1
|
Li Y, Dai Z, Cheng Z, He J, Yin Y, Liu X, Zhang J, Hu G, Chen Y, Wang X, Shao Y. LINC00870 promotes imatinib resistance in gastrointestinal stromal tumor via inhibiting PIGR glycosylation modifications. Heliyon 2025; 11:e41934. [PMID: 39968132 PMCID: PMC11834037 DOI: 10.1016/j.heliyon.2025.e41934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 02/20/2025] Open
Abstract
Imatinib is the first-line targeted therapy for gastrointestinal stromal tumor (GIST), but resistance frequently occurs during treatment, limiting its efficacy and clinical application. We performed high-throughput sequencing of tissue specimens from imatinib-resistant GIST patients, and identified significantly high expression of polymeric immunoglobulin receptor (PIGR) in imatinib-resistant cell lines. Further investigation revealed that PIGR binds specifically to LINC00870. The findings from in vitro cell functional experiments provide evidence of a strong association between LINC00870 and PIGR and the processes of proliferation and metastasis in GIST. Overexpression of LINC00870 in GIST significantly inhibits the glycosylation modification and secretion of the extracellular region of PIGR, leading to immune dysregulation. The inhibition of PIGR or LINC00870 effectively surmounts imatinib resistance. Our study identified PIGR as a critical molecule in regulating GIST imatinib resistance and elucidated the mechanism by which PIGR promotes imatinib resistance through LINC00870 inhibition of PIGR glycosylation modifications. These findings provide a new theoretical basis for blocking drug resistance and improving prognosis in GIST.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Zhiqiang Dai
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zewei Cheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junyi He
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yirui Yin
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Xinyou Liu
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guohua Hu
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Yueda Chen
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Research Center for Precision medicine of abdominal tumor of Fujian Province, Xiamen, 361015, China
| | - Yebo Shao
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| |
Collapse
|
2
|
Raeisi Dehkordi S, Wong ITL, Ni J, Luebeck J, Zhu K, Prasad G, Krockenberger L, Xu G, Chowdhury B, Rajkumar U, Caplin A, Muliaditan D, Gnanasekar A, Coruh C, Jin Q, Turner K, Teo SX, Pang AWC, Alexandrov LB, Chua CEL, Furnari FB, Maciejowski J, Paulson TG, Law JA, Chang HY, Yue F, DasGupta R, Zhao J, Mischel PS, Bafna V. Breakage fusion bridge cycles drive high oncogene number with moderate intratumoural heterogeneity. Nat Commun 2025; 16:1497. [PMID: 39929823 PMCID: PMC11811125 DOI: 10.1038/s41467-025-56670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Oncogene amplification is a key driver of cancer pathogenesis. Both breakage fusion bridge (BFB) cycles and extrachromosomal DNA (ecDNA) can lead to high oncogene copy numbers, but the impact of BFB amplifications on intratumoral heterogeneity, treatment response, and patient survival remains poorly understood due to detection challenges with DNA sequencing. We introduce an algorithm, OM2BFB, designed to detect and reconstruct BFB amplifications using optical genome mapping (OGM). OM2BFB demonstrates high precision (>93%) and recall (92%) in identifying BFB amplifications across cancer cell lines, patient-derived xenograft models, and primary tumors. Comparisons using OGM reveal that BFB detection with our AmpliconSuite toolkit for short-read sequencing also achieves high precision, though with reduced sensitivity. We identify 371 BFB events through whole genome sequencing of 2557 primary tumors and cancer cell lines. BFB amplifications are prevalent in cervical, head and neck, lung, and esophageal cancers, but rare in brain cancers. Genes amplified through BFB exhibit lower expression variance, with limited potential for regulatory adaptation compared to ecDNA-amplified genes. Tumors with BFB amplifications (BFB(+)) show reduced structural heterogeneity in amplicons and delayed resistance onset relative to ecDNA(+) tumors. These findings highlight ecDNA and BFB amplifications as distinct oncogene amplification mechanisms with differing biological characteristics, suggesting distinct avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Siavash Raeisi Dehkordi
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jing Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Kaiyuan Zhu
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Gino Prasad
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Lena Krockenberger
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Guanghui Xu
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Biswanath Chowdhury
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Ann Caplin
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Daniel Muliaditan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Aditi Gnanasekar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- ClearNote Health, San Diego, CA, 92121, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | | | - Shu Xian Teo
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138672, Republic of Singapore
| | | | - Ludmil B Alexandrov
- Moores Cancer Center, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Christelle En Lin Chua
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138672, Republic of Singapore
| | - Frank B Furnari
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Maciejowski
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas G Paulson
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Ramanuj DasGupta
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
- School of Cancer Sciences, University of Glasgow; Senior Group Leader, CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jean Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA.
- Halıcıoğlu Data Science Institute, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
4
|
Toh SY, Leong HS, Chong FT, Rodrigues-Junior DM, Ren MJ, Kwang XL, Lau DPX, Lee PH, Vettore AL, Teh BT, Tan DSW, Iyer NG. Therapeutic application of extracellular vesicular EGFR isoform D as a co-drug to target squamous cell cancers with tyrosine kinase inhibitors. Dev Cell 2024; 59:2189-2202.e8. [PMID: 39089249 DOI: 10.1016/j.devcel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
Targeting wild-type epidermal growth factor receptor (EGFR) using tyrosine kinase inhibitors (TKIs) never achieved its purported success in cancers such as head and neck squamous cell carcinoma, which are largely EGFR-dependent. We had previously shown that exceptional responders to TKIs have a genetic aberration that results in overexpression of an EGFR splice variant, isoform D (IsoD). IsoD lacks an integral transmembrane and kinase domain and is secreted in extracellular vesicles (EVs) in TKI-sensitive patient-derived cultures. Remarkably, the exquisite sensitivity to TKIs could be transferred to TKI-resistant tumor cells, and IsoD protein in the EV is necessary and sufficient to transfer the phenotype in vitro and in vivo across multiple models and drugs. This drug response requires an intact endocytic mechanism, binding to full-length EGFR, and signaling through Src-phosphorylation within the endosomal compartment. We propose a therapeutic strategy using EVs containing EGFR IsoD as a co-drug to expand the use of TKI therapy to EGFR-driven cancers.
Collapse
Affiliation(s)
- Shen Yon Toh
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Dorival Mendes Rodrigues-Junior
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Meng Jie Ren
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Dawn P X Lau
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Po-Hsien Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Andre Luiz Vettore
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Daniel S W Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Academic Clinical Program in Oncology, Duke-NUS Medical School, Singapore, Singapore; Department of Head and Neck Surgery, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Zhu L, Zhang J, Zhou H, Zhang G, Wang B, Qi H. Clinical role of the long non‑coding RNA, EGFR‑AS1, in patients with cancer: A systematic review and meta‑analysis. Oncol Lett 2024; 27:199. [PMID: 38516689 PMCID: PMC10955676 DOI: 10.3892/ol.2024.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
The novel long non-coding RNA, EGFR-AS1, is expressed in various types of solid tumour, and its oncogenic role has been fully identified. In the present study, several articles were screened following an electronic search of the PubMed database. In total, 8 studies were included in the present systematic review. For each analysis indicator risk ratios (RRs) with 95% confidence intervals (CIs) or hazard ratios (HRs) with standard errors and 95% CIs were estimated using Review Manager 5.3. The pooled RR of high EGFR-AS1 expression among patients with or without vascular invasion was 1.81 with a 95% CI of 1.22-2.69; the pooled HR of high EGFR-AS1 expression for patient overall survival rate was 1.74 with a 95% CI of 1.39-2.18. Therefore, EGFR-AS1 was identified as an oncogene and the upregulated EGFR-AS1 expression was significantly associated with advanced tumour progression and poor prognosis.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Jie Zhang
- Department of Thyroid Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Hongxia Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Guanqi Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Bin Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Haolong Qi
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
6
|
Wang J, Ren H, Xu C, Yu B, Cai Y, Wang J, Ni X. Identification of m6A/m5C-related lncRNA signature for prediction of prognosis and immunotherapy efficacy in esophageal squamous cell carcinoma. Sci Rep 2024; 14:8238. [PMID: 38589454 PMCID: PMC11001862 DOI: 10.1038/s41598-024-58743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications have garnered significant attention in the field of epigenetic research due to their close association with human cancers. This study we focus on elucidating the expression patterns of m6A/m5C-related long non-coding RNAs (lncRNAs) in esophageal squamous cell carcinoma (ESCC) and assessing their prognostic significance and therapeutic potential. Transcriptomic profiles of ESCC were derived from public resources. m6A/m5C-related lncRNAs were obtained from TCGA using Spearman's correlations analysis. The m6A/m5C-lncRNAs prognostic signature was selected to construct a RiskScore model for survival prediction, and their correlation with the immune microenvironment and immunotherapy response was analyzed. A total of 606 m6A/m5C-lncRNAs were screened, and ESCC cases in the TCGA cohort were stratified into three clusters, which showed significantly distinct in various clinical features and immune landscapes. A RiskScore model comprising ten m6A/m5C-lncRNAs prognostic signature were constructed and displayed good independent prediction ability in validation datasets. Patients in the low-RiskScore group had a better prognosis, a higher abundance of immune cells (CD4 + T cell, CD4 + naive T cell, class-switched memory B cell, and Treg), and enhanced expression of most immune checkpoint genes. Importantly, patients with low-RiskScore were more cline benefit from immune checkpoint inhibitor treatment (P < 0.05). Our findings underscore the potential of RiskScore system comprising ten m6A/m5C-related lncRNAs as effective biomarkers for predicting survival outcomes, characterizing the immune landscape, and assessing response to immunotherapy in ESCC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Huiwen Ren
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Bo Yu
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Yiling Cai
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Jian Wang
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China.
