1
|
Morrison A, Srivatsa VM, Ghandi K. Superluminal Molecular and Nanomaterial Probes Based on Fast Ions or Electrons. Molecules 2024; 29:2903. [PMID: 38930968 PMCID: PMC11206977 DOI: 10.3390/molecules29122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
This work reviews the progression of chemical analysis via Cherenkov emissions, i.e., Cherenkov Photometry and Cherenkov Emission Spectroscopy, from its introduction in the literature up to modern developments. In presenting the history of this field, we aim to consolidate the literature, both for reference and contextualization. We present an argument aiming to untangle why this corner of research has seen little progress while so many other directly related aspects of Cherenkov research have flourished, as well as speak to the progress of the field in recent years and prospective direction in years to come.
Collapse
Affiliation(s)
| | | | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.M.); (V.M.S.)
| |
Collapse
|
2
|
Ran C, Pu K. Molecularly generated light and its biomedical applications. Angew Chem Int Ed Engl 2024; 63:e202314468. [PMID: 37955419 DOI: 10.1002/anie.202314468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Molecularly generated light, referred to here as "molecular light", mainly includes bioluminescence, chemiluminescence, and Cerenkov luminescence. Molecular light possesses unique dual features of being both a molecule and a source of light. Its molecular nature enables it to be delivered as molecules to regions deep within the body, overcoming the limitations of natural sunlight and physically generated light sources like lasers and LEDs. Simultaneously, its light properties make it valuable for applications such as imaging, photodynamic therapy, photo-oxidative therapy, and photobiomodulation. In this review article, we provide an updated overview of the diverse applications of molecular light and discuss the strengths and weaknesses of molecular light across various domains. Lastly, we present forward-looking perspectives on the potential of molecular light in the realms of molecular imaging, photobiological mechanisms, therapeutic applications, and photobiomodulation. While some of these perspectives may be considered bold and contentious, our intent is to inspire further innovations in the field of molecular light applications.
Collapse
Affiliation(s)
- Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| |
Collapse
|
3
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
4
|
Gristwood K, Luli S, Rankin KS, Knight JC. Synthesis and In Vitro Evaluation of a HER2-Specific ImmunoSCIFI Probe. ACS OMEGA 2023; 8:47905-47912. [PMID: 38144136 PMCID: PMC10734019 DOI: 10.1021/acsomega.3c06452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Secondary Cerenkov-induced fluorescence imaging (SCIFI) is an emerging biomedical optical imaging modality that leverages Cerenkov luminescence, primarily generated by β-emitting radioisotopes, to excite fluorophores that offer near-infrared emissions with optimal tissue penetrance. Dual-functionalized immunoconjugates composed of an antibody, a near-infrared fluorophore, and a β-emitting radioisotope have potential utility as novel SCIFI constructs with high specificity for molecular biomarkers of disease. Here, we report the synthesis and characterization of [89Zr]Zr-DFO-trastuzumab-BOD665, a self-excitatory HER2-specific "immunoSCIFI" probe capable of yielding near-infrared fluorescence in situ without external excitation. The penetration depth of the SCIFI signal was measured in hemoglobin-infused optical tissue phantoms that indicated a 2.05-fold increase compared to 89Zr-generated Cerenkov luminescence. Additionally, the binding specificity of the immunoSCIFI probe for HER2 was evaluated in a cellular assay that showed significantly higher binding to SKBR3 (high HER2 expression) relative to MDA-MB-468 (low HER2) breast cancer cells based on measurements of total flux in the near-infrared region with external excitation blocked. Taken together, the results of this study indicate the potential utility of immunoSCIFI constructs for interrogation of molecular biomarkers of disease.
Collapse
Affiliation(s)
- Katie Gristwood
- School
of Natural and Environmental Sciences, Newcastle
University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K.
| | - Saimir Luli
- Preclinical
In Vivo Imaging, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K.
| | - Kenneth S. Rankin
- Translational
and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne NE1 7RU, U.K.
| | - James C. Knight
- School
of Natural and Environmental Sciences, Newcastle
University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K.
| |
Collapse
|
5
|
Lioret V, Bellaye PS, Bernhard Y, Moreau M, Guillemin M, Drouet C, Collin B, Decréau RA. Cherenkov Radiation induced photodynamic therapy - repurposing older photosensitizers, and radionuclides. Photodiagnosis Photodyn Ther 2023; 44:103816. [PMID: 37783257 DOI: 10.1016/j.pdpdt.2023.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
CONTEXT Old-generation photosensitizers are minimally used in current photodynamic therapy (PDT) because they absorb in the UV/blue/green region of the spectrum where biological tissues are generally highly absorbing. The UV/blue light of Cherenkov Radiation (CR) from nuclear disintegration of beta-emitter radionuclides shows promise as an internal light source to activate these photosensitizers within tissue. Outline of the study: 1) radionuclide choice and Cherenkov Radiation, 2) Photosensitizer choice, synthesis and radiolabeling, 3) CR-induced fluorescence, 4) Verification of ROS formation, 5) CR-induced PDT with either free eosine and free CR emitter, or with radiolabelled eosin. RESULTS Cherenkov Radiation Energy Transfer (CRET) from therapeutic radionuclides (90Y) and PET imaging radionuclides (18F, 68Ga) to eosin was shown by spectrofluorimetry and in vitro, and was shown to result in a PDT process. The feasibility of CR-induced PDT (CR-PDT) was demonstrated in vitro on B16F10 murine melanoma cells mixing free eosin (λabs = 524 nm, ΦΔ 0.67) with free CR-emitter [18F]-FDG under their respective intrinsic toxicity levels (0.5 mM/8 MBq) and by trapping singlet oxygen with diphenylisobenzofuran (DPBF). An eosin-DOTAGA-chelate conjugate 1 was synthesized and radiometallated with CR-emitter [68Ga] allowed to reach 25 % cell toxicity at 0.125 mM/2 MBq, i.e. below the toxicity threshold of each component measured on controls. Incubation time was carefully examined, especially for CR emitters, in light of its toxicity, and its CR-emitting yield expected to be 3 times as much for 68Ga than 18F (considering their β particle energy) per radionuclide decay, while its half-life is about twice as small. PERSPECTIVE This study showed that in complete darkness, as it is at depth in tissues, PDT could proceed relying on CR emission from radionuclides only. Interestingly, this study also repurposed PET imaging radionuclides, such as 68Ga, to trigger a therapeutic event (PDT), albeit in a modest extent. Moreover, although it remains modest, such a PDT approach may be used to achieve additional tumoricidal effect to RIT treatment, where radionuclides, such as 90Y, are strong CR emitters, i.e. very potent light source for photosensitizer activation.
Collapse
Affiliation(s)
- Vivian Lioret
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France
| | | | - Yann Bernhard
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France
| | - Mathieu Moreau
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France
| | - Mélanie Guillemin
- Centre George François Leclerc, 1 rue du Professeur Marion, Dijon 21079, France
| | - Camille Drouet
- Centre George François Leclerc, 1 rue du Professeur Marion, Dijon 21079, France
| | - Bertrand Collin
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France; Centre George François Leclerc, 1 rue du Professeur Marion, Dijon 21079, France
| | - Richard A Decréau
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France.
| |
Collapse
|
6
|
Rosenkrans ZT, Hsu JC, Aluicio-Sarduy E, Barnhart TE, Engle JW, Cai W. Amplification of Cerenkov luminescence using semiconducting polymers for cancer theranostics. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302777. [PMID: 37942189 PMCID: PMC10629852 DOI: 10.1002/adfm.202302777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 11/10/2023]
Abstract
The therapeutic efficacy of photodynamic therapy is limited by the ability of light to penetrate tissues. Due to this limitation, Cerenkov luminescence (CL) from radionuclides has recently been proposed as an alternative light source in a strategy referred to as Cerenkov radiation induced therapy (CRIT). Semiconducting polymer nanoparticles (SPNs) have ideal optical properties, such as large absorption cross-sections and broad absorbance, which can be utilized to harness the relatively weak CL produced by radionuclides. SPNs can be doped with photosensitizers and have nearly 100% energy transfer efficiency by multiple energy transfer mechanisms. Herein, we investigated an optimized photosensitizer doped SPN as a nanosystem to harness and amplify CL for cancer theranostics. We found that semiconducting polymers significantly amplified CL energy transfer efficiency. Bimodal PET and optical imaging studies showed high tumor uptake and retention of the optimized SPNs when administered intravenously or intratumorally. Lastly, we found that photosensitizer doped SPNs have excellent potential as a cancer theranostics nanosystem in an in vivo tumor therapy study. Our study shows that SPNs are ideally suited to harness and amplify CL for cancer theranostics, which may provide a significant advancement for CRIT that are unabated by tissue penetration limits.
