1
|
Omri L, Naigeon M, Flippot R, Gavira-Díaz J, Poveda-Ferriols J, Nguyen D, Abdi C, Arroyo-Salgado A, Chaput N, de Velasco G, Albigès L, Carril-Ajuria L. Blood-based circulating biomarkers for prediction of immune-checkpoint inhibitors efficacy in renal cell carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1199-1222. [PMID: 39465007 PMCID: PMC11502076 DOI: 10.37349/etat.2024.00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/09/2024] [Indexed: 10/29/2024] Open
Abstract
Immune checkpoint inhibitors (ICI)-based combinations have become the standard first-line treatment for advanced clear cell renal cell carcinoma (ccRCC). Despite significant improvements in survival and the achievement of sustained long-term responses, a subset of patients remains refractory to ICI, and most will eventually develop resistance. Thus, identifying predictive biomarkers for ICI efficacy and resistance is essential for optimizing therapeutic strategies. Up to now, tissue-based biomarkers have not been successful as predictive biomarkers in RCC. Circulating blood-based biomarkers offer a promising alternative. These biomarkers, including circulating immune cells, soluble factors, tumor-derived markers, and those based on metabolomics, are less invasive, offer reproducibility over time, and provide a comprehensive assessment of tumor biology and patient immune status, as well as allow dynamic monitoring during treatment. This review aims to evaluate the current evidence on the different candidate circulating biomarkers being investigated for their potential to predict ICI efficacy in RCC patients.
Collapse
Affiliation(s)
- Loubna Omri
- Department of Medical Oncology, National Institute of Oncology, Rabat X4FH+66, Morocco
- Medical Oncology Department, Centre Hospitalier Universitaire Brugmann, 1020 Brussels, Belgium
| | - Marie Naigeon
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, 94805 Villejuif, France
- Paris-Saclay University, School of Pharmacy, 91190 Orsay, France
| | - Ronan Flippot
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, 94805 Villejuif, France
- Medical Oncology Department, Institut Gustave Roussy, 94805 Villejuif, France
| | - Javier Gavira-Díaz
- Medical Oncology Department, Institut Gustave Roussy, 94805 Villejuif, France
| | - Jesus Poveda-Ferriols
- Medical Oncology Department, Centre Hospitalier Universitaire Brugmann, 1020 Brussels, Belgium
- Medical Oncology Department, Centre Hospitalier Universitaire Saint-Pierre, 1000 Brussels, Belgium
| | - Dan Nguyen
- Medical Oncology Department, Centre Hospitalier Universitaire Brugmann, 1020 Brussels, Belgium
| | - Chaimae Abdi
- Department of Medical Oncology, National Institute of Oncology, Rabat X4FH+66, Morocco
| | - Alvaro Arroyo-Salgado
- Medical Oncology Department, Centre Hospitalier Universitaire Brugmann, 1020 Brussels, Belgium
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Guillermo de Velasco
- Medical Oncology Department, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Laurence Albigès
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, 94805 Villejuif, France
- Medical Oncology Department, Institut Gustave Roussy, 94805 Villejuif, France
| | - Lucía Carril-Ajuria
- Medical Oncology Department, Centre Hospitalier Universitaire Brugmann, 1020 Brussels, Belgium
- Medical Oncology Department, Centre Hospitalier Universitaire Saint-Pierre, 1000 Brussels, Belgium
| |
Collapse
|
2
|
Sarkozy C, Wu S, Takata K, Aoki T, Neriah SB, Milne K, Goodyear T, Strong C, Rastogi T, Hilton LK, Lai D, Sehn LH, Farinha P, Nelson BH, Weng A, Marra M, Scott DW, Craig JW, Steidl C, Roth A. Integrated single cell analysis reveals co-evolution of malignant B cells and tumor micro-environment in transformed follicular lymphoma. Cancer Cell 2024; 42:1003-1017.e6. [PMID: 38861923 DOI: 10.1016/j.ccell.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Histological transformation of follicular lymphoma (FL) to aggressive forms is associated with poor outcome. Phenotypic consequences of this evolution and its impact on the tumor microenvironment (TME) remain unknown. We perform single-cell whole genome sequencing (scWGS) and transcriptome sequencing (scWTS) of 11 paired pre/post-transformation patient samples and scWTS of additional samples from patients without transformation. Our analysis reveals evolutionary dynamics of transformation at single-cell resolution, highlighting a shifting TME landscape, with an emerging immune-cell exhaustion signature, co-evolving with the shifting malignant B phenotype in a regulatory ecosystem. Integration of scWGS and scWTS identifies malignant cell pathways upregulated during clonal tumor evolution. Using multi-color immunofluorescence, we transfer these findings to a TME-based transformation biomarker, subsequently validated in two independent pretreatment cohorts. Taken together, our results provide a comprehensive view of the combined genomic and phenotypic evolution of malignant cells during transformation and shifting crosstalk between malignant cells and the TME.
Collapse
Affiliation(s)
- Clémentine Sarkozy
- Hematology Department, Institut Curie, Saint Cloud, France; University PSL, Inserm U1288, Laboratoire d'Imagerie Translationnelle en Oncologie, 91400 Orsay, France
| | - Shaocheng Wu
- Department of Molecular Oncology, British Columbia Cancer, Vancouver, BC, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Susana B Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Katy Milne
- Deeley Research Centre, British Columbia Cancer, Vancouver, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Talia Goodyear
- Deeley Research Centre, British Columbia Cancer, Vancouver, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Celia Strong
- Deeley Research Centre, British Columbia Cancer, Vancouver, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Tashi Rastogi
- Deeley Research Centre, British Columbia Cancer, Vancouver, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Laura K Hilton
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer, Vancouver, BC, Canada
| | - Laurie H Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Brad H Nelson
- Deeley Research Centre, British Columbia Cancer, Vancouver, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Weng
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | - Marco Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Roth
- Department of Molecular Oncology, British Columbia Cancer, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Computer Science, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Englebert K, Taquin A, Azouz A, Acolty V, Vande Velde S, Vanhollebeke M, Innes H, Boon L, Keler T, Leo O, Goriely S, Moser M, Oldenhove G. The CD27/CD70 pathway negatively regulates visceral adipose tissue-resident Th2 cells and controls metabolic homeostasis. Cell Rep 2024; 43:113824. [PMID: 38386557 DOI: 10.1016/j.celrep.2024.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue homeostasis relies on the interplay between several regulatory lineages, such as type 2 innate lymphoid cells (ILC2s), T helper 2 (Th2) cells, regulatory T cells, eosinophils, and type 2 macrophages. Among them, ILC2s are numerically the dominant source of type 2 cytokines and are considered as major regulators of adiposity. Despite the overlap in immune effector molecules and sensitivity to alarmins (thymic stromal lymphopoietin and interleukin-33) between ILC2s and resident memory Th2 lymphocytes, the role of the adaptive axis of type 2 immunity remains unclear. We show that mice deficient in CD27, a member of the tumor necrosis factor receptor superfamily, are more resistant to obesity and associated disorders. A comparative analysis of the CD4 compartment of both strains revealed higher numbers of fat-resident memory Th2 cells in the adipose tissue of CD27 knockout mice, which correlated with decreased programmed cell death protein 1-induced apoptosis. Our data point to a non-redundant role for Th2 lymphocytes in obesogenic conditions.
Collapse
Affiliation(s)
- Kevin Englebert
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Anaelle Taquin
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Abdulkader Azouz
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Valérie Acolty
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sylvie Vande Velde
- Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium; Machine Learning Group, ULB, Brussels, Belgium
| | - Marie Vanhollebeke
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Hadrien Innes
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | | | | | - Oberdan Leo
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Guillaume Oldenhove
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
4
|
Jaeger-Ruckstuhl CA, Lo Y, Fulton E, Waltner OG, Shabaneh TB, Simon S, Muthuraman PV, Correnti CE, Newsom OJ, Engstrom IA, Kanaan SB, Bhise SS, Peralta JMC, Ruff R, Price JP, Stull SM, Stevens AR, Bugos G, Kluesner MG, Voillet V, Muhunthan V, Morrish F, Olson JM, Gottardo R, Sarthy JF, Henikoff S, Sullivan LB, Furlan SN, Riddell SR. Signaling via a CD27-TRAF2-SHP-1 axis during naive T cell activation promotes memory-associated gene regulatory networks. Immunity 2024; 57:287-302.e12. [PMID: 38354704 PMCID: PMC10967230 DOI: 10.1016/j.immuni.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.
Collapse
Affiliation(s)
- Carla A Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Yun Lo
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Elena Fulton
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Olivia G Waltner
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sylvain Simon
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pranav V Muthuraman
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Oliver J Newsom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian A Engstrom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sami B Kanaan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shruti S Bhise
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jobelle M C Peralta
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Jason P Price
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Sylvia M Stull
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew R Stevens
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grace Bugos
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mitchell G Kluesner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vishaka Muhunthan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Fionnuala Morrish
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James M Olson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Raphaël Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA; Swiss Institute of Bioinformatics, University of Lausanne and Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jay F Sarthy
- Seattle Children's Hospital, Seattle, WA 98105, USA; Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Scott N Furlan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Stanley R Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Geng Q, Jiao P. Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy. Molecules 2024; 29:454. [PMID: 38257366 PMCID: PMC10819708 DOI: 10.3390/molecules29020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Targeting PD-L1 via monospecific antibodies has shown durable clinical benefits and long-term remissions where patients exhibit no clinical cancer signs for many years after treatment. However, the durable clinical benefits and long-term remissions by anti-PD-L1 monotherapy have been limited to a small fraction of patients with certain cancer types. Targeting PD-L1 via bispecific antibodies (referred to as anti-PD-L1-based bsAbs) which can simultaneously bind to both co-inhibitory and co-stimulatory molecules may increase the durable antitumor responses in patients who would not benefit from PD-L1 monotherapy. A growing number of anti-PD-L1-based bsAbs have been developed to fight against this deadly disease. This review summarizes recent advances of anti-PD-L1-based bsAbs for cancer immunotherapy in patents and literatures, and discusses their anti-tumor efficacies in vitro and in vivo. Over 50 anti-PD-L1-based bsAbs targeting both co-inhibitory and co-stimulatory molecules have been investigated in biological testing or in clinical trials since 2017. At least eleven proteins, such as CTLA-4, LAG-3, PD-1, PD-L2, TIM-3, TIGIT, CD28, CD27, OX40, CD137, and ICOS, are involved in these investigations. Twenty-two anti-PD-L1-based bsAbs are being evaluated to treat various advanced cancers in clinical trials, wherein the indications include NSCLC, SNSCLC, SCLC, PDA, MBNHL, SCCHN, UC, EC, TNBC, CC, and some other malignancies. The released data from clinical trials indicated that most of the anti-PD-L1-based bsAbs were well-tolerated and showed promising antitumor efficacy in patients with advanced solid tumors. However, since the approved and investigational bsAbs have shown much more significant adverse reactions compared to PD-L1 monospecific antibodies, anti-PD-L1-based bsAbs may be further optimized via molecular structure modification to avoid or reduce these adverse reactions.
