1
|
Giglio A, Bellotti M, Conti B, E-Hasnat N, Auricchio F, Genta I, Caimi A, Chiesa E. Experimental and Numerical Integrated Strategy for the Optimization of Microfluidic Parameters for Eudragit L100 Nanoparticles and Microparticles. Mol Pharm 2024; 21:5842-5853. [PMID: 39410799 DOI: 10.1021/acs.molpharmaceut.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Oral immunization offers a minimally invasive administration, inducing local and systemic immune responses and facilitating mass immunization without needle-related risks. However, the gastrointestinal environment poses challenges, compromising vaccine effectiveness through enzymatic degradation and poor absorption by Peyer's patches. Advances in nanoparticle and microparticle (NP/MP) technology protect vaccines from degradation and enhance targeted release. The aim of this study was to develop pH-controlled polymeric carriers for the oral delivery of protein vaccines in order to target the antigen-presenting cells and M cells in the region of Peyer's patches. Here, myoglobin was chosen as a model protein vaccine. This study focuses on Eudragit L100, a pH-responsive polymer stable in acidic conditions and dissolving at higher pH, to develop carriers for controlled myoglobin release in the intestinal tract. A microfluidic-based manufacturing process for Eudragit L100 NPs and MPs is optimized using a comprehensive experimental and computational approach to obtain NPs and MPs through the same setup. Integrating in silico and experimental methods highlights the potential of numerical simulations to streamline final product development. This approach improves the efficiency and cost-effectiveness of NP/MP production, demonstrating how the combination of design of experiment and numerical simulations can optimize production parameters and refine manufacturing processes for advanced drug delivery systems.
Collapse
Affiliation(s)
- Alessia Giglio
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia 27100, Italy
| | - Marco Bellotti
- Department of Civil Engineering and Architecture, Via Ferrata 3, Pavia 27100, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia 27100, Italy
| | - Nur E-Hasnat
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia 27100, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, Via Ferrata 3, Pavia 27100, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia 27100, Italy
| | - Alessandro Caimi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia 27100, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
2
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
3
|
Valiveti CK, Rajput M, Thakur N, Momin T, Bhowmik M, Tummala H. A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines (Basel) 2024; 12:1121. [PMID: 39460287 PMCID: PMC11511251 DOI: 10.3390/vaccines12101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza virus enters the host body through the mucosal surface of the respiratory tract. An efficient immune response at the mucosal site can interfere with virus entry and prevent infection. However, formulating oral vaccines and eliciting an effective mucosal immune response including at respiratory mucosa presents numerous challenges including the potential degradation of antigens by acidic gastric fluids and the risk of antigen dilution and dispersion over a large surface area of the gut, resulting in minimal antigen uptake by the immune cells. Additionally, oral mucosal vaccines have to overcome immune tolerance in the gut. To address the above challenges, in the current study, we evaluated inulin acetate (InAc) nanoparticles (NPs) as a vaccine adjuvant and antigen delivery system for oral influenza vaccines. InAc was developed as the first polysaccharide polymer-based TLR4 agonist; when tailored as a nanoparticulate vaccine delivery system, it enhanced antigen delivery to dendritic cells and induced a strong cellular and humoral immune response. This study compared the efficacy of InAc-NPs as a delivery system for oral vaccines with Poly (lactic-co-glycolic acid) (PLGA) NPs, utilizing influenza A nucleoprotein (Inf-A) as an antigen. InAc-NPs effectively protected the encapsulated antigen in both simulated gastric (pH 1.1) and intestinal fluids (pH 6.8). Moreover, InAc-NPs facilitated enhanced antigen delivery to macrophages, compared to PLGA-NPs. Oral vaccination studies in Balb/c mice revealed that InAc-Inf-A NPs significantly boosted the levels of Influenza virus-specific IgG and IgA in serum, as well as total and virus-specific IgA in the intestines and lungs. Furthermore, mice vaccinated with InAc-Inf-A-NPs exhibited notably higher hemagglutination inhibition (HI) titers at mucosal sites compared to those receiving the antigen alone. Overall, our study underscores the efficacy of InAc-NPs in safeguarding vaccine antigens post-oral administration, enhancing antigen delivery to antigen-presenting cells, and eliciting higher virus-neutralizing antibodies at mucosal sites following vaccination.
Collapse
Affiliation(s)
- Chaitanya K. Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| | - Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Neelu Thakur
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Malabika Bhowmik
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| |
Collapse
|
4
|
Ma B, Tao M, Li Z, Zheng Q, Wu H, Chen P. Mucosal vaccines for viral diseases: Status and prospects. Virology 2024; 593:110026. [PMID: 38373360 DOI: 10.1016/j.virol.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Virus-associated infectious diseases are highly detrimental to human health and animal husbandry. Among all countermeasures against infectious diseases, prophylactic vaccines, which developed through traditional or novel approaches, offer potential benefits. More recently, mucosal vaccines attract attention for their extraordinary characteristics compared to conventional parenteral vaccines, particularly for mucosal-related pathogens. Representatively, coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further accelerated the research and development efforts for mucosal vaccines by thoroughly investigating existing strategies or involving novel techniques. While several vaccine candidates achieved positive progresses, thus far, part of the current COVID-19 mucosal vaccines have shown poor performance, which underline the need for next-generation mucosal vaccines and corresponding platforms. In this review, we summarized the typical mucosal vaccines approved for humans or animals and sought to elucidate the underlying mechanisms of these successful cases. In addition, mucosal vaccines against COVID-19 that are in human clinical trials were reviewed in detail since this public health event mobilized all advanced technologies for possible solutions. Finally, the gaps in developing mucosal vaccines, potential solutions and prospects were discussed. Overall, rational application of mucosal vaccines would facilitate the establishing of mucosal immunity and block the transmission of viral diseases.
Collapse
Affiliation(s)
- Bingjie Ma
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Mengxiao Tao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Quanfang Zheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China.
| |
Collapse
|
5
|
Kim H, Kirtane AR, Kim NY, Rajesh NU, Tang C, Ishida K, Hayward AM, Langer R, Traverso G. Gastrointestinal Delivery of an mRNA Vaccine Using Immunostimulatory Polymeric Nanoparticles. AAPS J 2023; 25:81. [PMID: 37589795 PMCID: PMC10845796 DOI: 10.1208/s12248-023-00844-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
mRNA vaccines can be translated into protein antigens, in vivo, to effectively induce humoral and cellular immunity against these proteins. While current mRNA vaccines have generated potent immune responses, the need for ultracold storage conditions (- 80 °C) and healthcare professionals to administer the vaccine through the parenteral route has somewhat limited their distribution in rural areas and developing countries. Overcoming these challenges stands to transform future deployment of mRNA vaccines. In this study, we developed an mRNA vaccine that can trigger a systemic immune response through administration via the gastrointestinal (GI) tract and is stable at 4 °C. A library of cationic branched poly(β-amino ester) (PBAE) polymers was synthesized and characterized, from which a polymer with high intracellular mRNA delivery efficiency and immune stimulation capacity was down-selected. mRNA vaccines made with the lead polymer-elicited cellular and humoral immunity in mice. Furthermore, lyophilization conditions of the formulation were optimized to enable storage under refrigeration. Our results suggest that PBAE nanoparticles are potent mRNA delivery platforms that can elicit B cell and T cell activation, including antigen-specific cellular and humoral responses. This system can serve as an easily administrable, potent oral mRNA vaccine.