Collapse
Affiliation(s)
- Zachary T Rosenkrans
- University of Wisconsin-Madison, Department of Pharmaceutical Sciences, 600 Highland Ave., K6/562, Madison, WI 53792, USA
| | - Jessica C Hsu
- University of Wisconsin-Madison, Departments of Radiology and Medical Physics, Madison, WI 53705, USA
| | - Eduardo Aluicio-Sarduy
- University of Wisconsin-Madison, Departments of Radiology and Medical Physics, Madison, WI 53705, USA
| | - Todd E Barnhart
- University of Wisconsin-Madison, Departments of Radiology and Medical Physics, Madison, WI 53705, USA
| | - Jonathan W Engle
- University of Wisconsin-Madison, Departments of Radiology and Medical Physics, Madison, WI 53705, USA
- University of Wisconsin-Madison, Carbone Cancer Center, Madison, WI 53705, USA
| | - Weibo Cai
- University of Wisconsin-Madison, Department of Pharmaceutical Sciences, 600 Highland Ave., K6/562, Madison, WI 53792, USA
- University of Wisconsin-Madison, Departments of Radiology and Medical Physics, Madison, WI 53705, USA
- University of Wisconsin-Madison, Carbone Cancer Center, Madison, WI 53705, USA
| |
Collapse
|
7
|
Zhang Y, Li F, Cui Z, Li K, Guan J, Tian L, Wang Y, Liu N, Wu W, Chai Z, Wang S. A Radioluminescent Metal-Organic Framework for Monitoring 225Ac in Vivo. J Am Chem Soc 2023. [PMID: 37366004 DOI: 10.1021/jacs.3c02325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
225Ac is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of 225Ac in vivo during the treatment of tumors. However, the lack of imageable photons or positrons from therapeutic doses of 225Ac makes this task currently quite challenging. We report here a nanoscale luminescent europium-organic framework (EuMOF) that allows for fast, simple, and efficient labeling of 225Ac in its crystal structure with sufficient 225Ac-retention stability based on similar coordination behaviors between Ac3+ and Eu3+. After labeling, the short distance between 225Ac and Eu3+ in the structure leads to exceedingly efficient energy transduction from225Ac-emitted α-particles to surrounding Eu3+ ions, which emits red luminescence through a scintillation process and produces sufficient photons for clearcut imaging. The in vivo intensity distribution of radioluminescence signal originating from the 225Ac-labeled EuMOF is consistent with the dose of 225Ac dispersed among the various organs determined by the radioanalytical measurement ex vivo, certifying the feasibility of in vivo directly monitoring 225Ac using optical imaging for the first time. In addition, 225Ac-labeled EuMOF displays notable efficiency in treating the tumor. These results provide a general design principle for fabricating 225Ac-labeled radiopharmaceuticals with imaging photons and propose a simple way to in vivo track radionuclides with no imaging photons, including but not limited to 225Ac.
Collapse
Affiliation(s)
- Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Zhencun Cui
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Longlong Tian
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
9
|
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Mol Imaging Biol 2023; 25:240-264. [PMID: 36745354 DOI: 10.1007/s11307-023-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.
Collapse
|
10
|
Pratt EC, Shaffer TM, Bauer D, Lewis JS, Grimm J. Radiances of Cerenkov-Emitting Isotopes on the IVIS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524625. [PMID: 36711894 PMCID: PMC9882406 DOI: 10.1101/2023.01.18.524625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cerenkov (or Cherenkov) luminescence occurs when charged particles exceed the phase velocity of a given medium. Cerenkov has gained interest in preclinical space as well as in clinical trials for optical visualization of numerous radionuclides. However, Cerenkov intensity has to be inferred from alternative databases with energy emission spectra, or theoretical fluence estimates. Here we present the largest experimental dataset of Cerenkov emitting isotopes recorded using the IVIS optical imaging system. We report Cerenkov measurements spanning orders of magnitude normalized to the activity concentration for 21 Cerenkov emitting isotopes, covering electron, alpha, beta minus, and positron emissions. Isotopes measured include Carbon-11, Fluorine-18, Phosphorous-32, Scandium-47, Copper-64, Copper-67, Gallium-68, Arsenic-72, Bromine-76, Yttrium-86, Zirconium-89, Yttrium-90, Iodine-124, Iodine-131, Cerium-134, Lutetium-177, Lead-203, Lead-212, Radium-223, Actinium-225, and Thorium-227. We hope this updating resource will serve as a rank ordering for comparing isotopes for Cerenkov luminescence in the visible window and serve as a rule of thumb for comparing Cerenkov intensities in vitro and in vivo. Methods All Cerenkov emitting radionuclides were either produced at Memorial Sloan Kettering Cancer Center (Carbon-11, 11 C; Fluorine-18, 18 F; Iodine-124, 124 I), from commercial sources such as Perkin Elmer (Phosphorous-32, 32 P; Yttrium-90, 90 Y), Bayer (Radium-223, 223 Ra, Xofigo), 3D-Imaging (Zirconium-89, 89 Zr), Nuclear Diagnostic Products (Iodine-131, 131 I), or from academic collaborators at Washington University at St. Louis (Copper-64, 64 Cu), University of Wisconsin (Bromine-76, 76 Br), MD Anderson Cancer Center (Yttrium-86, 86 Y), Brookhaven National Laboratory (Arsenic-72, 72 As; Thorium-227, 227 Th), or Oak Ridge National Laboratory (Cerium-134, 134 Ce, Actinium-225, 225 Ac), and Viewpoint Molecular Targeting (Lead-203, 203 Pb; Lead 212, 212 Pb). All isotopes were diluted in triplicate on a black bottomed corning 96 well plate to several activity concentrations ranging from 0.1-250 μCi in 100-200 μL of Phosphate Buffered Saline. Cerenkov imaging was acquired on a single Perkin-Elmer Spectrum In-Vivo Imaging System (IVIS) at field of view c with exposures ranging up to 15 minutes or lower provided no part of the image intensity was saturated, or that the activity significantly changed during the exposure. Experimental radiances on the IVIS were calculated from regions of interest drown over each 96 well, and then normalized for the activity present in the well, and the volume the isotope was diluted into.
Collapse
|
11
|
Mc Larney BE, Zhang Q, Pratt EC, Skubal M, Isaac E, Hsu HT, Ogirala A, Grimm J. Detection of Shortwave-Infrared Cerenkov Luminescence from Medical Isotopes. J Nucl Med 2023; 64:177-182. [PMID: 35738902 PMCID: PMC9841262 DOI: 10.2967/jnumed.122.264079] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 01/28/2023] Open
Abstract
Medical radioisotopes produce Cerenkov luminescence (CL) from charged subatomic particles (β+/-) traveling faster than light in dielectric media (e.g., tissue). CL is a blue-weighted and continuous emission, decreasing proportionally to increasing wavelength. CL imaging (CLI) provides an economic PET alternative with the advantage of also being able to image β- and α emitters. Like any optical modality, CLI is limited by the optical properties of tissue (scattering, absorption, and ambient photon removal). Shortwave-infrared (SWIR, 900-1700 nm) CL has been detected from MeV linear accelerators but not yet from keV medical radioisotopes. Methods: Indium-gallium-arsenide sensors and SWIR lenses were mounted onto an ambient light-excluding preclinical enclosure. An exposure and processing pipeline was developed for SWIR CLI and then performed across 6 radioisotopes at in vitro and in vivo conditions. Results: SWIR CL was detected from the clinical radioisotopes 90Y, 68Ga, 18F, 89Zr, 131I, and 32P (biomedical research). SWIR CLI's advantage over visible-wavelength (VIS) CLI (400-900 nm) was shown via increased light penetration and decreased scattering at depth. The SWIR CLI radioisotope sensitivity limit (8.51 kBq/μL for 68Ga), emission spectrum, and ex vivo and in vivo examples are reported. Conclusion: This work shows that radioisotope SWIR CLI can be performed with unmodified commercially available components. SWIR CLI has significant advantages over VIS CLI, with preserved VIS CLI features such as radioisotope radiance levels and dose response linearity. Further improvements in SWIR optics and technology are required to enable widespread adoption.
Collapse
Affiliation(s)
- Benedict E Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qize Zhang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edwin C Pratt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth Isaac
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hsiao-Ting Hsu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Medical College, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
- Department of Radiology, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
12
|
Liu N, Su X, Sun X. Cerenkov radiation-activated probes for deep cancer theranostics: a review. Theranostics 2022; 12:7404-7419. [PMID: 36438500 PMCID: PMC9691350 DOI: 10.7150/thno.75279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Cerenkov radiation (CR) from radionuclides and megavoltage X-ray radiation can act as an in situ light source for deep cancer theranostics, overcoming the limitations of external light sources. Despite the blue-weighted emission and low quantum yield of CR, activatable probes-mediated CR can enhance the in-vivo diagnostic signals by Cerenkov resonance energy transfer and also can produce therapeutic effects by reactive species generation/drug release, greatly promoting the biomedical applications of CR. In this review, we describe the principles and sources of CR, construction of CR-activated probes and their application to tumor optical imaging and therapy. Finally, future prospects for the design and biomedical application of CR-activated probes are discussed.