Collapse
Affiliation(s)
- Qiaohong Geng
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| |
Collapse
|
6
|
van der Sluis TC, van Haften FJ, van Duikeren S, Pardieck IN, de Graaf JF, Vleeshouwers W, van der Maaden K, Melief CJM, van der Burg SH, Arens R. Delayed vaccine-induced CD8 + T cell expansion by topoisomerase I inhibition mediates enhanced CD70-dependent tumor eradication. J Immunother Cancer 2023; 11:e007158. [PMID: 38030302 PMCID: PMC10689370 DOI: 10.1136/jitc-2023-007158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy. METHODS Mice bearing human papilloma virus 16 (HPV16) E6/E7-expressing TC-1 tumors were vaccinated with HPV16 E7 long peptides and additionally received chemotherapy consisting of cisplatin and topotecan. We performed an in-depth study of this combinatorial chemoimmunotherapy on the effector function and expansion/contraction kinetics of vaccine-induced CD8+ T cells in the peripheral blood and tumor microenvironment (TME). In addition, we interrogated the particular role of chemotherapy-induced upregulation of costimulatory ligands by tumor-infiltrated myeloid cells on T cell proliferation and survival. RESULTS We show that E7 long peptide vaccination combined with cisplatin and topotecan, results in CD8+ T cell-dependent durable rejection of established tumors and 94% long-term survival. Although topotecan initially repressed the expansion of vaccine-induced CD8+ T cells, these cells eventually expanded vigorously, which was followed by delayed contraction. These effects associated with the induction of the proliferation marker Ki-67 and the antiapoptosis molecule Bcl-2 by intratumoral tumor-specific CD8+ T cells, which was regulated by topotecan-mediated upregulation of the costimulatory ligand CD70 on myeloid cells in the TME. CONCLUSIONS Taken together, our data show that although treatment with cisplatin, topotecan and vaccination initially delays T cell expansion, this combinatorial therapy results eventually in a more robust T cell-mediated tumor eradication due to enhancement of costimulatory molecules in the TME.
Collapse
Affiliation(s)
| | | | - Suzanne van Duikeren
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris N Pardieck
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ward Vleeshouwers
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen van der Maaden
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Kaulen LD, Denisova E, Hinz F, Hai L, Friedel D, Henegariu O, Hoffmann DC, Ito J, Kourtesakis A, Lehnert P, Doubrovinskaia S, Karschnia P, von Baumgarten L, Kessler T, Baehring JM, Brors B, Sahm F, Wick W. Integrated genetic analyses of immunodeficiency-associated Epstein-Barr virus- (EBV) positive primary CNS lymphomas. Acta Neuropathol 2023; 146:499-514. [PMID: 37495858 PMCID: PMC10412493 DOI: 10.1007/s00401-023-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Evgeniya Denisova
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ling Hai
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Dirk C Hoffmann
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jakob Ito
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Pascal Lehnert
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sofia Doubrovinskaia
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Tobias Kessler
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Neurology, Yale School of Medicine, New Haven, USA
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Damiani D, Tiribelli M. Checkpoint Inhibitors in Acute Myeloid Leukemia. Biomedicines 2023; 11:1724. [PMID: 37371818 PMCID: PMC10295997 DOI: 10.3390/biomedicines11061724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The prognosis of acute myeloid leukemia (AML) remains unsatisfactory. Among the reasons for the poor response to therapy and high incidence of relapse, there is tumor cell immune escape, as AML blasts can negatively influence various components of the immune system, mostly weakening T-cells. Since leukemic cells can dysregulate immune checkpoints (ICs), receptor-based signal transductors that lead to the negative regulation of T-cells and, eventually, to immune surveillance escape, the inhibition of ICs is a promising therapeutic strategy and has led to the development of so-called immune checkpoint inhibitors (ICIs). ICIs, in combination with conventional chemotherapy, hypomethylating agents or targeted therapies, are being increasingly tested in cases of AML, but the results reported are often conflicting. Here, we review the main issues concerning the immune system in AML, the main pathways leading to immune escape and the results obtained from clinical trials of ICIs, alone or in combination, in newly diagnosed or relapsed/refractory AML.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| |
Collapse
|
9
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Sadeghirad H, Liu N, Monkman J, Ma N, Cheikh BB, Jhaveri N, Tan CW, Warkiani ME, Adams MN, Nguyen Q, Ladwa R, Braubach O, O’Byrne K, Davis M, Hughes BGM, Kulasinghe A. Compartmentalized spatial profiling of the tumor microenvironment in head and neck squamous cell carcinoma identifies immune checkpoint molecules and tumor necrosis factor receptor superfamily members as biomarkers of response to immunotherapy. Front Immunol 2023; 14:1135489. [PMID: 37153589 PMCID: PMC10154785 DOI: 10.3389/fimmu.2023.1135489] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Mucosal head and neck squamous cell carcinoma (HNSCC) are the seventh most common cancer, with approximately 50% of patients living beyond 5 years. Immune checkpoint inhibitors (ICIs) have shown promising results in patients with recurrent or metastatic (R/M) disease, however, only a subset of patients benefit from immunotherapy. Studies have implicated the tumor microenvironment (TME) of HNSCC as a major factor in therapy response, highlighting the need to better understand the TME, particularly by spatially resolved means to determine cellular and molecular components. Here, we employed targeted spatial profiling of proteins on a cohort of pre-treatment tissues from patients with R/M disease to identify novel biomarkers of response within the tumor and stromal margins. By grouping patient outcome categories into response or non-response, we show that immune checkpoint molecules, including PD-L1, B7-H3, and VISTA, were differentially expressed. Patient responders possessed significantly higher tumor expression of PD-L1 and B7-H3, but lower expression of VISTA. Analysis of response subgroups by Response Evaluation Criteria in Solid Tumors (RECIST) criteria indicated that tumor necrosis factor receptor (TNFR) superfamily members including OX40L, CD27, 4-1BB, CD40, and CD95/Fas, were associated with immunotherapy outcome. OX40L expression in tumor regions was higher in patient-responders than those with progressive disease (PD), while other TNFR members, CD27 and CD95/Fas were lower expressed in patients with a partial response (PR) compared to those with PD. Furthermore, we found that high 4-1BB expression in the tumor compartment, but not in the stroma, was associated with better overall survival (OS) (HR= 0.28, p-adjusted= 0.040). Moreover, high CD40 expression in tumor regions (HR= 0.27, p-adjusted= 0.035), and high CD27 expression in the stroma (HR= 0.2, p-adjusted=0.032) were associated with better survival outcomes. Taken together, this study supports the role of immune checkpoint molecules and implicates the TNFR superfamily as key players in immunotherapy response in our cohort of HNSCC. Validation of these findings in a prospective study is required to determine the robustness of these tissue signatures.
Collapse
|
11
|
Bowakim-Anta N, Acolty V, Azouz A, Yagita H, Leo O, Goriely S, Oldenhove G, Moser M. Chronic CD27-CD70 costimulation promotes type 1-specific polarization of effector Tregs. Front Immunol 2023; 14:1023064. [PMID: 36993956 PMCID: PMC10041113 DOI: 10.3389/fimmu.2023.1023064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionMost T lymphocytes, including regulatory T cells, express the CD27 costimulatory receptor in steady state conditions. There is evidence that CD27 engagement on conventional T lymphocytes favors the development of Th1 and cytotoxic responses in mice and humans, but the impact on the regulatory lineage is unknown.MethodsIn this report, we examined the effect of constitutive CD27 engagement on both regulatory and conventional CD4+ T cells in vivo, in the absence of intentional antigenic stimulation.ResultsOur data show that both T cell subsets polarize into type 1 Tconvs or Tregs, characterized by cell activation, cytokine production, response to IFN-γ and CXCR3-dependent migration to inflammatory sites. Transfer experiments suggest that CD27 engagement triggers Treg activation in a cell autonomous fashion.ConclusionWe conclude that CD27 may regulate the development of Th1 immunity in peripheral tissues as well as the subsequent switch of the effector response into long-term memory.
Collapse
Affiliation(s)
- Natalia Bowakim-Anta
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Valérie Acolty
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Oberdan Leo
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stanislas Goriely
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Guillaume Oldenhove
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- *Correspondence: Muriel Moser,
| |
Collapse
|
12
|
Stephan AS, Kosinska AD, Mück-Häusl M, Muschaweckh A, Jäger C, Röder N, Heikenwälder M, Dembek C, Protzer U. Evaluation of the Effect of CD70 Co-Expression on CD8 T Cell Response in Protein-Prime MVA-Boost Vaccination in Mice. Vaccines (Basel) 2023; 11:vaccines11020245. [PMID: 36851121 PMCID: PMC9966001 DOI: 10.3390/vaccines11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Here, we investigate the potential of CD70 co-expression during viral vector boost vaccination to improve an antigen-specific T cell response. To determine the chance of activating antigen-specific T cells by CD70, we used the HBV core antigen as a model antigen in a heterologous protein-prime, Modified Vaccinia virus Ankara (MVA) boost vaccination scheme. Both the HBV core and a CD70 expression cassette were co-expressed upon delivery by an MVA vector under the same promoter linked by a P2A site. To compare immunogenicity with and without CD70 co-expression, HBV-naïve, C57BL/6 (wt) mice and HBV-transgenic mice were prime-vaccinated using recombinant HBV core antigen followed by the MVA vector boost. Co-expression of CD70 increased the number of vaccine-induced HBV core-specific CD8 T cells by >2-fold and improved their effector functions in HBV-naïve mice. In vaccinated HBV1.3tg mice, the number and functionality of HBV core-specific CD8 T cells was slightly increased upon CD70 co-expression in low-viremic, but not in high-viremic animals. CD70 co-expression did not impact liver damage as indicated by ALT levels in the serum, but increased the number of vaccine-induced, proliferative T cell clusters in the liver. Overall, this study indicates that orchestrated co-expression of CD70 and a vaccine antigen may be an interesting and safe means of enhancing antigen-specific CD8 T cell responses using vector-based vaccines, although in our study it was not sufficient to break immune tolerance.
Collapse
Affiliation(s)
- Ann-Sophie Stephan
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
| | - Anna D. Kosinska
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Martin Mück-Häusl
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, 81675 Munich, Germany
| | - Clemens Jäger
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
| | - Natalie Röder
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
| | - Mathias Heikenwälder
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany
| | - Claudia Dembek
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Correspondence: (C.D.); (U.P.); Tel.: +49-89-4140-6821 (U.P.)
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Correspondence: (C.D.); (U.P.); Tel.: +49-89-4140-6821 (U.P.)
| |
Collapse
|
13
|
Benhamouda N, Sam I, Epaillard N, Gey A, Phan L, Pham HP, Gruel N, Saldmann A, Pineau J, Hasan M, Quiniou V, Nevoret C, Verkarre V, Libri V, Mella S, Granier C, Broudin C, Ravel P, De Guillebon E, Mauge L, Helley D, Jabla B, Chaput N, Albiges L, Katsahian S, Adam J, Mejean A, Adotevi O, Vano YA, Oudard S, Tartour E. Plasma CD27, a Surrogate of the Intratumoral CD27-CD70 Interaction, Correlates with Immunotherapy Resistance in Renal Cell Carcinoma. Clin Cancer Res 2022; 28:4983-4994. [PMID: 36067339 DOI: 10.1158/1078-0432.ccr-22-0905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE CD70 is a costimulatory molecule known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). Clear-cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors; however, the clinical consequences of CD70 expression remain unclear. EXPERIMENTAL DESIGN Tumor tissue from 25 patients with ccRCC was assessed for the expression of CD27 and CD70 in situ using multiplex immunofluorescence. CD27+ T-cell phenotypes in tumors were analyzed by flow cytometry and their gene expression profile were analyzed by single-cell RNA sequencing then confirmed with public data. Baseline sCD27 was measured in 81 patients with renal cell carcinoma (RCC) treated with immunotherapy (35 for training cohort and 46 for validation cohort). RESULTS In the tumor microenvironment, CD27+ T cells interacted with CD70-expressing tumor cells. Compared with CD27- T cells, CD27+ T cells exhibited an apoptotic and dysfunctional signature. In patients with RCC, the intratumoral CD27-CD70 interaction was significantly correlated with the plasma sCD27 concentration. High sCD27 levels predicted poor overall survival in patients with RCC treated with anti-programmed cell death protein 1 in both the training and validation cohorts but not in patients treated with antiangiogenic therapy. CONCLUSIONS In conclusion, we demonstrated that sCD27, a surrogate marker of T-cell dysfunction, is a predictive biomarker of resistance to immunotherapy in RCC. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be extended to other tumors.
