1
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Senchukova MA. Colorectal cancer and dormant metastases: Put to sleep or destroy? World J Gastrointest Oncol 2024; 16:2304-2317. [PMID: 38994146 PMCID: PMC11236221 DOI: 10.4251/wjgo.v16.i6.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
After reading the review by An et al "Biological factors driving colorectal cancer metastasis", which covers the problem of the metastasis of colorectal cancer (CRC), I had a desire to discuss with readers one of the exciting problems associated with dormant metastases. Most deaths from CRCs are caused by metastases, which can be detected both at diagnosis of the primary tumor and several years or even decades after treatment. This is because tumor cells that enter the bloodstream can be destroyed by the immune system, cause metastatic growth, or remain dormant for a long time. Dormant tumor cells may not manifest themselves throughout a person's life or, after some time and under appropriate conditions, may give rise to the growth of metastases. In this editorial, we will discuss the most important features of dormant metastases and the mechanisms of premetastatic niche formation, as well as factors that contribute to the activation of dormant metastases in CRCs. We will pay special attention to the possible mechanisms involved in the formation of circulating tumor cell complexes and the choice of therapeutic strategies that promote the dormancy or destruction of tumor cells in CRCs.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
3
|
Yu L, Huang Z, Xiao Z, Tang X, Zeng Z, Tang X, Ouyang W. Unveiling the best predictive models for early‑onset metastatic cancer: Insights and innovations (Review). Oncol Rep 2024; 51:60. [PMID: 38456540 PMCID: PMC10940877 DOI: 10.3892/or.2024.8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cancer metastasis is the primary cause of cancer deaths. Metastasis involves the spread of cancer cells from the primary tumors to other body parts, commonly through lymphatic and vascular pathways. Key aspects include the high mutation rate and the capability of metastatic cells to form invasive tumors even without a large initial tumor mass. Particular emphasis is given to early metastasis, occurring in initial cancer stages and often leading to misdiagnosis, which adversely affects survival and prognosis. The present review highlighted the need for improved understanding and detection methods for early metastasis, which has not been effectively identified clinically. The present review demonstrated the clinicopathological and molecular characteristics of early‑onset metastatic types of cancer, noting factors such as age, race, tumor size and location as well as the histological and pathological grade as significant predictors. In conclusion, the present review underscored the importance of early detection and management of metastatic types of cancer and called for improved predictive models, including advanced techniques such as nomograms and machine learning, so as to enhance patient outcomes, acknowledging the challenges and limitations of the current research as well as the necessity for further studies.
Collapse
Affiliation(s)
- Liqing Yu
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhenjun Huang
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ziqi Xiao
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaofu Tang
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ziqiang Zeng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoli Tang
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenhao Ouyang
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
4
|
Calvo V, Zheng W, Adam-Artigues A, Staschke KA, Huang X, Cheung JF, Nobre AR, Fujisawa S, Liu D, Fumagalli M, Surguladze D, Stokes ME, Nowacek A, Mulvihill M, Farias EF, Aguirre-Ghiso JA. A PERK-Specific Inhibitor Blocks Metastatic Progression by Limiting Integrated Stress Response-Dependent Survival of Quiescent Cancer Cells. Clin Cancer Res 2023; 29:5155-5172. [PMID: 37982738 PMCID: PMC10842363 DOI: 10.1158/1078-0432.ccr-23-1427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE The integrated stress response (ISR) kinase PERK serves as a survival factor for both proliferative and dormant cancer cells. We aim to validate PERK inhibition as a new strategy to specifically eliminate solitary disseminated cancer cells (DCC) in secondary sites that eventually reawake and originate metastasis. EXPERIMENTAL DESIGN A novel clinical-grade PERK inhibitor (HC4) was tested in mouse syngeneic and PDX models that present quiescent/dormant DCCs or growth-arrested cancer cells in micro-metastatic lesions that upregulate ISR. RESULTS HC4 significantly blocks metastasis, by killing quiescent/slow-cycling ISRhigh, but not proliferative ISRlow DCCs. HC4 blocked expansion of established micro-metastasis that contained ISRhigh slow-cycling cells. Single-cell gene expression profiling and imaging revealed that a significant proportion of solitary DCCs in lungs were indeed dormant and displayed an unresolved ER stress as revealed by high expression of a PERK-regulated signature. In human breast cancer metastasis biopsies, GADD34 expression (PERK-regulated gene) and quiescence were positively correlated. HC4 effectively eradicated dormant bone marrow DCCs, which usually persist after rounds of therapies. Importantly, treatment with CDK4/6 inhibitors (to force a quiescent state) followed by HC4 further reduced metastatic burden. In HNSCC and HER2+ cancers HC4 caused cell death in dormant DCCs. In HER2+ tumors, PERK inhibition caused killing by reducing HER2 activity because of sub-optimal HER2 trafficking and phosphorylation in response to EGF. CONCLUSIONS Our data identify PERK as a unique vulnerability in quiescent or slow-cycling ISRhigh DCCs. The use of PERK inhibitors may allow targeting of pre-existing or therapy-induced growth arrested "persister" cells that escape anti-proliferative therapies.
Collapse
Affiliation(s)
- Veronica Calvo
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Current affiliation: Pathos, Chicago, IL, USA
| | - Wei Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Adam-Artigues
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Xin Huang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie F. Cheung
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sho Fujisawa
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Liu
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Maria Fumagalli
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - David Surguladze
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | | | - Ari Nowacek
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Mark Mulvihill
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Eduardo F. Farias
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
- Current affiliation: Serinus Biosciences, New York, NY, USA
| | - Julio A. Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
5
|
Mora-Rodríguez JM, Sánchez BG, Sebastián-Martín A, Díaz-Yuste A, Sánchez-Chapado M, Palacín AM, Sánchez-Rodríguez C, Bort A, Díaz-Laviada I. Resistance to 2-Hydroxy-Flutamide in Prostate Cancer Cells Is Associated with the Downregulation of Phosphatidylcholine Biosynthesis and Epigenetic Modifications. Int J Mol Sci 2023; 24:15626. [PMID: 37958610 PMCID: PMC10650717 DOI: 10.3390/ijms242115626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we examined the metabolic adaptations of a chemoresistant prostate cancer cell line in comparison to a sensitive cell line. We utilized prostate cancer LNCaP cells and subjected them to a stepwise increase in the antiandrogen 2-hydroxy-flutamide (FLU) concentration to generate a FLU-resistant cell line (LN-FLU). These LN-FLU cells displayed characteristics of cancer stem cells, exhibited drug resistance, and showed a significantly reduced expression of Cyclin D1, along with the overexpression of p16, pointing to a proliferation arrest. In comparing the cancer stem-like LN-FLU cells to the LNCaP cells, we observed a decrease in the expression of CTP-choline cytidylyl transferase α (CCTα), as well as a decline in choline kinase, suggesting altogether a downregulation of the phosphatidylcholine biosynthetic pathway. In addition, we found decreased levels of the protein methyl transferase PRMT2 and the upregulation of the histone deacetylase Sirtuin1 (Sirt1). Analysis of the human prostate cancer samples revealed similar results in a population with high expressions of the stem cell markers Oct4 and ABCB1A1. Our findings suggest that the adaptation of prostate cancer cells to antiandrogens could induce reprogramming into stem cells that survive in a low phosphocholine metabolism and cell cycle arrest and display drug resistance.
Collapse
Affiliation(s)
- José María Mora-Rodríguez
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| | - Belén G. Sánchez
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| | - Alba Sebastián-Martín
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| | - Alba Díaz-Yuste
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| | - Manuel Sánchez-Chapado
- Department of Urology, Príncipe de Asturias Hospital, 28805 Alcalá de Henares, Madrid, Spain; (M.S.-C.); (A.M.P.); (C.S.-R.)
| | - Ana María Palacín
- Department of Urology, Príncipe de Asturias Hospital, 28805 Alcalá de Henares, Madrid, Spain; (M.S.-C.); (A.M.P.); (C.S.-R.)
| | - Carlos Sánchez-Rodríguez
- Department of Urology, Príncipe de Asturias Hospital, 28805 Alcalá de Henares, Madrid, Spain; (M.S.-C.); (A.M.P.); (C.S.-R.)
| | - Alicia Bort
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06519, USA
| | - Inés Díaz-Laviada
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| |
Collapse
|
6
|
Metastasis prevention: How to catch metastatic seeds. Biochim Biophys Acta Rev Cancer 2023; 1878:188867. [PMID: 36842768 DOI: 10.1016/j.bbcan.2023.188867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Despite considerable advances in the evolution of anticancer therapies, metastasis still remains the main cause of cancer mortality. Therefore, current strategies for cancer cure should be redirected towards prevention of metastasis. Targeting metastatic pathways represents a promising therapeutic opportunity aimed at obstructing tumor cell dissemination and metastatic colonization. In this review, we focus on preclinical studies and clinical trials over the last five years that showed high efficacy in suppressing metastasis through targeting lymph node dissemination, tumor cell extravasation, reactive oxygen species, pre-metastatic niche, exosome machinery, and dormancy.