Collapse
Affiliation(s)
- Hyunjoon Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Ameya R Kirtane
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Yoon Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
| | - Netra Unni Rajesh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Department of Bioengineering, Stanford University, Stanford, California, 94305, USA
| | - Chaoyang Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
| | - Keiko Ishida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alison M Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA.
| |
Collapse
|
6
|
Bo Y, Wang H. Materials‐based vaccines for infectious diseases. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1824. [PMID: 35708013 PMCID: PMC9541041 DOI: 10.1002/wnan.1824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022]
Abstract
Infectious diseases that result from pathogen infection are among the leading causes of human death, with pathogens such as human immunodeficiency virus, malaria, influenza, and ongoing SARS‐COV‐2 viruses constantly threatening the global population. While the mechanisms behind various infectious diseases are not entirely clear and thus retard the development of effective therapeutics, vaccines have served as a universal approach to containing infectious diseases. However, conventional vaccines that solely consist of antigens or simply mix antigens and adjuvants have failed to control various highly infective or deadly pathogens. Biomaterials‐based vaccines have provided a promising solution due to their ability to synergize the function of antigens and adjuvants, troubleshoot delivery issues, home and manipulate immune cells in situ. In this review, we will summarize different types of materials‐based vaccines for generating cellular and humoral responses against pathogens and discuss the design criteria for amplifying the efficacy of materials‐based vaccines against infectious diseases. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Hua Wang
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Cancer Center at Illinois (CCIL) Urbana Illinois USA
- Department of Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Carle College of Medicine University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
7
|
Correa VA, Portilho AI, De Gaspari E. Vaccines, Adjuvants and Key Factors for Mucosal Immune Response. Immunology 2022; 167:124-138. [PMID: 35751397 DOI: 10.1111/imm.13526] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Victor Araujo Correa
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Amanda Izeli Portilho
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Luria-Pérez R, Sánchez-Vargas LA, Muñoz-López P, Mellado-Sánchez G. Mucosal Vaccination: A Promising Alternative Against Flaviviruses. Front Cell Infect Microbiol 2022; 12:887729. [PMID: 35782117 PMCID: PMC9241634 DOI: 10.3389/fcimb.2022.887729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae are a family of positive-sense, single-stranded RNA enveloped viruses, and their members belong to a single genus, Flavivirus. Flaviviruses are found in mosquitoes and ticks; they are etiological agents of: dengue fever, Japanese encephalitis, West Nile virus infection, Zika virus infection, tick-borne encephalitis, and yellow fever, among others. Only a few flavivirus vaccines have been licensed for use in humans: yellow fever, dengue fever, Japanese encephalitis, tick-borne encephalitis, and Kyasanur forest disease. However, improvement is necessary in vaccination strategies and in understanding of the immunological mechanisms involved either in the infection or after vaccination. This is especially important in dengue, due to the immunological complexity of its four serotypes, cross-reactive responses, antibody-dependent enhancement, and immunological interference. In this context, mucosal vaccines represent a promising alternative against flaviviruses. Mucosal vaccination has several advantages, as inducing long-term protective immunity in both mucosal and parenteral tissues. It constitutes a friendly route of antigen administration because it is needle-free and allows for a variety of antigen delivery systems. This has promoted the development of several ways to stimulate immunity through the direct administration of antigens (e.g., inactivated virus, attenuated virus, subunits, and DNA), non-replicating vectors (e.g., nanoparticles, liposomes, bacterial ghosts, and defective-replication viral vectors), and replicating vectors (e.g., Salmonella enterica, Lactococcus lactis, Saccharomyces cerevisiae, and viral vectors). Because of these characteristics, mucosal vaccination has been explored for immunoprophylaxis against pathogens that enter the host through mucosae or parenteral areas. It is suitable against flaviviruses because this type of immunization can stimulate the parenteral responses required after bites from flavivirus-infected insects. This review focuses on the advantages of mucosal vaccine candidates against the most relevant flaviviruses in either humans or animals, providing supporting data on the feasibility of this administration route for future clinical trials.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
| | - Luis A. Sánchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Paola Muñoz-López
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México, Mexico
| |
Collapse
|
9
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
10
|
Johnson-Weaver BT, Choi HW, Yang H, Granek JA, Chan C, Abraham SN, Staats HF. Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Front Immunol 2021; 12:730346. [PMID: 34566991 PMCID: PMC8461742 DOI: 10.3389/fimmu.2021.730346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.
Collapse
Affiliation(s)
| | - Hae Woong Choi
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
| | - Hang Yang
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Josh A. Granek
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Cliburn Chan
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Soman N. Abraham
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Herman F. Staats
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| |
Collapse
|
11
|
Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat Biomed Eng 2021; 5:998-1007. [PMID: 33230304 DOI: 10.1038/s41551-020-00650-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
Repeated bolus injections are associated with higher costs and poor compliance and can hinder the implementation of global immunization campaigns. Here, we report the development and preclinical testing of patches of transdermal core-shell microneedles-which were fabricated by the micromoulding and alignment of vaccine cores and shells made from poly(lactic-co-glycolic acid) with varying degradability kinetics-for the preprogrammed burst release of vaccine payloads over a period of a few days to more than a month from a single administration. In rats, microneedles loaded with a clinically available vaccine (Prevnar-13) against the bacterium Streptococcus pneumoniae induced immune responses that were similar to immune responses observed after multiple subcutaneous bolus injections, and led to immune protection against a lethal bacterial dose. Microneedle patches delivering preprogrammed doses may offer an alternative strategy to prophylactic and therapeutic protocols that require multiple injections.
Collapse
|
12
|
Walker R, Kaminski RW, Porter C, Choy RKM, White JA, Fleckenstein JM, Cassels F, Bourgeois L. Vaccines for Protecting Infants from Bacterial Causes of Diarrheal Disease. Microorganisms 2021; 9:1382. [PMID: 34202102 PMCID: PMC8303436 DOI: 10.3390/microorganisms9071382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
The global diarrheal disease burden for Shigella, enterotoxigenic Escherichia coli (ETEC), and Campylobacter is estimated to be 88M, 75M, and 75M cases annually, respectively. A vaccine against this target trio of enteric pathogens could address about one-third of diarrhea cases in children. All three of these pathogens contribute to growth stunting and have demonstrated increasing resistance to antimicrobial agents. Several combinations of antigens are now recognized that could be effective for inducing protective immunity against each of the three target pathogens in a single vaccine for oral administration or parenteral injection. The vaccine combinations proposed here would result in a final product consistent with the World Health Organization's (WHO) preferred product characteristics for ETEC and Shigella vaccines, and improve the vaccine prospects for support from Gavi, the Vaccine Alliance, and widespread uptake by low- and middle-income countries' (LMIC) public health stakeholders. Broadly protective antigens will enable multi-pathogen vaccines to be efficiently developed and cost-effective. This review describes how emerging discoveries for each pathogen component of the target trio could be used to make vaccines, which could help reduce a major cause of poor health, reduced cognitive development, lost economic productivity, and poverty in many parts of the world.
Collapse
Affiliation(s)
- Richard Walker
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Walter Reed Institute of Research, Silver Spring, MD 20910, USA;
| | - Chad Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| | - Robert K. M. Choy
- Center for Vaccine Innovation and Access, PATH, San Francisco, CA 94108, USA;
| | - Jessica A. White
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - James M. Fleckenstein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Medicine Service, Saint Louis VA Health Care System, St. Louis, MO 63106, USA
| | - Fred Cassels
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| |
Collapse
|
13
|
Fabrication of microneedle patches with lyophilized influenza vaccine suspended in organic solvent. Drug Deliv Transl Res 2021; 11:692-701. [PMID: 33590465 DOI: 10.1007/s13346-021-00927-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/18/2022]
Abstract
Skin vaccination by microneedle (MN) patch simplifies the immunization process to increase access to vaccines for global health. Lyophilization has been widely used to stabilize vaccines and other biologics during storage, but is generally not compatible with the MN patch manufacturing processes. In this study, our goal was to develop a method to incorporate lyophilized inactivated H1N1 influenza vaccine into MN patches during manufacturing by suspending freeze-dried vaccine in anhydrous organic solvent during the casting process. Using a casting formulation containing chloroform and polyvinylpyrrolidone, lyophilized influenza vaccine maintained activity during manufacturing and subsequent storage for 3 months at 40 °C. Influenza vaccination using these MN patches generated strong immune responses in a murine model. This manufacturing process may enable vaccines and other biologics to be stabilized by lyophilization and administered via a MN patch.