Collapse
Affiliation(s)
- Nadine Benhamouda
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Ikuan Sam
- Université Paris Cité, INSERM, PARCC, PARIS France
| | | | - Alain Gey
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Letuan Phan
- ARTIC (Association pour la Recherche sur les Thérapeutiques Innovantes en Cancérologie), Hôpital Européen Georges Pompidou, Paris, France
| | - Hang Phuong Pham
- Department of Computational Biology, Parean Biotechnologies, Saint-Malo, France
| | - Nadège Gruel
- INSERM U830, Equipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France.,Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Antonin Saldmann
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Joséphine Pineau
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers UTechS, Center for Translational Science, Institut Pasteur, Paris, France
| | - Valentin Quiniou
- Department of Computational Biology, Parean Biotechnologies, Saint-Malo, France
| | - Camille Nevoret
- Epidemiology and Clinical Research Unit, Université Paris Cité, INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France; Centre d'Investigation Clinique1418, APHP, HEGP, Paris, France
| | - Virginie Verkarre
- Department of Pathology, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers UTechS, Center for Translational Science, Institut Pasteur, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers UTechS, Center for Translational Science, Institut Pasteur, Paris, France.,Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, CNRS USR, Paris, France
| | - Clémence Granier
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Chloe Broudin
- Department of Pathology, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Patrice Ravel
- Bioinformatics and Cancer System biology team, IRCM - INSERM U1194, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Eléonore De Guillebon
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Medical Oncology, Institut Curie Hospital, Paris, France
| | - Laetitia Mauge
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Hematology, HEGP, Paris, France
| | - Dominique Helley
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Hematology, HEGP, Paris, France
| | - Bernd Jabla
- Cytometry and Biomarkers UTechS, Center for Translational Science, Institut Pasteur, Paris, France.,Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, CNRS USR, Paris, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Sandrine Katsahian
- Epidemiology and Clinical Research Unit, Université Paris Cité, INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France; Centre d'Investigation Clinique1418, APHP, HEGP, Paris, France
| | - Julien Adam
- Department of Biopathology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Arnaud Mejean
- Department of Urology, Hôpital Européen Georges Pompidou, Paris, France
| | - Olivier Adotevi
- Department of Pneumology, Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR109, INSERM CIC1431, University Hospital of Besançon, Besançon, France
| | - Yann A Vano
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France.,Department of Medical Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Stéphane Oudard
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Medical Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Eric Tartour
- Université Paris Cité, INSERM, PARCC, PARIS France.,Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| |
Collapse
|
14
|
Guelen L, Fischmann TO, Wong J, Mauze S, Guadagnoli M, Bąbała N, Wagenaars J, Juan V, Rosen D, Prosise W, Habraken M, Lodewijks I, Gu D, Stammen-Vogelzangs J, Yu Y, Baker J, Lutje Hulsik D, Driessen-Engels L, Malashock D, Kreijtz J, Bertens A, de Vries E, Bovens A, Bramer A, Zhang Y, Wnek R, Troth S, Chartash E, Dobrenkov K, Sadekova S, van Elsas A, Cheung JK, Fayadat-Dilman L, Borst J, Beebe AM, Van Eenennaam H. Preclinical characterization and clinical translation of pharmacodynamic markers for MK-5890: a human CD27 activating antibody for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005049. [PMID: 36100308 PMCID: PMC9472132 DOI: 10.1136/jitc-2022-005049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/06/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICI) have radically changed cancer therapy, but most patients with cancer are unresponsive or relapse after treatment. MK-5890 is a CD27 agonist antibody intended to complement ICI therapy. CD27 is a member of the tumor necrosis factor receptor superfamily that plays a critical role in promoting responses of T cells, B cells and NK cells. Methods Anti-CD27 antibodies were generated and selected for agonist activity using NF-кB luciferase reporter assays. Antibodies were humanized and characterized for agonism using in vitro T-cell proliferation assays. The epitope recognized on CD27 by MK-5890 was established by X-ray crystallography. Anti-tumor activity was evaluated in a human CD27 knock-in mouse. Preclinical safety was tested in rhesus monkeys. Pharmacodynamic properties were examined in mouse, rhesus monkeys and a phase 1 dose escalation clinical study in patients with cancer. Results Humanized anti-CD27 antibody MK-5890 (hIgG1) was shown to bind human CD27 on the cell surface with sub-nanomolar potency and to partially block binding to its ligand, CD70. Crystallization studies revealed that MK-5890 binds to a unique epitope in the cysteine-rich domain 1 (CRD1). MK-5890 activated CD27 expressed on 293T NF-κB luciferase reporter cells and, conditional on CD3 stimulation, in purified CD8+ T cells without the requirement of crosslinking. Functional Fc-receptor interaction was required to activate CD8+ T cells in an ex vivo tumor explant system and to induce antitumor efficacy in syngeneic murine subcutaneous tumor models. MK-5890 had monotherapy efficacy in these models and enhanced efficacy of PD-1 blockade. MK-5890 reduced in an isotype-dependent and dose-dependent manner circulating, but not tumor-infiltrating T-cell numbers in these mouse models. In rhesus monkey and human patients, reduction in circulating T cells was transient and less pronounced than in mouse. MK-5890 induced transient elevation of chemokines MCP-1, MIP-1α, and MIP-1β in the serum of mice, rhesus monkeys and patients with cancer. MK-5890 was well tolerated in rhesus monkeys and systemic exposure to MK-5890 was associated with CD27 occupancy at all doses. Conclusions MK-5890 is a novel CD27 agonistic antibody with the potential to complement the activity of PD-1 checkpoint inhibition in cancer immunotherapy and is currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Lars Guelen
- BioNovion/Aduro Biotech Europe, Oss, The Netherlands
| | - Thierry O Fischmann
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Jerelyn Wong
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Smita Mauze
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | | - Nikolina Bąbała
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Veronica Juan
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - David Rosen
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Winnie Prosise
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, Kenilworth, New Jersey, USA
| | | | | | - Danling Gu
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | | - Ying Yu
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Jeanne Baker
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | | | | - Dan Malashock
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Joost Kreijtz
- BioNovion/Aduro Biotech Europe, Oss, The Netherlands
| | | | - Evert de Vries
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid Bovens
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arne Bramer
- BioNovion/Aduro Biotech Europe, Oss, The Netherlands
| | - Yiwei Zhang
- Clinical Development, Merck & Co Inc, Rahway, New Jersey, USA
| | - Richard Wnek
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Sean Troth
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, West Point, Pennsylvania, USA
| | - Elliot Chartash
- Clinical Development, Merck & Co Inc, Rahway, New Jersey, USA
| | | | - Svetlana Sadekova
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | | - Jason K Cheung
- Process Research and Development, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Laurence Fayadat-Dilman
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Jannie Borst
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Amy M Beebe
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | |
Collapse
|
15
|
Sanborn RE, Pishvaian MJ, Callahan MK, Weise A, Sikic BI, Rahma O, Cho DC, Rizvi NA, Sznol M, Lutzky J, Bauman JE, Bitting RL, Starodub A, Jimeno A, Reardon DA, Kaley T, Iwamoto F, Baehring JM, Subramaniam DS, Aragon-Ching JB, Hawthorne TR, Rawls T, Yellin M, Keler T. Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. J Immunother Cancer 2022; 10:jitc-2022-005147. [PMID: 35940825 PMCID: PMC9364417 DOI: 10.1136/jitc-2022-005147] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Phase 1/2 dose-escalation and expansion study evaluating varlilumab, a fully human agonist anti-CD27 mAb, with nivolumab in anti-PD-1/L1 naïve, refractory solid tumors. METHODS Phase 1 evaluated the safety of varlilumab (0.1-10 mg/kg) with nivolumab (3 mg/kg) administered once every 2 weeks. Phase 2 evaluated varlilumab regimens (3 mg/kg once every 2 weeks, 3 mg/kg once every 12 weeks, and 0.3 mg/kg once every 4 weeks) with nivolumab 240 mg once every 2 weeks in tumor-specific cohorts. Primary objective was safety; key clinical endpoints included objective response rate (ORR) and overall survival rate at 12 months (OS12) (glioblastoma (GBM) only). Exploratory objectives included determination of effects on peripheral blood and intratumoral immune signatures. RESULTS 175 patients were enrolled (36 in phase 1 and 139 in phase 2). Phase 1 dose-escalation proceeded to the highest varlilumab dose level without determining a maximum tolerated dose. In phase 2, ORR were ovarian 12.5%, squamous cell carcinoma of the head and neck 12.5%, colorectal cancer 5%, and renal cell carcinoma 0%; GBM OS12 was 40.9%. Increased tumor PD-L1 and intratumoral T cell infiltration were observed in ovarian cancer patients, with increases of ≥5% associated with better progression-free survival. The most common treatment related adverse events were fatigue (18%), pruritus (16%), and rash (15%). CONCLUSION Varlilumab and nivolumab were well tolerated, without significant toxicity beyond that expected for each agent alone. Clinical activity was observed in patients that are typically refractory to anti-PD-1 therapy, however, overall was not greater than expected for nivolumab monotherapy. Treatment was associated with proinflammatory changes in the tumor microenvironment, particularly in ovarian cancer where the changes were associated with better clinical outcomes. TRIAL REGISTRATION NUMBER NCT02335918.