Collapse
|
7
|
Engel J, Eckel R, Halfter K, Schubert-Fritschle G, Hölzel D. Breast cancer: emerging principles of metastasis, adjuvant and neoadjuvant treatment from cancer registry data. J Cancer Res Clin Oncol 2023; 149:721-735. [PMID: 36538148 PMCID: PMC9931789 DOI: 10.1007/s00432-022-04369-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Growing primary breast cancers (PT) can initiate local recurrences (LR), regional lymph nodes (pLN) and distant metastases (MET). Components of these progressions are initiation, frequency, growth duration, and survival. These characteristics describe principles which proposed molecular concepts and hypotheses must align with. METHODS In a population-based retrospective modeling approach using data from the Munich Cancer Registry key steps and factors associated with metastasis were identified and quantified. Analysis of 66.800 patient datasets over four time periods since 1978, reliable evidence is obtained even in small subgroups. Together with results of clinical trials on prevention and adjuvant treatment (AT) principles for the MET process and AT are derived. RESULTS The median growth periods for PT/MET/LR/pLN comes to 12.5/8.8/5/3.5 years, respectively. Even if 30% of METs only appear after 10 years, a pre-diagnosis MET initiation principle not a delayed one should be true. The growth times of PTs and METs vary by a factor of 10 or more but their ratio is robust at about 1.4. Principles of AT are 50% PT eradication, the selective and partial eradication of bone and lung METs. This cannot be improved by extending the duration of the previously known ATs. CONCLUSION A paradigm of ten principles for the MET process and ATs is derived from real world data and clinical trials indicates that there is no rationale for the long-term application of endocrine ATs, risk of PTs by hormone replacement therapies, or cascading initiation of METs. The principles show limits and opportunities for innovation also through alternative interpretations of well-known studies. The outlined MET process should be generalizable to all solid tumors.
Collapse
Affiliation(s)
- Jutta Engel
- Munich Cancer Registry (MCR), Ludwig-Maximilians-University (LMU), 81377, Munich, Germany
| | - Renate Eckel
- Munich Cancer Registry (MCR), Ludwig-Maximilians-University (LMU), 81377, Munich, Germany
| | - Kathrin Halfter
- Munich Cancer Registry (MCR), Ludwig-Maximilians-University (LMU), 81377, Munich, Germany
| | | | - Dieter Hölzel
- Munich Cancer Registry (MCR), Ludwig-Maximilians-University (LMU), 81377, Munich, Germany.
| |
Collapse
|
8
|
Fimereli D, Venet D, Rediti M, Boeckx B, Maetens M, Majjaj S, Rouas G, Marchio C, Bertucci F, Mariani O, Capra M, Bonizzi G, Contaldo F, Galant C, Van den Eynden G, Salgado R, Biganzoli E, Vincent-Salomon A, Pruneri G, Larsimont D, Lambrechts D, Desmedt C, Brown DN, Rothé F, Sotiriou C. Timing evolution of lobular breast cancer through phylogenetic analysis. EBioMedicine 2022; 82:104169. [PMID: 35882101 PMCID: PMC9309404 DOI: 10.1016/j.ebiom.2022.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Danai Fimereli
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - David Venet
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mattia Rediti
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium; Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marion Maetens
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Majjaj
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghizlane Rouas
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Caterina Marchio
- Department of Medical Sciences, University of Turin, Turin, Italy; FPO-IRCCS Candiolo Cancer Institute, Candiolo, Italy
| | - Francois Bertucci
- Predictive Oncology Laboratory, Institut Paoli-Calmettes, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille Université Marseille, France
| | - Odette Mariani
- Department of Pathology, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Maria Capra
- Biobank for Translational and Digital Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppina Bonizzi
- Biobank for Translational and Digital Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Contaldo
- Biobank for Translational and Digital Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Christine Galant
- Department of Pathology, Cliniques Universitaires Saint Luc, Brussels, Belgium; IREC, Université Catholique de Louvain, Brussels, Belgium
| | | | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium; Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
| | - Elia Biganzoli
- Department of Biomedical and Clinical Sciences (DIBIC) "L. Sacco" & DSRC, LITA Vialba campus, University of Milan, Milan, Italy
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Giancarlo Pruneri
- Division of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; School of Medicine, University of Milan, Milano, Milan, Italy
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium; Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - David N Brown
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Françoise Rothé
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
9
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Chen B, Song Y, Zhan Y, Zhou S, Ke J, Ao W, Zhang Y, Liang Q, He M, Li S, Xie F, Huang H, Chan WN, Cheung AHK, Ma BBY, Kang W, To KF, Xiao J. Fangchinoline inhibits non-small cell lung cancer metastasis by reversing epithelial-mesenchymal transition and suppressing the cytosolic ROS-related Akt-mTOR signaling pathway. Cancer Lett 2022; 543:215783. [PMID: 35700820 DOI: 10.1016/j.canlet.2022.215783] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Few drugs alleviate non-small cell lung cancer (NSCLC) metastasis effectively. Small molecular screening demonstrated that fangchinoline (Fan) reversed epithelial-mesenchymal transition (EMT) in NSCLC cells, inhibiting cell invasion and migration. RNA sequencing (RNA-seq) of Fan-treated NSCLC cells revealed that Fan potently quenched the NADP+ metabolic process. Molecular docking analysis revealed that Fan directly and specifically targeted NOX4. NOX4 was associated with poor prognosis in NSCLC in both The Cancer Genome Atlas (TCGA) and Hong Kong cohorts. In mitochondrial DNA-depleted ρ0 NSCLC cells, Fan decreased cytosolic reactive oxygen species (ROS) to inhibit the Akt-mTOR signaling pathway by directly promoting NOX4 degradation. In TCGA and Hong Kong cohorts, NOX4 upregulation acted as a driver event as it positively correlated with metastasis and oxidative stress. Single-cell RNA-seq indicated that NOX4 was overexpressed, especially in cancer cells, cancer stem cells, and endothelial cells. In mice, Fan significantly impeded subcutaneous xenograft formation and reduced metastatic nodule numbers in mouse lung and liver. Drug sensitivity testing demonstrated that Fan suppressed patient-derived organoid growth dose-dependently. Fan is a potent small molecule for alleviating NSCLC metastasis by directly targeting NOX4 and is a potential novel therapeutic agent.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Research Center of Integrative Medicine, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yue Song
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Research Center of Integrative Medicine, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yujuan Zhan
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Research Center of Integrative Medicine, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Shikun Zhou
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Research Center of Integrative Medicine, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Junzi Ke
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Research Center of Integrative Medicine, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; iHuman Institute, School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, PR China
| | - Weizhen Ao
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Research Center of Integrative Medicine, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; iHuman Institute, School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, PR China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Qiqi Liang
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Minhui He
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Shuhui Li
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Fuda Xie
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Haonan Huang
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alvin H K Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Jianyong Xiao
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Research Center of Integrative Medicine, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
11
|
Wu M, Zhang X, Zhang W, Chiou YS, Qian W, Liu X, Zhang M, Yan H, Li S, Li T, Han X, Qian P, Liu S, Pan Y, Lobie PE, Zhu T. Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nat Commun 2022; 13:1371. [PMID: 35296660 PMCID: PMC8927306 DOI: 10.1038/s41467-022-29018-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer cells display phenotypic equilibrium between the stem-like and differentiated states during neoplastic homeostasis. The functional and mechanistic implications of this subpopulation plasticity remain largely unknown. Herein, it is demonstrated that the breast cancer stem cell (BCSC) secretome autonomously compresses the stem cell population. Co-implantation with BCSCs decreases the tumor-initiating capacity yet increases metastasis of accompanying cancer cells, wherein DKK1 is identified as a pivotal factor secreted by BCSCs for such functions. DKK1-promotes differentiation is indispensable for disseminated tumor cell metastatic outgrowth. In contrast, DKK1 inhibitors substantially relieve the metastatic burden by restraining metastatic cells in the dormant state. DKK1 increases the expression of SLC7A11 to protect metastasizing cancer cells from lipid peroxidation and ferroptosis. Combined treatment with a ferroptosis inducer and a DKK1 inhibitor exhibits synergistic effects in diminishing metastasis. Hence, this study deciphers the contribution of CSC-regulated phenotypic plasticity in metastatic colonization and provides therapeutic approaches to limit metastatic outgrowth. The contribution of breast cancer stem cells (BCSCs) to metastasis needs further elucidation. Here, the authors show that BCSCs secrete DKK1 to protect metastasizing cancer cells from ferroptosis via upregulation of SLC7A11, and further show that the combination of a ferroptosis inducer with a DKK1 inhibitor reduces metastasis.
Collapse
Affiliation(s)
- Mingming Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weijie Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Shiou Chiou
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China.,Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Wenchang Qian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangtian Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hong Yan
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shilan Li
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xinghua Han
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences and Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Fudan University, Shanghai, China
| | - Yueyin Pan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China. .,Shenzhen Bay Laboratory, Shenzhen, China.
| | - Tao Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China. .,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
12
|
Di Martino JS, Nobre AR, Mondal C, Taha I, Farias EF, Fertig EJ, Naba A, Aguirre-Ghiso JA, Bravo-Cordero JJ. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. NATURE CANCER 2022; 3:90-107. [PMID: 35121989 PMCID: PMC8818089 DOI: 10.1038/s43018-021-00291-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/21/2021] [Indexed: 04/14/2023]
Abstract
Cancer cells disseminate and seed in distant organs, where they can remain dormant for many years before forming clinically detectable metastases. Here we studied how disseminated tumor cells sense and remodel the extracellular matrix (ECM) to sustain dormancy. ECM proteomics revealed that dormant cancer cells assemble a type III collagen-enriched ECM niche. Tumor-derived type III collagen is required to sustain tumor dormancy, as its disruption restores tumor cell proliferation through DDR1-mediated STAT1 signaling. Second-harmonic generation two-photon microscopy further revealed that the dormancy-to-reactivation transition is accompanied by changes in type III collagen architecture and abundance. Analysis of clinical samples revealed that type III collagen levels were increased in tumors from patients with lymph node-negative head and neck squamous cell carcinoma compared to patients who were positive for lymph node colonization. Our data support the idea that the manipulation of these mechanisms could serve as a barrier to metastasis through disseminated tumor cell dormancy induction.