Collapse
|
14
|
Frandoloso R, Chaudhuri S, Frandoloso GCP, Yu RH, Schryvers AB. Proof of Concept for Prevention of Natural Colonization by Oral Needle-Free Administration of a Microparticle Vaccine. Front Immunol 2020; 11:595320. [PMID: 33193449 PMCID: PMC7645216 DOI: 10.3389/fimmu.2020.595320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
There has been substantial interest in the development of needle-free vaccine administration that has led to a variety of approaches for delivery through the skin for induction of a systemic immune response. The mucosal administration of vaccines has inherently been needle-free, but the simple application of vaccines on the mucosal surface by itself does not lead to mucosal immunity. Since many important bacterial infections develop after initial colonization of the upper respiratory tract of the host, prevention of colonization could not only prevent infection but also eliminate the reservoir of pathogens that reside exclusively in that ecologic niche. This study was designed to provide proof of concept for a needle-free immunization approach that would reduce or eliminate colonization and prevent infection. In order to accomplish this a microparticle vaccine preparation was delivered just below the oral mucosal epithelial cell layer where it would lead to a robust immune response. A vaccine antigen (mutant transferrin binding protein B) shown to be capable of preventing infection in pigs was incorporated into a polyphosphazene microparticle preparation and delivered by a needle-free device to the oral sub-epithelial space of pigs. This vaccination regimen not only provided complete protection from infection after intranasal challenge by Glaesserella parasuis but also eliminated natural colonization by this bacterium. Notably, the complete prevention of natural colonization was dependent upon delivery of the microparticle preparation below the epithelial layer in the oral mucosa as intradermal or intramuscular delivery was not as effective at preventing natural colonization. This study also demonstrated that a primary immunization in the presence of maternal antibody limited the resulting antibody response but a robust antibody response after the second immunization indicated that maternal antibody did not prevent induction of B-cell memory.
Collapse
Affiliation(s)
- Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | - Somshukla Chaudhuri
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Rong-hua Yu
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anthony Bernard Schryvers
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Influenza vaccine efficacy induced by orally administered recombinant baculoviruses. PLoS One 2020; 15:e0233520. [PMID: 32459823 PMCID: PMC7252623 DOI: 10.1371/journal.pone.0233520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Although vaccine delivery through the oral route remains the most convenient and safest way for mass immunization purposes, this method is limited by the requirement for large antigen doses and low vaccine efficacy. In this study, we generated recombinant baculoviruses (rBVs) expressing influenza hemagglutinin (A/PR/8/34) and orally delivered a low dose of rBVs to evaluate its vaccine efficacy in mice. Intranasal rBV vaccination was included in the whole experiment for comparison. We found that oral vaccination elicited high levels of virus-specific IgG and IgA antibody responses in both serum and mucosal samples (lung, tracheal, intestinal, fecal and vaginal). Surprisingly, complete protection from the lethal influenza challenge was observed, as indicated by reductions in the virus titer, inflammatory cytokine production, body weight change, and enhanced survival. These results suggest that oral delivery of the influenza rBV vaccine induces mucosal and systemic immunity, which protect mice from the lethal influenza virus challenge. Oral delivery of baculovirus vaccines can be developed as an effective vaccination route.
Collapse
|
16
|
Kong Q, Kitaoka M, Tahara Y, Wakabayashi R, Kamiya N, Goto M. Solid-in-oil nanodispersions for intranasal vaccination: Enhancement of mucosal and systemic immune responses. Int J Pharm 2019; 572:118777. [PMID: 31678377 DOI: 10.1016/j.ijpharm.2019.118777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 02/03/2023]
Abstract
En masse vaccination is a promising strategy for combatting infectious diseases. Intranasal vaccination is a viable route of mass vaccination, and it could be performed easily via needle-free administration. However, it is not widely used because it tends not to evoke sufficient immunity. The aim of the present study was to improve the performance of intranasal vaccination by extending the amount of time that administered antigens remain in the nasal cavity, and enhancing immune responses via a nanocarrier-based adjuvant. A simple and safe solid-in-oil (S/O) system was investigated as a nanocarrier in intranasal vaccination. S/O nanodispersions are oil-based dispersions of antigens coated with surfactants. Because of the mucoadhesive capacities of surfactant and oil they have high potential to extend the amount of time that administered antigens remain in the nasal cavity, and can induce strong immune responses due to a nanocarrier-based adjuvant effect. In nasal absorption experiments antigens administered intranasally via S/O nanodispersions remained in the nasal cavity longer and induced strong mucosal and systemic immune responses. Histopathology analysis indicated that S/O nanodispersions did not modify the nasal epithelium or cilia, suggesting non-toxicity of the carrier. These results indicate the potential of intranasal vaccination using S/O nanodispersions for future vaccination.
Collapse
Affiliation(s)
- Qingliang Kong
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Momoko Kitaoka
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Yoshiro Tahara
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery Center, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery Center, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery Center, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan.
| |
Collapse
|
17
|
Fabrication of low-cost composite polymer-based micro needle patch for transdermal drug delivery. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01190-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Komati S, Swain S, Rao MEB, Jena BR, Dasi V. Mucoadhesive Multiparticulate Drug Delivery Systems: An Extensive Review of Patents. Adv Pharm Bull 2019; 9:521-538. [PMID: 31857957 PMCID: PMC6912179 DOI: 10.15171/apb.2019.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/09/2022] Open
Abstract
Innovations in pharmaceutical research are striving for designing newer drug therapies to eradicate deadly diseases. Strategies for such inventions always flourish with keys and objectives of minimal adverse effects and effective treatment. Recent trends in pharmaceutical technology specify that mucoadhesive drug delivery system is particularly appropriate than oral control release, for getting local systematic delivery of drugs in GIT for an extended interval of time at a predetermined rate. However, it is somehow expensive and unpleasant sensation for some patients, but still it is needful for getting short enzymatic activity, simple administration without pain and evasion of fast pass metabolism. Usually the vehicles employed in drug delivery of mucoadhesive system have a significant impact that draws further attention to potential benefits like improved bioavailability of therapeutic agents, extensive drug residence time at the site of administration and a comparatively faster drug uptake into the systemic circulation. The drug release from mucoadhesive multiparticulates is contingent on several types of factors comprising carrier need to produce the multiparticles and quantity of medication drug contained in them. Mucoadhesion is characterized by selected theories and mechanisms. Various strategies emergent in mucoadhesive multiparticulate drug delivery system (MMDDS) by in-vitro as well as ex-vivo description and characterization are also critically discussed. Apart from these, the primary focus during this review is to highlight current patents, clinical status, and regulatory policy for enhancement of mucoadhesive multi-particulate drug delivery system in the present scenario.
Collapse
Affiliation(s)
- Someshwar Komati
- Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
| | - Suryakanta Swain
- Southern Institute of Medical Sciences, College of Pharmacy, Mangaldas Nagar, Vijyawada Road, Guntur-522 001, Andhra Pradesh, India
| | - Muddana Eswara Bhanoji Rao
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Khodasinghi, Berhampur-760 010, Ganjam, Odisha, India
| | - Bikash Ranjan Jena
- Southern Institute of Medical Sciences, College of Pharmacy, Mangaldas Nagar, Vijyawada Road, Guntur-522 001, Andhra Pradesh, India
| | - Vishali Dasi
- Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
| |
Collapse
|
19
|
Shapiro JR, Hodgins B, Hendin HE, Patel A, Menassa K, Menassa C, Menassa M, Pereira JA, Ward BJ. Needle-free delivery of influenza vaccine using the Med-Jet® H4 is efficient and elicits the same humoral and cellular responses as standard IM injection: A randomized trial. Vaccine 2019; 37:1332-1339. [DOI: 10.1016/j.vaccine.2019.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
|
20
|
Transcutaneous immunization using SLA or rLACK skews the immune response towards a Th1 profile but fails to protect BALB/c mice against a Leishmania major challenge. Vaccine 2019; 37:516-523. [DOI: 10.1016/j.vaccine.2018.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/12/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022]
|
21
|
Zhou S, Ren T, Gu H, Wang C, Li M, Zhao Z, Xing L, Zhang L, Sun Y, Yang P, Wang X. Intradermal delivery of a fractional dose of influenza H7N9 split vaccine elicits protective immunity in mice and rats. Hum Vaccin Immunother 2018; 14:623-629. [PMID: 29400997 DOI: 10.1080/21645515.2017.1423156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Vaccination is the most effective method of preventing the spread of the influenza virus. However, the traditional intramuscular (IM) immunization causes fear, pain, and cross infection. In contrast, needle-free (NF) immunization is quick and easy for medical personnel and painless and safe for patients. In this study, we assessed the safety and protective efficacy of NF intradermal (ID) immunization with the influenza H7N9 split vaccine (Anhui H7N9/PR8). A preliminary safety evaluation showed that ID immunization with 15 μg of the H7N9 influenza vaccine was not toxic in rats. Moreover, the antigen was metabolized more rapidly after ID than after IM immunization, as determined by in vivo imaging, and ID immunization accelerated the generation of a specific immune response. Additionally, ID immunization with a 20% dose of the H7N9 split vaccine Anhui H7N9/PR8 offered complete protection against lethal challenge by the live H7N9 virus. Taken together, our findings suggest that NF ID immunization with the H7N9 influenza vaccine induces effective protection, has a good safety profile, requires little antigen, and elicits an immune response more rapidly than does IM immunization. This approach may be used to improve the control of influenza H7N9 outbreaks.