Collapse
Affiliation(s)
- Rachel E Sanborn
- Providence Cancer Institute, Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Michael J Pishvaian
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Margaret K Callahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Amy Weise
- Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Branimir I Sikic
- Clinical and Translational Research Unit, Stanford Cancer Institute, Stanford, California, USA
| | - Osama Rahma
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniel C Cho
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Naiyer A Rizvi
- Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | - Mario Sznol
- Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Jose Lutzky
- Mount Sinai Comprehensive Cancer Center, Miami Beach, Florida, USA
| | - Julie E Bauman
- University of Arizona Cancer Center, Tuscon, Arizona, USA
| | | | | | - Antonio Jimeno
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Thomas Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fabio Iwamoto
- Department of Neurology, Columbia Presbyterian Medical Center, New York, New York, USA
| | - Joachim M Baehring
- Department of Neurosurgery, Yale New Haven Health Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Deepa S Subramaniam
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | | | | | - Tracey Rawls
- Celldex Therapeutics Inc, Hampton, New Jersey, USA
| | | | - Tibor Keler
- R & D, Celldex Therapeutics Inc, Hampton, New Jersey, USA
| |
Collapse
|
16
|
Huang KZ, Ye H, Fang YY, Li T, Pei SJ, Wu LP, Su FF, Zheng XQ. Plasma Phage Load is Positively Related to the Immune Checkpoints in Patients Living with Human Immunodeficiency Virus. Curr HIV Res 2022; 20:301-308. [PMID: 35786189 DOI: 10.2174/1570162x20666220630141926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Microbial Translocation (MT) and altered gut microbiota are involved in immune activation and inflammation, whereas immune checkpoint proteins play an important role in maintaining immune self-tolerance and preventing excessive immune activation. OBJECTIVE This study aims to investigate the relationship between plasma phage load and immune homeostasis in people living with HIV(PLWH). METHODS We recruited 15 antiretroviral therapy (ART)-naive patients, 23 ART-treated (AT) patients, and 34 Healthy Participants (HP) to explore the relationship between the plasma phage load and immune checkpoint proteins. The Deoxyribonucleic Acid (DNA) load of the lambda (λ) phage was detected using fluorescence quantitative Polymerase Chain Reaction (PCR). The Immune Checkpoints (ICPs) were detected using multiplex immunoassay. RESULTS Our study demonstrated that the plasma phage load was increased in people living with HIV (PLWH) (P<0.05), but not in the ART-naive and AT groups (P>0.05). Plasma ICPs, including cluster of differentiation 27 (CD27), soluble glucocorticoid-induced Tumor Necrosis Factor (TNF) receptor (sGITR), soluble cluster of differentiation 80 (sCD80), sCD86, soluble glucocorticoidinduced TNF receptor-related ligand (sGITRL), soluble induced T-cell Costimulatory (sICOS), sCD40, soluble toll-like receptor 2 (sTLR2), and sCD28, were markedly decreased among the ARTnaive group (P<0.05) but not in the AT and HP groups (P>0.05). The plasma phage load was positively correlated with ICP and C-reactive protein (CRP) levels in PLWH (P<0.05). CONCLUSION Our study indicated that the plasma phage load in PLWH was positively related to the expression of ICPs and inflammation, which may be used as a promising marker for the immune level of PLWH.
Collapse
Affiliation(s)
- Kai-Zhao Huang
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Hui Ye
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Yang-Yang Fang
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Tao Li
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Shun-Jie Pei
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Lian-Peng Wu
- Department of Clinical Laboratory, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Fei-Fei Su
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Xiao-Qun Zheng
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| |
Collapse
|
17
|
Identification of an Immune Gene-Based Cisplatin Response Model and CD27 as a Therapeutic Target against Cisplatin Resistance for Ovarian Cancer. J Immunol Res 2022; 2022:4379216. [PMID: 35647204 PMCID: PMC9133897 DOI: 10.1155/2022/4379216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Evidence demonstrates that the immune microenvironment is extensively associated with chemotherapy response of ovarian cancer (OV). Herein, this study is aimed at establishing a cisplatin response prediction model for OV on the basis of immune genes. Methods. The expression profiles of cisplatin-sensitive and cisplatin-resistant OV specimens were integrated from multiple public datasets. The abundance scores of 22 immune cells were estimated with CIBERSORT algorithm. Differentially expressed immune genes (DEGs) were determined between cisplatin-sensitive and cisplatin-resistant groups. Thereafter, a cisplatin response model was constructed based on prognostic DEGs with logistic regression analysis. The prediction performance was validated in independent cohorts. The possible relationships between the model and immunotherapy were then assessed. Results. Treg scores were significantly decreased in cisplatin-resistant than cisplatin-sensitive OV specimens, with the opposite results for naïve B cells and activated dendritic cells. Fourteen prognostic DEGs were identified and used to develop a cisplatin-response model. The response scores, estimated by the model, showed favorable performance in discriminating cisplatin-response and nonresponse samples. The response scores also presented significantly negative correlations with three well-known cisplatin-resistant pathways and a positive correlation with the expression of CD274 (PD-L1). Moreover, the decreased CD27 expression was observed in cisplatin-resistant groups, and OV specimens with higher CD27 expressions were more sensitive to cisplatin treatment. Conclusion. Altogether, our findings proposed a cisplatin response prediction model and identified CD27 that might be involved in cisplatin resistance. Further investigations suggested that CD27 could be a promising immunotherapeutic target for cisplatin-resistant subset of OV.
Collapse
|
18
|
Ortiz-Cuaran S, Swalduz A, Foy JP, Marteau S, Morel AP, Fauvet F, De Souza G, Michon L, Boussageon M, Gadot N, Godefroy M, Léon S, Tortereau A, Mourksi NEH, Leonce C, Albaret MA, Dongre A, Vanbervliet B, Robert M, Tonon L, Pommier RM, Hofman V, Attignon V, Boyault S, Audoynaud C, Auclair J, Bouquet F, Wang Q, Ménétrier-Caux C, Pérol M, Caux C, Hofman P, Lantuejoul S, Puisieux A, Saintigny P. Epithelial-to-mesenchymal transition promotes immune escape by inducing CD70 in non-small cell lung cancer. Eur J Cancer 2022; 169:106-122. [PMID: 35550950 DOI: 10.1016/j.ejca.2022.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Epithelial-to-mesenchymal transition (EMT) is associated with tumor aggressiveness, drug resistance, and poor survival in non-small cell lung cancer (NSCLC) and other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with NSCLCs that display a mesenchymal phenotype (mNSCLC) could help to define subgroups of patients who may benefit from treatment strategies using immunotherapy. METHODS We evaluated ICPL expression in silico in 130 NSCLC cell lines. In vitro, CRISPR/Cas9-mediated knockdown and lentiviral expression were used to assess the impact of ZEB1 expression on CD70. Gene expression profiles of lung cancer samples from the TCGA (n = 1018) and a dataset from MD Anderson Cancer Center (n = 275) were analyzed. Independent validation was performed by immunohistochemistry and targeted-RNA sequencing in 154 NSCLC whole sections, including a large cohort of pulmonary sarcomatoid carcinomas (SC, n = 55). RESULTS We uncover that the expression of CD70, a regulatory ligand from the tumor necrosis factor ligand family, is enriched in mNSCLC in vitro models. Mechanistically, the EMT-inducer ZEB1 impacted CD70 expression and fostered increased activity of the CD70 promoter. CD70 overexpression was also evidenced in mNSCLC patient tumor samples and was particularly enriched in SC, a lung cancer subtype associated with poor prognosis. In these tumors, CD70 expression was associated with decreased CD3+ and CD8+ T-cell infiltration and increased T-cell exhaustion markers. CONCLUSION Our results provide evidence on the pivotal roles of CD70 and ZEB1 in immune escape in mNSCLC, suggesting that EMT might promote cancer progression and metastasis by not only increasing cancer cell plasticity but also reprogramming the immune response in the local tumor microenvironment.
Collapse
Affiliation(s)
- Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.
| | - Aurélie Swalduz
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jean-Philippe Foy
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Solène Marteau
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Anne-Pierre Morel
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Frédérique Fauvet
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Geneviève De Souza
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Lucas Michon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maxime Boussageon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Research Pathology, Centre Léon Bérard, Lyon, France
| | - Marion Godefroy
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Sophie Léon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Antonin Tortereau
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Nour-El-Houda Mourksi
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marie Alexandra Albaret
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Béatrice Vanbervliet
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marie Robert
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Laurie Tonon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Roxane M Pommier
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte D'Azur, CHU de Nice, University Hospital Federation OncoAge, Nice, France
| | | | - Sandrine Boyault
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | | | | | | | - Qing Wang
- Genomics Platform, Centre Léon Bérard, Lyon, France
| | - Christine Ménétrier-Caux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Christophe Caux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte D'Azur, CHU de Nice, University Hospital Federation OncoAge, Nice, France
| | - Sylvie Lantuejoul
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France; Research Pathology, Centre Léon Bérard, Lyon, France
| | - Alain Puisieux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
19
|
Li C, Liu F, Sun L, Liu Z, Zeng Y. Natural killer cell-related gene signature predicts malignancy of glioma and the survival of patients. BMC Cancer 2022; 22:230. [PMID: 35236310 PMCID: PMC8892793 DOI: 10.1186/s12885-022-09230-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023] Open
Abstract
Background Natural killer (NK) cells-based therapies are one of the most promising strategies against cancer. The aim of this study is to investigate the natural killer cell related genes and its prognostic value in glioma. Methods The Chinese Glioma Genome Atlas (CGGA) was used to develop the natural killer cell-related signature. Risk score was built by multivariate Cox proportional hazards model. A cohort of 326 glioma samples with whole transcriptome expression data from the CGGA database was included for discovery. The Cancer Genome Atlas (TCGA) datasets was used for validation. GO and KEGG were used to reveal the biological process and function associated with the natural killer cell-related signature. We also collected the clinical pathological features of patients with gliomas to analyze the association with tumor malignancy and patients’ survival. Results We screened for NK-related genes to build a prognostic signature, and identified the risk score based on the signature. We found that NK-related risk score was independent of various clinical factors. Nature-killer cell gene expression is correlated with clinicopathological features of gliomas. Innovatively, we demonstrated the tight relation between the risk score and immune checkpoints, and found NK-related risk score combined with PD1/PDL1 patients could predict the patient outcome. Conclusion Natural killer cell-related gene signature can predict malignancy of glioma and the survival of patients, these results might provide new view for the research of glioma malignancy and individual immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09230-y.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Lunquan Sun
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
20
|
Aschmoneit N, Kocher K, Siegemund M, Lutz MS, Kühl L, Seifert O, Kontermann RE. Fc-based Duokines: dual-acting costimulatory molecules comprising TNFSF ligands in the single-chain format fused to a heterodimerizing Fc (scDk-Fc). Oncoimmunology 2022; 11:2028961. [PMID: 35083097 PMCID: PMC8786347 DOI: 10.1080/2162402x.2022.2028961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Targeting costimulatory receptors of the tumor necrosis factor superfamily (TNFSF) to activate T-cells and promote anti-tumor T-cell function have emerged as a promising strategy in cancer immunotherapy. Previous studies have shown that combining two different members of the TNFSF resulted in dual-acting costimulatory molecules with the ability to activate two different receptors either on the same cell or on different cell types. To achieve prolonged plasma half-life and extended drug disposition, we have developed novel dual-acting molecules by fusing single-chain ligands of the TNFSF to heterodimerizing Fc chains (scDuokine-Fc, scDk-Fc). Incorporating costimulatory ligands of the TNF superfamily into a scDk-Fc molecule resulted in enhanced T-cell proliferation translating in an increased anti-tumor activity in combination with a primary T-cell-activating bispecific antibody. Our data show that the scDk-Fc molecules are potent immune-stimulatory molecules that are able to enhance T-cell mediated anti-tumor responses.