Collapse
Affiliation(s)
- Julie S Di Martino
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Precision Immunology Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chandrani Mondal
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isra Taha
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Eduardo F Farias
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elana J Fertig
- Departments of Oncology, Applied Mathematics and Statistics and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Precision Immunology Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Ferlini L, Peluso L, Lolli V, Gaspard N, Lefranc F. Prognosis of patients treated in a single neurosurgical reference centre for brain metastasis caused by dormant disseminated cells. Oncol Lett 2021; 21:454. [PMID: 33907564 PMCID: PMC8063273 DOI: 10.3892/ol.2021.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
Brain metastasis (BM) is a frequent complication of systemic cancer usually associated with poor prognosis. Survival depends on numerous factors, which complicates prognosis and treatment. It has been suggested that BM growing from previously dormant disseminated tumour cells (DTCs) may exhibit a milder phenotype than BM derived from continuously progressing metastatic cells; however, to the best of our knowledge, the prognosis of patients presenting with BM from dormant DTCs is unknown. The present study retrospectively compared survival data, collected from a single neurosurgical centre, between patients presenting with BM from previously dormant DTCs and patients with non-dormant BM. A total of 262 medical records were reviewed. In the univariate Cox regression analysis, the median survival of the dormant BM group was statistically longer than that of the non-dormant group (P=0.048); a trend towards a longer survival persisted after correcting for age, presence of breast cancer and treatment options (P=0.057), which are all factors known to influence outcome. The improved outcome of these patients could be considered in models for prognostication. Moreover, the development of therapies able to eradicate dormant DTCs could provide a new promising strategy to prolong the survival of patients with a favourable prognosis.
Collapse
Affiliation(s)
- Lorenzo Ferlini
- Department of Neurology, Erasmus Hospital, Free University of Bruxelles, B-1070 Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, Erasmus Hospital, Free University of Bruxelles, B-1070 Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Erasmus Hospital, Free University of Bruxelles, B-1070 Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasmus Hospital, Free University of Bruxelles, B-1070 Brussels, Belgium
| | - Florence Lefranc
- Department of Neurosurgery, Erasmus Hospital, Free University of Bruxelles, B-1070 Brussels, Belgium
| |
Collapse
|
14
|
Zhao L, Wu X, Li T, Luo J, Dong D. ctcRbase: the gene expression database of circulating tumor cells and microemboli. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5819651. [PMID: 32294193 DOI: 10.1093/database/baaa020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Abstract
Circulating tumor cells/microemboli (CTCs/CTMs) are malignant cells that depart from cancerous lesions and shed into the bloodstream. Analysis of CTCs can allow the investigation of tumor cell biomarker expression from a non-invasive liquid biopsy. To date, high-throughput technologies have become a powerful tool to provide a genome-wide view of transcriptomic changes associated with CTCs/CTMs. These data provided us much information to understand the tumor heterogeneity, and the underlying molecular mechanism of tumor metastases. Unfortunately, these data have been deposited into various repositories, and a uniform resource for the cancer metastasis is still unavailable. To this end, we integrated previously published transcriptome datasets of CTCs/CTMs and constructed a web-accessible database. The first release of ctcRbase contains 526 CTCs/CTM samples across seven cancer types. The expression of 14 631 mRNAs and 3642 long non-coding RNAs of CTCs/CTMs were included. Experimental validations from the published literature are also included. Since CTCs/CTMs are considered to be precursors of metastases, ctcRbase also collected the expression data of primary tumors and metastases, which allows user to discover a unique 'circulating tumor cell gene signature' that is distinct from primary tumor and metastases. An easy-to-use database was constructed to query and browse CTCs/CTMs genes. ctcRbase can be freely accessible at http://www.origin-gene.cn/database/ctcRbase/.
Collapse
Affiliation(s)
- Lei Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China
| | - Xiaohong Wu
- Department of General Surgery, the Affiliated Yixing Hospital of Jiangsu University, No. 75 Zhenguan Road, Yixing, Jiangsu 214200, China
| | - Tong Li
- Thyroid and breast surgery, the Fourth Hospital of Jinan City, No. 50 Shifan Road, Jinan, Shandong 250021, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China.,Cancer Institute, Xuzhou Medical University, No. 84 West huaihai Road, Xuzhou, Jiangsu 221006, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, No.315 West huaihai Road, Xuzhou, Jiangsu 221006, China
| |
Collapse
|
15
|
Badia-Ramentol J, Linares J, Gómez-Llonin A, Calon A. Minimal Residual Disease, Metastasis and Immunity. Biomolecules 2021; 11:130. [PMID: 33498251 PMCID: PMC7909268 DOI: 10.3390/biom11020130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Progression from localized to metastatic disease requires cancer cells spreading to distant organs through the bloodstream. Only a small proportion of these circulating tumor cells (CTCs) survives dissemination due to anoikis, shear forces and elimination by the immune system. However, all metastases originate from CTCs capable of surviving and extravasating into distant tissue to re-initiate a tumor. Metastasis initiation is not always immediate as disseminated tumor cells (DTCs) may enter a non-dividing state of cell dormancy. Cancer dormancy is a reversible condition that can be maintained for many years without being clinically detectable. Subsequently, late disease relapses are thought to be due to cancer cells ultimately escaping from dormant state. Cancer dormancy is usually associated with minimal residual disease (MRD), where DTCs persist after intended curative therapy. Thus, MRD is commonly regarded as an indicator of poor prognosis in all cancers. In this review, we examine the current understanding of MRD and immunity during cancer progression to metastasis and discuss clinical perspectives for oncology.
Collapse
Affiliation(s)
| | | | | | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (J.B.-R.); (J.L.); (A.G.-L.)
| |
Collapse
|
16
|
Yano S, Tazawa H, Kishimoto H, Kagawa S, Fujiwara T, Hoffman RM. Real-Time Fluorescence Image-Guided Oncolytic Virotherapy for Precise Cancer Treatment. Int J Mol Sci 2021; 22:E879. [PMID: 33477279 PMCID: PMC7830621 DOI: 10.3390/ijms22020879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is one of the most promising, emerging cancer therapeutics. We generated three types of telomerase-specific replication-competent oncolytic adenovirus: OBP-301; a green fluorescent protein (GFP)-expressing adenovirus, OBP-401; and Killer-Red-armed OBP-301. These oncolytic adenoviruses are driven by the human telomerase reverse transcriptase (hTERT) promoter; therefore, they conditionally replicate preferentially in cancer cells. Fluorescence imaging enables visualization of invasion and metastasis in vivo at the subcellular level; including molecular dynamics of cancer cells, resulting in greater precision therapy. In the present review, we focused on fluorescence imaging applications to develop precision targeting for oncolytic virotherapy. Cell-cycle imaging with the fluorescence ubiquitination cell cycle indicator (FUCCI) demonstrated that combination therapy of an oncolytic adenovirus and a cytotoxic agent could precisely target quiescent, chemoresistant cancer stem cells (CSCs) based on decoying the cancer cells to cycle to S-phase by viral treatment, thereby rendering them chemosensitive. Non-invasive fluorescence imaging demonstrated that complete tumor resection with a precise margin, preservation of function, and prevention of distant metastasis, was achieved with fluorescence-guided surgery (FGS) with a GFP-reporter adenovirus. A combination of fluorescence imaging and laser ablation using a KillerRed-protein reporter adenovirus resulted in effective photodynamic cancer therapy (PDT). Thus, imaging technology and the designer oncolytic adenoviruses may have clinical potential for precise cancer targeting by indicating the optimal time for administering therapeutic agents; accurate surgical guidance for complete resection of tumors; and precise targeted cancer-specific photosensitization.
Collapse
Affiliation(s)
- Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Center for Graduate Medical Education, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Center of Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA 92111, USA;
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
17
|
Yano S, Tazawa H, Kagawa S, Fujiwara T, Hoffman RM. FUCCI Real-Time Cell-Cycle Imaging as a Guide for Designing Improved Cancer Therapy: A Review of Innovative Strategies to Target Quiescent Chemo-Resistant Cancer Cells. Cancers (Basel) 2020; 12:cancers12092655. [PMID: 32957652 PMCID: PMC7563319 DOI: 10.3390/cancers12092655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Chemotherapy of solid tumors has made very slow progress over many decades. A major problem has been that solid tumors very often contain non-dividing cells due to lack of oxygen deep in the tumor and these non-dividing cells resist most currently-used chemotherapy which usually only targets dividing cells. The present review demonstrates how a unique imaging system, FUCCI, which color codes cells depending on whether they are in a dividing or non-dividing phase, is being used to design very novel therapy that targets non-dividing cancer cells which can greatly improve the efficacy of cancer chemotherapy. Abstract Progress in chemotherapy of solid cancer has been tragically slow due, in large part, to the chemoresistance of quiescent cancer cells in tumors. The fluorescence ubiquitination cell-cycle indicator (FUCCI) was developed in 2008 by Miyawaki et al., which color-codes the phases of the cell cycle in real-time. FUCCI utilizes genes linked to different color fluorescent reporters that are only expressed in specific phases of the cell cycle and can, thereby, image the phases of the cell cycle in real-time. Intravital real-time FUCCI imaging within tumors has demonstrated that an established tumor comprises a majority of quiescent cancer cells and a minor population of cycling cancer cells located at the tumor surface or in proximity to tumor blood vessels. In contrast to most cycling cancer cells, quiescent cancer cells are resistant to cytotoxic chemotherapy, most of which target cells in S/G2/M phases. The quiescent cancer cells can re-enter the cell cycle after surviving treatment, which suggests the reason why most cytotoxic chemotherapy is often ineffective for solid cancers. Thus, quiescent cancer cells are a major impediment to effective cancer therapy. FUCCI imaging can be used to effectively target quiescent cancer cells within tumors. For example, we review how FUCCI imaging can help to identify cell-cycle-specific therapeutics that comprise decoy of quiescent cancer cells from G1 phase to cycling phases, trapping the cancer cells in S/G2 phase where cancer cells are mostly sensitive to cytotoxic chemotherapy and eradicating the cancer cells with cytotoxic chemotherapy most active against S/G2 phase cells. FUCCI can readily image cell-cycle dynamics at the single cell level in real-time in vitro and in vivo. Therefore, visualizing cell cycle dynamics within tumors with FUCCI can provide a guide for many strategies to improve cell-cycle targeting therapy for solid cancers.