Collapse
Affiliation(s)
- Shanshan Zhou
- a Anhui Medical University , HeFei , Anhui , China.,b State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing , China
| | - Tianyu Ren
- c Department of Hepatobibiary of Beijing Hospital, Beijing , China
| | - Hongjing Gu
- b State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing , China
| | - Cheng Wang
- e Department of Orthopedics of Chinese PLA General Hospital , Beijing , China
| | - Min Li
- b State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing , China
| | - Zhongpeng Zhao
- b State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing , China
| | - Li Xing
- b State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing , China
| | - Liangyan Zhang
- b State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing , China
| | - Yi Sun
- d Jiangsu Chengyu Mite Medical Technologies Co. Taizhou , Jiangsu , China
| | - Penghui Yang
- b State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing , China.,c Department of Hepatobibiary of Beijing Hospital, Beijing , China
| | - Xiliang Wang
- a Anhui Medical University , HeFei , Anhui , China.,b State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing , China
| |
Collapse
|
22
|
|
23
|
Jee PF, Tiong V, Shu MH, Khoo JJ, Wong WF, Abdul Rahim R, AbuBakar S, Chang LY. Oral immunization of a non-recombinant Lactococcus lactis surface displaying influenza hemagglutinin 1 (HA1) induces mucosal immunity in mice. PLoS One 2017; 12:e0187718. [PMID: 29108012 PMCID: PMC5673223 DOI: 10.1371/journal.pone.0187718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Mucosal immunization of influenza vaccine is potentially an effective approach for the prevention and control of influenza. The objective of the present study was to evaluate the ability of oral immunization with a non-recombinant Lactococcus lactis displaying HA1/L/AcmA recombinant protein, LL-HA1/L/AcmA, to induce mucosal immune responses and to accord protection against influenza virus infection in mice. The LL-HA1/L/AcmA was orally administered into mice and the immune response was evaluated. Mice immunized with LL-HA1/L/AcmA developed detectable specific sIgA in faecal extract, small intestine wash, BAL fluid and nasal fluid. The results obtained demonstrated that oral immunization of mice with LL-HA1/L/AcmA elicited mucosal immunity in both the gastrointestinal tract and the respiratory tract. The protective efficacy of LL-HA1/L/AcmA in immunized mice against a lethal dose challenge with influenza virus was also assessed. Upon challenge, the non-immunized group of mice showed high susceptibility to influenza virus infection. In contrast, 7/8 of mice orally immunized with LL-HA1/L/AcmA survived. In conclusion, oral administration of LL-HA1/L/AcmA in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. These results highlight the potential application of L. lactis as a platform for delivery of influenza virus vaccine.
Collapse
Affiliation(s)
- Pui-Fong Jee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vunjia Tiong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Jing-Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
24
|
Zhang Y, Yu X, Hou L, Chen J, Li P, Qiao X, Zheng Q, Hou J. CTA1: Purified and display onto gram-positive enhancer matrix (GEM) particles as mucosal adjuvant. Protein Expr Purif 2017; 141:19-24. [PMID: 28866467 DOI: 10.1016/j.pep.2017.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022]
Abstract
The A1 subunit of cholera toxin (CTA1) retains the adjuvant function of CT, without its toxic side effects, making the molecule a promising mucosal adjuvant. However, the methods required to obtain a pure product are both complicated and expensive, constricting its potential commercial applicability. Here, we fused the peptidoglycan binding domain (PA) to the C-terminus of CTA1, which enabled the fusion protein to be expressed by Bacillus subtilis, and secreted into the culture medium. CTA1 was then purified and displayed on GEM particles using a one step process, which resulted in the formation of CTA1-GEM complexes. Next, the CTA1-GEM complexes were used as an adjuvant to enhance the immune responses of mice to the influenza subunit vaccine. It was observed that the CTA1-GEM complexes enhanced specific systemic (IgG) and mucosal (IgA) immune responses against antigen, and induced cellular immune responses as well. The data presented here suggests that CTA1-GEM complexes can serve as a viable mucosal adjuvant.
Collapse
Affiliation(s)
- Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Liting Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Pengcheng Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
25
|
Weissmueller NT, Marsay L, Schiffter HA, Carlisle RC, Rollier CS, Prud’homme RK, Pollard AJ. Alternative vaccine administration by powder injection: Needle-free dermal delivery of the glycoconjugate meningococcal group Y vaccine. PLoS One 2017; 12:e0183427. [PMID: 28837693 PMCID: PMC5570268 DOI: 10.1371/journal.pone.0183427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022] Open
Abstract
Powder-injectors use gas propulsion to deposit lyophilised drug or vaccine particles in the epidermal and sub epidermal layers of the skin. We prepared dry-powder (Tg = 45.2 ± 0.5°C) microparticles (58.1 μm) of a MenY-CRM197 glyconjugate vaccine (0.5% wt.) for intradermal needle-free powder injection (NFPI). SFD used ultrasound atomisation of the liquid vaccine-containing excipient feed, followed by lyophilisation above the glass transition temperature (Tg' = - 29.9 ± 0.3°C). This resulted in robust particles (density~ 0.53 ±0.09 g/cm3) with a narrow volume size distribution (mean diameter 58.1 μm, and span = 1.2), and an impact parameter (ρvr ~ 11.5 kg/m·s) sufficient to breach the Stratum corneum (sc). The trehalose, manitol, dextran (10 kDa), dextran (150 kDa) formulation, or TMDD (3:3:3:1), protected the MenY-CRM197 glyconjugate during SFD with minimal loss, no detectable chemical degradation or physical aggregation. In a capsular group Y Neisseria meningitidis serum bactericidal assay (SBA) with human serum complement, the needle free vaccine, which contained no alum adjuvant, induced functional protective antibody responses in vivo of similar magnitude to the conventional vaccine injected by hypodermic needle and syringe and containing alum adjuvant. These results demonstrate that needle-free vaccination is both technically and immunologically valid, and could be considered for vaccines in development.
Collapse
Affiliation(s)
- Nikolas T. Weissmueller
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
- Department of Biological and Chemical Engineering, Princeton University, Princeton, New Jersey, United States of America
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Leanne Marsay
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| | - Heiko A. Schiffter
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Robert C. Carlisle
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Christine S. Rollier
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| | - Robert K. Prud’homme
- Department of Biological and Chemical Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew J. Pollard
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
26
|
Tissera MS, Cowley D, Bogdanovic-Sakran N, Hutton ML, Lyras D, Kirkwood CD, Buttery JP. Options for improving effectiveness of rotavirus vaccines in developing countries. Hum Vaccin Immunother 2017; 13:921-927. [PMID: 27835052 PMCID: PMC5404363 DOI: 10.1080/21645515.2016.1252493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 02/08/2023] Open
Abstract
Rotavirus gastroenteritis is a leading global cause of mortality and morbidity in young children due to diarrhea and dehydration. Over 85% of deaths occur in developing countries. In industrialised countries, 2 live oral rotavirus vaccines licensed in 2006 quickly demonstrated high effectiveness, dramatically reducing severe rotavirus gastroenteritis admissions in many settings by more than 90%. In contrast, the same vaccines reduced severe rotavirus gastroenteritis by only 30-60% in developing countries, but have been proven life-saving. Bridging this "efficacy gap" offers the possibility to save many more lives of children under the age of 5. The reduced efficacy of rotavirus vaccines in developing settings may be related to differences in transmission dynamics, as well as host luminal, mucosal and immune factors. This review will examine strategies currently under study to target the issue of reduced efficacy and effectiveness of oral rotavirus vaccines in developing settings.
