition to occur, the competitive responses must be initiated by the same antigen presenting cell, and it is not because of competition for MHC binding. These studies not only provide an insight into the events that regulate competitive CD4 T cell priming in vivo, but also provide a previously undescribed conceptual framework to understand the parameters that select the final specificity of the T cell repertoire during pathogen or vaccine-induced immune responses.
Collapse
|