Collapse
Affiliation(s)
- Nian Liu
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Gristwood K, Luli S, Rankin KS, Knight JC. In situ excitation of BODIPY fluorophores by 89Zr-generated Cerenkov luminescence. Chem Commun (Camb) 2022; 58:11689-11692. [PMID: 36173358 DOI: 10.1039/d2cc03875g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary Cerenkov-induced fluorescence imaging (SCIFI) is an emerging optical imaging technology that affords high signal-to-noise images by utilising radionuclide-generated Cerenkov luminescence to excite fluorescent probes. BODIPY dyes offer attractive properties for SCIFI, including high quantum yields and photochemical stability, yet their utility in this application in combination with clinically relevant β+-emitting radioisotopes remains largely unexplored. In this report, the fluorescence properties of three meso-substituted BODIPY analogues have been assessed in combination with the positron emitter zirconium-89. Most notably, SCIFI data acquired over 7 days shows the BODIPY scaffold remain largely inert to radiolysis, indicating the promising utility of this fluorophore class in SCIFI applications.
Collapse
Affiliation(s)
- Katie Gristwood
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Saimir Luli
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| | - James C Knight
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
14
|
Bianfei S, Fang L, Zhongzheng X, Yuanyuan Z, Tian Y, Tao H, Jiachun M, Xiran W, Siting Y, Lei L. Application of Cherenkov radiation in tumor imaging and treatment. Future Oncol 2022; 18:3101-3118. [PMID: 36065976 DOI: 10.2217/fon-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cherenkov radiation (CR) is the characteristic blue glow that is generated during radiotherapy or radioisotope decay. Its distribution and intensity naturally reflect the actual dose and field of radiotherapy and the location of radioisotope imaging agents in vivo. Therefore, CR can represent a potential in situ light source for radiotherapy monitoring and radioisotope-based tumor imaging. When used in combination with new imaging techniques, molecular probes or nanomedicine, CR imaging exhibits unique advantages (accuracy, low cost, convenience and fast) in tumor radiotherapy monitoring and imaging. Furthermore, photosensitive nanomaterials can be used for CR photodynamic therapy, providing new approaches for integrating tumor imaging and treatment. Here the authors review the latest developments in the use of CR in tumor research and discuss current challenges and new directions for future studies.
Collapse
Affiliation(s)
- Shao Bianfei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Fang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Zhongzheng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeng Yuanyuan
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tian
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - He Tao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ma Jiachun
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Xiran
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Siting
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Lei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Abstract
Malignant tumors rank as a leading cause of death worldwide. Accurate diagnosis and advanced treatment options are crucial to win battle against tumors. In recent years, Cherenkov luminescence (CL) has shown its technical advantages and clinical transformation potential in many important fields, particularly in tumor diagnosis and treatment, such as tumor detection in vivo, surgical navigation, radiotherapy, photodynamic therapy, and the evaluation of therapeutic effect. In this review, we summarize the advances in CL for tumor diagnosis and treatment. We first describe the physical principles of CL and discuss the imaging techniques used in tumor diagnosis, including CL imaging, CL endoscope, and CL tomography. Then we present a broad overview of the current status of surgical resection, radiotherapy, photodynamic therapy, and tumor microenvironment monitoring using CL. Finally, we shed light on the challenges and possible solutions for tumor diagnosis and therapy using CL.
Collapse
|
16
|
Pratt EC, Skubal M, Mc Larney B, Causa-Andrieu P, Das S, Sawan P, Araji A, Riedl C, Vyas K, Tuch D, Grimm J. Prospective testing of clinical Cerenkov luminescence imaging against standard-of-care nuclear imaging for tumour location. Nat Biomed Eng 2022; 6:559-568. [PMID: 35411113 PMCID: PMC9149092 DOI: 10.1038/s41551-022-00876-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
In oncology, the feasibility of Cerenkov luminescence imaging (CLI) has been assessed by imaging superficial lymph nodes in a few patients undergoing diagnostic 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). However, the weak luminescence signal requires the removal of ambient light. Here we report the development of a clinical CLI fiberscope with a lightproof enclosure, and the clinical testing of the setup using five different radiotracers. In an observational prospective trial (ClinicalTrials.gov identifier NCT03484884 ) involving 96 patients with existing or suspected tumours, scheduled for routine clinical FDG PET or 131I therapy, the level of agreement of CLI with standard-of-care imaging (PET or planar single-photon emission CT) for tumour location was 'acceptable' or higher (≥3 in the 1-5 Likert scale) for 90% of the patients. CLI correlated with the concentration of radioactive activity, and captured therapeutically relevant information from patients undergoing targeted radiotherapy or receiving the alpha emitter 223Ra, which cannot be feasibly imaged clinically. CLI could supplement radiological scans, especially when scanner capacity is limited.
Collapse
Affiliation(s)
- Edwin C. Pratt
- Pharmacology Department, Weill Cornell Medical College, New York, NY, 10065, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pamela Causa-Andrieu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sudeep Das
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter Sawan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Abdallah Araji
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christopher Riedl
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kunal Vyas
- Lightpoint Medical Ltd., Waterside, Chesham, HP5 1PE, UK
| | - David Tuch
- Lightpoint Medical Inc., Cambridge, MA, 02139, USA
| | - Jan Grimm
- Pharmacology Department, Weill Cornell Medical College, New York, NY, USA. .,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Radiology, Weill, Cornell Medical Center, New York, NY, USA.
| |
Collapse
|
17
|
Chen X, Wang X, Yan T, Zheng Y, Cao H, Ren F, Cao X, Meng X, Lu X, Liang S, Wu K. Sensitivity improved Cerenkov luminescence endoscopy using optimal system parameters. Quant Imaging Med Surg 2022; 12:425-438. [PMID: 34993091 DOI: 10.21037/qims-21-373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
Background The challenges of clinical translation of optical imaging, including the limited availability of clinically used imaging probes and the restricted penetration depth of light propagation in tissues can be avoided using Cerenkov luminescence endoscopy (CLE). However, the clinical applications of CLE are limited due to the low signal level of Cerenkov luminescence and the large transmission loss caused by the endoscope, which results in a relatively low detection sensitivity of current CLE. The aim of this study was to enhance the detection sensitivity of the CLE system and thus improve the system for clinical application in the detection of gastrointestinal diseases. Methods Four optical fiber endoscopes were customized with different system parameters, including monofilament (MF) diameter of imaging fiber bundles, fiber material, probe coating, etc. The endoscopes were connected to the detector via a specifically designed straight connection device to form the CLE system. The β-2-[18F]-Fluoro-2-deoxy-D-glucose (18F-FDG) solution and the radionuclide of Gallium-68 (68Ga) were used to evaluate the performance of the CLE system. The images of the 18F-FDG solution acquired by the CLE were used to optimize imaging parameters of the system. By using the endoscope with optimized parameters, including the MF diameter of imaging fiber bundles, fiber materials, etc., the resolution and sensitivity of the assembled CLE system were measured by imaging the radionuclide of 68Ga. Results The results of 18F-FDG experiments showed that larger MF diameter led to higher collection efficiency. The fiber material and probe coating with high transmission ratios in the range of 400-900 nm also increased signal collection and transmission efficiency. The results of 68Ga evaluations showed that a minimum radioactive activity of radionuclides as low as 0.03 µCi was detected in vitro within 5 minutes, while that of 0.68 µCi can be detected within 1 minute. In vivo experiments also demonstrated that the developed CLE system achieved a high sensitivity at a submicrocurie level; that is, 0.44 µCi within 5 minutes, and 0.83 µCi within 1 minute. The weaker in vivo sensitivity was due to the attenuation of the signal by the mouse tissue skin and the autofluorescence interference produced by biological tissues. Conclusions By optimizing the structural parameters of fiber endoscope and imaging parameters for data acquisition, we developed a CLE system with a sensitivity at submicrocurie level. These results support the possibility that this technology can clinically detect early tumors within 1 minute.