Collapse
Affiliation(s)
- Marion S. Tissera
- Department of Paediatrics, Monash University, Melbourne, Australia; Enteric Virus Group, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Daniel Cowley
- Enteric Virus Group, Murdoch Childrens Research Institute, Melbourne, Australia
| | | | | | - Dena Lyras
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Carl D. Kirkwood
- Enteric Virus Group, Murdoch Childrens Research Institute, Melbourne, Australia; Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Jim P. Buttery
- Department of Paediatrics & The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Melbourne, Australia; Infection and Immunity, Monash Children's Hospital, Monash Health, Melbourne, Australia; SAEFVIC, Murdoch Childrens Research Institute, Melbourne, Australia
| |
Collapse
|
27
|
Desai SN, Pezzoli L, Alberti KP, Martin S, Costa A, Perea W, Legros D. Achievements and challenges for the use of killed oral cholera vaccines in the global stockpile era. Hum Vaccin Immunother 2017; 13:579-587. [PMID: 27813703 PMCID: PMC5360144 DOI: 10.1080/21645515.2016.1245250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/20/2016] [Accepted: 10/01/2016] [Indexed: 12/13/2022] Open
Abstract
Cholera remains an important but neglected public health threat, affecting the health of the poorest populations and imposing substantial costs on public health systems. Cholera can be eliminated where access to clean water, sanitation, and satisfactory hygiene practices are sustained, but major improvements in infrastructure continue to be a distant goal. New developments and trends of cholera disease burden, the creation of affordable oral cholera vaccines (OCVs) for use in developing countries, as well as recent evidence of vaccination impact has created an increased demand for cholera vaccines. The global OCV stockpile was established in 2013 and with support from Gavi, has assisted in achieving rapid access to vaccine in emergencies. Recent WHO prequalification of a second affordable OCV supports the stockpile goals of increased availability and distribution to affected populations. It serves as an essential step toward an integrated cholera control and prevention strategy in emergency and endemic settings.
Collapse
|
28
|
Qiu J, Yang Y, Huang L, Wang L, Jiang Z, Gong J, Wang W, Wang H, Guo S, Li C, Wei S, Mo Z, Xia J. Immunogenicity and safety evaluation of bivalent types 1 and 3 oral poliovirus vaccine by comparing different poliomyelitis vaccination schedules in China: A randomized controlled non-inferiority clinical trial. Hum Vaccin Immunother 2017; 13:1-10. [PMID: 28362135 DOI: 10.1080/21645515.2017.1288769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The type 2 component of the oral poliovirus vaccine is targeted for global withdrawal through a switch from the trivalent oral poliovirus vaccine (tOPV) to a bivalent oral poliovirus vaccine (bOPV). The switch is intended to prevent paralytic polio caused by circulating vaccine-derived poliovirus type 2. We aimed to assess the immunogenicity and safety profile of 6 vaccination schedules with different sequential doses of inactivated poliovirus vaccine (IPV), tOPV, or bOPV. METHODS A randomized controlled trial was conducted in China in 2015. Healthy newborn babies randomly received one of the following 6 vaccination schedules: cIPV-bOPV-bOPV(I-B-B), cIPV-tOPV-tOPV(I-T-T), cIPV-cIPV-bOPV(I-I-B), cIPV-cIPV-tOPV(I-I-T), cIPV-cIPV-cIPV(I-I-I), or tOPV-tOPV-tOPV(T-T-T). Doses were administered sequentially at 4-6 week intervals after collecting baseline blood samples. Patients were proactively followed up for observation of adverse events after the first dose and 30 days after all doses. The primary study objective was to investigate the immunogenicity and safety profile of different vaccine schedules, evaluated by seroconversion, seroprotection and antibody titer against poliovirus types 1, 2, and 3 in the per-protocol population. RESULTS Of 600 newborn babies enrolled, 504 (84.0%) were included in the per-protocol population. For type 1 poliovirus, the differences in the seroconversion were 1.17% (95% CI = -2.74%, 5.08%) between I-B-B and I-T-T and 0.00% (95% CI: -6.99%, 6.99%) between I-I-B and I-I-T; for type 3 poliovirus, differences in the seroconversion were 3.49% (95% CI: -1.50%, 8.48%) between I-B-B and I-T-T and -2.32% (95% CI: -5.51%, 0.86%) between I-I-B and I-I-T. The non-inferiority conclusion was achieved in both poliovirus type 1 and 3 with the margin of -10%. Of 24 serious adverse events reported, no one was vaccine-related. CONCLUSIONS The vaccination schedules with bOPV followed by one or 2 doses of IPV were recommended to substitute for vaccinations involving tOPV without compromising the immunogenicity and safety in the Chinese population. The findings will be essential for policy formulation by national and global authorities to facilitate polio elimination.
Collapse
Affiliation(s)
- Jingjun Qiu
- a Department of Health Statistics, School of Preventive Medicine , Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Yunkai Yang
- b Beijing Tiantan Biological Products CO., Ltd. , Beijing , China
| | - Lirong Huang
- c Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention , Nanning , Guangxi Zhuang Autonomous Region , China
| | - Ling Wang
- a Department of Health Statistics, School of Preventive Medicine , Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Zhiwei Jiang
- a Department of Health Statistics, School of Preventive Medicine , Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Jian Gong
- c Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention , Nanning , Guangxi Zhuang Autonomous Region , China
| | - Wei Wang
- b Beijing Tiantan Biological Products CO., Ltd. , Beijing , China
| | - Hongyan Wang
- b Beijing Tiantan Biological Products CO., Ltd. , Beijing , China
| | - Shaohong Guo
- b Beijing Tiantan Biological Products CO., Ltd. , Beijing , China
| | - Chanjuan Li
- a Department of Health Statistics, School of Preventive Medicine , Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Shuyuan Wei
- b Beijing Tiantan Biological Products CO., Ltd. , Beijing , China
| | - Zhaojun Mo
- c Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention , Nanning , Guangxi Zhuang Autonomous Region , China
| | - Jielai Xia
- a Department of Health Statistics, School of Preventive Medicine , Fourth Military Medical University , Xi'an , Shaanxi , China
| |
Collapse
|
29
|
Mucosal Vaccine Development Based on Liposome Technology. J Immunol Res 2016; 2016:5482087. [PMID: 28127567 PMCID: PMC5227169 DOI: 10.1155/2016/5482087] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/27/2016] [Indexed: 12/01/2022] Open
Abstract
Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination of mucosal adjuvants with the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines.
Collapse
|
30
|
Biomineralized vaccine nanohybrid for needle-free intranasal immunization. Biomaterials 2016; 106:286-94. [PMID: 27575530 DOI: 10.1016/j.biomaterials.2016.08.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022]
Abstract
Frequent outbreaks and the rapid global spread of infectious diseases have increased the urgent need for massive vaccination especially in countries with limited resources. Intranasal vaccination facilitates the mass vaccination via needle-free delivery of vaccine through nasal mucosal surfaces. Inspired by the strong capability of calcium phosphate (CaP) materials to adhere to cells and tissues, we propose to improve nasal vaccination by using a biomineralization-based strategy. The vaccine nanohybrid was obtained by covering the viral surface with CaP nanoshell, which changed the physiochemical properties of original vaccine, resulting in the increase of mucosal adhesion to the nasal tissues. The core-shell structure was beneficial for the receptor-independent uptake and the induction of elevated local IgA response within the nasal cavity. Moreover, the vaccine complex elicited enhanced systemic antibody response that neutralized wild type of dengue virus and promoted the systemic cellular immune responses. This achievement presents the potential of CaP based vaccine biomineralization for the fabrication of needle-free vaccine formulation.
Collapse
|
31
|
Abstract
Needle-based delivery systems suit the vast majority of people with type 1 and type 2 diabetes who require insulin. However, a small group may be better suited to a needle-free delivery system. In the UK, GPs can now prescribe, on the NHS, such a needle-free delivery system — sometimes called a jet injector. These devices are not necessarily pain free but they have a well-established history and offer patients and their healthcare professionals a credible alternative to a needle-based insulin injection.