Collapse
Affiliation(s)
- Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Kocher
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martina S. Lutz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
21
|
Seyfrid M, Maich WT, Shaikh VM, Tatari N, Upreti D, Piyasena D, Subapanditha M, Savage N, McKenna D, Mikolajewicz N, Han H, Chokshi C, Kuhlmann L, Khoo A, Salim SK, Archibong-Bassey B, Gwynne W, Brown K, Murtaza N, Bakhshinyan D, Vora P, Venugopal C, Moffat J, Kislinger T, Singh S. CD70 as an actionable immunotherapeutic target in recurrent glioblastoma and its microenvironment. J Immunother Cancer 2022; 10:e003289. [PMID: 35017149 PMCID: PMC8753449 DOI: 10.1136/jitc-2021-003289] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Glioblastoma (GBM) patients suffer from a dismal prognosis, with standard of care therapy inevitably leading to therapy-resistant recurrent tumors. The presence of cancer stem cells (CSCs) drives the extensive heterogeneity seen in GBM, prompting the need for novel therapies specifically targeting this subset of tumor-driving cells. Here, we identify CD70 as a potential therapeutic target for recurrent GBM CSCs. EXPERIMENTAL DESIGN In the current study, we identified the relevance and functional influence of CD70 on primary and recurrent GBM cells, and further define its function using established stem cell assays. We use CD70 knockdown studies, subsequent RNAseq pathway analysis, and in vivo xenotransplantation to validate CD70's role in GBM. Next, we developed and tested an anti-CD70 chimeric antigen receptor (CAR)-T therapy, which we validated in vitro and in vivo using our established preclinical model of human GBM. Lastly, we explored the importance of CD70 in the tumor immune microenvironment (TIME) by assessing the presence of its receptor, CD27, in immune infiltrates derived from freshly resected GBM tumor samples. RESULTS CD70 expression is elevated in recurrent GBM and CD70 knockdown reduces tumorigenicity in vitro and in vivo. CD70 CAR-T therapy significantly improves prognosis in vivo. We also found CD27 to be present on the cell surface of multiple relevant GBM TIME cell populations, notably putative M1 macrophages and CD4 T cells. CONCLUSION CD70 plays a key role in recurrent GBM cell aggressiveness and maintenance. Immunotherapeutic targeting of CD70 significantly improves survival in animal models and the CD70/CD27 axis may be a viable polytherapeutic avenue to co-target both GBM and its TIME.
Collapse
Affiliation(s)
- Mathieu Seyfrid
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - William Thomas Maich
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Deepak Upreti
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Deween Piyasena
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Minomi Subapanditha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dillon McKenna
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicholas Mikolajewicz
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hong Han
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chirayu Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Laura Kuhlmann
- Department of Medical Biophysics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Amanda Khoo
- Department of Medical Biophysics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Sabra Khalid Salim
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - William Gwynne
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Kevin Brown
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nadeem Murtaza
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Parvez Vora
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Sheila Singh
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Liu W, Maben Z, Wang C, Lindquist KC, Li M, Rayannavar V, Lopez Armenta I, Nager A, Pascua E, Dominik PK, Oyen D, Wang H, Roach RC, Allan CM, Mosyak L, Chaparro-Riggers J. Structural delineation and phase-dependent activation of the costimulatory CD27:CD70 complex. J Biol Chem 2021; 297:101102. [PMID: 34419446 PMCID: PMC8484739 DOI: 10.1016/j.jbc.2021.101102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
CD27 is a tumor necrosis factor (TNF) receptor, which stimulates lymphocytes and promotes their differentiation upon activation by TNF ligand CD70. Activation of the CD27 receptor provides a costimulatory signal to promote T cell, B cell, and NK cell activity to facilitate antitumor and anti-infection immunity. Aberrant increased and focused expression of CD70 on many tumor cells renders CD70 an attractive therapeutic target for direct tumor killing. However, despite their use as drug targets to treat cancers, the molecular basis and atomic details of CD27 and CD70 interaction remain elusive. Here we report the crystal structure of human CD27 in complex with human CD70. Analysis of our structure shows that CD70 adopts a classical TNF ligand homotrimeric assembly to engage CD27 receptors in a 3:3 stoichiometry. By combining structural and rational mutagenesis data with reported disease-correlated mutations, we identified the key amino acid residues of CD27 and CD70 that control this interaction. We also report increased potency for plate-bound CD70 constructs compared with solution-phase ligand in a functional activity to stimulate T-cells in vitro. These findings offer new mechanistic insight into this critical costimulatory interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hui Wang
- Pfizer, Inc, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Immunotherapy has become the mainstay for lung cancer treatment, providing sustained therapeutic responses and improved prognosis compared with those obtained with surgery, chemotherapy, radiotherapy, and targeted therapy. It has the potential for anti-tumor treatment and killing tumor cells by activating human immunity and has moved the targets of anti-cancer therapy from malignant tumor cells to immune cell subsets. Two kinds of immune checkpoints, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1), are the main targets of current immunotherapy in lung cancer. Despite the successful outcomes achieved by immune checkpoint inhibitors, a small portion of lung cancer patients remain unresponsive to checkpoint immunotherapy or may ultimately become resistant to these agents as a result of the complex immune modulatory network in the tumor microenvironment. Therefore, it is imperative to exploit novel immunotherapy targets to further expand the proportion of patients benefiting from immunotherapy. This review summarizes the molecular features, biological function, and clinical significance of several novel checkpoints that have important roles in lung cancer immune responses beyond the CTLA-4 and PD-1/PD-L1 axes, including the markers of co-inhibitory and co-stimulatory T lymphocyte pathways and inhibitory markers of macrophages and natural killer cells.
Collapse
|
24
|
Nakae R, Matsuzaki S, Serada S, Matsuo K, Shiomi M, Sato K, Nagase Y, Matsuzaki S, Nakagawa S, Hiramatsu K, Okazawa A, Kimura T, Egawa-Takata T, Kobayashi E, Ueda Y, Yoshino K, Naka T, Kimura T. CD70 antibody-drug conjugate as a potential therapeutic agent for uterine leiomyosarcoma. Am J Obstet Gynecol 2021; 224:197.e1-197.e23. [PMID: 32822640 DOI: 10.1016/j.ajog.2020.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Uterine leiomyosarcoma is a rare and aggressive gynecologic malignancy originating in the myometrium of the uterine corpus that tends to recur even after complete surgical excision. Current therapeutic agents have only modest effects on uterine leiomyosarcoma. Although antibodies and antibody-drug conjugates have been recognized as useful targeted therapies for other cancers, no study has yet evaluated the effects of this approach on uterine leiomyosarcoma. OBJECTIVE This study aimed to examine the activity of tumoral CD70 in uterine leiomyosarcoma and assess the antitumor activity of CD70-antibody-drug conjugate treatment in uterine leiomyosarcoma. STUDY DESIGN Target membrane proteins were screened by profiling and comparing membrane protein expression in 3 uterine leiomyosarcoma cell lines (SK-UT-1, SK-LMS-1, and SKN) and normal uterine myometrium cells using the isobaric tags for relative and absolute quantitation labeling method. Western blotting, fluorescence-activated cell sorting analyses, and immunohistochemistry were used to examine CD70 expression in the membrane proteins in uterine leiomyosarcoma cell lines and clinical samples. We developed an antibody-drug conjugate with a monoclonal antibody of the target membrane protein linked to monomethyl auristatin F and investigated its antitumor effects against uterine leiomyosarcoma (in vitro, in vivo, and in patient-derived xenograft models). RESULTS CD70 was identified as a specific antigen highly expressed in uterine leiomyosarcoma cell lines. Of the 3 uterine leiomyosarcoma cell lines, CD70 expression was confirmed in SK-LMS-1 cells by western blotting and fluorescence-activated cell sorting analysis. CD70 overexpression was observed in 19 of 21 (90.5%) tumor specimens from women with uterine leiomyosarcoma. To generate CD70-antibody-drug conjugate, anti-CD70 monoclonal antibody was conjugated with a novel derivative of monomethyl auristatin F. CD70-antibody-drug conjugate showed significant antitumor effects on SK-LMS-1 cells (half maximal inhibitory concentration, 0.120 nM) and no antitumor effects on CD70-negative uterine leiomyosarcoma cells. CD70-antibody-drug conjugate significantly inhibited tumor growth in the SK-LMS-1 xenograft mouse model (tumor volume, 129.8 vs 285.5 mm3; relative reduction, 54.5%; P<.001) and patient-derived xenograft mouse model (tumor volume, 128.1 vs 837.7 mm3; relative reduction, 84.7%; P<.001). CONCLUSION Uterine leiomyosarcoma tumors highly express CD70 and targeted therapy with CD70-antibody-drug conjugate may have a potential therapeutic implication in the treatment of uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Ruriko Nakae
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan; Department of Obstetrics and Gynecology, Sumitomo Hospital, Osaka, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA.
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Mayu Shiomi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Kazuaki Sato
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikazu Nagase
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Satoko Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA; Department of Obstetrics and Gynecology, Otemae Hospital, Osaka, Japan
| | - Satoshi Nakagawa
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Kosuke Hiramatsu
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Akiko Okazawa
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Toshihiro Kimura
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Tomomi Egawa-Takata
- Department of Obstetrics and Gynecology, Osaka Police Hospital, Osaka, Japan; Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan; Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Abolhassani H. Specific Immune Response and Cytokine Production in CD70 Deficiency. Front Pediatr 2021; 9:615724. [PMID: 33996677 PMCID: PMC8120026 DOI: 10.3389/fped.2021.615724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Collective clinical and immunologic findings of defects in the CD27-CD70 axis indicate a primary immunodeficiency associated with terminal B-cell development defect and immune dysregulation leading to autoimmunity, uncontrolled viral infection, and lymphoma. Since the molecular mechanism underlying this entity of primary immunodeficiency has been recently described, more insight regarding the function and profile of immunity is required. Therefore, this study aimed to investigate stimulated antibody production, polyclonal vs. virus-specific T-cell response, and cytokine production of a CD70-deficient patient reported previously with early-onset antibody deficiency suffering from chronic viral infections and B-cell lymphoma. The patient and her family members were subjected to clinical evaluation, immunological assays, and functional analyses. The findings of this study indicate an impaired ability of B cells to produce immunoglobulins, and a poor effector function of T cells was also associated with the severity of clinical phenotype. Reduced proportions of cells expressing the memory marker CD45RO, as well as T-bet and Eomes, were observed in CD70-deficient T cells. The proportion of 2B4+ and PD-1+ virus-specific CD8+ T cells was also reduced in the patient. Although the CD70-mutated individuals presented with early-onset clinical manifestations that were well-controlled by using conventional immunological and anticancer chemotherapies, with better prognosis as compared with CD27-deficient patients, targeted treatment toward specific disturbed immune profile may improve the management and even prevent secondary complications.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open 2020; 4:e000629. [PMID: 32152062 PMCID: PMC7082637 DOI: 10.1136/esmoopen-2019-000629] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cluster of differentiation 27 (CD27) is a member of the tumour necrosis factor receptor superfamily and plays a key role in T-cell activation by providing a costimulatory signal. Bound to its natural ligand CD70, CD27 signalling enhances T-cell proliferation and differentiation to effector and memory T cells and therefore has potential as an immune modulatory target in cancer treatment. The CD27 agonistic antibody varlilumab showed promising efficacy in haematological as well as solid cancers. Current studies investigate the combination of the CD27 agonistic antibody varlilumab in combination with the PD1 axis targeting immune checkpoint inhibitors like nivolumab or atezolizumab. Further, CD70 expression is used as a therapeutic target for ADCs, antibodies inducing ADCC, as well as the immunological target for chimeric antigen receptor gene-modified T cells and specific dendritic cell vaccination. In line with this, targeting the CD27 axis was shown to be feasible and safe in early clinical trials with the most commonly occurring side effects being thrombocytopenia, fatigue and nausea. In this mini review, we aimed to elucidate the immunobiology of CD27 and its potential as a target in cancer immunotherapy.