| | - Xinye Ni
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
7
|
Kwapisz D, Pawlikowska P, Strati A. Editorial: Predictive and prognostic value of liquid biopsy biomarkers in metastatic cancers: from basic science, across high throughput profiling up to clinical practice. Front Oncol 2024; 14:1375711. [PMID: 38562174 PMCID: PMC10982474 DOI: 10.3389/fonc.2024.1375711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Dorota Kwapisz
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Patrycja Pawlikowska
- Gustave Roussy, Université Paris-Saclay, “Rare Circulating Cells” Translational Platform, CNRS UMS3655 – INSERM US23 AMMICA, Villejuif, France
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Ji X, Zhu R, Gao C, Xie H, Gong X, Luo J. Hypoxia-Derived Exosomes Promote Lung Adenocarcinoma by Regulating HS3ST1-GPC4-Mediated Glycolysis. Cancers (Basel) 2024; 16:695. [PMID: 38398086 PMCID: PMC10886556 DOI: 10.3390/cancers16040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE The diagnosis of lung adenocarcinoma (LUAD) is often delayed due to the typically asymptomatic nature of the early-stage disease, causing advanced-stage LUAD diagnosis in most patients. Hypoxia is widely recognized as a driving force in cancer progression. Exosomes originating from hypoxic tumor cells promote tumorigenesis by influencing glycolysis, migration, invasion, and immune infiltration. Given these insights, our study aimed to explore the role of hypoxia-derived exosomal long non-coding RNA (lncRNA) OIP5-AS1 in LUAD cell lines and mouse models. MATERIALS AND METHODS Exosomes were meticulously isolated and authenticated based on their morphology and biomarkers. The interaction between heparan sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1) and Glypican 4 (GPC4) was examined using immunoprecipitation. The influence of the hypoxia-derived exosomal lncRNA OIP5-AS1 on glycolysis was assessed in LUAD cell lines. The effect of the hypoxia-derived exosomal lncRNA OIP5-AS1 on cell proliferation and metastasis was evaluated using colony formation, cell viability, cell cycle, and apoptosis analyses. Its effects on tumor size were confirmed in xenograft animal models. RESULTS Our study revealed the mechanism of the hypoxia-derived exosomal lncRNA OIP5-AS1 in LUAD progression. We discovered that GPC4 promotes HS3ST1-mediated glycolysis and that the hypoxia-derived exosomal lncRNA OIP5-AS1 enhances glycolysis by regulating miR-200c-3p in LUAD cells. Notably, this lncRNA stimulates LUAD cell proliferation and metastasis and fosters LUAD tumor size via miR-200c-3p. Our findings underscore the potential role of the hypoxia-derived exosomal lncRNA OIP5-AS1 in LUAD progression. CONCLUSIONS The hypoxia-derived exosomal lncRNA OIP5-AS1 promotes LUAD by regulating HS3ST1-GPC4-mediated glycolysis via miR-200c-3p.
Collapse
Affiliation(s)
- Xianxiu Ji
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ren Zhu
- Department of Medical Administration, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Caixia Gao
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jie Luo
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
9
|
Dong B, Li C, Xu X, Wang Y, Li Y, Li X. LncRNA LINC01123 promotes malignancy of ovarian cancer by targeting hsa-miR-516b-5p/VEGFA. Genes Genomics 2024; 46:231-239. [PMID: 37728844 DOI: 10.1007/s13258-023-01440-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play a critical role in the development of ovarian cancer (OC). OBJECTIVE The study aimed to determine the role of LncRNA LINC01123 in OC bio-progression, which is upregulated in OC tissues during OC progression. METHODS Bioinformatics methods, GEPIA, and qRT-PCR were used to reveal the level and correlation of LINC01123, hsa-miR-516b-5p, and VEGFA, in OC cell lines. MTT, EdU, TUNEL, and Transwell assays were performed to assess the bioactivity of OC cell. Target sites of LINC01123 and hsa-miR-516b-5p were predicted using Starbase, and the potential linkage points of VEGFA and hsa-miR-516b-5p were predicted using TargetScan. These sites and linkage points were confirmed by double luciferase reporter assay. RESULTS LINC01123 was upregulated in OC cell lines and LINC01123 silencing suppressed the proliferation and metastasis of OC cells, but promoted cell apoptosis. hsa-miR-516b-5p was linked to LINC01123 and. VEGFA was downstream of hsa-miR-516b-5p. Importantly, silencing of hsa-miR-516b-5p reversed the inhibitory impact of si-LINC01123. The result of hsa-miR-516b-5p inhibitor + si-LINC01123 co-transfection were rescued by si-VEGFA. CONCLUSION LINC01123 promotes OC development by dampening miR-516b-5p function, and may be a novel target for treating OC.
Collapse
Affiliation(s)
- Bing Dong
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China.
| | - Cuiping Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Xiaomeng Xu
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Yan Wang
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Yuewen Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Xingmei Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| |
Collapse
|
10
|
Chakkarappan SR, Umadharshini KV, Dhamodharan S, Rose MM, Gopu G, Murugan AK, Inoue I, Munirajan AK. Super enhancer loci of EGFR regulate EGFR variant 8 through enhancer RNA and strongly associate with survival in HNSCCs. Mol Genet Genomics 2024; 299:3. [PMID: 38236481 DOI: 10.1007/s00438-023-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/21/2023] [Indexed: 01/19/2024]
Abstract
Epidermal growth factor receptor (EGFR) has been shown to be overexpressed in human cancers due to mutation, amplification, and epigenetic hyperactivity, which leads to deregulated transcriptional mechanism. Among the eight different EGFR isoforms, the mechanism of regulation of full-length variant 1 is well-known, no studies have examined the function & factors regulating the expression of variant 8. This study aimed to understand the function of EGFR super-enhancer loci and its associated transcription factors regulating the expression of EGFR variant 8. Our study shows that overexpression of variant 8 and its transcription was more prevalent than variant 1 in many cancers and positively correlated with the EGFR-AS1 expression in oral cancer and HNSCC. Notably, individuals overexpressing variant 8 showed shorter overall survival and had a greater connection with other clinical traits than patients with overexpression of variant 1. In this study, TCGA enhancer RNA profiling on the constituent enhancer (CE1 and CE2) region revealed that the multiple enhancer RNAs formed from CE2 by employing CE1 as a promoter. Our bioinformatic analysis further supports the enrichment of enhancer RNA specific chromatin marks H3K27ac, H3K4me1, POL2 and H2AZ on CE2. GeneHancer and 3D chromatin capture analysis showed clustered interactions between CE1, CE2 loci and this interaction may regulates expression of both EGFR-eRNA and variant 8. Moreover, increased expression of SNAI2 and its close relationship to EGFR-AS1 and variant 8 suggest that SNAI2 could regulates variant 8 overexpression by building a MegaTrans complex with both EGFR-eRNA and EGFR-AS1. Our findings show that EGFR variant 8 and its transcriptional regulation & chromatin modification by eRNAs may provide a rationale for targeting RNA splicing in combination with targeted EGFR therapies in cancer.
Collapse
Affiliation(s)
- Sundaram Reddy Chakkarappan
- Department of Health Research, Multi Disciplinary Research Unit (DHR-MRU), Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | | | - Shankar Dhamodharan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Mathew Maria Rose
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Govindasamy Gopu
- Department of Surgical Oncology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, 600003, India
| | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Arasambattu Kannan Munirajan
- Department of Health Research, Multi Disciplinary Research Unit (DHR-MRU), Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India.
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India.
| |
Collapse
|
11
|
Masrour M, Khanmohammadi S, Fallahtafti P, Rezaei N. Long non-coding RNA as a potential diagnostic biomarker in head and neck squamous cell carcinoma: A systematic review and meta-analysis. PLoS One 2023; 18:e0291921. [PMID: 37733767 PMCID: PMC10513217 DOI: 10.1371/journal.pone.0291921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a group of malignancies arising from the epithelium of the head and neck. Despite efforts in treatment, results have remained unsatisfactory, and the death rate is high. Early diagnosis of HNSCC has clinical importance due to its high rates of invasion and metastasis. This systematic review and meta-analysis evaluated the diagnostic accuracy of lncRNAs in HNSCC patients. METHODS PubMed, ISI, SCOPUS, and EMBASE were searched for original publications published till April 2023 using MeSH terms and free keywords "long non-coding RNA" and "head and neck squamous cell carcinoma" and their expansions. The Reitsma bivariate random effect model pooled diagnostic test performance for studies that reported specificity and sensitivity; diagnostic AUC values from all trials were meta-analyzed using the random effects model with the inverse variance method. RESULTS The initial database search yielded 3209 articles, and 25 studies met our criteria. The cumulative sensitivity and specificity for lncRNAs in the diagnosis of HNSCC were 0.74 (95%CI: 0.68-0.7 (and 0.79 (95%CI: 0.74-0.83), respectively. The pooled AUC value for all specimen types was found to be 0.83. Using the inverse variance method, 71 individual lncRNAs yielded a pooled AUC of 0.77 (95%CI: 0.74-0.79). Five studies reported on the diagnostic accuracy of the MALAT1 lncRNA with a pooled AUC value of 0.83 (95%CI: 0.73-0.94). CONCLUSIONS LncRNAs could be used as diagnostic biomarkers for HNSCC, but further investigation is needed to validate clinical efficacy and elucidate mechanisms. High-throughput sequencing and bioinformatics should be used to ascertain expression profiles.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Fan X, Huang Y, Zhong Y, Yan Y, Li J, Fan Y, Xie F, Luo Q, Zhang Z. A new marker constructed from immune-related lncRNA pairs can be used to predict clinical treatment effects and prognosis: in-depth exploration of underlying mechanisms in HNSCC. World J Surg Oncol 2023; 21:250. [PMID: 37592311 PMCID: PMC10433616 DOI: 10.1186/s12957-023-03066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) plays a vital role in tumor proliferation, migration, and treatment. Since it is challenging to standardize the gene expression levels detected by different platforms, the signatures composed of many immune-related single lncRNAs are still inaccurate. Utilizing a gene pair formed of two immune-related lncRNAs and strategically assigning values can effectively meet the demand for a higher-accuracy dual biomarker combination. METHODS Co-expression and differential expression analyses were performed on immune genes and lncRNAs data from The Cancer Genome Atlas and the ImmPort database to obtain differentially expressed immune-related lncRNAs for pairwise pairing. The prognostic-related differentially expressed immune-related lncRNAs (PR-DE-irlncRNAs) pairs were then identified by univariate Cox regression and used for lasso regression to construct a prognostic model. Various methods were used to validate the predictive prognostic performance of the model. Additionally, we explored the potential guiding value of the model in immunotherapy and chemotherapy and constructed a nomogram suitable for efficient prognosis prediction. Mechanistic exploration of anti-tumor immunity and mutational perspectives are also included. We also analyzed the correlation between the model and immune checkpoint inhibitors (ICIs)-related, N6-methyadenosine (m6A)-related, and multidrug resistance genes. RESULTS We used a total of 20 pairs of PR-DE-irlncRNAs to create a prognosis model. Quantitative real-time polymerase chain reaction experiments further verified the abnormal expression of 11 lncRNAs in HNSCC cells. Various methods have confirmed the excellent performance of the model in predicting patient prognosis. We reasoned that lncRNAs/TP53 mutation might play a positive/negative anti-tumor role through the immune system by multi-perspective analyses. Finally, it was found that the prognostic model was closely related to immunotherapy and chemotherapy as well as the expression of ICIs/m6A/multidrug resistance-related genes. CONCLUSION The prognostic model performs excellently in predicting the prognosis of patients and provides the potential value of practical guidance for treatment.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yuhan Huang
- Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yun Zhong
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yujie Yan
- School of Stomatology, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yanting Fan
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fei Xie
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
13
|
Weng H, Feng W, Li F, Huang D, Lin L, Wang Z. Transcription factor ETV1-induced lncRNA MAFG-AS1 promotes migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells by recruiting IGF2BP2 to stabilize ETV1 expression. Growth Factors 2023:1-13. [PMID: 37428861 DOI: 10.1080/08977194.2023.2227272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2023] [Indexed: 07/12/2023]
Abstract
We investigated the mechanism of ETS-translocation variant 1 (ETV1)/lncRNA-MAFG-AS1 in pancreatic cancer (PC). MAFG-AS1 and ETV1 levels in PC cell lines and HPNE cells were determined using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). After transfection with sh-MAFG-AS1, PC cell invasion, migration, proliferation, and epithelial-mesenchymal transition (EMT)-related proteins were measured by 5-ethynyl-2'-deoxyuridine (EdU), Transwell assay, and WB. The binding between ETV1 and MAFG-AS1 was studied using dual-luciferase assay and chromatin immunoprecipitation. The interactions between MAFG-AS1, IGF2BP2, and ETV1 were tested. Combined experiments were further performed using sh-MAFG-AS1 and pcDNA-ETV1 simultaneously. ETV1/MAFG-AS1 was highly expressed in PC cells. Blocking MAFG-AS1 inhibited the malignant behaviors of PC cells. ETV1 induced MAFG-AS1 transcription in PC cells. MAFG-AS1 stabilized ETV1 mRNA by recruiting IGF2BP2. ETV1 overexpression partially antagonized the suppression of silencing MAFG-AS1 on PC cells. ETV1-induced MAFG-AS1 stabilized the ETV1 expression by recruiting IGF2BP2 and promoted PC cell migration, invasion, proliferation, and EMT.