Collapse
Affiliation(s)
- Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Center for Graduate Medical Education, Okayama University Hospital, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7257; Fax: +81-86-221-8775
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Center of Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA 92111, USA;
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
18
|
Tumorigenesis and Progression As A Consequence of Hypoxic TME:A Prospective View upon Breast Cancer Therapeutic Targets. Exp Cell Res 2020; 395:112192. [PMID: 32738345 DOI: 10.1016/j.yexcr.2020.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Intratumoral hypoxia has a significant impact on the development and progression of breast cancer (BC). Rather than exerting limited regional impact, hypoxia create an aggressive macroenvironment for BC. Hypoxia-inducible factors-1(HIF-1) is extensively induced under hypoxia condition of BC, activating the transcription of multiple oncogenes. Thereinto, CD73 is the one which could be secreted into the microenvironment and is in favor of the growth, metastasis, resistance to therapies, as well as the stemness maintenance of BC. In this review, we address the significance of hypoxia/HIF-1/CD73 axis for BC, and provide a novel perspective into BC therapeutic strategies.
Collapse
|
19
|
Zhou C, Huang Y, Chen Y, Xie Y, Wen H, Tan W, Wang C. miR-602 Mediates the RASSF1A/JNK Pathway, Thereby Promoting Postoperative Recurrence in Nude Mice with Liver Cancer. Onco Targets Ther 2020; 13:6767-6776. [PMID: 32764964 PMCID: PMC7368130 DOI: 10.2147/ott.s243651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/19/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose At present, there are few studies on the mechanisms underlying postoperative recurrence of liver cancer, and the mechanism of action of miR-602 in postoperative recurrence of liver tumors is not clear. Our goals were to investigate the effects of miR-602 on the expression of the Ras-associated domain family 1A (RASSF1A) gene and the regulation of primary and recurrent hepatic tumors to clarify the molecular mechanisms of miR-602 in postoperative hepatocellular carcinoma. Methods We constructed a mouse liver orthotopic tumor model and a mouse liver recurrent tumor model. We measured the expression levels of the RASSF1A gene and then analyzed the effects of miR-602 on the regulation of RASSF1A. We transiently transfected the miR-602 gene into cells that stably overexpressed RASSF1A and examined relevant indicators to elucidate the mechanisms by which miR-602 regulates the RASSF1A/c-Jun N-terminal kinase (JNK) pathway in recurrence and dormancy in liver cancer. Results RASSF1A expression was inversely related to that of JNK, activating transcription factor 2 (ATF-2), and c-Jun in SMMC7721 cells stably transfected with the RASSF1A gene and in recurrent mouse tumor tissues. After transient transfection of cells with miR-602 mimic or miR-602 inhibitor, the expression of miR-602 was inversely related to that of RASSF1A. Conclusion MiR-602 might inhibit the JNK signaling pathway by inhibiting the expression of RASSF1A, thereby promoting recurrence of liver cancer after surgery. The low expression levels of miR-602 in liver cancer tissues were closely related to postoperative recurrence; they could be used as a marker to judge the prognosis of patients with liver cancer.
Collapse
Affiliation(s)
- Cheng Zhou
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, People's Republic of China
| | - Yajing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yongxu Chen
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, People's Republic of China
| | - Yingjie Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Huihong Wen
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wei Tan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, People's Republic of China
| | - Changjun Wang
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. ACTA ACUST UNITED AC 2020; 1:672-680. [PMID: 33681821 DOI: 10.1038/s43018-020-0088-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) are known to enter a state of dormancy that is achieved via growth arrest of DTCs and/or a form of population equilibrium state, strongly influenced by the organ microenvironment. During this time, expansion of residual disseminated cancer is paused and DTCs survive to fuel relapse, sometimes decades later. This notion has opened a new window of opportunity for intervening and preventing relapse. Here we review recent data that have further augmented the understanding of cancer dormancy and discuss how this is leading to new strategies for monitoring and targeting dormant cancer.
Collapse
|
21
|
Qiu Y, Qiu S, Deng L, Nie L, Gong L, Liao X, Zheng X, Jin K, Li J, Tu X, Liu L, Liu Z, Bao Y, Ai J, Lin T, Yang L, Wei Q. Biomaterial 3D collagen I gel culture model: A novel approach to investigate tumorigenesis and dormancy of bladder cancer cells induced by tumor microenvironment. Biomaterials 2020; 256:120217. [PMID: 32736172 DOI: 10.1016/j.biomaterials.2020.120217] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The high potential for cancer relapse has emerged as a crucial challenge of human bladder cancer treatment. To date, those stem-like bladder cancer cells (BCSCs) have been considered as seeds that induce frequent tumor recurrence. However, the cell origin of cancer stem cells (CSCs) is still a controversial issue, due in part to the findings that CSCs not only origin from normal stem cells but also converted from differentiated tumor cells. Here, we describe a biomaterial 3D collagen I gel culture system, where non-tumorigenic cells can obtain tumorigenic potential and revert back into CSCs through the integrin α2β1/PI3K/AKT/NF-κB cascade, resulting in the tumorigenesis in bladder tissues. Furthermore, inhibiting this integrin α2β1/PI3K/AKT/NF-κB signal pathways can significantly impair the tumorigenic capacity of CSCs. Simultaneously, in vivo studies demonstrate that IFN-γ secreted by T cells can trigger those CSCs into dormancy through the IDO/Kyn/AHR/P27 cascade, which elicit chemotherapy resistance and cancer relapse. To address the challenges of suppressing bladder tumor growth and preventing tumor reoccurrence, we use IDO and integrin α2β1 signal pathway inhibitors combine with chemotherapeutic agents to awaken dormant bladder CSCs and inhibit their tumorigenic ability as well as effectively eliminate CSCs. The therapeutic approaches we propose provide new insights for eradicating tumors and reducing bladder cancer relapse after therapy.
Collapse
Affiliation(s)
- Yaqi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Department of Science and Drug Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linghui Deng
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lina Gong
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xinyang Liao
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Kun Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jiakun Li
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiang Tu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Liangren Liu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yige Bao
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Yang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
22
|
Sanchez Calle A, Yamamoto T, Kawamura Y, Hironaka-Mitsuhashi A, Ono M, Tsuda H, Shimomura A, Tamura K, Takeshita F, Ochiya T, Yamamoto Y. Long non-coding NR2F1-AS1 is associated with tumor recurrence in estrogen receptor-positive breast cancers. Mol Oncol 2020; 14:2271-2287. [PMID: 32392629 PMCID: PMC7463365 DOI: 10.1002/1878-0261.12704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/19/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The tenacity of late recurrence of estrogen receptor (ER)‐positive breast cancer remains a major clinical issue to overcome. The administration of endocrine therapies within the first 5 years substantially minimizes the risk of relapse; however, some tumors reappear 10–20 years after the initial diagnosis. Accumulating evidence has strengthened the notion that long noncoding RNAs (lncRNAs) are associated with cancer in various respects. Because lncRNAs may display high tissue/cell specificity, we hypothesized this might provide new insights to tumor recurrence. By comparing transcriptome profiles of 24 clinical primary tumors obtained from patients who developed distant metastases and patients with no signs of recurrence, we identified lncRNA NR2F1‐AS1 whose expression was associated with tumor recurrence. We revealed the relationship between NR2F1‐AS1 and the hormone receptor expressions in ER‐positive breast cancer cells. Gain of function of NR2F1‐AS1 steered cancer cells into quiescence‐like state by the upregulation of dormancy inducers and pluripotency markers, and activates representative events of the metastatic cascade. Our findings implicated NR2F1‐AS1 in the dynamics of tumor recurrence in ER‐positive breast cancers and introduce a new biomarker that holds a therapeutic potential, providing favorable prospects to be translated into the clinical field.