Collapse
Affiliation(s)
- Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xinyu Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Tianyu Yan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yun Zheng
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Honghao Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Feng Ren
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiangfeng Meng
- Institute of Medical Device Control, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaojian Lu
- Nanjing Chunhui Science and Technology Industrial Co. Ltd., Nanjing, China
| | - Shuhui Liang
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xi'an, China
| | - Kaichun Wu
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xi'an, China
| |
Collapse
|
18
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
19
|
Wei X, Guo H, Yu J, He X, Yi H, Hou Y, He X. A Multilevel Probabilistic Cerenkov Luminescence Tomography Reconstruction Framework Based on Energy Distribution Density Region Scaling. Front Oncol 2021; 11:751055. [PMID: 34745977 PMCID: PMC8570774 DOI: 10.3389/fonc.2021.751055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cerenkov luminescence tomography (CLT) is a promising non-invasive optical imaging method with three-dimensional semiquantitative in vivo imaging capability. However, CLT itself relies on Cerenkov radiation, a low-intensity radiation, making CLT reconstruction more challenging than other imaging modalities. In order to solve the ill-posed inverse problem of CLT imaging, some numerical optimization or regularization methods need to be applied. However, in commonly used methods for solving inverse problems, parameter selection significantly influences the results. Therefore, this paper proposed a probabilistic energy distribution density region scaling (P-EDDRS) framework. In this framework, multiple reconstruction iterations are performed, and the Cerenkov source distribution of each reconstruction is treated as random variables. According to the spatial energy distribution density, the new region of interest (ROI) is solved. The size of the region required for the next operation was determined dynamically by combining the intensity characteristics. In addition, each reconstruction source distribution is given a probability weight value, and the prior probability in the subsequent reconstruction is refreshed. Last, all the reconstruction source distributions are weighted with the corresponding probability weights to get the final Cerenkov source distribution. To evaluate the performance of the P-EDDRS framework in CLT, this article performed numerical simulation, in vivo pseudotumor model mouse experiment, and breast cancer mouse experiment. Experimental results show that this reconstruction framework has better positioning accuracy and shape recovery ability and can optimize the reconstruction effect of multiple algorithms on CLT.
Collapse
Affiliation(s)
- Xiao Wei
- School of Information and Technology, Northwest University, Xi'an, China.,Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an, China
| | - Hongbo Guo
- School of Information and Technology, Northwest University, Xi'an, China.,Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Xuelei He
- School of Information and Technology, Northwest University, Xi'an, China.,Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an, China
| | - Huangjian Yi
- School of Information and Technology, Northwest University, Xi'an, China.,Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an, China
| | - Yuqing Hou
- School of Information and Technology, Northwest University, Xi'an, China.,Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an, China
| | - Xiaowei He
- School of Information and Technology, Northwest University, Xi'an, China.,Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an, China
| |
Collapse
|
20
|
Shi X, Cao C, Zhang Z, Tian J, Hu Z. Radiopharmaceutical and Eu 3+ doped gadolinium oxide nanoparticles mediated triple-excited fluorescence imaging and image-guided surgery. J Nanobiotechnology 2021; 19:212. [PMID: 34271928 PMCID: PMC8283963 DOI: 10.1186/s12951-021-00920-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 11/11/2022] Open
Abstract
Cerenkov luminescence imaging (CLI) is a novel optical imaging technique that has been applied in clinic using various radionuclides and radiopharmaceuticals. However, clinical application of CLI has been limited by weak optical signal and restricted tissue penetration depth. Various fluorescent probes have been combined with radiopharmaceuticals for improved imaging performances. However, as most of these probes only interact with Cerenkov luminescence (CL), the low photon fluence of CL greatly restricted it's interaction with fluorescent probes for in vivo imaging. Therefore, it is important to develop probes that can effectively convert energy beyond CL such as β and γ to the low energy optical signals. In this study, a Eu3+ doped gadolinium oxide (Gd2O3:Eu) was synthesized and combined with radiopharmaceuticals to achieve a red-shifted optical spectrum with less tissue scattering and enhanced optical signal intensity in this study. The interaction between Gd2O3:Eu and radiopharmaceutical were investigated using 18F-fluorodeoxyglucose (18F-FDG). The ex vivo optical signal intensity of the mixture of Gd2O3:Eu and 18F-FDG reached 369 times as high as that of CLI using 18F-FDG alone. To achieve improved biocompatibility, the Gd2O3:Eu nanoparticles were then modified with polyvinyl alcohol (PVA), and the resulted nanoprobe PVA modified Gd2O3:Eu (Gd2O3:Eu@PVA) was applied in intraoperative tumor imaging. Compared with 18F-FDG alone, intraoperative administration of Gd2O3:Eu@PVA and 18F-FDG combination achieved a much higher tumor-to-normal tissue ratio (TNR, 10.24 ± 2.24 vs. 1.87 ± 0.73, P = 0.0030). The use of Gd2O3:Eu@PVA and 18F-FDG also assisted intraoperative detection of tumors that were omitted by preoperative positron emission tomography (PET) imaging. Further experiment of image-guided surgery demonstrated feasibility of image-guided tumor resection using Gd2O3:Eu@PVA and 18F-FDG. In summary, Gd2O3:Eu can achieve significantly optimized imaging property when combined with 18F-FDG in intraoperative tumor imaging and image-guided tumor resection surgery. It is expected that the development of the Gd2O3:Eu nanoparticle will promote investigation and application of novel nanoparticles that can interact with radiopharmaceuticals for improved imaging properties. This work highlighted the impact of the nanoprobe that can be excited by radiopharmaceuticals emitting CL, β, and γ radiation for precisely imaging of tumor and intraoperatively guide tumor resection.
Collapse
Affiliation(s)
- Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Caiguang Cao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zhang Q, Pratt EC, Tamura R, Ogirala A, Hsu C, Farahmand N, O’Brien S, Grimm J. Ultrasmall Downconverting Nanoparticle for Enhanced Cerenkov Imaging. NANO LETTERS 2021; 21:4217-4224. [PMID: 33950695 PMCID: PMC8879088 DOI: 10.1021/acs.nanolett.1c00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cerenkov imaging provides an opportunity to expand the application of approved radiotracers and therapeutic agents by utilizing them for optical approaches, which opens new avenues for nuclear imaging. The dominating Cerenkov radiation is in the UV/blue region, where it is readily absorbed by human tissue, reducing its utility in vivo. To solve this problem, we propose a strategy to shift Cerenkov light to the more penetrative red-light region through the use of a fluorescent down-conversion technique, based upon europium oxide nanoparticles. We synthesized square-shape ultrasmall Eu2O3 nanoparticles, functionalized with polyethylene glycol and chelate-free radiolabeled for intravenous injection into mice to visualize the lymph node and tumor. By adding trimethylamine N-oxide during the synthesis, we significantly increased the brightness of the particle and synthesized the (to-date) smallest radiolabeled europium-based nanoparticle. These features allow for the exploration of Eu2O3 nanoparticles as a preclinical cancer diagnosis platform with multimodal imaging capability.
Collapse
Affiliation(s)
- Qize Zhang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Edwin C. Pratt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ryo Tamura
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charlene Hsu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nasim Farahmand
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Stephen O’Brien
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
22
|
Zheng X, Wu W, Zheng Y, Ding Y, Xiang Y, Liu B, Tong A. Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imaging-Guided Photodynamic Therapy. Chemistry 2021; 27:6911-6916. [PMID: 33556210 DOI: 10.1002/chem.202100406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 01/10/2023]
Abstract
Optical imaging-guided photodynamic therapy (PDT), with precise localization and non-invasive treatment of tumors, is an emerging technique with great potential for cancer therapy. However, impaired by tissue auto-fluorescence that causes low signal-to-background ratio (SBR), most fluorescence imaging systems show poor sensitivity to tumors in vivo. In this study, we synthesized organic nanoparticles (ONPs) with persistent luminescence and good biocompatibility for afterglow imaging-guided PDT. The ONPs displayed near-infrared light emission with half-life time at minute level, which offered high SBR and good tissue penetration for in vivo afterglow tumor imaging. Taking advantage of their abundant singlet oxygen generation by NIR laser irradiation guided to the tumor sites, the ONPs also enabled imaging-guided PDT for efficient suppression of tumor growth in mice with minimal damage to major organs.
Collapse
Affiliation(s)
- Xiaokun Zheng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yue Zheng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Yiwen Ding
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
23
|
Surgical Advances in Osteosarcoma. Cancers (Basel) 2021; 13:cancers13030388. [PMID: 33494243 PMCID: PMC7864509 DOI: 10.3390/cancers13030388] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Osteosarcoma (OS) is the most common bone cancer in children. OS most commonly arises in the legs, but can arise in any bone, including the spine, head or neck. Along with chemotherapy, surgery is a mainstay of OS treatment and in the 1990s, surgeons began to shift from amputation to limb-preserving surgery. Since then, improvements in imaging, surgical techniques and implant design have led to improvements in functional outcomes without compromising on the cancer outcomes for these patients. This paper summarises these advances, along with a brief discussion of future technologies currently in development. Abstract Osteosarcoma (OS) is the most common primary bone cancer in children and, unfortunately, is associated with poor survival rates. OS most commonly arises around the knee joint, and was traditionally treated with amputation until surgeons began to favour limb-preserving surgery in the 1990s. Whilst improving functional outcomes, this was not without problems, such as implant failure and limb length discrepancies. OS can also arise in areas such as the pelvis, spine, head, and neck, which creates additional technical difficulty given the anatomical complexity of the areas. We reviewed the literature and summarised the recent advances in OS surgery. Improvements have been made in many areas; developments in pre-operative imaging technology have allowed improved planning, whilst the ongoing development of intraoperative imaging techniques, such as fluorescent dyes, offer the possibility of improved surgical margins. Technological developments, such as computer navigation, patient specific instruments, and improved implant design similarly provide the opportunity to improve patient outcomes. Going forward, there are a number of promising avenues currently being pursued, such as targeted fluorescent dyes, robotics, and augmented reality, which bring the prospect of improving these outcomes further.