Collapse
Affiliation(s)
- Hanqin Weng
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Weijian Feng
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Fengling Li
- Department of Anesthesiology, Dongguan People's Hospital, Dongguan, China
| | - Dong Huang
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Liangyi Lin
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Zaiguo Wang
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| |
Collapse
|
14
|
Zhou M, Mao M, Yang F, Zhou T, Zhou L, Li Y. LncRNA AL161431.1 predicts prognosis and drug response in head and neck squamous cell carcinoma. Front Oncol 2023; 13:1134456. [PMID: 37397383 PMCID: PMC10313201 DOI: 10.3389/fonc.2023.1134456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are increasingly recognized as essential players in various biological processes due to their interactions with DNA, RNA, and protein. Emerging studies have demonstrated lncRNAs as prognostic biomarkers in multiple cancers. However, the prognostic effect of lncRNA AL161431.1 in head and neck squamous cell carcinoma (HNSCC) patients has not been reported. Methods In the present study, we conducted a series of analyses to identify and validate the prognostic value of lncRNA AL161431.1 in HNSCC, which included differential lncRNAs screening, survival analysis, Cox regression analysis, time ROCanalysis, nomogram prediction, enrichment analysis, tumor infiltration of immune cells, drug sensitivity analysis, and quantitative real-time polymerase chain reaction (qRT-PCR). Results In this study, we performed a comprehensive survival and predictive analysis and demonstrated that AL161431.1 was an independent prognostic factor of HNSCC, for which a high AL161431.1 level indicated poor survival in HNSCC. Functional enrichment analyses found that cell growth and immune-related pathways were significantly enriched in HNSCC, suggesting that AL161431.1 may play a role in tumor development and tumor microenvironment (TME). AL161431.1-related immune cells infiltration analysis demonstrated that AL161431.1 expression is significantly positively associated with M0 macrophages in HNSCC (P<0.001). Using "OncoPredict", we recognized chemotherapy drugs sensitive to the high expression group. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to identify the expression level of AL161431.1 in HNSCC, and the results further validated our findings. Conclusions Our findings suggest that AL161431.1 is a reliable prognostic marker for HNSCC and can potentially be an effective therapeutic target.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyu Mao
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wang H, Teng J, Wang M, Zhang Y, Liu X, Liu Z. Expression and significant roles of the lncRNA NEAT1/miR-493-5p/Rab27A axis in ulcerative colitis. Immun Inflamm Dis 2023; 11:e814. [PMID: 37249278 PMCID: PMC10187010 DOI: 10.1002/iid3.814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported to play regulatory roles in ulcerative colitis (UC). In this study, we aimed to determine the specific roles and action mechanism of the nuclear paraspeckle assembly transcript 1 (NEAT1) in UC. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine the lncRNA NEAT1 and miR-493-5p expression levels in patients with UC and healthy volunteers. We determine the forecast linkage points of NEAT1 and miR-493-5p using Starbase and those of miR-493-5p and Rab27A using TargetScan, and further verified them using a double luciferase gene reporter kit. RT-qPCR and Western blot analysis were used to determine the lncRNA NEAT1, miR-493-5p, and Rab27A expression levels in lipopolysaccharide (LPS)-induced Caco-2 cells. Flow cytometry and cell counting kit-8 were used to assess Caco-2 cell viability. Tumor necrosis factor-α, interleukin (IL)-6, IL-8, and IL-1β levels were determined via an enzyme-linked immunosorbent assay. RESULTS Expression levels of NEAT1 were upregulated and those of miR-493-5p were downregualted in 10 ng/mL LPS-treated Caco-2 cells and patients with UC. Dual-luciferase gene reporter assay revealed that miR-493-5p is linked to NEAT1, and Rab27A is a downstream target of miR-493-5p. Overexpression of miR-493-5p inhibited the apoptosis and inflammation in LPS-treated Caco-2 cells. Moreover, downregulation of lncRNA NEAT1 expression also inhibited the apoptosis and inflammation in LPS-treated Caco-2 cells, which was reversed by Rab27A plasmid cotransfection. CONCLUSION Our results revealed that NEAT1 participates in UC progression by inhibiting miR-493-5p expression.
Collapse
Affiliation(s)
- Hecheng Wang
- Department of Clinical Skills Experiment CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Jiadan Teng
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Mingtao Wang
- Department of GastroenterologyThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Yuhang Zhang
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Xiaoshuang Liu
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Zhuya Liu
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| |
Collapse
|
16
|
Wang H, Cui H, Yang X, Peng L. TUBA1C: a new potential target of LncRNA EGFR-AS1 promotes gastric cancer progression. BMC Cancer 2023; 23:258. [PMID: 36941595 PMCID: PMC10026485 DOI: 10.1186/s12885-023-10707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The lack of obvious symptoms of early gastric cancer (GC) as well as the absence of sensitive and specific biomarkers results in poor clinical outcomes. Tubulin is currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders, however, its mechanism of action in gastric cancer is still unclear. Tubulin alpha-1 C (TUBA1C) is a subtype of α-tubulin, high TUBA1C expression has been shown to be closely related to a poor prognosis in various cancers, this study, for the first time, revealed the mechanism of TUBA1C promotes malignant progression of gastric cancer in vitro and in vivo. METHODS The expression of lncRNA EGFR-AS1 was detected in human GC cell lines by qRT-PCR. Mass spectrometry experiments following RNA pulldown assays found that EGFR-AS1 directly binds to TUBA1C, the CCK8, EdU, transwell, wound-healing, cell cycle assays and animal experiments were conducted to investigate the function of TUBA1C in GC. Combined with bioinformatics analyses, reveal interaction between Ki-67, E2F1, PCNA and TUBA1C by western blot. Rescue experiments furtherly demonstrated the relationship of EGFR-AS1and TUBA1C. RESULTS TUBA1C was proved to be a direct target of EGFR-AS1, and TUBA1C promotes gastric cancer proliferation, migration and invasion by accelerating the progression of the cell cycle from the G1 phase to the S phase and activating the expression of oncogenes: Ki-67, E2F1 and PCNA. CONCLUSION TUBA1C is a new potential target of LncRNA EGFR-AS1 promotes gastric cancer progression and could be a novel biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Haodong Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Huaiping Cui
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Xinjun Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Lipan Peng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China.
| |
Collapse
|
17
|
Dai Z, Sun Y, Maihemuti M, Jiang R. Genome-wide identification of alternative splicing and splicing regulated in immune infiltration in osteosarcoma patients. Front Genet 2023; 14:1051192. [PMID: 37139238 PMCID: PMC10149916 DOI: 10.3389/fgene.2023.1051192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Osteosarcoma typically occurs in adolescents, and the survival rate of patients with metastatic and recurrent osteosarcoma remains low. Abnormal regulation of alternative splicing is associated with the development of osteosarcoma. However, there is no genome-wide analysis of the function and regulatory mechanisms of aberrant alternative splicing associated with osteosarcoma. Methods: Published transcriptome data on osteosarcoma (GSE126209) derived from osteosarcoma patient tissue were downloaded. Gene expression profiling by high-throughput sequencing was performed on 9 normal samples and 10 tumor samples for genome-wide identification of osteosarcoma-related alternative splicing events. The potential function of osteosarcoma-associated alternative splicing events was examined by immune infiltration and correlation analysis. Regulation of aberrantly expressed RNA-binding proteins (RBPs) related to alternative splicing in osteosarcoma was clarified by co-expression analysis. Results: A total of 63 alternative splicing events, which are highly credible and dominant, were identified. GO enrichment analysis indicated that alternative splicing may be closely related to the immune response process. Immune infiltration analysis showed significant changes in the percentages of CD8 T cells, resting memory CD4 T cells, activated memory CD4 T cells, monocytes, resting dendritic cells, and activated mast cells in tumors compared to normal tissues, indicating the involvement of these immune cell types in the occurrence of osteosarcoma. Moreover, the analysis identified alternative splicing events that were co-altered with resting memory CD4 T cells, resting dendritic cells, and activated mast cells, events that may be associated with regulation of the osteosarcoma immune microenvironment. In addition, a co-regulatory network (RBP-RAS-immune) of osteosarcoma-associated RBPs with aberrant alternative splicing and altered immune cells was established. These RBPs include NOP58, FAM120C, DYNC1H1, TRAP1, and LMNA, which may serve as molecular targets for osteosarcoma immune regulation. Conclusion: These findings allow us to further understand the causes of osteosarcoma development and provide a new research direction for osteosarcoma immunotherapy or targeted therapy.
Collapse
|
18
|
Zhu D, Ouyang X, Zhang Y, Yu X, Su K, Li L. A promising new cancer marker: Long noncoding RNA EGFR-AS1. Front Oncol 2023; 13:1130472. [PMID: 36910672 PMCID: PMC9999470 DOI: 10.3389/fonc.2023.1130472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancer consists of a group of diseases with the salient properties of an uncontrolled cell cycle, metastasis, and evasion of the immune response, mainly driven by the genomic instability of somatic cells and the physicochemical environment. Long noncoding RNAs (lncRNAs) are defined as noncoding RNAs with a length of more than 200 nucleotides. LncRNA dysregulation participates in diverse disease types and is tightly associated with patient clinical features, such as age, disease stage, and prognosis. In addition, an increasing number of lncRNAs have been confirmed to regulate a series of biological and pathological processes through numerous mechanisms. The lncRNA epidermal growth factor receptor antisense RNA 1 (EGFR-AS1) was recently discovered to be aberrantly expressed in many types of diseases, particularly in cancers. A high level of EGFR-AS1 was demonstrated to correlate with multiple patient clinical characteristics. More importantly, EGFR-AS1 was found to be involved in the mediation of various cellular activities, including cell proliferation, invasion, migration, chemosensitivity, and stemness. Therefore, EGFR-AS1 is a promising marker for cancer management. In this review, we introduce the expression profile, molecular mechanisms, biological functions, and clinical value of EGFR-AS1 in cancers.