Collapse
Affiliation(s)
- Harry Brown
- The Medical Centre, 846 York Road, Seacroft, Leeds, LS14 6DX, UK,
| |
Collapse
|
32
|
Ilic V, Dunet V, Le Pape A, Buchs M, Kosinski M, Bischof Delaloye A, Gerber S, Prior JO. SPECT/CT study of bronchial deposition of inhaled particles. A human aerosol vaccination model against HPV. Nuklearmedizin 2016; 55:203-8. [PMID: 27440125 DOI: 10.3413/nukmed-0811-16-03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023]
Abstract
AIMS Vaccination by aerosol inhalation can be used to efficiently deliver antigen against HPV to mucosal tissue, which is particularly useful in developing countries (simplicity of administration, costs, no need for cold chain). For optimal immunological response, vaccine particles should preferentially be delivered to proximal bronchial airways. We aimed at quantifying the deposition of inhaled particles in central airways and peripheral lung, and to assess administration biosafety. Participants, methods: 20 healthy volunteers (13W/7M, aged 24±4y) performed a 10-min free-breathing inhalation of (99m)Tc-stannous chloride colloid aerosol (450 MBq) in a buffer solution without vaccinal particles using an ultrasonic nebulizer (mass median aerodynamic diameter 4.2 μm) and a double mask inside a biosafety cabinet dedicated to assess environmental particle release. SPECT/CT and whole-body planar scintigraphy were acquired to determine whole-body and regional C/P distribution ratio (central-to-peripheral pulmonary deposition counts). Using a phantom, SPECT sensitivity was calibrated to obtain absolute pulmonary activity deposited by inhalation. RESULTS All participants successfully performed the inhalation that was well tolerated (no change in pulmonary peak expiratory flow rate, p = 0.9). It was environmentally safe (no activity released in the biosafety filter.) 1.3±0.6% (range 0.4-2.6%) of the total nebulizer activity was deposited in the lungs with a C/P distribution ratio of 0.40±0.20 (range 0.15-1.14). CONCLUSION Quantification and regional distribution of inhaled particles in an aerosolized vaccine model is possible using radioactive particles. This will allow optimizing deposition parameters and determining the particles charge for active-particles vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John O Prior
- Prof. John O. Prior, PhD MD, Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland, Tel. +41/21/314 43-48, Fax -49,
| |
Collapse
|
33
|
Zhu C, Xiong K, Chen Z, Hu X, Li J, Wang Y, Rao X, Cong Y. Construction of an attenuated Salmonella enterica serovar Paratyphi A vaccine strain harboring defined mutations in htrA and yncD. Microbiol Immunol 2016; 59:443-51. [PMID: 26084199 DOI: 10.1111/1348-0421.12276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
The global epidemic features of enteric fever have changed greatly in recent years. The incidence of enteric fever caused by Salmonella enterica serovar Paratyphi A has progressively increased. In some areas of Asia, infections with S. Paratyphi A have exceeded those with S. Typhi, resulting in S. Paratyphi A becoming the main causative agent of enteric fever. However, two currently licensed typhoid vaccines do not confer adequate cross-protection against S. Paratyphi A infection. Therefore, development of specific vaccines against enteric fever caused by S. Paratyphi A is urgently needed. In the present study, an attenuated strain was constructed by double deletion of the htrA and yncD genes in a wild-type strain of S. Paratyphi A and its safety and immunogenicity assessed. In a mouse model, the 50% lethal dose of the double deletion mutant and the wild-type strain were 3.0 × 10(8) CFU and 1.9 × 10(3) CFU, respectively, suggesting that the double deletion resulted in remarkably decreased bacterial virulence. Bacterial colonization of the double deletion mutant in the livers and spleens of infected mice was strikingly less than that of the wild-type strain. A single nasal administration of the attenuated vaccine candidate elicited high concentrations of anti-LPS and anti-flagellin IgG in a mouse model and protected immunized mice against lethal challenge with the wild-type strain. Thus, our findings suggest that the attenuated vaccine strain is a promising candidate worthy of further evaluation both as a human enteric fever vaccine and as a vaccine delivery vector for heterologous antigens.
Collapse
Affiliation(s)
- Chunyue Zhu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Kun Xiong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Zhijin Chen
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaomei Hu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jianhua Li
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yiran Wang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yanguang Cong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
34
|
Abstract
Intradermal (ID) vaccination induces a more potent immune response and requires lower vaccine doses as compared with standard vaccination routes. To deliver ID vaccines effectively and consistently, an ID delivery device has been developed and is commercially available for adults. The clinical application of ID vaccines for infants and children is much anticipated because children receive several vaccines, on multiple occasions, during infancy and childhood. However, experience with ID vaccines is limited and present evidence is sparse and inconsistent. ID delivery devices are not currently available for infants and children, but recent studies have examined skin thickness in this population and reported that it did not differ in proportion to body size in infants, children, and adults. These results are helpful in developing new ID devices and for preparing new vaccines in infants and children.
Collapse
Affiliation(s)
- Akihiko Saitoh
- a Department of Pediatrics , Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Yuta Aizawa
- a Department of Pediatrics , Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| |
Collapse
|
35
|
Cunningham AL, Guentzel MN, Yu JJ, Hung CY, Forsthuber TG, Navara CS, Yagita H, Williams IR, Klose KE, Eaves-Pyles TD, Arulanandam BP. M-Cells Contribute to the Entry of an Oral Vaccine but Are Not Essential for the Subsequent Induction of Protective Immunity against Francisella tularensis. PLoS One 2016; 11:e0153402. [PMID: 27100824 PMCID: PMC4839702 DOI: 10.1371/journal.pone.0153402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
M-cells (microfold cells) are thought to be a primary conduit of intestinal antigen trafficking. Using an established neutralizing anti-RANKL (Receptor Activator of NF-κB Ligand) antibody treatment to transiently deplete M-cells in vivo, we sought to determine whether intestinal M-cells were required for the effective induction of protective immunity following oral vaccination with ΔiglB (a defined live attenuated Francisella novicida mutant). M-cell depleted, ΔiglB-vaccinated mice exhibited increased (but not significant) morbidity and mortality following a subsequent homotypic or heterotypic pulmonary F. tularensis challenge. No significant differences in splenic IFN-γ, IL-2, or IL-17 or serum antibody (IgG1, IgG2a, IgA) production were observed compared to non-depleted, ΔiglB-vaccinated animals suggesting complementary mechanisms for ΔiglB entry. Thus, we examined other possible routes of gastrointestinal antigen sampling following oral vaccination and found that ΔiglB co-localized to villus goblet cells and enterocytes. These results provide insight into the role of M-cells and complementary pathways in intestinal antigen trafficking that may be involved in the generation of optimal immunity following oral vaccination.
Collapse
Affiliation(s)
- Aimee L. Cunningham
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Chiung-Yu Hung
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Thomas G. Forsthuber
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Christopher S. Navara
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Hideo Yagita
- Department of Immunology, Juntendo University, Tokyo, Japan
| | - Ifor R. Williams
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Karl E. Klose
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Tonyia D. Eaves-Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bernard P. Arulanandam
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep 2015; 5:18099. [PMID: 26667202 PMCID: PMC4678304 DOI: 10.1038/srep18099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022] Open
Abstract
DNA vaccines have advantages over traditional vaccine modalities; however the relatively low immunogenicity restrains its translation into clinical use. Further optimizations are needed to get the immunogenicity of DNA vaccine closer to the level required for human use. Here we show that intramuscularly inoculating into a different limb each time significantly improves the immunogenicities of both DNA and recombinant vaccinia vaccines during multiple vaccinations, compared to repeated vaccination on the same limb. We term this strategy successive site translocating inoculation (SSTI). SSTI could work in synergy with genetic adjuvant and DNA prime-recombinant vaccinia boost regimen. By comparing in vivo antigen expression, we found that SSTI avoided the specific inhibition of in vivo antigen expression, which was observed in the limbs being repeatedly inoculated. Employing in vivo T cell depletion and passive IgG transfer, we delineated that the inhibition was not mediated by CD8+ T cells but by specific antibodies. Finally, by using C3−/− mouse model and in vivo NK cells depletion, we identified that specific antibodies negatively regulated the in vivo antigen expression primarily in a complement depended way.