Collapse
Affiliation(s)
- Angelika M Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
28
|
Immune checkpoint inhibition in myeloid malignancies: Moving beyond the PD-1/PD-L1 and CTLA-4 pathways. Blood Rev 2020; 45:100709. [PMID: 32487480 DOI: 10.1016/j.blre.2020.100709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/26/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICI) have yielded mixed but largely underwhelming results in clinical trials in patients with acute myeloid leukemia and myelodysplastic syndromes to date. However, increasing understanding of the immunologic landscape, potential biomarkers for benefits, and mechanisms of resistance, as well as the use of rational combinations, and identification of novel targets leaves plenty of room for optimism. Herein, we review recent advances in the preclinical and clinical development of ICI therapy in patients with myeloid malignancies and explore some of the important challenges facing the field such as the absence of validated biomarkers, the development of synergistic and safe combination therapies, and efforts to determine the best setting of ICI along the disease course. We finally foresee the future of the field and propose solutions to some of the major beforementioned obstacles.
Collapse
|
29
|
Chen Z, Yang X, Bi G, Liang J, Hu Z, Zhao M, Li M, Lu T, Zheng Y, Sui Q, Yang Y, Zhan C, Jiang W, Wang Q, Tan L. Ligand-receptor interaction atlas within and between tumor cells and T cells in lung adenocarcinoma. Int J Biol Sci 2020; 16:2205-2219. [PMID: 32549766 PMCID: PMC7294944 DOI: 10.7150/ijbs.42080] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/02/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose: Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths worldwide. Although tumor cell-T cell interactions are known to play a fundamental role in promoting tumor progression, these interactions have not been explored in LUAD. Methods: The 10x genomics single-cell RNA sequencing (scRNA-seq) and gene expression data of LUAD patients were obtained from ArrayExpress, TCGA, and GEO databases. scRNA-seq data were analyzed and infiltrating tumor cells, epithelial cells, and T cells were identified in the tumor microenvironment. Differentially expressed ligand-receptor pairs were identified in tumor cells/normal epithelial cells and tumor T cells/non-tumor T cells based on corresponding scRNA-seq and gene expression data, respectively. These important interactions inside/across cancer cells and T cells in LUAD were systematically analyzed. Furthermore, a valid prognostic machine-learning model based on ligand-receptor interactions was built to predict the prognosis of LUAD patients. Flow cytometry and qRT-PCR were performed to validate the significantly differently expressed ligand-receptor pairs. Results: Overall, 39,692 cells in scRNA-seq data were included in our study after quality filtering. A total of 65 ligand-receptor pairs (17 upregulated and 48 downregulated), including LAMB1-ITGB1, CD70-CD27, and HLA-B-LILRB2, and 96 ligand-receptor pairs (41 upregulated and 55 downregulated), including CCL5-CCR5, SELPLG-ITGB2, and CXCL13-CXCR5, were identified in LUAD cancer cells and T cells, respectively. To explore the crosstalk between cancer cells and T cells, 114 ligand-receptor pairs, including 11 ligand-receptor pair genes that could significantly affect survival outcomes, were identified in our research. A machine-learning model was established to accurately predict the prognosis of LUAD patients and ITGB4, CXCR5, and MET were found to play an important role in prognosis in our model. Flow cytometry and qRT-PCR analyses indicated the reliability of our study. Conclusion: Our study revealed functionally significant interactions within and between cancer cells and T cells. We believe these observations will improve our understanding of potential mechanisms of tumor microenvironment contributions to cancer progression and help identify potential targets for immunotherapy in the future.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qihai Sui
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yong Yang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
30
|
Screening a Broad Range of Solid and Haematological Tumour Types for CD70 Expression Using a Uniform IHC Methodology as Potential Patient Stratification Method. Cancers (Basel) 2019; 11:cancers11101611. [PMID: 31652572 PMCID: PMC6826714 DOI: 10.3390/cancers11101611] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/18/2023] Open
Abstract
The constitutive expression of CD70 has been described in various haematological and solid tumour types. In addition, the co-expression of its receptor in tumours has been demonstrated, mediating tumour cell proliferation. Although CD70 expression is a prerequisite to enrol patients in solid tumour clinical trials using anti-CD70 immunotherapy, there is currently no standardised test to evaluate CD70 expression. These differences in immunohistochemistry (IHC) protocols make it challenging to compare the expression levels that were obtained in different studies, pointing out the need for one uniform methodology. In this retrospective study, over 600 tumour samples from different solid and haematological malignancies were analysed while using one validated IHC method. CD70 and CD27 expression was demonstrated in a broad range of tumour types. In solid tumours, 43% demonstrated CD70 positivity with the highest degree in renal cell carcinoma (79.5%). Kaposi sarcoma showed no CD70 expression on the tumour cells. In lymphoma samples, 58% demonstrated CD70 positivity. Moreover, the co-expression of CD70 and CD27 was observed in 39% of lymphoma samples. These findings highlight the need to further explore anti-CD70 therapies in a broad range of CD70 expressing tumour types and in doing so, implementing one standardised protocol to define CD70 overexpression to use it as a diagnostic tool.
Collapse
|
31
|
Current Perspectives in Cancer Immunotherapy. Cancers (Basel) 2019; 11:cancers11101472. [PMID: 31575023 PMCID: PMC6826426 DOI: 10.3390/cancers11101472] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Different immunotherapeutic approaches have proved to be of significant clinical value to many patients with different types of advanced cancer. However, we need more precise immunotherapies and predictive biomarkers to increase the successful response rates. The advent of next generation sequencing technologies and their applications in immuno-oncology has helped us tremendously towards this aim. We are now moving towards the realization of personalized medicine, thus, significantly increasing our expectations for a more successful management of the disease. Here, we discuss the current immunotherapeutic approaches against cancer, including immune checkpoint blockade with an emphasis on anti-PD-L1 and anti-CTLA-4 monoclonal antibodies. We also analyze a growing list of other co-inhibitory and co-stimulatory markers and emphasize the mechanism of action of the principal pathway for each of these, as well as on drugs that either have been FDA-approved or are under clinical investigation. We further discuss recent advances in other immunotherapies, including cytokine therapy, adoptive cell transfer therapy and therapeutic vaccines. We finally discuss the modulation of gut microbiota composition and response to immunotherapy, as well as how tumor-intrinsic factors and immunological processes influence the mutational and epigenetic landscape of progressing tumors and response to immunotherapy but also how immunotherapeutic intervention influences the landscape of cancer neoepitopes and tumor immunoediting.
Collapse
|
32
|
Swathirajan CR, Vignesh R, Waldrop G, Shanmugasundaram U, Nandagopal P, Solomon SS, Pradeep A, Saravanan S, Murugavel KG. HIV-specific T-cell Responses and Generalized Activation in HIV-1 Infected Long-term Non-progressors and Progressors from South India. Curr HIV Res 2019; 16:302-314. [PMID: 30543175 PMCID: PMC6416489 DOI: 10.2174/1570162x17666181212122607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Background: Anti-viral cytokine expressions by cytotoxic T-cells and lower activation rates have been reported to correlate with suppressed HIV replication in long-term non-progressors (LTNP). Immune mechanisms underlying disease non-progression in LTNP might vary with HIV-1 subtype and geographical locations. Objective: This study evaluates cytokine expression and T-cells activation in relation to disease non-progression in LTNP. Methods: HIV-1 Subtype C infected LTNP (n=20) and progressors (n=15) were enrolled and flowcytometry assays were performed to study HIV-specific CD8 T-cells expressing IL-2, IFN-γ, TNF-α and MIP-1β against gag and env peptides. CD4+ T-cell activation was evaluated by surface expression of HLADR and CD38. Results: Proportions of cytokines studied did not differ significantly between LTNP and progressors, while contrasting correlations with disease progression markers were observed in LTNP. CD4+ T-cell activation rates were significantly lower in LTNP compared to progressors which indicate the potential role of T-cell activation rates in disease non-progression in LTNP. Conclusion: LTNP and progressors showed similar CD8+ T-cell responses, but final conclusions can be drawn only by comparing multiple immune factors in larger LTNP cohort with HIV-1 infected individuals at various levels of disease progression. A possible role of HIV-1 subtype variation and ethnic differences in addition to host-genetic and viral factors cannot be ruled out.
Collapse
Affiliation(s)
| | - Ramachandran Vignesh
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India.,UniKL-Royal College of Medicine Perak (UniKL-RCMP), Universiti Kuala Lumpur, 3, Jalan Greentown, 30450 Ipoh, Perak, Malaysia
| | - Greer Waldrop
- University of Maryland School of Medicine, College Park, MD 20742, United States
| | | | - Pannerselvam Nandagopal
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | - Sunil Suhas Solomon
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India.,The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
| | - Amrose Pradeep
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | - Shanmugam Saravanan
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | | |
Collapse
|
33
|
Thiemann M, Richards DM, Heinonen K, Kluge M, Marschall V, Merz C, Redondo Müller M, Schnyder T, Sefrin JP, Sykora J, Fricke H, Gieffers C, Hill O. A Single-Chain-Based Hexavalent CD27 Agonist Enhances T Cell Activation and Induces Anti-Tumor Immunity. Front Oncol 2018; 8:387. [PMID: 30298117 PMCID: PMC6160747 DOI: 10.3389/fonc.2018.00387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/29/2018] [Indexed: 01/05/2023] Open
Abstract
Tumor necrosis factor receptor superfamily member 7 (TNFRSF7, CD27), expressed primarily by T cells, and its ligand CD27L (TNFSF7, CD70) provide co-stimulatory signals that boost T cell activation, differentiation, and survival. Agonistic stimulation of CD27 is therefore a promising therapeutic concept in immuno-oncology intended to boost and sustain T cell driven anti-tumor responses. Endogenous TNFSF/TNFRSF-based signal transmission is a structurally well-defined event that takes place during cell-to-cell-based contacts. It is well-established that the trimeric-trivalent TNFSF-receptor binding domain (TNFSF-RBD) exposed by the conducting cell and the resulting multi-trimer-based receptor clustering on the receiving cell are essential for agonistic signaling. Therefore, we have developed HERA-CD27L, a novel hexavalent TNF receptor agonist (HERA) targeting CD27 and mimicking the natural signaling concept. HERA-CD27L is composed of a trivalent but single-chain CD27L-receptor-binding-domain (scCD27L-RBD) fused to an IgG1 derived silenced Fc-domain serving as dimerization scaffold. The hexavalent agonist significantly boosted antigen-specific T cell responses while having no effect on non-specific T cells and was superior over stabilized recombinant trivalent CD27L. In addition, HERA-CD27L demonstrated potent single-agent anti-tumor efficacy in two different syngeneic tumor models, MC38-CEA and CT26wt. Furthermore, the combination of HERA-CD27L and an anti-PD-1 antibody showed additive anti-tumor effects highlighting the importance of both T cell activation and checkpoint inhibition in anti-tumor immunity. In this manuscript, we describe the development of HERA-CD27L, a true CD27 agonist with a clearly defined forward-signaling mechanism of action.
Collapse
|
34
|
Sperk M, Domselaar RV, Neogi U. Immune Checkpoints as the Immune System Regulators and Potential Biomarkers in HIV-1 Infection. Int J Mol Sci 2018; 19:ijms19072000. [PMID: 29987244 PMCID: PMC6073446 DOI: 10.3390/ijms19072000] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022] Open
Abstract
Immune checkpoints are several co-stimulatory and inhibitory pathways that regulate T cell immune responses. Most of the discoveries about immune checkpoints were made in cancer research where inhibitory immune checkpoints cause immune exhaustion and down-regulate anti-tumor responses. In addition to cancer, immune checkpoints are exploited in chronic infectious diseases. In human immunodeficiency virus (HIV) infection, the immune checkpoint molecule called programmed cell death protein 1 (PD-1) has been determined as being a major regulatory factor for T cell exhaustion. Recent studies with antibodies blocking either PD-1 ligand 1 (PD-L1) or PD-1 show not only promising results in the enhancement of HIV-specific immune responses but even in reducing the latent HIV reservoir. Apart from the therapeutic target for a functional cure of HIV-1, immune checkpoint molecules might be used as biomarkers for monitoring disease progression and therapeutic response. In this review, we will summarize and discuss the inhibitory immune checkpoint molecules PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), lymphocyte-activation gene 3 (LAG3), and T cell immunoglobulin and mucin-domain-containing-3 (TIM3) as well as the co-stimulatory molecules CD40L and CD70, including their role in immunity, with a particular focus on HIV infection, and being potential targets for a functional HIV cure.