Collapse
|
24
|
Pratt EC, Tamura R, Grimm J. Cerenkov Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Boschi F, Spinelli AE. Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy. NANOMATERIALS 2020; 10:nano10091771. [PMID: 32906838 PMCID: PMC7559269 DOI: 10.3390/nano10091771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Cerenkov luminescence imaging and Cerenkov photodynamic therapy have been developed in recent years to exploit the Cerenkov radiation (CR) generated by radioisotopes, frequently used in Nuclear Medicine, to diagnose and fight cancer lesions. For in vivo detection, the endpoint energy of the radioisotope and, thus, the total number of the emitted Cerenkov photons, represents a very important variable and explains why, for example, 68Ga is better than 18F. However, it was also found that the scintillation process is an important mechanism for light production. Nanotechnology represents the most important field, providing nanosctructures which are able to shift the UV-blue emission into a more suitable wavelength, with reduced absorption, which is useful especially for in vivo imaging and therapy applications. Nanoparticles can be made, loaded or linked to fluorescent dyes to modify the optical properties of CR radiation. They also represent a useful platform for therapeutic agents, such as photosensitizer drugs for the production of reactive oxygen species (ROS). Generally, NPs can be spaced by CR sources; however, for in vivo imaging applications, NPs bound to or incorporating radioisotopes are the most interesting nanocomplexes thanks to their high degree of mutual colocalization and the reduced problem of false uptake detection. Moreover, the distance between the NPs and CR source is crucial for energy conversion. Here, we review the principal NPs proposed in the literature, discussing their properties and the main results obtained by the proponent experimental groups.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Correspondence:
| | - Antonello Enrico Spinelli
- Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy;
| |
Collapse
|
26
|
Cao X, Li K, Xu XL, Deneen KMV, Geng GH, Chen XL. Development of tomographic reconstruction for three-dimensional optical imaging: From the inversion of light propagation to artificial intelligence. Artif Intell Med Imaging 2020; 1:78-86. [DOI: 10.35711/aimi.v1.i2.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Optical molecular tomography (OMT) is an imaging modality which uses an optical signal, especially near-infrared light, to reconstruct the three-dimensional information of the light source in biological tissue. With the advantages of being low-cost, noninvasive and having high sensitivity, OMT has been applied in preclinical and clinical research. However, due to its serious ill-posedness and ill-condition, the solution of OMT requires heavy data analysis and the reconstruction quality is limited. Recently, the artificial intelligence (commonly known as AI)-based methods have been proposed to provide a different tool to solve the OMT problem. In this paper, we review the progress on OMT algorithms, from conventional methods to AI-based methods, and we also give a prospective towards future developments in this domain.
Collapse
Affiliation(s)
- Xin Cao
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Kang Li
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Xue-Li Xu
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Karen M von Deneen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, and School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| | - Guo-Hua Geng
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Xue-Li Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, and School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| |
Collapse
|
27
|
Lioret V, Bellaye PS, Arnould C, Collin B, Decréau RA. Dual Cherenkov Radiation-Induced Near-Infrared Luminescence Imaging and Photodynamic Therapy toward Tumor Resection. J Med Chem 2020; 63:9446-9456. [PMID: 32706253 DOI: 10.1021/acs.jmedchem.0c00625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cherenkov radiation (CR), the blue light seen in nuclear reactors, is emitted by some radiopharmaceuticals. This study showed that (1) a portion of CR could be transferred in the region of the optical spectrum, where biological tissues are most transparent: as a result, upon radiance amplification in the near-infrared window, the detection of light could occur twice deeper in tissues than during classical Cherenkov luminescence imaging and (2) Cherenkov-photodynamic therapy (CR-PDT) on cells could be achieved under conditions mimicking unlimited depth using the CR-embarked light source, which is unlike standard PDT, where light penetration depth is limited in biological tissues. Both results are of utmost importance for simultaneous applications in tumor resection and post-resection treatment of remaining unresected margins, thanks to a molecular construct designed to raise its light collection efficiency (i.e., CR energy transfer) by conjugation with multiple CR-absorbing (water-soluble) antenna followed by intramolecular-FRET/TBET energy transfers.
Collapse
Affiliation(s)
- Vivian Lioret
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France
| | | | | | - Bertrand Collin
- Centre George François Leclerc, 1 rue du Professeur Marion, Dijon 21079, France
| | - Richard A Decréau
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France
| |
Collapse
|
28
|
Abad-Arredondo J, García-Vidal FJ, Zhang Q, Khwaja E, Menon VM, Grimm J, Fernández-Domínguez AI. Fluorescence Emission Triggered by Radioactive β decay in Optimized Hyperbolic Cavities. PHYSICAL REVIEW APPLIED 2020; 14:024084. [PMID: 34859117 PMCID: PMC8635087 DOI: 10.1103/physrevapplied.14.024084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Luminescence arising from β -decay of radiotracers has garnered much interest recently as a viable in-vivo imaging technique. The emitted Cerenkov radiation can be directly detected by high sensitivity cameras or used to excite highly efficient fluorescent dyes. Here, we investigate the enhancement of visible and infrared emission driven by β -decay of radioisotopes in the presence of a hyperbolic nanocavity. By means of a transfer matrix approach, we obtain quasi-analytic expressions for the fluorescence enhancement factor at the dielectric core of the metalodielectric cavity, reporting a hundred-fold amplification in periodic structures. A particle swarm optimization of the layered shell geometry reveals that up to a ten-thousand-fold enhancement is possible thanks to the hybridization and spectral overlapping of whispering-gallery and localized-plasmon modes. Our findings may find application in nuclear-optical medical imaging, as they provide a strategy for the exploitation of highly energetic gamma rays, Cerenkov luminescence, and visible and near-infrared fluorescence through the same nanotracer.
Collapse
Affiliation(s)
- J. Abad-Arredondo
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - F. J. García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Donostia International Physics Center (DIPC), E-20018 Donostia/San Sebastián, Spain
| | - Q. Zhang
- Department of Chemistry, Hunter College, Graduate Center of the City University of New York (CUNY), New York, NY 10016, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - E. Khwaja
- Department of Chemistry, Hunter College, Graduate Center of the City University of New York (CUNY), New York, NY 10016, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - V. M. Menon
- Department of Physics, Graduate Center of the City University of New York (CUNY), New York, NY 10016, USA
- Department of Physics, City College of the City University of New York (CUNY), New York, NY 10031, USA
| | - J. Grimm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA and
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - A. I. Fernández-Domínguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
29
|
68Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: first-in-man series. Eur J Nucl Med Mol Imaging 2020; 47:2624-2632. [PMID: 32242253 PMCID: PMC7515945 DOI: 10.1007/s00259-020-04783-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Purpose Currently, approximately 11–38% of prostate cancer (PCa) patients undergoing radical prostatectomy have a positive surgical margin (PSM) on histopathology. Cerenkov luminescence imaging (CLI) using 68Ga-prostate-specific membrane antigen (68Ga-PSMA) is a novel technique for intraoperative margin assessment. The aim of this first-in-man study was to investigate the feasibility of intraoperative 68Ga-PSMA CLI. In this study, feasibility was defined as the ability to distinguish between a positive and negative surgical margin, imaging within 45 min and low radiation exposure to staff. Methods Six patients were included in this ongoing study. Following perioperative i.v. injection of ~ 100 MBq 68Ga-PSMA, the prostate was excised and immediately imaged ex vivo. Different acquisition protocols were tested, and hotspots on CLI images from the intact prostate were marked for comparison with histopathology. Results By using an acquisition protocol with 150 s exposure time, 8 × 8 binning and a 550 nm shortpass filter, PSMs and negative surgical margins (NSMs) were visually correctly identified on CLI in 3 of the 5 patients. Two patients had a hotspot on CLI from cancer < 0.1 mm from the excision margin. Conclusion Overall, the study showed that 68Ga-PSMA CLI is a feasible and low-risk technique for intraoperative margin assessment in PCa. The remaining patients in this ongoing study will be used to assess the diagnostic accuracy of the technique. Trial registration: NL8256 registered at www.trialregister.nl on 04/11/20109.