Collapse
Affiliation(s)
- Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
DasGupta R, Yap A, Yaqing EY, Chia S. Evolution of precision oncology-guided treatment paradigms. WIREs Mech Dis 2023; 15:e1585. [PMID: 36168283 DOI: 10.1002/wsbm.1585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Cancer treatment is gradually evolving from the classical use of nonspecific cytotoxic drugs targeting generic mechanisms of cell growth and proliferation. Instead, new "patient-specific treatment paradigms" that are based on an individual patient's tumor-specific molecular features are emerging, and these include "druggable" genomic alterations such as oncogenic driver mutations, downstream activities of cancer-signaling pathways, and the expression of specific genes involved in tumorigenesis and cancer progression. This evolving landscape of making evidence-based treatment decisions forms the foundation of precision oncology, which aims to deliver "the right drug, to the right patient and at the right time". The long-term vision for this approach is to maximize the treatment efficacy while minimizing exposure to ineffective therapy and reducing co-morbidity-related side effects. Successful clinical translation and implementation of this vision have the potential to revolutionize treatment paradigms from predominantly reactive, to more evidence-based, proactive and predictive care. In this article, we review the past and current approaches in precision oncology, and describe their remarkable power and limitations. We also speculate on the evolution of newly emerging methodologies of the future that can be used to address some of the key challenges associated with the existing paradigms. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Molecular and Cellular Physiology Cancer > Computational Models.
Collapse
Affiliation(s)
- Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore.,Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Aixin Yap
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Elena Yong Yaqing
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Shumei Chia
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| |
Collapse
|
20
|
Circulating Long Non-Coding RNAs Could Be the Potential Prognostic Biomarker for Liquid Biopsy for the Clinical Management of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14225590. [PMID: 36428681 PMCID: PMC9688117 DOI: 10.3390/cancers14225590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes, recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion, metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, progression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to provide advanced treatment strategies and clinical decisions. In this review, we report and discuss the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific lncRNA expression signature could act as an indicator for the early prediction of diagnosis and prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors (overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early prediction of prognosis in OSCC. Finally, the review provides information about the clinical significance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the development of differential prognostic outcomes in OSCC.
Collapse
|
21
|
Ye F, Wu P, Zhu Y, Huang G, Tao Y, Liao Z, Guan Y. Construction of the prognostic signature of alternative splicing revealed the prognostic predictor and immune microenvironment in head and neck squamous cell carcinoma. Front Genet 2022; 13:989081. [PMID: 36338975 PMCID: PMC9633855 DOI: 10.3389/fgene.2022.989081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSC) is a prevalent and heterogeneous malignancy with poor prognosis and high mortality rates. There is significant evidence of alternative splicing (AS) contributing to tumor development, suggesting its potential in predicting prognosis and therapeutic efficacy. This study aims to establish an AS-based prognostic signature in HNSC patients. Methods: The expression profiles and clinical information of 486 HNSC patients were downloaded from the TCGA database, and the AS data were downloaded from the TCGA SpliceSeq database. The survival-associated AS events were identified by conducting a Cox regression analysis and utilized to develop a prognostic signature by fitting into a LASSO-regularized Cox regression model. Survival analysis, univariate and multivariate Cox regression analysis, and receiver operating characteristic (ROC) curve analysis were performed to evaluate the signature and an independent cohort was used for validation. The immune cell function and infiltration were analyzed by CIBERSORT and the ssGSEA algorithm. Results: Univariate Cox regression analysis identified 2726 survival-associated AS events from 1714 genes. The correlation network reported DDX39B, PRPF39, and ARGLU1 as key splicing factors (SF) regulating these AS events. Eight survival-associated AS events were selected and validated by LASSO regression to develop a prognostic signature. It was confirmed that this signature could predict HNSC outcomes independent of other variables via multivariate Cox regression analysis. The risk score AUC was more than 0.75 for 3 years, highlighting the signature’s prediction capability. Immune infiltration analysis reported different immune cell distributions between the two risk groups. The immune cell content was higher in the high-risk group than in the low-risk group. The correlation analysis revealed a significant correlation between risk score, immune cell subsets, and immune checkpoint expression. Conclusion: The prognostic signature developed from survival-associated AS events could predict the prognosis of HNSC patients and their clinical response to immunotherapy. However, this signature requires further research and validation in larger cohort studies.
Collapse
Affiliation(s)
- Fan Ye
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Pingan Wu
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yaqiong Zhu
- Department of Otolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guan Huang
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ying Tao
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhencheng Liao
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yafeng Guan
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yafeng Guan,
| |
Collapse
|
22
|
Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis 2022; 13:834. [PMID: 36171196 PMCID: PMC9519946 DOI: 10.1038/s41419-022-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.
Collapse
Affiliation(s)
- Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
23
|
Negrón-Vega L, Cora EM, Pérez-Torres M, Tang SC, Maihle NJ, Ryu JS. Expression of EGFR isoform D is regulated by HER receptor activators in breast cancer cells. Biochem Biophys Rep 2022; 31:101326. [PMID: 36039113 PMCID: PMC9418195 DOI: 10.1016/j.bbrep.2022.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Human epidermal growth factor receptor isoform D (EGFR; isoform D) is a soluble protein from a 3 kb alternate mRNA transcript that arises from the human EGFR gene. Several studies have identified this circulating isoform of EGFR as a potential diagnostic biomarker for the detection of early stage of cancers. While the expression of the full-length EGFR (isoform A) is regulated by its cognate ligand, EGF, as well as by phorbol myristate acetate (PMA), no studies have examined the factors regulating the expression of EGFR isoform D. In this study, using breast cancer cell lines, we show that the HER receptor ligands, EGF and neuregulin (NRG-1β), as well as the phorbol ester, PMA, can increase the expression of EGFR isoform D, as well as isoform A. Our results, based on measurement of mRNA levels, suggest that EGF induced expression of both isoform A and isoform D occur through a mitogen activated protein kinase (MAPK)-dependent mechanism, and also suggest that protein kinase C is involved in PMA-induced regulation of both isoforms. We also demonstrate that NRG-1β increases isoform A and isoform D expression via the MAPK-dependent pathway, but this regulation occurs independently of phosphatidylinositol 3-kinase/Akt activation. These results suggest that regulation of EGFR isoform A and isoform D expression occur using similar mechanisms. Despite commonalities in the transcriptional regulation of these two EGFR isoforms, the half-lives of these two transcripts is quite different. Moreover, EGFR isoform D, unlike isoform A, is not post-transcriptionally modulated by EGFR activators in the breast cancer cell line MDA-MB-468.
Collapse
Affiliation(s)
- Lisandra Negrón-Vega
- Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Elsa M. Cora
- Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Marianela Pérez-Torres
- School of Pharmacy, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Shou-Ching Tang
- Department of Medicine, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nita J. Maihle
- Department of Medicine, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jung Su Ryu
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
24
|
The Long Noncoding Transcript HNSCAT1 Activates KRT80 and Triggers Therapeutic Efficacy in Head and Neck Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4156966. [PMID: 35965679 PMCID: PMC9371835 DOI: 10.1155/2022/4156966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022]
Abstract
Head and neck squamous carcinoma (HNSC) is the most prevalent malignancy of the head and neck regions. Long noncoding RNAs (lncRNAs) are vital in tumorigenesis regulation. However, the role of lncRNAs in HNSC requires further exploration. Herein, through bioinformatic assays using The Cancer Genome Atlas (TCGA) datasets, rapid amplification of cDNA ends (RACE) assays, and RNA-FISH, we revealed that a novel cytoplasmic transcript, HNSC-associated transcript 1 (HNSCAT1, previously recognized as linc01269), was downregulated in tumor samples and advanced tumor stages and was also associated with favorable outcomes in HNSC. Overexpression of HNSCAT1 triggered treatment efficacy in HNSCs both in vivo and in vitro. More importantly, through high-throughput transcriptome analysis (RNA-seq, in NODE database, OEZ007550), we identified KRT80, a tumor suppressor in HNSC, as the target of HNSCAT1. KRT80 expression was modulated by lncRNA HNSCAT1 and presented a positive correlation in tumor samples (R = 0.52, p < 0.001). Intriguingly, we identified that miR-1245 simultaneously interacts with KRT80 and HNSCAT1, which bridges the regulatory function between KRT80 and HNSCAT1. Conclusively, our study demonstrated that lncRNA HNSCAT1 functions as a necessary tumor inhibitor in HNSC, which provides a novel mechanism of lncRNA function and provides alternative targets for the diagnosis and treatment of HNSC.
Collapse
|
25
|
Shan L, Lu Y, Song Y, Zhu X, Xiang CC, Zuo ED, Cheng X. Identification of Nine M6A-Related Long Noncoding RNAs as Prognostic Signatures Associated with Oxidative Stress in Oral Cancer Based on Data from The Cancer Genome Atlas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9529814. [PMID: 35910847 PMCID: PMC9337974 DOI: 10.1155/2022/9529814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Objective Although the expression of long noncoding RNAs (lncRNAs) and N6-methyladenosine (M6A) is correlated with different tumors, it remains unclear how M6A-related lncRNA functioning affects the initiation and progression of oral squamous cell carcinoma (OSCC). Materials and Methods Gene expression and clinical data were retrieved from The Cancer Genome Atlas. The prognostic value of M6A-related lncRNAs was determined using univariate Cox regression analyses. Gene set enrichment analysis of OSCC patient clusters revealed the pathways that elucidate the mechanism. Furthermore, a risk-based model was established. The difference in the overall survival (OS) between groups, including low-/high-risk groups, was determined by Kaplan-Meier analysis. Relationships among immune cells, clusters, clinicopathological characteristics, and risk scores were explored. Results Among 1,080 M6A-related lncRNAs, 36 were prognosis-related. Patients with OSCC were divided into two clusters. T stage and the pathological grade were noticeably lower in cluster 2 than in cluster 1. Epithelial-mesenchymal transition showed greater enrichment in cluster 1. Nine hub M6A-related lncRNAs were identified for the model of risk score for predicting OSCC prognosis. The OS was longer in patients with a low-risk score than in patients with a high-risk score. The risk score was an independent prognostic factor of OSCC and was associated with the infiltration of different immune cells. T stages and the American Joint Committee on Cancer (AJCC) stages were more advanced in the high-risk score group than in the low-risk score group. Finally, expression correlation analysis showed that the risk score is associated with the expression of oxidative stress markers. Conclusion M6A-related lncRNAs play an important role in OSCC progression. Immune cell infiltration was related to the risk score model in OSCC and could accurately predict OSCC prognosis.