Collapse
Affiliation(s)
- Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
| | - Robert van Domselaar
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden.
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
| |
Collapse
|
35
|
Zhang W, Ambikan AT, Sperk M, van Domselaar R, Nowak P, Noyan K, Russom A, Sönnerborg A, Neogi U. Transcriptomics and Targeted Proteomics Analysis to Gain Insights Into the Immune-control Mechanisms of HIV-1 Infected Elite Controllers. EBioMedicine 2018; 27:40-50. [PMID: 29269040 PMCID: PMC5828548 DOI: 10.1016/j.ebiom.2017.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
A small subset of HIV-1 infected individuals, the "Elite Controllers" (EC), can control viral replication and restrain progression to immunodeficiency without antiretroviral therapy (ART). In this study, a cross-sectional transcriptomics and targeted proteomics analysis were performed in a well-defined Swedish cohort of untreated EC (n=19), treatment naïve patients with viremia (VP, n=32) and HIV-1-negative healthy controls (HC, n=23). The blood transcriptome identified 151 protein-coding genes that were differentially expressed (DE) in VP compared to EC. Genes like CXCR6 and SIGLEC1 were downregulated in EC compared to VP. A definite distinction in gene expression between males and females among all patient-groups were observed. The gene expression profile between female EC and the healthy females was similar but did differ between male EC and healthy males. At targeted proteomics analysis, 90% (29/32) of VPs clustered together while EC and HC clustered separately from VP. Among the soluble factors, 33 were distinctive to be statistically significant (False discovery rate=0.02). Cell surface receptor signaling pathway, programmed cell death, response to cytokine and cytokine-mediated signaling seem to synergistically play an essential role in HIV-1 control in EC.
Collapse
Affiliation(s)
- Wang Zhang
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Robert van Domselaar
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Piotr Nowak
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aman Russom
- Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden.
| |
Collapse
|
36
|
Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, Crocker A, Thomas LJ, Goldstein J, Marsh HC, Keler T, He LZ. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. THE JOURNAL OF IMMUNOLOGY 2017; 199:4110-4123. [PMID: 29109120 DOI: 10.4049/jimmunol.1700606] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/07/2017] [Indexed: 12/17/2022]
Abstract
CD27, a member of the TNFR superfamily, is constitutively expressed in most T cells and plays crucial roles in T cell effector functions. The costimulation and antitumor activity of CD27 agonistic Abs have been well documented in mouse models. Clinical testing of a human IgG1 anti-CD27 Ab, varlilumab (clone 1F5), is ongoing in cancer patients. In this study, we set out to further understand CD27 as an immunomodulatory target and to address the mechanism of antitumor efficacy using different IgG isotypes of 1F5 in human CD27-transgenic mice. 1F5mIgG1, the only isotype engaging inhibitory FcγRIIB expressed in B cells, elicited the most potent and broad immune response, but terminal differentiation, exhaustion, and apoptosis in the activated effector T cells were inevitable. Accordingly, this isotype was the most effective in eradicating BCL1 lymphoma but had limited efficacy in s.c. tumors. Conversely, 1F5mIgG2a, which interacts with cells expressing activating FcγRs, led to moderate immune activation, as well as to prominent reduction in the number and suppressive activity of regulatory T cells. These combined mechanisms imparted potent antitumor activity to 1F5mIgG2a, particularly against the s.c. tumors. 1F5hIgG1, varlilumab, showed balanced agonistic activity that was prominent at lower doses and depleting activity that was greater at higher doses. 1F5hIgG1 had good antitumor activity in all tumor models tested. Thus, both agonist and depleting properties contribute to the antitumor efficacy of CD27-targeted immunotherapy, and modulation of these activities in patients may be achieved by varying the dose and regimen.
Collapse
Affiliation(s)
- Anna Wasiuk
- Celldex Therapeutics, Inc., Hampton, NJ 08827; and
| | - James Testa
- Celldex Therapeutics, Inc., Hampton, NJ 08827; and
| | | | | | - Laura Vitale
- Celldex Therapeutics, Inc., Hampton, NJ 08827; and
| | | | | | | | | | | | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, NJ 08827; and
| | - Li-Zhen He
- Celldex Therapeutics, Inc., Hampton, NJ 08827; and
| |
Collapse
|
37
|
CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies. Blood 2017; 130:297-309. [DOI: 10.1182/blood-2016-12-756585] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Key Points
CD27 expression on malignant B cells triggers CD70 reverse signaling in NK cells and improves lymphoma immunosurveillance. CD70 reverse signaling in NK cells is mediated via the AKT signaling pathway and enhances survival and effector function.
Collapse
|
38
|
Chiodi F, Bekele Y, Lantto Graham R, Nasi A. IL-7 and CD4 T Follicular Helper Cells in HIV-1 Infection. Front Immunol 2017; 8:451. [PMID: 28473831 PMCID: PMC5397507 DOI: 10.3389/fimmu.2017.00451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/31/2017] [Indexed: 11/23/2022] Open
Abstract
IL-7 was previously shown to upregulate the expression of molecules important for interaction of CD4+ T cells with B cells. It is poorly studied whether IL-7 has a role in the biology of T follicular helper (Tfh) cells and whether IL-7 dysregulates the expression of B-cell costimulatory molecules on Tfh cells. We review the literature and provide arguments in favor of IL-7 being involved in the biology of human Tfh cells. The CD127 IL-7 receptor is expressed on circulating Tfh and non-Tfh cells, and we show that IL-7, but not IL-6 or IL-21, upregulates the expression of CD70 and PD-1 on these cells. We conclude that IL-7, a cytokine whose level is elevated during HIV-1 infection, may have a role in increased expression of B cell costimulatory molecules on Tfh cells and lead to abnormal B cell differentiation.
Collapse
Affiliation(s)
- Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yonas Bekele
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rebecka Lantto Graham
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aikaterini Nasi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Bullock TN. Stimulating CD27 to quantitatively and qualitatively shape adaptive immunity to cancer. Curr Opin Immunol 2017; 45:82-88. [PMID: 28319731 DOI: 10.1016/j.coi.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The capacity of the immune system to recognize and respond to tumors has been appreciated for over 100 years. However, clinical success has largely depended on the elucidation of the positive and negative regulators of effector cells after their activation via the antigen cell receptor. On the one hand, effector cells upregulate checkpoint molecules that are thought to play a role in limiting immunopathology. On the other, second and third waves of costimulation are often required to promote the expansion, survival and differentiation of effector cells. While it is clear that the immune system can be unleashed by blocking checkpoint molecules, this approach is most effective when pre-existing responses exist in patients' tumors. Thus, coordinating checkpoint blockade with costimulation could potentially expand the patient population that receives benefit from cancer immunotherapy. This review will discuss how the costimulatory molecule CD27 sculpts immunity and preclinical/clinical data indicating its potential for cancer immunotherapy and its clinical translation.
Collapse
Affiliation(s)
- Timothy Nj Bullock
- Department of Pathology and Human Immune Therapy Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
40
|
Saxena V, Bichare S, Singh D, Ghate M, Godbole S, Kulkarni S, Gangakhedkar R, Paranjape R, Thakar M. Short Communication: Low Immune Activation Is Associated with Higher Frequencies of Central Memory T Cell Subset in a Cohort of Indian Long-Term Nonprogressors. AIDS Res Hum Retroviruses 2017; 33:121-125. [PMID: 28034326 DOI: 10.1089/aid.2016.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Persistent immune activation in human immunodeficiency virus (HIV) infection is responsible for alterations in immune system such as activation, apoptosis, and reduced frequencies. Reduced immune activation is known to be associated with virus control. Limited information is available on the influence of pan-immune activation on memory responses. Hence, we compared the T cell activation and memory profile in HIV-infected individuals exhibiting disease control such as long-term nonprogressors (LTNPs) and progressors. The activated CD4+ and CD8+ T cells were significantly lower and the CD4+ and CD8+ central memory T cell phenotypes were significantly higher in the LTNPs compared to the progressors. In addition, we observed significant inverse association between the T cell activation and frequencies of central memory T cells. Our findings indicate that patients with absence of disease progression have preserved central memory T cell population associated with lesser immune activation.
Collapse
Affiliation(s)
- Vandana Saxena
- Department of Immunology and Serology, National AIDS Research Institute, MIDC, Pune, India
| | - Shubhangi Bichare
- Department of Immunology and Serology, National AIDS Research Institute, MIDC, Pune, India
| | - Dharmendra Singh
- Department of Immunology and Serology, National AIDS Research Institute, MIDC, Pune, India
| | - Manisha Ghate
- Department of Clinical Sciences, National AIDS Research Institute, MIDC, Pune, India
| | - Sheela Godbole
- Department of Epidemiology and Biostatistics, National AIDS Research Institute, MIDC, Pune, India
| | - Smita Kulkarni
- Department of Virology, National AIDS Research Institute, MIDC, Pune, India
| | - Raman Gangakhedkar
- Department of Clinical Sciences, National AIDS Research Institute, MIDC, Pune, India
| | - Ramesh Paranjape
- Department of Immunology and Serology, National AIDS Research Institute, MIDC, Pune, India
| | - Madhuri Thakar
- Department of Immunology and Serology, National AIDS Research Institute, MIDC, Pune, India
| |
Collapse
|
41
|
Common Variable Immunodeficiency patients with a phenotypic profile of immunosenescence present with thrombocytopenia. Sci Rep 2017; 7:39710. [PMID: 28054583 PMCID: PMC5214528 DOI: 10.1038/srep39710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/25/2016] [Indexed: 12/30/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous group of diseases. Our aim was to define sub-groups of CVID patients with similar phenotypes and clinical characteristics. Using eight-color flow cytometry, we analyzed both B- and T-cell phenotypes in a cohort of 88 CVID patients and 48 healthy donors. A hierarchical clustering of probability binning “bins” yielded a separate cluster of 22 CVID patients with an abnormal phenotype. We showed coordinated proportional changes in naïve CD4+ T-cells (decreased), intermediate CD27− CD28+ CD4+ T-cells (increased) and CD21low B-cells (increased) that were stable for over three years. Moreover, the lymphocytes’ immunophenotype in this patient cluster exhibited features of profound immunosenescence and chronic activation. Thrombocytopenia was only found in this cluster (36% of cases, manifested as Immune Thrombocytopenia (ITP) or Evans syndrome). Clinical complications more frequently found in these patients include lung fibrosis (in 59% of cases) and bronchiectasis (55%). The degree of severity of these symptoms corresponded to more deviation from normal levels with respect to CD21low B-cells, naïve CD4+ and CD27− CD28+ over three years. Moreover, th-cells. Next-generation sequencing did not reveal any common genetic background. We delineate a subgroup of CVID patients with activated and immunosenescent immunophenotype of lymphocytes and distinct set of clinical complications without common genetic background.