Collapse
Affiliation(s)
- Yanqin Ren
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Na Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yanmin Wan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| |
Collapse
|
37
|
|
38
|
Xiong K, Chen Z, Zhu C, Li J, Hu X, Rao X, Cong Y. Safety and immunogenicity of an attenuated Salmonella enterica serovar Paratyphi A vaccine candidate. Int J Med Microbiol 2015; 305:563-71. [PMID: 26239100 DOI: 10.1016/j.ijmm.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/02/2015] [Accepted: 07/22/2015] [Indexed: 02/08/2023] Open
Abstract
Enteric fever caused by Salmonella enterica serovar Paratyphi A has progressively increased in recent years and became a global health issue. Currently licensed typhoid vaccines do not confer adequate cross-immunoprotection against S. Paratyphi A infection. Therefore, vaccines specifically against enteric fever caused by S. Paratyphi A are urgently needed. In the present study, an attenuated vaccine strain was constructed from S. Paratyphi A CMCC50093 by the deletions of aroC and yncD. The obtained strain SPADD01 showed reduced survival within THP-1 cells and less bacterial burden in spleens and livers of infected mice compared with the wild-type strain. The 50% lethal doses of SPADD01 and the wild-type strain were assessed using a murine infection model. The virulence of SPADD01 is approximately 40,000-fold less than that of the wild-type strain. In addition, SPADD01 showed an excellent immunogenicity in mouse model. Single intranasal inoculation elicited striking humoral and mucosal immune responses in mice and yielded effective protection against lethal challenge of the wild-type strain. A high level of cross-reactive humoral immune response against LPS of Salmonella enterica serovar Typhi was also detected in immunized mice. However, SPADD01 vaccination only conferred a low level of cross-protection against S. Typhi. Our data suggest that SPADD01 is a promising vaccine candidate against S. Paratyphi A infection and deserves further evaluation in clinical trial. To date, no study has demonstrated a good cross-protection between serovars of S. Typhi and S. Paratyphi A, suggesting that the dominant protective antigens of both serovars are likely different and need to be defined in future study.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Zhijin Chen
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Chunyue Zhu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Jianhua Li
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Xiaomei Hu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Yanguang Cong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
39
|
Yuen C, Liu Q. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:61102. [PMID: 25700332 DOI: 10.1117/1.jbo.20.6.061102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that there use of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination,which shows the great potential for safe and effective needle-based measurements.
Collapse
|
40
|
Gupta PN. Mucosal Vaccine Delivery and M Cell Targeting. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Wang X, Meng D. Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell 2014; 6:170-84. [PMID: 25503634 PMCID: PMC4348248 DOI: 10.1007/s13238-014-0125-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/18/2014] [Indexed: 12/01/2022] Open
Abstract
Vaccination is an effective strategy to prevent infectious or immune related diseases, which has made remarkable contribution in human history. Recently increasing attentions have been paid to mucosal vaccination due to its multiple advantages over conventional ways. Subunit or peptide antigens are more reasonable immunogens for mucosal vaccination than live or attenuated pathogens, however adjuvants are required to augment the immune responses. Many mucosal adjuvants have been developed to prime desirable immune responses to different etiologies. Compared with pathogen derived adjuvants, innate endogenous molecules incorporated into mucosal vaccines demonstrate prominent adjuvanticity and safety. Nowadays, cytokines are broadly used as mucosal adjuvants for participation of signal transduction of immune responses, activation of innate immunity and polarization of adaptive immunity. Desired immune responses are promptly and efficaciously primed on basis of specific interactions between cytokines and corresponding receptors. In addition, some other innate molecules are also identified as potent mucosal adjuvants. This review focuses on innate endogenous mucosal adjuvants, hoping to shed light on the development of mucosal vaccines.
Collapse
Affiliation(s)
- Xiaoguang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,
| | | |
Collapse
|
42
|
Sarwar UN, Novik L, Enama ME, Plummer SA, Koup RA, Nason MC, Bailer RT, McDermott AB, Roederer M, Mascola JR, Ledgerwood JE, Graham BS. Homologous boosting with adenoviral serotype 5 HIV vaccine (rAd5) vector can boost antibody responses despite preexisting vector-specific immunity in a randomized phase I clinical trial. PLoS One 2014; 9:e106240. [PMID: 25264782 PMCID: PMC4179264 DOI: 10.1371/journal.pone.0106240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 07/30/2014] [Indexed: 12/31/2022] Open
Abstract
Background Needle-free delivery improves the immunogenicity of DNA vaccines but is also associated with more local reactogenicity. Here we report the first comparison of Biojector and needle administration of a candidate rAd5 HIV vaccine. Methods Thirty-one adults, 18–55 years, 20 naive and 11 prior rAd5 vaccine recipients were randomized to receive single rAd5 vaccine via needle or Biojector IM injection at 1010 PU in a Phase I open label clinical trial. Solicited reactogenicity was collected for 5 days; clinical safety and immunogenicity follow-up was continued for 24 weeks. Results Overall, injections by either method were well tolerated. There were no serious adverse events. Frequency of any local reactogenicity was 16/16 (100%) for Biojector compared to 11/15 (73%) for needle injections. There was no difference in HIV Env-specific antibody response between Biojector and needle delivery. Env-specific antibody responses were more than 10-fold higher in subjects receiving a booster dose of rAd5 vaccine than after a single dose delivered by either method regardless of interval between prime and boost. Conclusions Biojector delivery did not improve antibody responses to the rAd5 vaccine compared to needle administration. Homologous boosting with rAd5 gene-based vectors can boost insert-specific antibody responses despite pre-existing vector-specific immunity. Trial Registration Clinicaltrials.gov NCT00709605 NCT00709605
Collapse
Affiliation(s)
- Uzma N. Sarwar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mary E. Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Sarah A. Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, NIAID, NIH, Bethesda, MD, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| | | |
Collapse
|
43
|
McAllister L, Anderson J, Werth K, Cho I, Copeland K, Le Cam Bouveret N, Plant D, Mendelman PM, Cobb DK. Needle-free jet injection for administration of influenza vaccine: a randomised non-inferiority trial. Lancet 2014; 384:674-81. [PMID: 24881803 DOI: 10.1016/s0140-6736(14)60524-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Administration of vaccines by needle-free technology such as jet injection might offer an alternative to needles and syringes that avoids the issue of needle phobia and the risk of needle-stick injury. We aimed to assess the immunogenicity and safety of trivalent influenza vaccine given by needle-free jet injector compared with needle and syringe. METHODS For this randomised, comparator-controlled trial, we randomly assigned (1:1) healthy adults (aged 18-64 years) who attended one of four employee health clinics in the University of Colorado health system, with stratification by site, to receive one dose of the trivalent inactivated influenza vaccine Afluria given either intramuscularly with a needle-free jet injector (Stratis; PharmaJet, Golden, CO, USA) or with needle and syringe. Randomisation was done with a computer-generated randomisation schedule with a block size of 100. Because of the nature of the study, masking of participants was not possible. Immunogenicity was assessed by measurement of the hemagglutination inhibition antibody titres in serum for the three viral strains included in the vaccine. We included six coprimary endpoints: three strain-specific geometric mean titre ratios and the absolute differences in three strain-specific seroconversion rates. The immune response of the jet injector group was regarded as non-inferior to that of the needle and syringe group if both the upper bound of each of the three 95% CIs for the strain-specific geometric mean titre ratios was 1.5 or less, and the upper bound of the three 95% CIs for the strain-specific seroconversion rate differences was less than 10 percentage points. We used t test for group comparison. This study is registered with ClinicalTrials.gov, number NCT01688921. FINDINGS During the 2012-13 influenza season of the northern hemisphere, we allocated 1250 participants to receive vaccination by needle-free jet injector (n=627) or needle and syringe (n=623). In the intention-to-treat immunogenicity population, all participants with two serum samples were included (575 in the jet injector group and 574 in the needle and syringe group). The immune response to Afluria when given by needle-free jet injector met the criteria for non-inferiority for all six coprimary endpoints. The jet injector group met the geometric mean titre criterion for non-inferiority for the A/H1N1, A/H3N2, and B strains (upper bound of the 95% CI for the geometric mean titre ratios were 1·10 for A/H1N1, 1·17 for A/H3N2, and 1·04 for B strains). The jet injector group met the seroconversion rate criterion for non-inferiority for the A/H1N1, A/H3N2, and B strains (upper bound of the 95% CI of the seroconversion rate differences were 6·0% for A/H1N1, 7·0% for A/H3N2, and 5·7% for B strains). We recorded serious adverse events in three participants, none of which were study related. INTERPRETATION The immune response to influenza vaccine given with the jet injector device was non-inferior to the immune response to influenza vaccine given with needle and syringe. The device had a clinically acceptable safety profile, but was associated with a higher frequency of local injection site reactions than was the use of needle and syringe. The Stratis needle-free jet injector device could be used as an alternative method of administration of Afluria trivalent influenza vaccine. FUNDING Biomedical Advanced Research and Development Authority (BARDA), PATH, bioCSL, and PharmaJet.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David K Cobb
- Medical Center of the Rockies, Loveland, CO, USA
| |
Collapse
|
44
|
Sharma K, Malik B, Goyal AK, Rath G. Development of probiotic-based immunoparticles for pulmonary immunization against Hepatitis B. ACTA ACUST UNITED AC 2014; 66:1526-33. [PMID: 25039788 DOI: 10.1111/jphp.12247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The present study was oriented towards the development of pulmonary vaccine for Hepatitis B using probiotic biomass as an adjuvant. METHODS The antigen was spray dried in presence of heat treated, formalin treated and live probiotic biomass. KEY FINDINGS The results indicated that the biomass itself without any additional cryoprotectant is capable of protecting the structural integrity of the antigen. We were able to retain more than 80% of the antigenicity. The scanning electron microscopic images indicated that the formulation bearing live probiotic biomass have spherical size, while the formulations with heat and formalin treated biomass shows irregular shaped particles. The developed formulations were further evaluated for in-vivo immune response. Immunoglobulin G (IgG) titre results were found to be comparable with marketed (aluminium adsorbed) formulations while significantly higher secretory immunoglobulin A titre showed better mucosal immune response than marketed formulation. CONCLUSION Therefore, the probiotic biomass can be utilized as a potential cryoprotectant as well as a potent immunomodulator.