Collapse
Affiliation(s)
- Anna Sanchez Calle
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomofumi Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yumi Kawamura
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, Japan
| | | | - Makiko Ono
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medical Oncology, Cancer Institute Hospital, Tokyo, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan.,Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Fumitaka Takeshita
- Department of Functional analysis, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
23
|
Narkhede AA, Crenshaw JH, Crossman DK, Shevde LA, Rao SS. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells. Acta Biomater 2020; 107:65-77. [PMID: 32119920 DOI: 10.1016/j.actbio.2020.02.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
Breast cancer cells (BCCs) can remain dormant at the metastatic site, which when revoked leads to formation of metastasis several years after the treatment of primary tumor. Particularly, awakening of dormant BCCs in the brain results in breast cancer brain metastasis (BCBrM) which marks the most advanced stage of the disease with a median survival period of ~4-16 months. However, our understanding of dormancy associated with BCBrM remains obscure, in part, due to the lack of relevant in vitro platforms to model dormancy associated with BCBrM. To address this need, we developed an in vitro hyaluronic acid (HA) hydrogel platform to model dormancy in brain metastatic BCCs via exploiting the bio-physical cues provided by HA hydrogels while bracketing the normal brain and metastatic brain malignancy relevant stiffness range. In this system, we observed that MDA-MB-231Br and BT474Br3 brain metastatic BCCs exhibited a dormant phenotype when cultured on soft (0.4 kPa) HA hydrogel compared to stiff (4.5 kPa) HA hydrogel as characterized by significantly lower EdU and Ki67 positivity. Further, we demonstrated the nuclear localization of p21 and p27 (markers associated with dormancy) in dormant MDA-MB-231Br cells contrary to their cytoplasmic localization in the proliferative population. We also demonstrated that the stiffness-based dormancy in MDA-MB-231Br cells was reversible and was, in part, mediated by focal adhesion kinases and the initial cell seeding density. Finally, RNA sequencing confirmed the dormant phenotype in MDA-MB-231Br cells. This platform could further our understanding of dormancy in BCBrM and could be adapted for anti-metastatic drug screening. STATEMENT OF SIGNIFICANCE: Our understanding of dormancy associated with BCBrM remains obscure, in part, due to the lack of relevant in vitro platforms to model dormancy associated with BCBrM. Herein, we present a HA hydrogel-based platform to model dormancy in brain metastatic BCCs while recapitulating key aspects of brain microenvironment. We demonstrated that the biophysical cues provided the HA hydrogel mediates dormancy in brain metastatic BCCs by assessing both proliferation and cell cycle arrest markers. We also established the role of focal adhesion kinases and initial cell seeding density in the stiffness-mediated dormancy in brain metastatic BCCs. Further, RNA-seq. confirmed the dormant phenotype in brain metastatic BCCs. This platform could be utilized to further our understanding of microenvironmental regulation of dormancy in BCBrM.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - James H Crenshaw
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
| |
Collapse
|
24
|
Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, Alix-Panabières C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2020; 12:E867. [PMID: 32260071 PMCID: PMC7225923 DOI: 10.3390/cancers12040867] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Metastases and cancer recurrence are the main causes of cancer death. Circulating Tumor Cells (CTCs) and disseminated tumor cells are the drivers of cancer cell dissemination. The assessment of CTCs' clinical role in early metastasis prediction, diagnosis, and treatment requires more information about their biology, their roles in cancer dormancy, and immune evasion as well as in therapy resistance. Indeed, CTC functional and biochemical phenotypes have been only partially characterized using murine metastasis models and liquid biopsy in human patients. CTC detection, characterization, and enumeration represent a promising tool for tailoring the management of each patient with cancer. The comprehensive understanding of CTCs will provide more opportunities to determine their clinical utility. This review provides much-needed insights into this dynamic field of translational cancer research.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Mehdi Azizi
- Proteomics Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Maryam Heidarifard
- Drug Applied Research Center, Tabriz University of Medical Sciences, 51368 Tabriz, Iran;
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| |
Collapse
|
25
|
Bora-Singhal N, Mohankumar D, Saha B, Colin CM, Lee JY, Martin MW, Zheng X, Coppola D, Chellappan S. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci Rep 2020; 10:4722. [PMID: 32170113 PMCID: PMC7069992 DOI: 10.1038/s41598-020-61295-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is known to have poor patient outcomes due to development of resistance to chemotherapy agents and the EGFR inhibitors, which results in recurrence of highly aggressive lung tumors. Even with recent success in immunotherapy using the checkpoint inhibitors, additional investigations are essential to identify novel therapeutic strategies for efficacious treatment for NSCLC. Our finding that high levels of histone deacetylase 11 (HDAC11) in human lung tumor tissues correlate with poor patient outcome and that depletion or inhibition of HDAC11 not only significantly reduces self-renewal of cancer stem cells (CSCs) from NSCLC but also decreases Sox2 expression that is essential for maintenance of CSCs, indicates that HDAC11 is a potential target to combat NSCLC. We find that HDAC11 suppresses Sox2 expression through the mediation of Gli1, the Hedgehog pathway transcription factor. In addition, we have used highly selective HDAC11 inhibitors that not only target stemness and adherence independent growth of lung cancer cells but these inhibitors could also efficiently ablate the growth of drug-insensitive stem-like cells as well as therapy resistant lung cancer cells. These inhibitors were found to be efficacious even in presence of cancer associated fibroblasts which have been shown to contribute in therapy resistance. Our study presents a novel role of HDAC11 in lung adenocarcinoma progression and the potential use of highly selective inhibitors of HDAC11 in combating lung cancers.
Collapse
Affiliation(s)
- Namrata Bora-Singhal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Durairaj Mohankumar
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Biswarup Saha
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Christelle M Colin
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jennifer Y Lee
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Matthew W Martin
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Xiaozhang Zheng
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Srikumar Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
26
|
D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin Cancer Biol 2020; 60:351-361. [DOI: 10.1016/j.semcancer.2019.08.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
|
27
|
Sai B, Dai Y, Fan S, Wang F, Wang L, Li Z, Tang J, Wang L, Zhang X, Zheng L, Chen F, Li G, Xiang J. Cancer-educated mesenchymal stem cells promote the survival of cancer cells at primary and distant metastatic sites via the expansion of bone marrow-derived-PMN-MDSCs. Cell Death Dis 2019; 10:941. [PMID: 31819035 PMCID: PMC6901580 DOI: 10.1038/s41419-019-2149-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are multipotent stromal cells that can differentiate into a variety of cell types. BMSCs are chemotactically guided towards the cancer cells and contribute to the formation of a cancer microenvironment. The homing of BMSCs was affected by various factors. Disseminated tumour cells (DTCs) in distant organs, especially in the bone marrow, are the source of cancer metastasis and cancer relapse. DTC survival is also determined by the microenvironment. Here we aim to elucidate how cancer-educated BMSCs promote the survival of cancer cells at primary tumour sites and distant sites. We highlight the dynamic change by identifying different gene expression signatures in intratumoral BMSCs and in BMSCs that move back in the bone marrow. Intratumoral BMSCs acquire high mobility and displayed immunosuppressive effects. Intratumoral BMSCs that ultimately home to the bone marrow exhibit a strong immunosuppressive function. Cancer-educated BMSCs promote the survival of lung cancer cells via expansion of MDSCs in bone marrow, primary tumour sites and metastatic sites. These Ly6G+ MDSCs suppress proliferation of T cells. CXCL5, nitric oxide and GM-CSF produced by cancer-educated BMSCs contribute to the formation of malignant microenvironments. Treatment with CXCL5 antibody, the iNOS inhibitor 1400w and GM-CSF antibody reduced MDSC expansion in the bone marrow, primary tumour sites and metastatic sites, and promoted the efficiency of PD-L1 antibody. Our study reveals that cancer-educated BMSCs are the component of the niche for primary lung cancer cells and DTCs, and that they can be the target for immunotherapy.
Collapse
Affiliation(s)
- Buqing Sai
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Yafei Dai
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fan Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Lujuan Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xina Zhang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Leliang Zheng
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Fei Chen
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Juanjuan Xiang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China.
| |
Collapse
|
28
|
Engel J, Weichert W, Jung A, Emeny R, Hölzel D. Lymph node infiltration, parallel metastasis and treatment success in breast cancer. Breast 2019; 48:1-6. [DOI: 10.1016/j.breast.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 02/05/2023] Open
|
29
|
Liu Z, Cheng X, Zhang L, Zhou J, Deng D, Ji J. A panel of DNA methylated markers predicts metastasis of pN 0M 0 gastric carcinoma: a prospective cohort study. Br J Cancer 2019; 121:529-536. [PMID: 31431673 PMCID: PMC6889426 DOI: 10.1038/s41416-019-0552-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this prospective study was to evaluate the feasibility of predicting GC metastasis using CDH1, GFRA1, P16 and ZNF382 DNA methylation as biomarkers. METHODS 198 GC patients without metastasis at the time of surgery resection were recruited into the double-blind cohort (NCT02159339). Gene methylation was analysed using MethyLight assays. GC metastasis and survival data were obtained from 178 patients with 94.7% compliance during follow-up. RESULTS Twenty six cases of metastasis and 5 cases of recurrence were observed in 178 cases (17.4%) during the follow-up (median, 62.7 months). The GC metastasis rate for GFRA1 methylation-positive patients was significantly reduced compared with GFRA1 methylation-negative patients (odds ratio [OR]: 0.23, 95% confidence interval [CI] 0.08-0.66). Similar results were also observed using ZNF382 methylation as a predictor (OR: 0.17, 95% CI 0.06-0.47). A risk score including methylation of GFRA1 and ZNF382 was generated. The metastasis rate was significantly increased in high-risk GC patients (OR: 4.71, 95% CI: 1.85-12.00). GC patients with high risk had a shorter overall survival, especially for patients with stage I GC (P = 0.024). CONCLUSIONS The combination of GFRA1 and ZNF382 methylation is a biomarker panel for the prediction of GC metastasis.