Collapse
|
30
|
Hu Z, Chen WH, Tian J, Cheng Z. NIRF Nanoprobes for Cancer Molecular Imaging: Approaching Clinic. Trends Mol Med 2020; 26:469-482. [PMID: 32359478 DOI: 10.1016/j.molmed.2020.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Near-IR fluorescence imaging (NIRFI) is a highly promising technique for improving cancer theranostics in the era of precision medicine. Through the combination with cutting-edge bionanotechnologies, the potential of NIRFI can be greatly broadened. A variety of novel NIRF nanoprobes has been developed with ultimate goals of addressing unmet medical needs. Here, we present recent breakthroughs on the fundamental aspects of NIRFI, such as imaging at long wavelengths (1000-1700 nm), and the use of new approaches (X-rays, chemiluminescence, radioluminescence, etc.) for the excitation of novel nanoprobes. Within two decades, research on NIRF nanoprobes has translated to clinical trials and it will further translate to cancer management.
Collapse
Affiliation(s)
- Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program, and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Life Science and Technology, Xidian University, Xian 710071, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program, and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Genovese D, Petrizza L, Prodi L, Rampazzo E, De Sanctis F, Spinelli AE, Boschi F, Zaccheroni N. Tandem Dye-Doped Nanoparticles for NIR Imaging via Cerenkov Resonance Energy Transfer. Front Chem 2020; 8:71. [PMID: 32175305 PMCID: PMC7056810 DOI: 10.3389/fchem.2020.00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
The detection of the Cerenkov radiation (CR) is an emerging preclinical imaging technique which allows monitoring the in vivo distribution of radionuclides. Among its possible advantages, the most interesting is the simplicity and cost of the required instrumentation compared, e.g., to that required for PET scans. On the other hand, one of its main drawbacks is related to the fact that CR, presenting the most intense component in the UV-vis region, has a very low penetration in biological tissues. To address this issue, we present here multifluorophoric silica nanoparticles properly designed to efficiently absorb the CR radiation and to have a quite high fluorescence quantum yield (0.12) at 826 nm. Thanks to a highly efficient series of energy transfer processes, each nanoparticle can convert part of the CR into NIR light, increasing its detection even under 1.0-cm thickness of muscle.
Collapse
Affiliation(s)
- Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Luca Petrizza
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Luca Prodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Francesco De Sanctis
- Immunologic Section, Department of Medicine, Policlinico G.B. Rossi, Verona, Italy
| | | | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Arlauckas SP, Browning EA, Poptani H, Delikatny EJ. Imaging of cancer lipid metabolism in response to therapy. NMR IN BIOMEDICINE 2019; 32:e4070. [PMID: 31107583 DOI: 10.1002/nbm.4070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Lipids represent a diverse array of molecules essential to the cell's structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause widespread and drastic changes in lipid composition. Molecular imaging techniques have been developed to monitor altered lipid profiles as a biomarker for cancer diagnosis and treatment response. For decades, MRS has been the dominant non-invasive technique for studying lipid metabolite levels. Recent insights into the oncogenic transformations driving changes in lipid metabolism have revealed new mechanisms and signaling molecules that can be exploited using optical imaging, mass spectrometry imaging, and positron emission tomography. These novel imaging modalities have provided researchers with a diverse toolbox to examine changes in lipids in response to a wide array of anticancer strategies including chemotherapy, radiation therapy, signal transduction inhibitors, gene therapy, immunotherapy, or a combination of these strategies. The understanding of lipid metabolism in response to cancer therapy continues to evolve as each therapeutic method emerges, and this review seeks to summarize the current field and areas of unmet needs.
Collapse
Affiliation(s)
- Sean Philip Arlauckas
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Systems Biology, Mass General Hospital, Boston, MA, USA
| | - Elizabeth Anne Browning
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, Institute of Regenerative Medicine, University of Liverpool, Liverpool, UK
| | - Edward James Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Radionuclide-Activated Nanomaterials and Their Biomedical Applications. Angew Chem Int Ed Engl 2019; 58:13232-13252. [PMID: 30779286 PMCID: PMC6698437 DOI: 10.1002/anie.201900594] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Radio-nanomedicine, or the use of radiolabeled nanoparticles in nuclear medicine, has attracted much attention in the last few decades. Since the discovery of Cerenkov radiation and its employment in Cerenkov luminescence imaging, the combination of nanomaterials and Cerenkov radiation emitters has been revolutionizing the way nanomaterials are perceived in the field: from simple inert carriers of radioactivity to activatable nanomaterials for both diagnostic and therapeutic applications. Herein, we provide a comprehensive review on the types of nanomaterials that have been used to interact with Cerenkov radiation and the gamma and beta scintillation of radionuclides, as well as on their biological applications.
Collapse
Affiliation(s)
- Carolina A. Ferreira
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Dalong Ni
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Zachary T. Rosenkrans
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Brůža P, Pétusseau A, Tisa S, Jermyn M, Jarvis LA, Gladstone DJ, Pogue BW. Imaging Cherenkov photon emissions in radiotherapy with a Geiger-mode gated quanta image sensor. OPTICS LETTERS 2019; 44:4546-4549. [PMID: 31517927 PMCID: PMC7181332 DOI: 10.1364/ol.44.004546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The emission of Cherenkov photons from human and animal tissue can be observed during clinical x-ray or particle beam irradiation. However, imaging this weak emission with the necessary single-photon sensitivity in the clinical room is challenging because of milliwatt-level ambient room lighting and the presence of stray high-energy radiation. In this Letter, we demonstrate, to the best of our knowledge, the first Cherenkov imaging with a time-gated quanta image sensor employing a large single-photon avalanche diode (SPAD) array. Detecting single Cherenkov photons was possible with high photon avalanche gain, fast temporal gating, and moderately high ∼7% photon detection probability. Single-bit digitization and active SPAD quenching enabled stray x-ray noise suppression and photon-noise-limited imaging in a clinical environment. This type of imaging allows the knowledge of location, shape, and surface dose of the therapeutic beam radiotherapy with the stability of solid state-based detection.
Collapse
|
35
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Radionuklidaktivierte Nanomaterialien und ihre biomedizinische Anwendung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Carolina A. Ferreira
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Dalong Ni
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Zachary T. Rosenkrans
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Weibo Cai
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| |
Collapse
|
36
|
A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat Commun 2019; 10:2064. [PMID: 31048701 PMCID: PMC6497674 DOI: 10.1038/s41467-019-10119-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
Afterglow imaging with long-lasting luminescence after cessation of light excitation provides opportunities for ultrasensitive molecular imaging; however, the lack of biologically compatible afterglow agents has impeded exploitation in clinical settings. This study presents a generic approach to transforming ordinary optical agents (including fluorescent polymers, dyes, and inorganic semiconductors) into afterglow luminescent nanoparticles (ALNPs). This approach integrates a cascade photoreaction into a single-particle entity, enabling ALNPs to chemically store photoenergy and spontaneously decay it in an energy-relay process. Not only can the afterglow profiles of ALNPs be finetuned to afford emission from visible to near-infrared (NIR) region, but also their intensities can be predicted by a mathematical model. The representative NIR ALNPs permit rapid detection of tumors in living mice with a signal-to-background ratio that is more than three orders of magnitude higher than that of NIR fluorescence. The biodegradability of the ALNPs further heightens their potential for ultrasensitive in vivo imaging. Afterglow luminescence is used to reduce background noise and increase sensitivity; however, biocompatible afterglow materials are limited. Here, the authors report on an approach to turn standard optical agents into afterglow nanoparticles and demonstrate the application in tumour imagining in vivo.
Collapse
|
37
|
Cline B, Delahunty I, Xie J. Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1541. [PMID: 30063116 PMCID: PMC6355363 DOI: 10.1002/wnan.1541] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) has emerged as an attractive option for cancer treatment. However, conventional PDT is activated by light that has poor tissue penetration depths, limiting its applicability in the clinic. Recently the idea of using X-ray sources to activate PDT and overcome the shallow penetration issue has garnered significant interest. This can be achieved by external beam irradiation and using a nanoparticle scintillator as transducer. Alternatively, research on exploiting Cherenkov radiation from radioisotopes to activate PDT has also begun to flourish. In either approach, the most auspicious success is achieved using nanoparticles as either a scintillator or a photosensitizer to mediate energy transfer and radical production. Both X-ray induced PDT (X-PDT) and Cherenkov radiation PDT (CR-PDT) contain a significant radiation therapy (RT) component and are essentially PDT and RT combination. Unlike the conventional combination, however, in X-PDT and CR-PDT, one energy source simultaneously activates both processes, making the combination always in synchronism and the synergy potential maximized. While still in early stage of development, X-PDT and CR-PDT address important issues in the clinic and hold great potential in translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Benjamin Cline
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| |
Collapse
|
38
|
Abstract
The electromagnetic spectrum contains different frequency bands useful for medical imaging and therapy. Short wavelengths (ionizing radiation) are commonly used for radiological and radionuclide imaging and for cancer radiation therapy. Intermediate wavelengths (optical radiation) are useful for more localized imaging and for photodynamic therapy (PDT). Finally, longer wavelengths are the basis for magnetic resonance imaging and for hyperthermia treatments. Recently, there has been a surge of interest for new biomedical methods that synergize optical and ionizing radiation by exploiting the ability of ionizing radiation to stimulate optical emissions. These physical phenomena, together known as radioluminescence, are being used for applications as diverse as radionuclide imaging, radiation therapy monitoring, phototherapy, and nanoparticle-based molecular imaging. This review provides a comprehensive treatment of the physics of radioluminescence and includes simple analytical models to estimate the luminescence yield of scintillators and nanoscintillators, Cherenkov radiation, air fluorescence, and biologically endogenous radioluminescence. Examples of methods that use radioluminescence for diagnostic or therapeutic applications are reviewed and analyzed in light of these quantitative physical models of radioluminescence.