Collapse
|
42
|
Cecchinato V, Bernasconi E, Speck RF, Proietti M, Sauermann U, D'Agostino G, Danelon G, Rezzonico Jost T, Grassi F, Raeli L, Schöni-Affolter F, Stahl-Hennig C, Uguccioni M. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:184-195. [PMID: 27895171 PMCID: PMC5164881 DOI: 10.4049/jimmunol.1600568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
CD4+ T cell repopulation of the gut is rarely achieved in HIV-1-infected individuals who are receiving clinically effective antiretroviral therapy. Alterations in the integrity of the mucosal barrier have been indicated as a cause for chronic immune activation and disease progression. In this study, we present evidence that persistent immune activation causes impairment of lymphocytes to respond to chemotactic stimuli, thus preventing their trafficking from the blood stream to peripheral organs. CCR6+ and CXCR3+ Th cells accumulate in the blood of aviremic HIV-1-infected patients on long-term antiretroviral therapy, and their frequency in the circulation positively correlates to levels of soluble CD14 in plasma, a marker of chronic immune activation. Th cells show an impaired response to chemotactic stimuli both in humans and in the pathogenic model of SIV infection, and this defect is due to hyperactivation of cofilin and inefficient actin polymerization. Taking advantage of a murine model of chronic immune activation, we demonstrate that cytoskeleton remodeling, induced by okadaic acid, restores lymphocyte migration in response to chemokines, both in vitro and in vivo. This study calls for novel pharmacological approaches in those pathological conditions characterized by persistent immune activation and loss of trafficking of T cell subsets to niches that sustain their maturation and activities.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland;
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital, 6903 Lugano, Switzerland
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Michele Proietti
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, 37077 Göttingen, Germany
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Gabriela Danelon
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Fabio Grassi
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Lorenzo Raeli
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | | | | | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland;
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| |
Collapse
|
43
|
Evans C, Humphrey JH, Ntozini R, Prendergast AJ. HIV-Exposed Uninfected Infants in Zimbabwe: Insights into Health Outcomes in the Pre-Antiretroviral Therapy Era. Front Immunol 2016; 7:190. [PMID: 27375613 PMCID: PMC4893498 DOI: 10.3389/fimmu.2016.00190] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
The ZVITAMBO trial recruited 14,110 mother-infant pairs to a randomized controlled trial of vitamin A between 1997 and 2000, before the availability of antiretroviral therapy for HIV prophylaxis or treatment in Zimbabwe. The HIV status of mothers and infants was well characterized through 1-2 years of follow-up, leading to the largest cohort to date of HIV-exposed uninfected (HEU) infants (n = 3135), with a suitable comparison group of HIV-unexposed infants (n = 9510). Here, we draw on 10 years of published findings from the ZVITAMBO trial. HEU infants had increased morbidity compared to HIV-unexposed infants, with 50% more hospitalizations in the neonatal period and 30% more sick clinic visits during infancy, particularly for skin infections, lower respiratory tract infections, and oral thrush. HEU children had 3.9-fold and 2.0-fold higher mortality than HIV-unexposed children during the first and second years of life, respectively, most commonly due to acute respiratory infections, diarrhea/dysentery, malnutrition, sepsis, and meningitis. Infant morbidity and mortality were strongly related to maternal HIV disease severity, and increased morbidity remained until maternal CD4 counts were >800 cells/μL. HEU infants were more likely to be premature and small-for-gestational age than HIV-unexposed infants, and had more postnatal growth failure. Here, we propose a conceptual framework to explain the increased risk of infectious morbidity, mortality, and growth failure among HEU infants, hypothesizing that immune activation and inflammation are key drivers of both infection susceptibility and growth failure. Future studies should further dissect the causes of infection susceptibility and growth failure and determine the impact of ART and cotrimoxazole on outcomes of this vulnerable group of infants in the current era.
Collapse
Affiliation(s)
- Ceri Evans
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Blizard Institute, Queen Mary University of London, London, UK
| | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research , Harare , Zimbabwe
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Blizard Institute, Queen Mary University of London, London, UK; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
44
|
Bourke CD, Berkley JA, Prendergast AJ. Immune Dysfunction as a Cause and Consequence of Malnutrition. Trends Immunol 2016; 37:386-398. [PMID: 27237815 PMCID: PMC4889773 DOI: 10.1016/j.it.2016.04.003] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022]
Abstract
Malnutrition, which encompasses under- and overnutrition, is responsible for an enormous morbidity and mortality burden globally. Malnutrition results from disordered nutrient assimilation but is also characterized by recurrent infections and chronic inflammation, implying an underlying immune defect. Defects emerge before birth via modifications in the immunoepigenome of malnourished parents, and these may contribute to intergenerational cycles of malnutrition. This review summarizes key recent studies from experimental animals, in vitro models, and human cohorts, and proposes that immune dysfunction is both a cause and a consequence of malnutrition. Focusing on childhood undernutrition, we highlight gaps in current understanding of immune dysfunction in malnutrition, with a view to therapeutically targeting immune pathways as a novel means to reduce morbidity and mortality. Undernourished children principally die of common infections, and immune defects are consistently demonstrated in under- and overnutrition. Parental malnutrition leads to epigenetic modifications of infant immune and metabolic genes. Healthy gut development relies on sensing of dietary nutrients, commensal, and pathogenic microbes via immune receptors. Recurrent infections, chronic inflammation, and enteropathy compound clinical malnutrition by altering gut structure and function. Immune cell activation and systemic proinflammatory mediator levels are increased in malnutrition. Malnutrition impairs immune priming by DC and monocytes, and impairs effector memory T cell function. Immune dysfunction can directly drive pathological processes in malnutrition, including malabsorption, increased metabolic demand, dysregulation of the growth hormone and HPA axes, and greater susceptibility to infection.
Collapse
Affiliation(s)
- Claire D Bourke
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK.
| | - James A Berkley
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Collaborative Research Programme, Centre for Geographic Medicine Research, Kifili, Kenya; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Andrew J Prendergast
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK; Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| |
Collapse
|
45
|
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
The CD27–CD70 pathway and pathogenesis of autoimmune disease. Semin Arthritis Rheum 2016; 45:496-501. [DOI: 10.1016/j.semarthrit.2015.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022]
|
47
|
Ruf M, Mittmann C, Nowicka AM, Hartmann A, Hermanns T, Poyet C, van den Broek M, Sulser T, Moch H, Schraml P. pVHL/HIF-regulated CD70 expression is associated with infiltration of CD27+ lymphocytes and increased serum levels of soluble CD27 in clear cell renal cell carcinoma. Clin Cancer Res 2015; 21:889-98. [PMID: 25691774 DOI: 10.1158/1078-0432.ccr-14-1425] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CD70, a member of the TNF ligand superfamily, has been shown frequently overexpressed in clear cell renal cell carcinoma (ccRCC). The mechanisms of CD70's upregulation and its role in ccRCC are unknown. EXPERIMENTAL DESIGN CD70 expression was immunohistochemically analyzed in 667 RCCs and RCC metastases. Von Hippel-Lindau gene (VHL) mutations, expression patterns of VHL protein (pVHL), hypoxia-inducible factor (HIF) α, and several HIF targets were studied in tissues and cell lines and correlated with CD70 overexpression. Gene promoter analysis was performed to confirm CD70 as HIF target gene. Consecutive tissue sections were immunostained to reveal the relation between CD70-expressing RCCs and tumor-infiltrating lymphocytes positive for the CD70 receptor (CD27). CD70-mediated release of soluble CD27 in RCC was assessed by coculture experiments and sera analysis of patients with RCC. RESULTS Elevated CD70 expression was seen in 80% of primary tumors and metastases of ccRCC and correlated with dysregulation of the pVHL/HIF pathway. In vitro analyses demonstrated that CD70 upregulation is driven by HIF. Furthermore, CD27(+) lymphocytes preferentially infiltrate CD70-expressing ccRCCs. CD70-dependent release of soluble CD27 in cocultures may explain the high CD27 levels observed in sera of patients with CD70-expressing ccRCC. The combination of lymphocyte infiltration and CD70 expression in RCC was associated with worse patient outcome. CONCLUSION Our findings demonstrate that in ccRCC, CD70 expression is regulated by HIF as a consequence of pVHL inactivation. Increased serum levels of CD27 suggest the existence of CD70-expressing ccRCC, thus representing a potential serum marker for patients suffering from this disease.
Collapse
Affiliation(s)
- Melanie Ruf
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.
| | - Christiane Mittmann
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Anna M Nowicka
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Thomas Hermanns
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | | | - Tullio Sulser
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Schraml
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
48
|
|
49
|
Increased extrafollicular expression of the B-cell stimulatory molecule CD70 in HIV-1-infected individuals. AIDS 2015; 29:1757-66. [PMID: 26262581 DOI: 10.1097/qad.0000000000000779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE CD70 molecules expressed by activated T cells provide potent B cell stimulatory signals. We hypothesized that an altered CD70 expression might contribute to B cell abnormalities during HIV-1 infection. DESIGN CD70 expression and the functional and migratory properties of the CD4CD70 T lymphocytes were analyzed in HIV-1-infected patients and in humanized mice. Correlations were tested between CD70 expression and features of B-cell activation, apoptosis sensitivity and functional exhaustion. METHODS CD4CD70 T cells were analyzed in cohorts of CD4 T-cell lymphopenic, viremic or nonlymphopenic, nonviremic HIV-1-infected patients and in noninfected individuals. CD70 upregulation was also followed in HIV-1-infected humanized mice. CD38, CD95, LAIR1 and PD-1 expressions were monitored on B-cell subpopulations, Ki67 was assessed to estimate B-cell proliferation and antibody levels were measured in plasma. RESULTS Blood CD4CD70 T-cell frequencies increased in response to CD4 T-cell depletion or high viremia levels as a possible consequence of increased activation and proliferation in this subset. CD4CD70 T cells produced T-helper 1-type cytokines and expressed chemokine receptors mobilizing toward sites of inflammation but not to lymphoid follicles. High CD70 expression was observed in HIV-1-infected humanized mice at extrafollicular sites (peritoneum, bone-marrow). CD4CD70 T-cell frequencies correlated with the expression of the activation marker CD38 and the death receptor CD95 on various memory B-cell subsets, with B-cell proliferation and with plasma IgG levels. CONCLUSIONS CD4CD70 T cells may contribute to B cell hyperactivation and accelerated memory B-cell turnover during HIV-1 infection.
Collapse
|
50
|
Sonar S, Lal G. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity. Front Immunol 2015; 6:364. [PMID: 26257732 PMCID: PMC4507150 DOI: 10.3389/fimmu.2015.00364] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/05/2015] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activation, proliferation, differentiation, and migration of immune cells into the central nervous system (CNS). Several TNF superfamily molecules are known to control alloimmunity, autoimmunity, and immunity. Development of transgenic and gene knockout animals, and monoclonal antibodies against TNFSF molecules have increased our understanding of individual receptor-ligand interactions, and their intracellular signaling during homeostasis and neuroinflammation. A strong clinical association has been observed between TNFSF members and CNS autoimmunity such as multiple sclerosis and also in its animal model experimental autoimmune encephalomyelitis. Therefore, they are promising targets for alternative therapeutic options to control autoimmunity. Although, TNFSF ligands are widely distributed and have diverse functions, we have restricted the discussions in this review to TNFSF receptor-ligand interactions and their role in the pathogenesis of neuroinflammation and CNS autoimmunity.
Collapse
|