Collapse
Affiliation(s)
- Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, No. 52, Haidian District, Beijing, 100142, China
| | - Xiaojing Cheng
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, No. 52, Haidian District, Beijing, 100142, China
| | - Lianhai Zhang
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, No. 52, Haidian District, Beijing, 100142, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, No. 52, Haidian District, Beijing, 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, No. 52, Haidian District, Beijing, 100142, China.
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, No. 52, Haidian District, Beijing, 100142, China.
| |
Collapse
|
30
|
Pradhan S, Slater JH. Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation. Biomaterials 2019; 215:119177. [PMID: 31176804 PMCID: PMC6592634 DOI: 10.1016/j.biomaterials.2019.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
During metastasis, disseminated tumor cells (DTCs) from the primary tumor infiltrate secondary organs and reside there for varying lengths of time prior to forming new tumors. The time delay between infiltration and active proliferation, known as dormancy, mediates the length of the latency period. DTCs may undergo one of four fates post-infiltration: death, cellular dormancy, dormant micrometastasis, or invasive growth which, is in part, mediated by extracellular matrix (ECM) properties. Recapitulation of these cell states using engineered hydrogels could facilitate the systematic and controlled investigation of the mechanisms by which ECM properties influence DTC fate. Toward this goal, we implemented a set of sixteen hydrogels with systematic variations in chemical (ligand (RGDS) density and enzymatic degradability) and mechanical (elasticity, swelling, mesh size) properties to investigate their influence on the fate of encapsulated metastatic breast cancer cells, MDA-MB-231. Cell viability, apoptosis, proliferation, metabolic activity, and morphological measurements were acquired at five-day intervals over fifteen days in culture. Analysis of the phenotypic metrics indicated the presence of four different cell states that were classified as: (1) high growth, (2) moderate growth, (3) single cell, restricted survival, dormancy, or (4) balanced dormancy. Correlating hydrogel properties with the resultant cancer cell state indicated that ligand (RGDS) density and enzymatic degradability likely had the most influence on cell fate. Furthermore, we demonstrate the ability to reactivate cells from the single cell, dormant state to the high growth state through a dynamic increase in ligand (RGDS) density after forty days in culture. This tunable engineered hydrogel platform offers insight into matrix properties regulating tumor dormancy, and the dormancy-proliferation switch, and may provide future translational benefits toward development of anti-dormancy therapeutic strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA.
| |
Collapse
|
31
|
Rossari F, Zucchinetti C, Buda G, Orciuolo E. Tumor dormancy as an alternative step in the development of chemoresistance and metastasis - clinical implications. Cell Oncol (Dordr) 2019; 43:155-176. [PMID: 31392521 DOI: 10.1007/s13402-019-00467-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The ability of a tumor to become dormant in response to suboptimal conditions has recently been recognized as a key step in tumor progression. Tumor dormancy has been found to be implicated in several tumor types as the culprit of therapy resistance and metastasis development, the deadliest features of a cancer. Several lines of evidence indicate that the development of these traits may rely on the de-differentiation of committed tumor cells that regain stem-like properties during a dormant state. Presently, dormancy is classified into cell- and population-level, according to the preponderance of cellular mechanisms that keep tumor cells quiescent or to a balance between overall cell division and death, respectively. Cellular dormancy is characterized by autophagy, stress-tolerance signaling, microenvironmental cues and, of prime relevance, epigenetic modifications. It has been found that the epigenome alters during cellular quiescence, thus representing the driving force for short-term cancer progression. Population-level dormancy is characterized by processes that counteract proliferation, such as inappropriate blood supply and intense immune responses. The latter two mechanisms are not mutually exclusive and may affect tumor masses both simultaneously and subsequently. CONCLUSIONS Overall, tumor dormancy may represent an additional step in the acquisition of cancer characteristics, and its comprehension may clarify both theoretical and practical aspects of cancer development. Clinically, only a deep understanding of dormancy may explain the course of tumor development in different patients, thus representing a process that may be targeted to prevent and/or treat advanced-stage cancers. That is especially the case for breast cancer, against which the mTOR inhibitor everolimus displays potent antitumor activity in patients with metastatic disease by impeding autophagy and tumor dormancy onset. Here we will also discuss other targeted therapies directed towards tumor dormancy onset, e.g. specific inhibitors of SFK and MEK, or aimed at keeping tumor cells dormant, e.g. prosaposin derivatives, that may shortly enter clinical assessment in breast, and possibly other cancer types.
Collapse
Affiliation(s)
- Federico Rossari
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy. .,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126, Pisa, Italy.
| | - Cristina Zucchinetti
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126, Pisa, Italy
| | - Enrico Orciuolo
- Hematology Unit, Azienda Ospedaliera Universitaria Pisana, 56126, Pisa, Italy
| |
Collapse
|
32
|
Abstract
Since the introduction of the cancer stem cell (CSC) hypothesis, accumulating evidence shows that most cancers present stem-like niches. However, therapies aimed at targeting this niche have not been as successful as expected. New evidence regarding CSCs hierarchy, similarities with normal tissue stem cells and cell plasticity might be key in understanding their role in cancer biology and how to efficiently eliminate them. In this Chapter, we discuss what is known in breast and prostate CSCs from their initial discoveries to the current therapeutic efforts in the field. Future challenges towards better CSC identification and isolation strategies will be key to shed light into how CSCs could accurately be targeted in combination to traditional therapies to ultimately prolong patient survival.
Collapse
Affiliation(s)
- Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA, United States
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
33
|
The importance of developing therapies targeting the biological spectrum of metastatic disease. Clin Exp Metastasis 2019; 36:305-309. [PMID: 31102066 DOI: 10.1007/s10585-019-09972-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
Great progress has been made in cancer therapeutics. However, metastasis remains the predominant cause of death from cancer. Importantly, metastasis can manifest many years after initial treatment of the primary cancer. This is because cancer cells can remain dormant before forming symptomatic metastasis. An important question is whether metastasis research should focus on the early treatment of metastases, before they are clinically evident ("overt"), or on developing treatments to stop overt metastasis (stage IV cancer). In this commentary we want to clarify why it is important that all avenues of treatment for stage IV patients are developed. Indeed, future treatments are expected to go beyond the mere shrinkage of overt metastases and will include strategies that prevent disseminated tumor cells from emerging from dormancy.
Collapse
|
34
|
Shimizu H, Takeishi S, Nakatsumi H, Nakayama KI. Prevention of cancer dormancy by Fbxw7 ablation eradicates disseminated tumor cells. JCI Insight 2019; 4:125138. [PMID: 30830867 DOI: 10.1172/jci.insight.125138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Dormant cancer cells known as disseminated tumor cells (DTCs) are often present in bone marrow of breast cancer patients. These DTCs are thought to be responsible for the incurable recurrence of breast cancer. The mechanism underlying the long-term maintenance of DTCs remains unclear, however. Here, we show that Fbxw7 is essential for the maintenance of breast cancer dormancy. Genetic ablation of Fbxw7 in breast cancer cells disrupted the quiescence of DTCs, rendering them proliferative, in mouse xenograft and allograft models. Fbxw7-deficient DTCs were significantly depleted by treatment with paclitaxel, suggesting that cell proliferation induced by Fbxw7 ablation sensitized DTCs to chemotherapy. The combination of Fbxw7 ablation and chemotherapy reduced the number of DTCs even when applied after tumor cell dissemination. Mice injected with Fbxw7-deficient cancer cells survived longer after tumor resection and subsequent chemotherapy than did those injected with wild-type cells. Furthermore, database analysis revealed that breast cancer patients whose tumors expressed FBXW7 at a high level had a poorer prognosis than did those with a low FBXW7 expression level. Our results suggest that a wake-up strategy for DTCs based on Fbxw7 inhibition might be of value in combination with conventional chemotherapy for the treatment of breast cancer.
Collapse
|
35
|
McGrath J, Panzica L, Ransom R, Withers HG, Gelman IH. Identification of Genes Regulating Breast Cancer Dormancy in 3D Bone Endosteal Niche Cultures. Mol Cancer Res 2019; 17:860-869. [PMID: 30651373 DOI: 10.1158/1541-7786.mcr-18-0956] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/17/2018] [Accepted: 01/07/2019] [Indexed: 01/25/2023]
Abstract
Tumor cell dormancy is a significant clinical problem in breast cancer. We used a three-dimensional (3D) in vitro model of the endosteal bone niche (EN), consisting of endothelial, bone marrow stromal cells, and fetal osteoblasts in a 3D collagen matrix (GELFOAM), to identify genes required for dormancy. Human triple-negative MDA-MB-231 breast cancer cells, but not the bone-tropic metastatic variant, BoM1833, established dormancy in 3D-EN cultures in a p38-MAPK-dependent manner, whereas both cell types proliferated on two-dimensional (2D) plastic or in 3D collagen alone. "Dormancy-reactivation suppressor genes" (DRSG) were identified using a genomic short hairpin RNA (shRNA) screen in MDA-MB-231 cells for gene knockdowns that induced proliferation in the 3D-EN. DRSG candidates enriched for genes controlling stem cell biology, neurogenesis, MYC targets, ribosomal structure, and translational control. Several potential DRSG were confirmed using independent shRNAs, including BHLHE41, HBP1, and WNT3. Overexpression of the WNT3/a antagonists secreted frizzled-related protein 2 or 4 (SFRP2/4) and induced MDA-MB-231 proliferation in the EN. In contrast, overexpression of SFRP3, known not to antagonize WNT3/a, did not induce proliferation. Decreased WNT3 or BHLHE41 expression was found in clinical breast cancer metastases compared with primary-site lesions, and the loss of WNT3 or BHLHE41 or gain of SFRP1, 2, and 4 in the context of TP53 loss/mutation correlated with decreased progression-free and overall survival. IMPLICATIONS: These data describe several novel, potentially targetable pathways controlling breast cancer dormancy in the EN.