Collapse
Affiliation(s)
- Li Shan
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (the First People's Hospital of Taicang), Jiangsu 215400, China
| | - Ye Lu
- Suzhou Medical College of Soochow University/Soochow University Affiliated Taicang Hospital, China
| | - Yihua Song
- Department of Stomatology Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Zhu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (the First People's Hospital of Taicang), Jiangsu 215400, China
| | - Cheng-Cheng Xiang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (the First People's Hospital of Taicang), Jiangsu 215400, China
| | - Er-Dong Zuo
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (the First People's Hospital of Taicang), Jiangsu 215400, China
| | - Xu Cheng
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (the First People's Hospital of Taicang), Jiangsu 215400, China
| |
Collapse
|
26
|
Yao H, Jiang X, Fu H, Yang Y, Jin Q, Zhang W, Cao W, Gao W, Wang S, Zhu Y, Ying J, Tian L, Chen G, Tong Z, Qi J, Zhou S. Exploration of the Immune-Related Long Noncoding RNA Prognostic Signature and Inflammatory Microenvironment for Cervical Cancer. Front Pharmacol 2022; 13:870221. [PMID: 35662687 PMCID: PMC9161697 DOI: 10.3389/fphar.2022.870221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose: Our research developed immune-related long noncoding RNAs (lncRNAs) for risk stratification in cervical cancer (CC) and explored factors of prognosis, inflammatory microenvironment infiltrates, and chemotherapeutic therapies. Methods: The RNA-seq data and clinical information of CC were collected from the TCGA TARGET GTEx database and the TCGA database. lncRNAs and immune-related signatures were obtained from the GENCODE database and the ImPort database, respectively. We screened out immune-related lncRNA signatures through univariate Cox, LASSO, and multivariate Cox regression methods. We established an immune-related risk model of hub immune-related lncRNAs to evaluate whether the risk score was an independent prognostic predictor. The xCell and CIBERSORTx algorithms were employed to appraise the value of risk scores which are in competition with tumor-infiltrating immune cell abundances. The estimation of tumor immunotherapy response through the TIDE algorithm and prediction of innovative recommended medications on the target to immune-related risk model were also performed on the basis of the IC50 predictor. Results: We successfully established six immune-related lncRNAs (AC006126.4, EGFR-AS1, RP4-647J21.1, LINC00925, EMX2OS, and BZRAP1-AS1) to carry out prognostic prediction of CC. The immune-related risk model was constructed in which we observed that high-risk groups were strongly linked with poor survival outcomes. Risk scores varied with clinicopathological parameters and the tumor stage and were an independent hazard factor that affect prognosis of CC. The xCell algorithm revealed that hub immune-related signatures were relevant to immune cells, especially mast cells, DCs, megakaryocytes, memory B cells, NK cells, and Th1 cells. The CIBERSORTx algorithm revealed an inflammatory microenvironment where naive B cells (p < 0.01), activated dendritic cells (p < 0.05), activated mast cells (p < 0.0001), CD8+ T cells (p < 0.001), and regulatory T cells (p < 0.01) were significantly lower in the high-risk group, while macrophages M0 (p < 0.001), macrophages M2 (p < 0.05), resting mast cells (p < 0.0001), and neutrophils (p < 0.01) were highly conferred. The result of TIDE indicated that the number of immunotherapy responders in the low-risk group (124/137) increased significantly (p = 0.00000022) compared to the high-risk group (94/137), suggesting that the immunotherapy response of CC patients was completely negatively correlated with the risk scores. Last, we compared differential IC50 predictive values in high- and low-risk groups, and 12 compounds were identified as future treatments for CC patients. Conclusion: In this study, six immune-related lncRNAs were suggested to predict the outcome of CC, which is beneficial to the formulation of immunotherapy.
Collapse
Affiliation(s)
- Hui Yao
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Xiya Jiang
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Hengtao Fu
- Department of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Yinting Yang
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Qinqin Jin
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Weiyu Zhang
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Wujun Cao
- Department of Clinical Laboratory, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Wei Gao
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Senlin Wang
- Department of Clinical Laboratory, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Yuting Zhu
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Jie Ying
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Lu Tian
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Guo Chen
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Zhuting Tong
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shuguang Zhou
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| |
Collapse
|
27
|
Sur S, Ray RB. Emerging role of lncRNA ELDR in development and cancer. FEBS J 2022; 289:3011-3023. [PMID: 33860640 PMCID: PMC11827507 DOI: 10.1111/febs.15876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Whole-genome sequencing and transcriptome analysis revealed more than 90% of the human genome transcribes noncoding RNAs including lncRNAs. From the beginning of the 21st century, lncRNAs have gained widespread attention as a new layer of regulation in biological processes. lncRNAs are > 200 nucleotides in size, transcribed by RNA polymerase II, and share many similarities with mRNAs. lncRNA interacts with DNA, RNA, protein, and miRNAs, thereby regulating many biological processes. In this review, we have focused mainly on LINC01156 [also known as the EGFR long non-coding downstream RNA (ELDR) or Fabl] and its biological importance. ELDR is a newly identified lncRNA and first reported in a mouse model, but it has a human homolog. The human ELDR gene is closely localized downstream of epidermal growth factor receptor (EGFR) gene at chromosome 7 on the opposite strand. ELDR is highly expressed in neuronal stem cells and associated with neuronal differentiation and mouse brain development. ELDR is upregulated in head and neck cancer, suggesting its role as an oncogene and its importance in prognosis and therapy. Publicly available RNA-seq data further support its oncogenic potential in different cancers. Here, we summarize all the aspects of ELDR in development and cancer, highlighting its future perspectives in the context of mechanism.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University, MO, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, MO, USA
- Cancer Center, Saint Louis University, MO, USA
| |
Collapse
|
28
|
Feng Z, Curti BD, Quinn DI, Strother JM, Chen Z, Agnor R, Beer TM, Ryan CW. A Phase II, Single-Arm Trial of Sunitinib and Erlotinib in Advanced Renal Cell Carcinoma. Clin Genitourin Cancer 2022; 20:415-422. [DOI: 10.1016/j.clgc.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
|
29
|
Kaissarian NM, Meyer D, Kimchi-Sarfaty C. Synonymous Variants: Necessary Nuance in our Understanding of Cancer Drivers and Treatment Outcomes. J Natl Cancer Inst 2022; 114:1072-1094. [PMID: 35477782 PMCID: PMC9360466 DOI: 10.1093/jnci/djac090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Once called "silent mutations" and assumed to have no effect on protein structure and function, synonymous variants are now recognized to be drivers for some cancers. There have been significant advances in our understanding of the numerous mechanisms by which synonymous single nucleotide variants (sSNVs) can affect protein structure and function by affecting pre-mRNA splicing, mRNA expression, stability, folding, miRNA binding, translation kinetics, and co-translational folding. This review highlights the need for considering sSNVs in cancer biology to gain a better understanding of the genetic determinants of human cancers and to improve their diagnosis and treatment. We surveyed the literature for reports of sSNVs in cancer and found numerous studies on the consequences of sSNVs on gene function with supporting in vitro evidence. We also found reports of sSNVs that have statistically significant associations with specific cancer types but for which in vitro studies are lacking to support the reported associations. Additionally, we found reports of germline and somatic sSNVs that were observed in numerous clinical studies and for which in silico analysis predicts possible effects on gene function. We provide a review of these investigations and discuss necessary future studies to elucidate the mechanisms by which sSNVs disrupt protein function and are play a role in tumorigeneses, cancer progression, and treatment efficacy. As splicing dysregulation is one of the most well recognized mechanisms by which sSNVs impact protein function, we also include our own in silico analysis for predicting which sSNVs may disrupt pre-mRNA splicing.
Collapse
Affiliation(s)
- Nayiri M Kaissarian
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
30
|
Wu WJ, Yang SH, Chung HP, Yen CT, Chen YT, Chang WC, Su J, Chen HY. EGFR Q787Q Polymorphism Is a Germline Variant and a Prognostic Factor for Lung Cancer Treated With TKIs. Front Oncol 2022; 12:816801. [PMID: 35387120 PMCID: PMC8978303 DOI: 10.3389/fonc.2022.816801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence and impact of epidermal growth factor receptor (EGFR) Q787Q polymorphism on the treatment of lung adenocarcinoma remains unclear. We retrospectively analyzed patients with stage IV lung adenocarcinoma to evaluate the prevalence of the EGFR Q787Q polymorphism and its influence on effects of tyrosine kinase inhibitor (TKI) treatment. A total of 333 patients were included in this study. The prevalence of the EGFR Q787Q polymorphism was 38%, 42%, and 35% in the total patients, EGFR mutation negative, and EGFR mutation positive groups, respectively. The prevalence of EGFR Q787Q polymorphism was significantly higher in EGFR wild-type patients than in the general non-cancerous population from Taiwan Biobank and 1000 Genome Project databases, respectively. EGFR Q787Q polymorphism had significant protective effects on the overall survival of EGFR-mutant lung adenocarcinoma treated with EGFR TKIs (aHR =0.61, p=0.03). Our study demonstrated that EGFR Q787Q polymorphism is a germline variant in the general population. It is a protective predictor of overall survival in patients with stage IV EGFR-mutated lung adenocarcinoma treated with TKIs.
Collapse
Affiliation(s)
- Wen-Jui Wu
- Chest Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Sheng-Hsiung Yang
- Chest Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Hsin-Pei Chung
- Chest Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chia-Te Yen
- Chest Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Chen
- Chest Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Chin Chang
- Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Pathology, MacKay Medical College and MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Jian Su
- Chest Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
31
|
Downregulation of lncRNA NEAT1 Relieves Caerulein-Induced Cell Apoptosis and Inflammatory Injury in AR42J Cells Through Sponging miR-365a-3p in Acute Pancreatitis. Biochem Genet 2022; 60:2286-2298. [PMID: 35325441 DOI: 10.1007/s10528-022-10219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Mounting evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs exert a critical regulatory role in acute pancreatitis. The present study aimed to explore the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in acute pancreatitis (AP) that was induced by caerulein in rat pancreatic acinar cells (AR42J). The potential target sites of lncRNA NEAT1 and miR-365a-3p were predicted using starBase and were confirmed using dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction was performed to assess lncRNA NEAT1 and miR-365a-3p expression levels in AP induced by caerulein. Cell Counting Kit-8 and flow cytometry assays were performed to assess AR42J cell viability. Western blotting was performed to evaluate the expression of apoptosis-related proteins. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels were detected by ELISA. The results of the dual-luciferase reporter assay confirmed that miR-365a-3p could bind to NEAT1. LncRNA NEAT1 was upregulated in AR42J cells treated with 10 nmol/l caerulein, and miR-365a-3p was expressed at low levels in an AP model. Overexpression of miR-365a-3p suppressed the apoptosis and inflammatory response of AR42J cells induced by caerulein. Importantly, inhibition of lncRNA NEAT1 decreased apoptosis and inflammation in caerulein-treated AR42J cells, while these effects were reverted upon co-transfection with a miR-365a-3p inhibitor. In conclusion, lncRNA NEAT1 was involved in AP progression by sponging miR-365a-3p and may thus be a novel target for treating patients with AP.