Collapse
Affiliation(s)
- Justin Klein
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Conroy Sun
- College of Pharmacy, Oregon State University, Portland, OR 97201
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| |
Collapse
|
39
|
Zhang Z, Cai M, Bao C, Hu Z, Tian J. Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:62-70. [PMID: 30654183 DOI: 10.1016/j.nano.2018.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/16/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Detecting deep tumors inside living subject is still challenging for Cerenkov luminescence imaging (CLI). In this study, a high-sensitivity endoscopic CLI (ECLI) system was developed with a dual-mode deep cooling approach to improve the imaging sensitivity. System was characterized through a series of ex vivo studies. Furthermore, subcutaneous and orthotropic human hepatocellular carcinoma (HCC) mouse models were established for ECLI guided tumor resection in vivo. The results showed that the ECLI system had spatial resolution (62.5 μm) and imaging sensitivity (6.29 × 10-2 kBq/μl 18F-FDG). The in vivo experimental data from the HCC mouse models demonstrated that the system was effective to intraoperatively guide the surgery of deep tumors such as liver cancer. Overall, the developed system exhibits promising potential for the applications of tumor precise resection and novel nanoprobe based optical imaging.
Collapse
Affiliation(s)
- Zeyu Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Meishan Cai
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chengpeng Bao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Maier FC, Wild AM, Kirchen N, Holm F, Fuchs K, Schwenck J, Maurer A, Wiehr S. Comparative immuno-Cerenkov luminescence and -PET imaging enables detection of PSMA+ tumors in mice using 64Cu-radiolabeled monoclonal antibodies. Appl Radiat Isot 2019; 143:149-155. [DOI: 10.1016/j.apradiso.2018.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 09/07/2018] [Indexed: 01/29/2023]
|
41
|
Gao Y, Ma X, Kang F, Yang W, Liu Y, Wang Z, Ma W, Wang Z, Li G, Cao X, Wang J. Enhanced Cerenkov luminescence tomography analysis based on Y 2O 3:Eu 3+ rare earth oxide nanoparticles. BIOMEDICAL OPTICS EXPRESS 2018; 9:6091-6102. [PMID: 31065415 PMCID: PMC6491000 DOI: 10.1364/boe.9.006091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Cerenkov luminescence imaging offers a new diagnostic alternative to radiation imaging, but lacks intensity and penetration. In this study, a Cerenkov luminescence signal and its image quality were enhanced using rare earth oxide nanoparticles as a basis for Cerenkov luminescence excited fluorescence imaging and Cerenkov luminescence excited fluorescence tomography. The results also provided 3D-imaging and quantitative information. The approach was evaluated using phantom and mice models and 3D reconstruction and quantitative studies were performed in vitro, showing improved optical signal intensity, similarity, accuracy, signal-to-noise ratio, and spatial distribution information. The method offers benefits for both optical imaging research and radiopharmaceutical development.
Collapse
Affiliation(s)
- Yongheng Gao
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
- These authors contributed equally to this work
| | - Xiaowei Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
- These authors contributed equally to this work
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Yi Liu
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Zhengjie Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Zhe Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xiâan, Shaanxi 710071, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xiâan 710032, China
| |
Collapse
|
42
|
Ni D, Ferreira CA, Barnhart TE, Quach V, Yu B, Jiang D, Wei W, Liu H, Engle JW, Hu P, Cai W. Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy. J Am Chem Soc 2018; 140:14971-14979. [PMID: 30336003 DOI: 10.1021/jacs.8b09374] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interaction between radionuclides and nanomaterials could generate Cerenkov radiation (CR) for CR-induced photodynamic therapy (PDT) without requirement of external light excitation. However, the relatively weak CR interaction leaves clinicians uncertain about the benefits of this new type of PDT. Therefore, a novel strategy to amplify the therapeutic effect of CR-induced PDT is imminently required to overcome the disadvantages of traditional nanoparticulate PDT such as tissue penetration limitation, external light dependence, and low tumor accumulation of photosensitizers. Herein, magnetic nanoparticles (MNPs) with 89Zr radiolabeling and porphyrin molecules (TCPP) surface modification (i.e., 89Zr-MNP/TCPP) were synthesized for CR-induced PDT with magnetic targeting tumor delivery. As a novel strategy to break the depth and light dependence of traditional PDT, these 89Zr-MNP/TCPP exhibited high tumor accumulation under the presence of an external magnetic field, contributing to excellent tumor photodynamic therapeutic effect together with fluorescence, Cerenkov luminescence (CL), and Cerenkov resonance energy transfer (CRET) multimodal imaging to monitor the therapeutic process. The present study provides a major step forward in photodynamic therapy by developing an advanced phototherapy tool of magnetism-enhanced CR-induced PDT for effective targeting and treatment of tumors.
Collapse
Affiliation(s)
- Dalong Ni
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States
| | - Carolina A Ferreira
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States
| | - Virginia Quach
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States
| | - Bo Yu
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States
| | - Dawei Jiang
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States
| | - Weijun Wei
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States
| | - Huisheng Liu
- Interdisciplinary Innovation Institute of Medicine & Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Weibo Cai
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Wisconsin 53705 , United States.,University of Wisconsin Carbone Cancer Center , Madison , Wisconsin 53705 , United States
| |
Collapse
|
43
|
Kavadiya S, Biswas P. Design of Cerenkov Radiation-Assisted Photoactivation of TiO 2 Nanoparticles and Reactive Oxygen Species Generation for Cancer Treatment. J Nucl Med 2018; 60:702-709. [PMID: 30291195 DOI: 10.2967/jnumed.118.215608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 01/04/2023] Open
Abstract
The use of Cerenkov radiation to activate nanoparticles in situ was recently shown to control cancerous tumor growth. Although the methodology has been demonstrated to work, to better understand the mechanistic steps, we developed a mathematic model that integrates Cerenkov physics, light interaction with matter, and photocatalytic reaction engineering. Methods: The model describes a detailed pathway for localized reactive oxygen species (ROS) generation from the Cerenkov radiation-assisted photocatalytic activity of TiO2 The model predictions were verified by comparison to experimental reports in the literature. The model was then used to investigate the effects of various parameters-the size of TiO2 nanoparticles, the concentration of TiO2 nanoparticles, and the activity of the radionuclide 18F-FDG-on the number of photons and ROS generation. Results: The importance of nanoparticle size in ROS generation for cancerous tumor growth control was elucidated, and an optimal size was proposed. Conclusion: The model described here can be used for other radionuclides and nanoparticles and can provide guidance on the concentration and size of TiO2 nanoparticles and the radionuclide activity needed for efficient cancer therapy.
Collapse
Affiliation(s)
- Shalinee Kavadiya
- Aerosol and Air Quality Research Laboratory, Center of Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri
| | - Pratim Biswas
- Aerosol and Air Quality Research Laboratory, Center of Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
44
|
Ha YS, Lee W, Jung JM, Soni N, Pandya DN, An GI, Sarkar S, Lee WK, Yoo J. Visualization and Quantification of Radiochemical Purity by Cerenkov Luminescence Imaging. Anal Chem 2018; 90:8927-8935. [PMID: 29991252 DOI: 10.1021/acs.analchem.8b01098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Determination of radiochemical purity is essential for characterization of all radioactive compounds, including clinical radiopharmaceuticals. Radio-thin layer chromatography (radio-TLC) has been used as the gold standard for measurement of radiochemical purity; however, this method has several limitations in terms of sensitivity, spatial resolution, two-dimensional scanning, and quantification accuracy. Here, we report a new analytical technique for determination of radiochemical purity based on Cerenkov luminescence imaging (CLI), whereby entire TLC plates are visualized by detection of Cerenkov radiation. Sixteen routinely used TLC plates were tested in combination with three different radioisotopes (131I, 124I, and 32P). All TLC plates doped with a fluorescent indicator showed excellent detection sensitivity with scanning times of less than 1 min. The new CLI method was superior to the traditional radio-TLC scanning method in terms of sensitivity, scanning time, spatial resolution, and two-dimensional scanning. The CLI method also showed better quantification features across a wider range of radioactivity values compared with radio-TLC and classical zonal analysis, especially for β--emitters such as 131I and 32P.