Collapse
Affiliation(s)
- Julie McGrath
- Department of Cancer Biology, University of Arizona, Tucson, Arizona
| | - Louis Panzica
- University at Buffalo School of Law, Buffalo, New York
| | | | - Henry G Withers
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
36
|
Sagot I, Laporte D. Quiescence, an individual journey. Curr Genet 2019; 65:695-699. [PMID: 30649583 DOI: 10.1007/s00294-018-00928-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Abstract
Quiescence is operationally characterized as a temporary and reversible proliferation arrest. There are many preconceived ideas about quiescence, quiescent cells being generally viewed as insignificant sleeping G1 cells. In fact, quiescence is central for organism physiology and its dysregulation involved in many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. This diversity challenges not only quiescence uniformity but also the universality of the molecular mechanisms beyond quiescence regulation. In this mini-perspective, we discuss recent advances in the concept of quiescence, and illustrate that this multifaceted cellular state is gaining increasing attention in many fields of biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, Université de Bordeaux, CS61390, Bordeaux Cedex, 33077, France.
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, Université de Bordeaux, CS61390, Bordeaux Cedex, 33077, France
| |
Collapse
|
37
|
Rao SS, Kondapaneni RV, Narkhede AA. Bioengineered models to study tumor dormancy. J Biol Eng 2019; 13:3. [PMID: 30647771 PMCID: PMC6327399 DOI: 10.1186/s13036-018-0137-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/27/2018] [Indexed: 01/05/2023] Open
Abstract
The onset of cancer metastasis is the defining event in cancer progression when the disease is considered lethal. The ability of metastatic cancer cells to stay dormant for extended time periods and reawaken at later stages leading to disease recurrence makes treatment of metastatic disease extremely challenging. The tumor microenvironment plays a critical role in deciding the ultimate fate of tumor cells, yet the mechanisms by which this occurs, including dormancy, is not well understood. This mini-review discusses bioengineered models inspired from tissue engineering strategies that mimic key aspects of the tumor microenvironment to study tumor dormancy. These models include biomaterial based three dimensional models, microfluidic based models, as well as bioreactor based models that incorporate relevant microenvironmental components such as extracellular matrix molecules, niche cells, or their combination to study microenvironmental regulation of tumor dormancy. Such biomimetic models provide suitable platforms to investigate the dormant niche, including cues that drive the dormant to proliferative transition in cancer cells. In addition, the potential of such model systems to advance research in the field of tumor dormancy is discussed.
Collapse
Affiliation(s)
- Shreyas S. Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203 USA
| | - Raghu Vamsi Kondapaneni
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203 USA
| | - Akshay A. Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203 USA
| |
Collapse
|
38
|
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019; 19:9-31. [PMID: 30532012 PMCID: PMC6749995 DOI: 10.1038/s41568-018-0081-9] [Citation(s) in RCA: 721] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is a major global health problem, as it is the leading cause of cancer-related deaths worldwide. Major advances in the identification of key mutational alterations have led to the development of molecularly targeted therapies, whose efficacy has been limited by emergence of resistance mechanisms. US Food and Drug Administration (FDA)-approved therapies targeting angiogenesis and more recently immune checkpoints have reinvigorated enthusiasm in elucidating the prognostic and pathophysiological roles of the tumour microenvironment in lung cancer. In this Review, we highlight recent advances and emerging concepts for how the tumour-reprogrammed lung microenvironment promotes both primary lung tumours and lung metastasis from extrapulmonary neoplasms by contributing to inflammation, angiogenesis, immune modulation and response to therapies. We also discuss the potential of understanding tumour microenvironmental processes to identify biomarkers of clinical utility and to develop novel targeted therapies against lung cancer.
Collapse
Affiliation(s)
- Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey L Port
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashish Saxena
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brendon Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Timothy McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
39
|
Pradhan S, Sperduto JL, Farino CJ, Slater JH. Engineered In Vitro Models of Tumor Dormancy and Reactivation. J Biol Eng 2018; 12:37. [PMID: 30603045 PMCID: PMC6307145 DOI: 10.1186/s13036-018-0120-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
Metastatic recurrence is a major hurdle to overcome for successful control of cancer-associated death. Residual tumor cells in the primary site, or disseminated tumor cells in secondary sites, can lie in a dormant state for long time periods, years to decades, before being reactivated into a proliferative growth state. The microenvironmental signals and biological mechanisms that mediate the fate of disseminated cancer cells with respect to cell death, single cell dormancy, tumor mass dormancy and metastatic growth, as well as the factors that induce reactivation, are discussed in this review. Emphasis is placed on engineered, in vitro, biomaterial-based approaches to model tumor dormancy and subsequent reactivation, with a focus on the roles of extracellular matrix, secondary cell types, biochemical signaling and drug treatment. A brief perspective of molecular targets and treatment approaches for dormant tumors is also presented. Advances in tissue-engineered platforms to induce, model, and monitor tumor dormancy and reactivation may provide much needed insight into the regulation of these processes and serve as drug discovery and testing platforms.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716 USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716 USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716 USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716 USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711 USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716 USA
| |
Collapse
|
40
|
Borgen E, Rypdal MC, Sosa MS, Renolen A, Schlichting E, Lønning PE, Synnestvedt M, Aguirre-Ghiso JA, Naume B. NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Res 2018; 20:120. [PMID: 30322396 PMCID: PMC6190561 DOI: 10.1186/s13058-018-1049-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The presence of disseminated tumor cells (DTCs) in bone marrow (BM) is an independent prognostic factor in early breast cancer but does not uniformly predict outcome. Tumor cells can persist in a quiescent state over time, but clinical studies of markers predicting the awakening potential of DTCs are lacking. Recently, experiments have shown that NR2F1 (COUP-TF1) plays a key role in dormancy signaling. METHODS We analyzed the NR2F1 expression in DTCs by double immunofluorescence (DIF) staining of extra cytospins prepared from 114 BM samples from 86 selected DTC-positive breast cancer patients. Samples collected at two or more time points were available for 24 patients. Fifteen samples were also analyzed for the proliferation marker Ki67. RESULTS Of the patients with detectable DTCs by DIF, 27% had ≥ 50% NR2F1high DTCs, chosen a priori as the cut-off for "dormant profile" classification. All patients with systemic relapse within 12 months after BM aspiration carried ≤ 1% NR2F1high DTCs, including patients who transitioned from having NR2F1high-expressing DTCs in previous BM samples. Of the patients with serial samples, half of those with no relapse at follow-up had ≥ 50% NR2F1high DTCs in the last BM aspiration analyzed. Among the 18 relapse-free patients at the time of the last DTC-positive BM aspiration with no subsequent BM analysis performed, distant disease-free intervals were favorable for patients carrying ≥ 50% NR2F1high DTCs compared with those with predominantly NR2F1low DTCs (p = 0.007, log-rank). No survival difference was observed by classification according to Ki67-expressing DTCs (p = 0.520). CONCLUSIONS Our study translates findings from basic biological analysis of DTC dormancy to the clinical situation and supports further clinical studies of NR2F1 as a marker of dormancy.
Collapse
Affiliation(s)
- Elin Borgen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Maria C. Rypdal
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Anne Renolen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Per E. Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bjørn Naume
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Real-Time Determination of the Cell-Cycle Position of Individual Cells within Live Tumors Using FUCCI Cell-Cycle Imaging. Cells 2018; 7:cells7100168. [PMID: 30322204 PMCID: PMC6210921 DOI: 10.3390/cells7100168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
Most cytotoxic agents have limited efficacy for solid cancers. Cell-cycle phase analysis at the single-cell level in solid tumors has shown that the majority of cancer cells in tumors is not cycling and is therefore resistant to cytotoxic chemotherapy. Intravital cell-cycle imaging within tumors demonstrated the cell-cycle position and distribution of cancer cells within a tumor, and cell-cycle dynamics during chemotherapy. Understanding cell-cycle dynamics within tumors should provide important insights into novel treatment strategies.
Collapse
|
42
|
Lee SH, Park SA, Zou Y, Seo SU, Jun CD, Lee WJ, Hyun YM, Cho NH. Real-Time Monitoring of Cancer Cells in Live Mouse Bone Marrow. Front Immunol 2018; 9:1681. [PMID: 30116236 PMCID: PMC6082970 DOI: 10.3389/fimmu.2018.01681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Disseminated tumor cells in the bone marrow environment are the main cause of systemic metastasis after curative treatment for major solid tumors. However, the detailed biological processes of tumor biology in bone marrow have not been well defined in a real-time manner, because of a lack of a proper in vivo experimental model thereof. In this study, we established intravital imaging models of the bone marrow environment to enable real-time observation of cancer cells in the bone marrow. Using these novel imaging models of intact bone marrow and transplanted bone marrow of mice, respectively, via two-photon microscopy, we could first successfully track and analyze both the distribution and the phenotype of cancer cells in bone marrow of live mouse. Therefore, these novel in vivo imaging models for the bone marrow would provide a valuable tool to identify the biologic processes of cancer cells in a real-time manner in a live animal model.