Collapse
|
32
|
Zhang L, Zhang X, Zhao W, Xiao X, Liu S, Peng Q, Jiang N, Zhou B. NLRP6-Dependent Pyroptosis-Related lncRNAs Predict the Prognosis of Hepatocellular Carcinoma. Front Med (Lausanne) 2022; 9:760722. [PMID: 35308537 PMCID: PMC8924451 DOI: 10.3389/fmed.2022.760722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Pyroptosis, a novel pro-inflammatory type of programmed cell death, is involved in the tumorigenesis of various cancers. Recent findings have implicated long non-coding RNAs (lncRNAs) in the serial steps of cancer development. However, the expression and prognostic signatures of pyroptosis-related lncRNAs in hepatocellular carcinoma (HCC) remain largely unknown. Therefore, a pyroptosis-related lncRNA prognostic model was constructed for HCC. Thirty-four pyroptosis-related genes were obtained from previous reviews, and gene expression data were collected from The Cancer Genome Atlas (TCGA) database. Spearman's correlation test was used to identify potential pyroptosis-related lncRNAs. Cox and LASSO regression analyses were used to construct a prognostic model. Subsequently, receiver operating characteristic (ROC) curves were constructed to assess the model's predictive ability for the overall survival (OS) of HCC patients. CytoHubba was used to screen out the potential hub gene, whose expression was verified using clinical samples from HCC patients. Finally, nine pyroptosis-related differentially expressed lncRNAs in HCC were identified, and a prognostic model with four pyroptosis-related lncRNAs was constructed with an area under the ROC curve (AUC) of approximately 0.734. Single-sample gene set enrichment analysis and TCGA revealed different immune infiltration and immune checkpoints between the two risk groups. Moreover, these lncRNAs are closely related to the pyroptosis-related gene, NLRP6, which may be considered a hub gene. NLRP6 was lower-expressed in HCC samples, and patients with lower expression of NLRP6 had the longer OS. In conclusion, NLRP6-dependent pyroptosis-related lncRNAs play important roles in tumor immunity and may be potential predictors and therapeutic targets for HCC.
Collapse
Affiliation(s)
- La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuzhen Zhang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Jiang M, Liu F, Yang AG, Wang W, Zhang R. The role of long non-coding RNAs in the pathogenesis of head and neck squamous cell carcinoma. Mol Ther Oncolytics 2022; 24:127-138. [PMID: 35024439 PMCID: PMC8717422 DOI: 10.1016/j.omto.2021.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancers are a heterogeneous collection of malignancies of the upper aerodigestive tract, salivary glands, and thyroid. However, the molecular mechanisms underlying the carcinogenesis of head and neck squamous cell carcinomas (HNSCCs) remain poorly understood. Over the past decades, overwhelming evidence has demonstrated the regulatory roles of long non-coding RNAs (lncRNAs) in tumorigenesis, including HNSCC. Notably, these lncRNAs have vital roles in gene regulation and affect various aspects of cellular homeostasis, including proliferation, survival, and metastasis. They exert regulating functions by interacting with nucleic acids or proteins and affecting cancer cell signaling. LncRNAs represent a burgeoning field of cancer research, and we are only beginning to understand the importance and complicity of lncRNAs in HNSCC. In this review, we summarize the deregulation and function of lncRNAs in human HNSCC. We also review the working mechanism of lncRNAs in HNSCC pathogenesis and discuss the potential application of lncRNAs as diagnostic/prognostic tools and therapeutic targets in human HNSCC.
Collapse
Affiliation(s)
- Man Jiang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fang Liu
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
34
|
EGFR-AS1 Promotes Nonsmall Cell Lung Cancer (NSCLC) Progression via Downregulating the miR-524-5p/DRAM1 Axis and Inhibiting Autophagic Lysosomal Degradation. JOURNAL OF ONCOLOGY 2022; 2022:4402536. [PMID: 35222643 PMCID: PMC8866007 DOI: 10.1155/2022/4402536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) accounts for the majority of lung cancers. Studies have revealed the regulatory role of lncRNAs in cancer pathogenesis and their potential use as diagnostic and prognostic biomarkers. The epidermal growth factor receptor antisense RNA 1 (EGFR-AS1) has been reported to be upregulated in NSCLC tissues, while its detailed mechanism in lung cancer needs to be explored. DNA damage-regulated autophagy modulator 1 (DRAM1) has been known to act as a tumor suppressor in NSCLC, and miR-524-5p has been reported to be a biomarker in idiopathic pulmonary fibrosis and different lung disorders. Our investigation revealed that EGFR-AS1 is highly expressed in lung cancer tissues, and its knockdown inhibited lung cancer cell invasion and viability and reduced tumor growth in vivo. We also found that EGFR-AS1 targets miR-524-5p, and there was a negative correlation between their expressions in lung cancer tissues. Simultaneously, miR-524-5p has been found to promote DRAM1 expression. In addition, the inhibition of miR-524-5p diminished DRAM1 protein expression and promoted lung cancer cell invasion. Our study has revealed that EGFR-AS1 contributes to the pathogenesis of NSCLC by inhibiting autophagic-lysosomal degradation via targeting the miR-524-5p/DRAM1 axis. This finding elucidated for the first time the role of EGFR-AS1 in lung cancer progression and the positive regulatory function of miR-524-5p in regulating DRAM1 protein and suppressing lung cancer progression. This novel mechanism provided a better insight into the pathogenesis of lung cancer and presented a better strategy for the treatment of lung cancer.
Collapse
|
35
|
Taghvimi S, Vakili O, Soltani Fard E, Khatami SH, Karami N, Taheri‐Anganeh M, Salehi M, Negahdari B, Ghasemi H, Movahedpour A. Exosomal microRNAs and long noncoding RNAs: Novel mediators of drug resistance in lung cancer. J Cell Physiol 2022; 237:2095-2106. [DOI: 10.1002/jcp.30697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Neda Karami
- Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mortaza Taheri‐Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| | - Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | | | | |
Collapse
|
36
|
Liu Y, Liu J, Cui J, Zhong R, Sun G. Role of lncRNA LINC01194 in hepatocellular carcinoma via the miR-655-3p/SMAD family member 5 axis. Bioengineered 2022; 13:1115-1125. [PMID: 34978464 PMCID: PMC8805840 DOI: 10.1080/21655979.2021.2017678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in developing hepatocellular carcinoma (HCC). The present study explored the role of lncRNA LINC01194, which is upregulated in HCC tissues and might be a vital regulator in HCC progression. Levels of LINC01194, microRNA (miR)-655-3p, and SMAD family member 5 (SMAD5) were assessed using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The bioactivity of Huh-7 cells was assessed using cell counting kit-8 and transwell assays and flow cytometry. Western blotting was conducted to measure the expression of invasion- and apoptosis-related proteins. The relationships between lncRNA LINC01194 and miR-655-3p, and miR-655-3p and SMAD5 were predicted using StarBase and TargetScan, and further verified using a dual-luciferase reporter assay. LINC01194 was overexpressed in HCC cells and in clinical samples. ILINC01194 silencing suppressed proliferation and migration; however, it promoted apoptosis in HCC cell lines. We also confirmed that miR-655-3p could bind to LINC01194, and miR-655-3p was downregulated in HCC. The upregulation of miR-655-3p suppressed HCC cell invasion and migration, and enhanced the number of apoptotic cells. SMAD5, which was overexpressed in HCC cell lines, was directly targeted by miR-655-3p. Therefore, LINC01194 promoted HCC development by decreasing miR-655-3p expression and may serve as a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Liu
- Department of Geriatrics, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Junkai Cui
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ruolei Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Guoyang Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
37
|
Vasuri F, de Biase D, Vacirca A, Acquaviva G, Sanza V, Gargiulo M, Pasquinelli G. Gene polymorphism in tissue epidermal growth factor receptor (EGFR) influences clinical and histological vulnerability of carotid plaques. Pathol Res Pract 2022; 229:153721. [PMID: 34942514 DOI: 10.1016/j.prp.2021.153721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Different models have been proposed for the prediction of the risk/benefit ratio of surgery in patients with carotid atheromasic disease, mainly based on clinical patients' characteristics and risk factors, but no definite biological markers predictive of plaque instability and disease evolution have emerged so far, able to help the surgeon in the choice and timing of treatment. The main purpose of the present study was to assess the role of the polymorphism for genes commonly implicated in cell proliferation and neoangiogenesis in the clinical and histopathological carotid plaque vulnerability. MATERIALS AND METHODS We retrospectively studied 29 consecutive patients who underwent carotid endarterectomy in 6 months. All histological variables were collected, as well as patients' cardiovascular risk factors, clinical presentation, and brain computed tomography (CT) for the presence of ischemic lesions. Next-Generation Sequencing (NGS) was performed on 10-µm FFPE sections by means of a multi-gene panel used for sequencing 343 amplicons in 28 genes. RESULTS Among the gene variants observed, the polymorphism p.(Gln787=) in the EGFR gene was inversely correlated with intraplaque hemorrhage (p = 0.014), but also with the presence of ischemic brain lesions at CT (p = 0.001). Also p.(Gly105=) polymorphism in the IDH1 gene was inversely correlated with the presence of ischemic brain lesions (p = 0.038). CONCLUSIONS The variant p.(Gln787=) in the EGFR gene seems to play a role in plaque stability in patients with carotid atheromasic disease, on both histopathological and clinical grounds, probably acting on plaque matrix remodeling. This can open new scenarios on the pre-surgical management of these patients.