Collapse
|
45
|
Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev Vaccines 2014; 6:401-18. [PMID: 17542755 DOI: 10.1586/14760584.6.3.401] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although polymeric nanoparticles/microparticles are well established for the mucosal administration of conventional drugs, they have not yet been developed commercially for vaccine delivery. The limitation of the mucosal (particularly oral) route of delivery, including low pH, gastric enzymes, rapid transit and poor absorption of large molecules, has made mucosal vaccine delivery challenging. Nevertheless, several polymeric delivery systems for mucosal vaccine delivery are currently being evaluated. The polymer-based approaches are designed to protect the antigen in the gut, to target the antigen to the gut-associated lymphoid tissue or to increase the residence time of the antigen in the gut through bioadhesion. M-cell targeting is a potential approach for mucosal vaccine delivery, which can be achieved using M-cell-specific lectins, microbial adhesins or immunoglobulins. While many hurdles must be overcome before targeted mucosal vaccine delivery becomes a practical reality, this is a potential area of research that has important implications for future vaccine development. This review comprises various aspects that could be decisive in the development of polymer based mucosal vaccine delivery systems.
Collapse
Affiliation(s)
- Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar-470003 (M.P.), India.
| | | |
Collapse
|
46
|
Sitta DLA, Guilherme MR, Garcia FP, Cellet TSP, Nakamura CV, Muniz EC, Rubira AF. Covalent Albumin Microparticles as an Adjuvant for Production of Mucosal Vaccines against Hepatitis B. Biomacromolecules 2013; 14:3231-7. [DOI: 10.1021/bm400859z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danielly L. A. Sitta
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| | - Marcos R. Guilherme
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| | - Francielle P. Garcia
- Departamento de Ciências
Básicas da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, CEP 87020-900
Maringá, PR, Brazil
| | - Thelma S. P. Cellet
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| | - Celso V. Nakamura
- Departamento de Ciências
Básicas da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, CEP 87020-900
Maringá, PR, Brazil
- Programa de pós-graduação
em Ciências Farmacêuticas, Departamento de Ciências
Básicas da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, CEP 87020-900
Maringá, PR, Brazil
| | - Edvani C. Muniz
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| | - Adley F. Rubira
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| |
Collapse
|
47
|
Development and Clinical Study of a Self-Dissolving Microneedle Patch for Transcutaneous Immunization Device. Pharm Res 2013; 30:2664-74. [DOI: 10.1007/s11095-013-1092-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
48
|
Matsuo K, Ishii Y, Kawai Y, Saiba Y, Quan YS, Kamiyama F, Hirobe S, Okada N, Nakagawa S. Analysis of Transcutaneous Antigenic Protein Delivery by a Hydrogel Patch Formulation. J Pharm Sci 2013; 102:1936-1947. [DOI: 10.1002/jps.23540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 01/07/2023]
|
49
|
Graham BS, Enama ME, Nason MC, Gordon IJ, Peel SA, Ledgerwood JE, Plummer SA, Mascola JR, Bailer RT, Roederer M, Koup RA, Nabel GJ. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One 2013; 8:e59340. [PMID: 23577062 PMCID: PMC3620125 DOI: 10.1371/journal.pone.0059340] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/12/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND DNA vaccine immunogenicity has been limited by inefficient delivery. Needle-free delivery of DNA using a CO2-powered Biojector® device was compared to delivery by needle and syringe and evaluated for safety and immunogenicity. METHODS Forty adults, 18-50 years, were randomly assigned to intramuscular (IM) vaccinations with DNA vaccine, VRC-HIVDNA016-00-VP, (weeks 0, 4, 8) by Biojector® 2000™ or needle and syringe (N/S) and boosted IM at week 24 with VRC-HIVADV014-00-VP (rAd5) with N/S at 10(10) or 10(11) particle units (PU). Equal numbers per assigned schedule had low (≤500) or high (>500) reciprocal titers of preexisting Ad5 neutralizing antibody. RESULTS 120 DNA and 39 rAd5 injections were given; 36 subjects completed follow-up research sample collections. IFN-γ ELISpot response rates were 17/19 (89%) for Biojector® and 13/17 (76%) for N/S delivery at Week 28 (4 weeks post rAd5 boost). The magnitude of ELISpot response was about 3-fold higher in Biojector® compared to N/S groups. Similar effects on response rates and magnitude were observed for CD8+, but not CD4+ T-cell responses by ICS. Env-specific antibody responses were about 10-fold higher in Biojector-primed subjects. CONCLUSIONS DNA vaccination by Biojector® was well-tolerated and compared to needle injection, primed for greater IFN-γ ELISpot, CD8+ T-cell, and antibody responses after rAd5 boosting. TRIAL REGISTRATION ClinicalTrials.gov NCT00109629.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adolescent
- Adult
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- DNA, Recombinant/genetics
- Dose-Response Relationship, Immunologic
- Female
- HIV-1/immunology
- HIV-1/metabolism
- Humans
- Immunity, Cellular/immunology
- Immunity, Humoral/immunology
- Immunization, Secondary/methods
- Injections
- Male
- Middle Aged
- Peptide Fragments/metabolism
- Safety
- Vaccination/instrumentation
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Young Adult
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hirobe S, Okada N, Nakagawa S. Transcutaneous vaccines--current and emerging strategies. Expert Opin Drug Deliv 2013; 10:485-98. [PMID: 23316778 DOI: 10.1517/17425247.2013.760542] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vaccination, which is the major fundamental prophylaxis against illness and death from infectious disease, has greatly contributed to the global improvement of human health. However, the disadvantages of conventional injection systems hamper the delivery of vaccination technologies to developing countries. The imminent practice of easy-to-use vaccination methods is expected to overcome certain issues associated with injectable vaccinations. One innovative method is the transcutaneous immunization (TCI) system. AREAS COVERED Two major strategies for TCI are discussed in this review. One is to promote antigen permeation of the skin barrier by patch systems or nanoparticles. The other is the delivery of antigens into the skin by electroporation and microneedles in order to physically overcome the skin barrier. Moreover, adjuvant development for TCI is discussed. EXPERT OPINION Many different approaches have been developed for TCI, which have the potential to be effective, easy-to-use and painless methods of vaccination. However, in practical terms, the guidelines concerning the manufacturing processes and clinical trial evaluation of the procedures have not kept pace with the development of these novel formulations. The accumulation of information regarding skin characteristics and the properties of TCI devices will help refine TCI system development guidelines and thus lead to the improvement of transcutaneous vaccination.
Collapse
Affiliation(s)
- Sachiko Hirobe
- Osaka University, Graduate School of Pharmaceutical Sciences, Laboratory of Biotechnology and Therapeutics, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|