Collapse
Affiliation(s)
- Sung Hwan Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang A Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yunyun Zou
- Department of Biomedical Sciences, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Uk Seo
- Department of Biomedical Sciences, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, GIST, Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, South Korea
| | - Woo Jung Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Hoon Cho
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Aguirre-Ghiso JA, Sosa MS. Emerging Topics on Disseminated Cancer Cell Dormancy and the Paradigm of Metastasis. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050446] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julio A. Aguirre-Ghiso
- Division of Hematology and Medical Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
44
|
Sinha S. Cancer Dormancy: A New Hope. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2018; 3:1-3. [DOI: 10.14218/erhm.2017.00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Minimal Residual Disease in Head and Neck Cancer and Esophageal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:55-82. [DOI: 10.1007/978-3-319-97746-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Michaels AD, Newhook TE, Adair SJ, Morioka S, Goudreau BJ, Nagdas S, Mullen MG, Persily JB, Bullock TNJ, Slingluff CL, Ravichandran KS, Parsons JT, Bauer TW. CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 2017; 24:1415-1425. [PMID: 29288236 DOI: 10.1158/1078-0432.ccr-17-2283] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/19/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022]
Abstract
Purpose: Patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgical resection and adjuvant chemotherapy have an expected survival of only 2 years due to disease recurrence, frequently in the liver. We investigated the role of liver macrophages in progression of PDAC micrometastases to identify adjuvant treatment strategies that could prolong survival.Experimental Design: A murine splenic injection model of hepatic micrometastatic PDAC was used with five patient-derived PDAC tumors. The impact of liver macrophages on tumor growth was assessed by (i) depleting mouse macrophages in nude mice with liposomal clodronate injection, and (ii) injecting tumor cells into nude versus NOD-scid-gamma mice. Immunohistochemistry and flow cytometry were used to measure CD47 ("don't eat me signal") expression on tumor cells and characterize macrophages in the tumor microenvironment. In vitro engulfment assays and mouse experiments were performed with CD47-blocking antibodies to assess macrophage engulfment of tumor cells, progression of micrometastases in the liver and mouse survival.Results:In vivo clodronate depletion experiments and NOD-scid-gamma mouse experiments demonstrated that liver macrophages suppress the progression of PDAC micrometastases. Five patient-derived PDAC cell lines expressed variable levels of CD47. In in vitro engulfment assays, CD47-blocking antibodies increased the efficiency of PDAC cell clearance by macrophages in a manner which correlated with CD47 receptor surface density. Treatment of mice with CD47-blocking antibodies resulted in increased time-to-progression of metastatic tumors and prolonged survival.Conclusions: These findings suggest that following surgical resection of PDAC, adjuvant immunotherapy with anti-CD47 antibody could lead to substantially improved outcomes for patients. Clin Cancer Res; 24(6); 1415-25. ©2017 AACR.
Collapse
Affiliation(s)
- Alex D Michaels
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Timothy E Newhook
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Sara J Adair
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Sho Morioka
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia
| | - Bernadette J Goudreau
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Sarbajeet Nagdas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia
| | - Matthew G Mullen
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Jesse B Persily
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia
| | - Craig L Slingluff
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia
| | - J Thomas Parsons
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia
| | - Todd W Bauer
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
47
|
Abstract
Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.
Collapse
Affiliation(s)
- Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | |
Collapse
|
48
|
Kottke T, Evgin L, Shim KG, Rommelfanger D, Boisgerault N, Zaidi S, Diaz RM, Thompson J, Ilett E, Coffey M, Selby P, Pandha H, Harrington K, Melcher A, Vile R. Subversion of NK-cell and TNFα Immune Surveillance Drives Tumor Recurrence. Cancer Immunol Res 2017; 5:1029-1045. [PMID: 29038298 PMCID: PMC5858196 DOI: 10.1158/2326-6066.cir-17-0175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 01/22/2023]
Abstract
Understanding how incompletely cleared primary tumors transition from minimal residual disease (MRD) into treatment-resistant, immune-invisible recurrences has major clinical significance. We show here that this transition is mediated through the subversion of two key elements of innate immunosurveillance. In the first, the role of TNFα changes from an antitumor effector against primary tumors into a growth promoter for MRD. Second, whereas primary tumors induced a natural killer (NK)-mediated cytokine response characterized by low IL6 and elevated IFNγ, PD-L1hi MRD cells promoted the secretion of IL6 but minimal IFNγ, inhibiting both NK-cell and T-cell surveillance. Tumor recurrence was promoted by trauma- or infection-like stimuli inducing VEGF and TNFα, which stimulated the growth of MRD tumors. Finally, therapies that blocked PD-1, TNFα, or NK cells delayed or prevented recurrence. These data show how innate immunosurveillance mechanisms, which control infection and growth of primary tumors, are exploited by recurrent, competent tumors and identify therapeutic targets in patients with MRD known to be at high risk of relapse. Cancer Immunol Res; 5(11); 1029-45. ©2017 AACR.
Collapse
Affiliation(s)
- Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin G Shim
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Shane Zaidi
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth Ilett
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | - Matt Coffey
- Oncolytics Biotech Incorporated, Calgary, Canada
| | - Peter Selby
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | | | | | - Alan Melcher
- The Institute of Cancer Research, London, United Kingdom
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
49
|
Reddy NM, Thieblemont C. Maintenance therapy following induction chemoimmunotherapy in patients with diffuse large B-cell lymphoma: current perspective. Ann Oncol 2017; 28:2680-2690. [PMID: 29045503 DOI: 10.1093/annonc/mdx358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Maintenance therapy has proven efficacy in indolent non-Hodgkin lymphoma (NHL), yet its role in diffuse large B-cell lymphoma (DLBCL) is an area of ongoing investigation. While DLBCL is potentially curable, >30% of patients relapse following front-line therapy and have a poor prognosis, especially those with refractory disease. Maintenance therapy holds promise to maintain response post-induction. PATIENTS AND METHODS Keyword searches were carried out in PubMed and congress abstracts of 'diffuse large B-cell lymphoma' and 'maintenance' and focused on phase II/III studies of maintenance following front-line induction. RESULTS Although used in indolent forms of NHL, studies of maintenance therapy with rituximab in patients with DLBCL responding to front-line R-CHOP (rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone) have not improved efficacy and are not recommended. Targeted agents enzastaurin and everolimus reported results from the phase III studies PRELUDE and PILLAR-2, respectively, both of which showed no proven maintenance benefit following front-line chemoimmunotherapy induction. Overall, the reported efficacy results with these agents in the maintenance setting do not outweigh the risks. Lenalidomide for maintenance has been reported in three studies. Results from two phase II trials on lenalidomide maintenance revealed positive outcomes in higher-risk patients following induction, resulting in improved progression-free survival in relapsed DLBCL patients who were ineligible for transplantation. First analysis from the phase III REMARC trial showed a significant improvement in progression-free survival for lenalidomide versus placebo, with no difference in overall survival, following front-line R-CHOP induction in elderly patients. CONCLUSIONS Based on currently available studies of DLBCL maintenance therapies, initial results in front-line, as well as the relapsed setting, with immunomodulators such as lenalidomide show promise for further research to identify appropriate patients who would most benefit. Overall, this review of maintenance studies underscores the need for additional analyses of patient subtypes, clinical risk status, and molecular profiles, with careful consideration of study end points.
Collapse
Affiliation(s)
- N M Reddy
- Department of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, USA;.
| | - C Thieblemont
- Department of Hemato-Oncology, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
50
|
Wang L, Li Y, Xu J, Zhang A, Wang X, Tang R, Zhang X, Yin H, Liu M, Wang DD, Lin PP, Shen L, Dong J. Quantified postsurgical small cell size CTCs and EpCAM + circulating tumor stem cells with cytogenetic abnormalities in hepatocellular carcinoma patients determine cancer relapse. Cancer Lett 2017; 412:99-107. [PMID: 29031565 DOI: 10.1016/j.canlet.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022]
Abstract
Detection of hepatocellular carcinoma circulating tumor cells performed with conventional strategies, is significantly limited due to inherently heterogeneous and dynamic expression of EpCAM, as well as degradation of cytokeratins during epithelial-to-mesenchymal transition, which inevitably lead to non-negligible false negative detection of such "uncapturable and invisible" CTCs. A novel SE-iFISH strategy, improved for detection of HCC CTCs in this study, was applied to comprehensively detect, in situ phenotypically and karyotypically characterize hepatocellular and cholangiocarcinoma CTCs (CD45-/CD31-) in patients subjected to surgical resection. Clinical significance of diverse subtypes of CTC was systematically investigated. Existence of small cell size CTCs (≤5 μm of WBCs) with cytogenetic abnormality of aneuploid chromosome 8, which constituted majority of the detected CTCs in HCC patients, was demonstrated for the first time. The stemness marker EpCAM+ aneuploid circulating tumor stem cells (CTSCs), and EpCAM- small CTCs with trisomy 8, promote tumor growth. Postsurgical quantity of small triploid CTCs (≥5 cells/6 ml blood), multiploid (≥pentasomy 8) CTSCs or CTM (either one ≥ 1) significantly correlated to HCC patients' poor prognosis, indicating that detection of those specific subtypes of CTCs and CTSCs in post-operative patients help predict neoplasm recurrence.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yilin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Xu
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Aiqun Zhang
- Center for Hepatobiliary Diseases, PLA General Hospital, Beijing, China
| | - Xuedong Wang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Rui Tang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xinjing Zhang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hongfang Yin
- Department of Pathology, Beijing Tsinghua Changgung Hospital (BTCH), Beijing, China
| | - Manting Liu
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | | | | | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|