Collapse
Affiliation(s)
- Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Vacirca
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giorgia Acquaviva
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Viviana Sanza
- Molecular Pathology Laboratory, AUSL Bologna, Bologna, Italy
| | - Mauro Gargiulo
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Wei L, Sun J, Zhang N, Shen Y, Wang T, Li Z, Yang M. Novel Implications of MicroRNAs, Long Non-coding RNAs and Circular RNAs in Drug Resistance of Esophageal Cancer. Front Cell Dev Biol 2021; 9:764313. [PMID: 34881242 PMCID: PMC8645845 DOI: 10.3389/fcell.2021.764313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is the eighth most common malignancy and the sixth leading cause of cancer-related deaths worldwide. Chemotherapy based on platinum drugs, 5-fluorouracil, adriamycin, paclitaxel, gemcitabine, and vinorelbine, as well as targeted treatment and immunotherapy with immune checkpoint inhibitors improved the prognosis in a portion of patients with advanced esophageal cancer. Unfortunately, a number of esophageal cancer patients develop drug resistance, resulting in poor outcomes. Multiple mechanisms contributing to drug resistance of esophageal cancer have been reported. Notably, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), have been identified to play crucial roles in modulating esophageal cancer drug resistance. In the present review, we highlight the underlying mechanisms how miRNAs, lncRNAs, and circRNAs impact the drug resistance of esophageal cancer. Several miRNAs, lncRNAs, and circRNAs may have potential clinical implications as novel biomarkers and therapeutic targets for esophageal cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Teng Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zengjun Li
- Department of Endoscopy, Shandong Cancer Hospital and Institute, Jinan, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
39
|
Liao Y, Kuang C, Bao Z, He Y, Gu L, Tao Q, Qiu X, Dipritu G, Kong X, Zhang L, Peng J, Jiang Y, Yin S. Nucleo-cytoplasmic RNA distribution responsible for maintaining neuroinflammatory microenvironment. RNA Biol 2021; 18:866-880. [PMID: 34843419 DOI: 10.1080/15476286.2021.2004684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Subcellular localization of transcripts is highly associated with regulation of gene expression, synthesis of protein, and also the development of the human brain cortex. Although many mechanisms are prevalent in the occurrence of neuroinflammation, the mechanisms based on differences in subcellular localization of transcripts have not been explored. To characterize the dynamic profile of nuclear and cytoplasmic transcripts during the progress of haemorrhage-induced neuroinflammation, we isolated nucleo-cytoplasmic RNA fractions of oxyhaemoglobin (oxy-Hb) treated microglia cells and sequenced both fractions. We discovered that cytoplasmic retained genes were the major forces to maintain the neuroinflammatory microenvironment with 10 hub genes and 40 conserved genes were identified. Moreover, antisense RNA Gm44096 and lincRNA Gm47270, which co-expressed with a crowd of inflammatory genes in the cytoplasm, were discovered as regulatory strategies for sustaining the neuroinflammatory microenvironment. Thus, our study provides a new perspective on understanding haemorrhage-induced neuroinflammation and also reveals a mechanism of lncRNA responsible for maintaining the neuroinflammatory microenvironment.
Collapse
Affiliation(s)
- Yuyan Liao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenghao Kuang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Bao
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yijing He
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Gu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qianke Tao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiancheng Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ghosh Dipritu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Shao Y, Lian S, Zheng J, Tong H, Wang J, Xu J, Liu W, Hu G, Zhang Y, He J. RP11-616M22.7 recapitulates imatinib resistance in gastrointestinal stromal tumor. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:264-276. [PMID: 34458010 PMCID: PMC8379380 DOI: 10.1016/j.omtn.2021.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/25/2021] [Indexed: 01/01/2023]
Abstract
Emerging evidence has shown that long non-coding RNAs (lncRNAs) play crucial roles in human cancers. However, systematic characterization of lncRNAs and their roles in gastrointestinal stromal tumor (GIST) therapy have been lacking. We performed high-throughput RNA sequencing (RNA-seq) of 20 GIST and paired adjacent normal samples. We characterized the transcriptional landscape and dysregulation of lncRNAs in GIST. We identified 866 upregulated and 1,268 downregulated lncRNAs in GIST samples, the majority of which were GIST-specific over other cancer types. Most hallmarks were found to be dysregulated in GIST samples, and lncRNAs were highly associated with cancer-related hallmarks. RP11-616M22.7 was identified to increase in imatinib-resistant samples compared to those in non-resistant samples. Further analysis revealed that RP11-616M22.7 was closely associated with the Hippo signaling pathway. By treating GIST cells with different doses of imatinib, we verified that RP11-616M22.7 knockdown promotes the sensitivity of tumor cells, whereas RP11-616M22.7 overexpression induces resistance to imatinib. We further confirmed reducing of resistance to imatinib by knocking down RP11-616M22.7 in vivo. Additionally, RP11-616M22.7 was observed to interact with RASSF1 protein. Our study revealed that deficiency of RP11-616M22.7 was able to reduce resistance of the GIST cell response to imatinib treatment both in vitro and in vivo.
Collapse
Affiliation(s)
- Yebo Shao
- Department of General Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen 361015, China.,Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shixian Lian
- Department of General Surgery, Public Health Clinical Center, Shanghai 201508, China
| | - Jiajia Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiongyuan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenshuai Liu
- Department of General Surgery, Public Health Clinical Center, Shanghai 201508, China
| | - Guoxiang Hu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junyi He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Wu T, Wang W, Wang Y, Yao M, Du L, Zhang X, Huang Y, Wang J, Yu H, Bian X. Comprehensive analysis of alternative splicing profiling reveals novel events associated with prognosis and the infiltration of immune cells in prostate cancer. Transl Androl Urol 2021; 10:3056-3068. [PMID: 34430408 PMCID: PMC8350246 DOI: 10.21037/tau-21-585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Alternative splicing (AS) is believed to play a vital role in tumor development. Therefore, comprehensive investigation of AS and its biological function in prostate cancer (PCa) is crucial. Methods The AS profiling of 489 patients with PCa was obtained from The Cancer Genome Atlas (TCGA) SpliceSeq database. Bioinformatics tools were used to describe splicing associations and build prognostic models. Unsupervised clustering of the determined prognostic AS events and the relationship with immune characteristics were also explored. Results In total, 20,723 AS events were detected and 2,805 were identified in PCa. In the regulatory networks, the data suggested a significant correlation between splicing factor (SF) expression and AS events. To stratify the progression risk of PCa patients, prognostic models were constructed using splicing patterns. Six AS events were screened out as independent prognostic factors for progression-free survival. Based on the gene features, we constructed the combined prognostic predictors model, and the receiver operating characteristic (ROC) curve for this model reached a high area under the ROC curve (AUC) of 0.729793, indicating a favorable ability to predict patient outcomes. Through unsupervised clustering analysis, the correlations between AS-based clusters and prognosis as well as immune characteristics were revealed. The correlation analysis on TIMER revealed the relationship between gene expression and immune cell infiltration. Conclusions This in-depth genome-wide analysis of the AS profiling in PCa revealed unique AS events associated with cancer progression and the infiltration of immune cells, with potential for predicting outcomes and therapeutic responses.
Collapse
Affiliation(s)
- Tianqi Wu
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiotherapy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfeng Wang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanhao Wang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengfei Yao
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Leilei Du
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xingming Zhang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongqiang Huang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianhua Wang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Hongbo Yu
- Department of Urology, Affiliated Mingji Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojie Bian
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
42
|
Zhan J, Wang S, Wei X, Feng M, Yin X, Yu J, Han T, Liu G, Xuan W, Wang X, Xie R, Sun K, Zhu L. Systematic analysis of Long non-coding RNAs reveals diagnostic biomarkers and potential therapeutic drugs for intervertebral disc degeneration. Bioengineered 2021; 12:5069-5084. [PMID: 34402383 PMCID: PMC8806434 DOI: 10.1080/21655979.2021.1950258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are related to a variety of human diseases. However, little is known about the role of lncRNA in intervertebral disc degeneration (IDD). LncRNA expression profile of human IDD were downloaded from Gene Expression Omnibus (GEO) database. Potential biomarkers and therapeutic drugs for IDD were analyzed by weighted gene co-expression network analysis (WGCNA), R software package Limma, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We identified 1455 differentially expressed genes and 423 differentially expressed lncRNAs. Twenty-six co-expression modules were obtained, among them, the tan, brown, and turquoise modules were most closely related to IDD. The turquoise module contained a large number of differential expressed lncRNAs and genes, these genes were mainly enriched in the MAPK signaling pathway, TGF-beta signaling pathway. Furthermore, we obtained 11,857 LmiRM-Degenerated, these lncRNAs and genes showed higher differential expression multiples and higher expression correlation. After constructing a disease-gene interaction network, 25 disease-specific genes and 9 disease-specific lncRNAs were identified. Combined with the drug-target gene interaction network, three drugs, namely, Calcium citrate, Calcium Phosphate, and Calcium phosphate dihydrate, which may have curative effects on IDD, were determined. Finally, a genetic diagnosis model and lncRNA diagnosis model with 100% diagnostic performance in both the training data set and the validation data set were established based on these genes and lncRNA. This study provided new diagnostic features for IDD and could help design personalized treatment of IDD.
Collapse
Affiliation(s)
- Jiawen Zhan
- General Orthopedic, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shangquan Wang
- General Orthopedic, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Scientific Research, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Minshan Feng
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xunlu Yin
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Yu
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Han
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangwei Liu
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wangwen Xuan
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobo Wang
- Orthopedic, Tianjing University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Xie
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Sun
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Liguo Zhu
- Spine Department2, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Sharma A, Kansara S, Mahajan M, Yadav B, Garg M, Pandey AK. Long non-coding RNAs orchestrate various molecular and cellular processes by modulating epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166240. [PMID: 34363933 DOI: 10.1016/j.bbadis.2021.166240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) regulate various hallmarks associated with the progression of human cancers through their binding with RNA, DNA, and proteins. Epithelial-Mesenchymal Transition (EMT) is a cardinal and multi-stage process where epithelial cells acquire a mesenchymal-like phenotype that is instrumental for tumor cells to initiate invasion and metastasis. LncRNAs can potentially promote tumor onset and progression as well as drug resistance by directly or indirectly altering the EMT program. Head and neck squamous cell carcinoma (HNSCC) are a dreadful malignancy affecting public health globally. The past few years have provided a better insight into the mechanism of EMT in HNSCC. The differential expression of the lncRNAs that can act either as promoters or suppressors in the process of EMT is of great importance. In this review, we aim to sum up, the highly structured mechanism with the diverse role of lncRNAs and their interaction with different molecules in the regulation of EMT. Moreover, discussing principal EMT pathways modulated by lncRNAs and their prospective potential value as therapeutic targets.
Collapse
Affiliation(s)
- Ayushi Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India.
| | - Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Mehul Mahajan
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India.
| |
Collapse
|
44
|
Chen T, Huang B, Pan Y. Long Non-coding RNA MAFG-AS1 Promotes Cell Proliferation, Migration, and EMT by miR-3196/STRN4 in Drug-Resistant Cells of Liver Cancer. Front Cell Dev Biol 2021; 9:688603. [PMID: 34386494 PMCID: PMC8353155 DOI: 10.3389/fcell.2021.688603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to participate in the development and progression of several different types of cancer. Past studies indicated that lncRNA MAFG-antisense 1 (AS1) promotes colorectal cancer. However, the role of MAFG-AS1 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study is to examine the effect of lncRNA MAFG-AS1 on drug resistance HCC. The results indicated that MAFG-AS1 is upregulated in drug-resistant cells. Further, MAFG-AS1 promotes growth and migration of HCC by upregulating STRN4 through absorbing miR-3196. Thus, LncRNA MAFA-AS1 may become a novel target to treat HCC patients.