Collapse
Affiliation(s)
- Yeong Su Ha
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Woonghee Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Jung-Min Jung
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Nisarg Soni
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Darpan N Pandya
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Gwang Il An
- Molecular Imaging Research Center , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Won Kee Lee
- Medical Research Collabration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine , Kyungpook National University , Daegu , North Gyeongsang 41944 , Korea
| |
Collapse
|
45
|
Abstract
Cerenkov luminescence (CL) is blue glow light produced by charged subatomic particles travelling faster than the phase velocity of light in a dielectric medium such as water or tissue. CL was first discovered in 1934, but for biomedical research it was recognized only in 2009 after advances in optical camera sensors brought the required high sensitivity. Recently, applications of CL from clinical radionuclides have been rapidly expanding to include not only preclinical and clinical biomedical imaging but also an approach to therapy. Cerenkov Luminescence Imaging (CLI) utilizes CL generated from clinically relevant radionuclides alongside optical imaging instrumentation. CLI is advantageous over traditional nuclear imaging methods in terms of infrastructure cost, resolution, and imaging time. Furthermore, CLI is a truly multimodal imaging method where the same agent can be detected by two independent modalities, with optical (CL) imaging and with positron emission tomography (PET) imaging. CL has been combined with small molecules, biomolecules and nanoparticles to improve diagnosis and therapy in cancer research. Here, we cover the fundamental breakthroughs and recent advances in reagents and instrumentation methods for CLI as well as therapeutic application of CL.
Collapse
Affiliation(s)
- Ryo Tamura
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Edwin C Pratt
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY; Pharmacology, Weill Cornell Graduate School, New York, NY
| | - Jan Grimm
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY; Pharmacology, Weill Cornell Graduate School, New York, NY; Radiology, Weill Cornell Medicine, New York, NY; Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
46
|
Lewis DY, Mair R, Wright A, Allinson K, Lyons SK, Booth T, Jones J, Bielik R, Soloviev D, Brindle KM. [ 18F]fluoroethyltyrosine-induced Cerenkov Luminescence Improves Image-Guided Surgical Resection of Glioma. Theranostics 2018; 8:3991-4002. [PMID: 30083276 PMCID: PMC6071532 DOI: 10.7150/thno.23709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/26/2018] [Indexed: 01/27/2023] Open
Abstract
The extent of surgical resection is significantly correlated with outcome in glioma; however, current intraoperative navigational tools are useful only in a subset of patients. We show here that a new optical intraoperative technique, Cerenkov luminescence imaging (CLI) following intravenous injection of O‑(2-[18F]fluoroethyl)-L-tyrosine (FET), can be used to accurately delineate glioma margins, performing better than the current standard of fluorescence imaging with 5-aminolevulinic acid (5-ALA). Methods: Rats implanted orthotopically with U87, F98 and C6 glioblastoma cells were injected with FET and 5-aminolevulinic acid (5-ALA). Positive and negative tumor regions on histopathology were compared with CL and fluorescence images. The capability of FET CLI and 5-ALA fluorescence imaging to detect tumor was assessed using receptor operator characteristic curves and optimal thresholds (CLIOptROC and 5-ALAOptROC) separating tumor from healthy brain tissue were determined. These thresholds were used to guide prospective tumor resections, where the presence of tumor cells in the resected material and in the remaining brain were assessed by Ki-67 staining. Results: FET CLI signal was correlated with signal in preoperative PET images (y = 1.06x - 0.01; p < 0.0001) and with expression of the amino acid transporter SLC7A5 (LAT1). FET CLI (AUC = 97%) discriminated between glioblastoma and normal brain in human and rat orthografts more accurately than 5-ALA fluorescence (AUC = 91%), with a sensitivity >92% and specificity >91%, and resulted in a more complete tumor resection. Conclusion: FET CLI can be used to accurately delineate glioblastoma tumor margins, performing better than the current standard of fluorescence imaging following 5-ALA administration, and is therefore a promising technique for clinical translation.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Current address: Cancer Research UK - Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | - Richard Mair
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alan Wright
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Scott K. Lyons
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Tom Booth
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Julia Jones
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Robert Bielik
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Current address: Cancer Research UK - Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
47
|
Karaman DŞ, Sarparanta MP, Rosenholm JM, Airaksinen AJ. Multimodality Imaging of Silica and Silicon Materials In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703651. [PMID: 29388264 DOI: 10.1002/adma.201703651] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Indexed: 05/29/2023]
Abstract
Recent progress in the development of silica- and silicon-based multimodality imaging nanoprobes has advanced their use in image-guided drug delivery, and the development of novel systems for nanotheranostic and diagnostic applications. As biocompatible and flexibly tunable materials, silica and silicon provide excellent platforms with high clinical potential in nanotheranostic and diagnostic probes with well-defined morphology and surface chemistry, yielding multifunctional properties. In vivo imaging is of great value in the exploration of methods for improving site-specific nanotherapeutic delivery by silica- and silicon-based drug-delivery systems. Multimodality approaches are essential for understanding the biological interactions of nanotherapeutics in the physiological environment in vivo. The aim here is to describe recent advances in the development of in vivo imaging tools based on nanostructured silica and silicon, and their applications in single and multimodality imaging.
Collapse
Affiliation(s)
- Didem Şen Karaman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, FI, 20520, Turku, Finland
| | - Mirkka P Sarparanta
- Department of Chemistry-Radiochemistry, Faculty of Science, University of Helsinki, POB 55, FI-00014, University of Helsinki, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, FI, 20520, Turku, Finland
| | - Anu J Airaksinen
- Department of Chemistry-Radiochemistry, Faculty of Science, University of Helsinki, POB 55, FI-00014, University of Helsinki, Finland
| |
Collapse
|
48
|
Pratt EC, Shaffer TM, Zhang Q, Drain CM, Grimm J. Nanoparticles as multimodal photon transducers of ionizing radiation. NATURE NANOTECHNOLOGY 2018; 13:418-426. [PMID: 29581551 PMCID: PMC5973484 DOI: 10.1038/s41565-018-0086-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2018] [Indexed: 05/30/2023]
Abstract
In biomedical imaging, nanoparticles combined with radionuclides that generate Cerenkov luminescence are used in diagnostic imaging, photon-induced therapies and as activatable probes. In these applications, the nanoparticle is often viewed as a carrier inert to ionizing radiation from the radionuclide. However, certain phenomena such as enhanced nanoparticle luminescence and generation of reactive oxygen species cannot be completely explained by Cerenkov luminescence interactions with nanoparticles. Herein, we report methods to examine the mechanisms of nanoparticle excitation by radionuclides, including interactions with Cerenkov luminescence, β particles and γ radiation. We demonstrate that β-scintillation contributes appreciably to excitation and reactivity in certain nanoparticle systems, and that excitation by radionuclides of nanoparticles composed of large atomic number atoms generates X-rays, enabling multiplexed imaging through single photon emission computed tomography. These findings demonstrate practical optical imaging and therapy using radionuclides with emission energies below the Cerenkov threshold, thereby expanding the list of applicable radionuclides.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Pharmacology, Weill Cornell Graduate School, New York, NY, USA
| | - Travis M Shaffer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Qize Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Charles Michael Drain
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Graduate School, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
49
|
Pogue BW, Feng J, LaRochelle EP, Bruža P, Lin H, Zhang R, Shell JR, Dehghani H, Davis SC, Vinogradov SA, Gladstone DJ, Jarvis LA. Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging. Nat Biomed Eng 2018; 2:254-264. [PMID: 30899599 PMCID: PMC6424530 DOI: 10.1038/s41551-018-0220-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low signal-to-noise ratios and limited imaging depths restrict the ability of optical-imaging modalities to detect and accurately quantify molecular emissions from tissue. Here, by using a scanning external X-ray beam from a clinical linear accelerator to induce Cherenkov excitation of luminescence in tissue, we demonstrate in vivo mapping of the oxygenation of tumours at depths of several millimetres, with submillimetre resolution and nanomolar sensitivity. This was achieved by scanning thin sheets of the X-ray beam orthogonally to the emission-detection plane, and by detecting the signal via a time-gated CCD camera synchronized to the radiation pulse. We also show with experiments using phantoms and with simulations that the performance of Cherenkov-excited luminescence scanned imaging (CELSI) is limited by beam size, scan geometry, probe concentration, radiation dose and tissue depth. CELSI might provide the highest sensitivity and resolution in the optical imaging of molecular tracers in vivo.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. .,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Jinchao Feng
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | | | - Petr Bruža
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Huiyun Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Lesley A Jarvis
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
50
|
|