Collapse
Affiliation(s)
- Tianming Chen
- Department of Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bin Huang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yaozhen Pan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
45
|
Lu L, Zhang S, Song Z, Lu W, Wang Z, Zhou Y. Long Non-Coding RNA LINC01410 Promoted Tumor Progression via the ErbB Signaling Pathway by Targeting STAT5 in Gallbladder Cancer. Front Oncol 2021; 11:659123. [PMID: 34322379 PMCID: PMC8312242 DOI: 10.3389/fonc.2021.659123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives Long non-coding RNAs (lncRNAs) have been recently emerging as crucial molecules in multiple human cancers. However, their expression patterns, roles as well as the underlying mechanisms in gallbladder cancer (GBC) remain largely unclear. Materials and Methods The expression of lncRNAs in GBC was downloaded from GEO database. Quantitative real-time polymerase chain reaction (qRT-PCR) and RNA in situ hybridization (ISH) were used to detect the expression of lncRNAs in GBC tissues. The full-sequence of LINC01410 was determined by RACE assay. Subcellular distribution of LINC01410 was examined by nuclear/cytoplasmic RNA fractionation analysis. Loss- and gain-of-function experiments were conducted to explore the biological functions of LINC01410 in vitro and in vivo. RNA pull-down, RNA immune-precipitation (RIP), and Western blot assay were conducted to investigate the mechanisms underlying the biological function of LINC01410 in GBC. Results LINC01410 was significantly upregulated in the GBC tissues compared to adjacent non-tumor tissues. High LINC01410 expression was significantly associated with poor prognosis of GBC patients. We identified LINC01410 to be 2,877 bp in length and mainly localized in the cytoplasm of GBC cells. Overexpression of LINC01410 promoted GBC cell proliferation, migration, and invasion in vitro and GBC progression in vivo, whereas LINC01410 downregulation rescued these effects in vitro. From RNA pull-down and RIP assay, we identified that STAT5 was a critical downstream target of LINC01410. Furthermore, ErbB signaling pathway was involved in the malignant phenotypes of GBC mediated by LINC01410. Conclusions Our results suggested that LINC01410 was an important lncRNA that promoted GBC progression via targeting STAT5 and activating ErbB signaling pathway.
Collapse
Affiliation(s)
- Lili Lu
- Biotherapy Centre, Zhongshan Hospital, Fudan University, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Shilong Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengqing Song
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhong Zhou
- Biotherapy Centre, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Ramaiah MJ, Kumar KR. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 2021; 48:4813-4835. [PMID: 34132942 DOI: 10.1007/s11033-021-06462-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - K Rohil Kumar
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
47
|
Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis 2021; 12:587. [PMID: 34099633 PMCID: PMC8184765 DOI: 10.1038/s41419-021-03858-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) emerge as essential roles in the regulation of alternative splicing (AS) in various malignancies. Serine- and arginine-rich splicing factor 1 (SRSF1)-mediated AS events are the most important molecular hallmarks in cancer. Nevertheless, the biological mechanism underlying tumorigenesis of lncRNAs correlated with SRSF1 in esophageal squamous cell carcinoma (ESCC) remains elusive. In this study, we found that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) was upregulated in ESCC clinical samples, which associated with poor prognosis. Through RNA interference and overexpression approaches, we confirmed that DGCR5 contributed to promote ESCC cell proliferation, migration, and invasion while inhibited apoptosis in vitro. Mechanistically, DGCR5 could directly bind with SRSF1 to increase its stability and thus stimulate alternative splicing events. Furthermore, we clarified that SRSF1 regulated the aberrant splicing of myeloid cell leukemia-1 (Mcl-1) and initiated a significant Mcl-1L (antiapoptotic) isoform switch, which contributed to the expression of the full length of Mcl-1. Moreover, the cell-derived xenograft (CDX) model was validated that DGCR5 could facilitate the tumorigenesis of ESCC in vivo. Collectively, our findings identified that the key biological role of lncRNA DGCR5 in alternative splicing regulation and emphasized DGCR5 as a potential biomarker and therapeutic target for ESCC.
Collapse
|
48
|
Yang S, Yuan ZJ, Zhu YH, Chen X, Wang W. lncRNA PVT1 promotes cetuximab resistance of head and neck squamous cell carcinoma cells by inhibiting miR-124-3p. Head Neck 2021; 43:2712-2723. [PMID: 34033197 DOI: 10.1002/hed.26742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cetuximab has been widely used in the clinical treatment of head and neck squamous cell carcinoma (HNSCC). However, whether long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) is correlated with cetuximab resistance remains unclear. METHODS Western blot and qRT-PCR were performed to quantify the levels of genes and proteins, respectively. Cell functions were measured using Cell Counting Kit-8 (CCK-8), Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and flow cytometry assays. The methylation level was tested using methylation-specific PCR (MSP). RESULTS PVT1 was upregulated and positively correlated with the poor prognosis of HNSCC. PVT1 overexpression markedly promoted the survival and weakened the cetuximab sensitivity of HNSCC cells, while miR-124-3p overexpression showed opposite effects. Mechanistically, the silence of PVT1 indirectly promoted miR-124-3p expression by reducing its promoter methylation. Importantly, miR-124-3p overexpression impeded the regulatory roles of PVT1 overexpression. CONCLUSION PVT1 decreased the sensitivity of HNSCC cells to cetuximab by enhancing methylation-mediated inhibition of miR-124-3p, which might provide a new insight for the cetuximab chemoresistance of HNSCC.
Collapse
Affiliation(s)
- Shuo Yang
- Head and Neck Oncology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhi-Jun Yuan
- Head and Neck Oncology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue-Hong Zhu
- Head and Neck Oncology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xue Chen
- Head and Neck Oncology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Wang
- Head and Neck Oncology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
49
|
Liu Q, Zhang W, Luo L, Han K, Liu R, Wei S, Guo X. Long noncoding RNA TUG1 regulates the progression of colorectal cancer through miR-542-3p/TRIB2 axis and Wnt/β-catenin pathway. Diagn Pathol 2021; 16:47. [PMID: 34030715 PMCID: PMC8142490 DOI: 10.1186/s13000-021-01101-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the third normal malignancy worldwide. Taurine-upregulated gene 1 (TUG1), a member of long noncoding RNAs (lncRNAs), has been reported to be involved in various cancers. However, the mechanism underlying TUG1 in the progression of CRC remains unclear. METHODS The expression of TUG1, microRNA-542-3p (miR-542-3p), and tribbles homolog 2 (TRIB2) in CRC tissues and cells (LoVo and HCT116) were detected by quantitative real-time PCR (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), transwell and flow cytometry assays were employed to evaluate the effects of TUG1 in CRC cells. The interaction between miR-542-3p and TUG1 or TRIB2 were verified by dual-luciferase reporter assay. A xenograft tumor model in nude mice was established to investigate the biological role of TUG1 in CRC in vivo. RESULTS TUG1 was increased in CRC tissues and cells (LoVo and HCT116) in contrast with adjacent normal tissues and normal intestinal mucous cells (CCC-HIE-2). Downregulation of TUG1 or TRIB2 suppressed the proliferation, migration, invasion, and induced apoptosis in CRC cells. And knockdown of TUG1 repressed tumor growth in vivo. Besides, overexpression of TRIB2 reversed the effects of TUG1 depletion on the progression of CRC. Meanwhile, TUG1 interacted with miR-542-3p and TRIB2 was a target of miR-542-3p. Furthermore, miR-542-3p knockdown or TRIB2 overexpression partly reversed the suppression effect of TUG1 depletion on the Wnt/β-catenin pathway. CONCLUSIONS TUG1 served as a tumor promoter, impeded the progression of CRC by miR-542-3p/TRIB2 axis to inactivate of Wnt/β-catenin pathway, which providing a novel target for CRC treatment.
Collapse
Affiliation(s)
- Quanlin Liu
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, 450004, Zhengzhou, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, 450004, Zhengzhou, China
| | - Linshan Luo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, 450004, Zhengzhou, China
| | - Keshun Han
- Department of Constipation, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Ruitao Liu
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Shue Wei
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Xiaoran Guo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, 450004, Zhengzhou, China
| |
Collapse
|
50
|
Silencing novel long non-coding RNA FKBP9P1 represses malignant progression and inhibits PI3K/AKT signaling of head and neck squamous cell carcinoma in vitro. Chin Med J (Engl) 2021; 133:2037-2043. [PMID: 32769488 PMCID: PMC7478561 DOI: 10.1097/cm9.0000000000000933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play key roles in human cancers. In our previous study, we demonstrated that lncRNA FKBP prolyl isomerase 9 pseudogene 1 (FKBP9P1) was highly expressed in head and neck squamous cell cancer (HNSCC) tissues. However, its functional significance remains poorly understood. In the present study, we identify the role and potential molecular biologic mechanisms of FKBP9P1 in HNSCC. Methods Quantitative real-time polymerase chain reaction was used to detect the expression of FKBP9P1 in HNSCC tissues, matched adjacent normal tissues, human HNSCC cells (FaDu, Cal-27, SCC4, and SCC9), and human immortalized keratinocytes cell HaCaT (normal control). Cal-27 and SCC9 cells were transfected with sh-FKBP9P1-1, sh-FKBP9P1-2, and normal control (sh-NC) lentivirus. Cell counting kit-8 assay, colony formation assay, wound healing assay, and trans-well assay were used to explore the biologic function of FKBP9P1 in HNSCC cells. Furthermore, western blotting was used to determine the mechanism of FKBP9P1 in HNSCC progression. Chi-squared test was performed to assess the clinical significance among FKBP9P1 high-expression and low-expression groups. Survival analyses were performed using the Kaplan-Meier method and assessed using the log-rank test. The comparison between two groups was analyzed by Student t test, and comparisons among multiple samples were performed by one-way analysis of variance and a Bonferroni post hoc test. Results FKBP9P1 expression was significantly up-regulated in HNSCC tissues (tumor vs. normal, 1.914 vs. 0.957, t = 7.746, P < 0.001) and cell lines (P < 0.01 in all HNSCC cell lines). Besides, the median FKBP9P1 expression of HNSCC tissues (1.677) was considered as the threshold. High FKBP9P1 level was correlated with advanced T stage (P = 0.022), advanced N stage (P = 0.036), advanced clinical stage (P = 0.018), and poor prognosis of HNSCC patients (overall survival, P = 0.002 and disease-free survival, P < 0.001). Knockdown of FKBP9P1 led to marked repression in proliferation, migration, and invasion of HNSCC cells in vitro (P all < 0.01). Mechanistically, silencing FKBP9P1 was observed to restrain the PI3K/AKT signaling pathway. Conclusions Silencing lncRNA FKBP9P1 represses HNSCC progression and inhibits PI3K/AKT (phosphatidylinositol 3 kinase/AKT Serine/Threonine Kinase) signaling in vitro. Therefore, FKBP9P1 could be a potential new target for the diagnosis and treatment of HNSCC patients.
Collapse
|