1
|
Zhang Z, Shan X, Li S, Chang J, Zhang Z, Dong Y, Wang L, Liang F. Retinal light damage: From mechanisms to protective strategies. Surv Ophthalmol 2024; 69:905-915. [PMID: 39053594 DOI: 10.1016/j.survophthal.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Visible light serves as a crucial medium for vision formation.;however, prolonged or excessive exposure to light is recognized as a significant etiological factor contributing to retinal degenerative diseases. The retina, with its unique structure and adaptability, relies on the homeostasis of cellular functions to maintain visual health. Under normal conditions, the retina can mount adaptive responses to various insults, including light-induced damage. Unfortunately, exposure to intense and excessive light triggers a cascade of pathological alterations in retinal photoreceptor cells, pigment epithelial cells, ganglion cells, and glial cells. These alterations encompass disruption of intracellular REDOX and Ca²⁺ homeostasis, pyroptosis, endoplasmic reticulum stress, autophagy, and the release of inflammatory cytokines, culminating in irreversible retinal damage. We first delineate the mechanisms of retinal light damage through 4 main avenues: mitochondria function, endoplasmic reticulum stress, cell autophagy, and inflammation. Subsequently, we discuss protective strategies against retinal light damage, aiming to guide research toward the prevention and treatment of light-induced retinal conditions.
Collapse
Affiliation(s)
- Zhao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiaoqian Shan
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Jun Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhenhua Zhang
- Tongliang District Hospital of Traditional Chinese Medicine, Chongqing 402560, China
| | - Yang Dong
- Ji'nan Hospital of Traditional Chinese Medicine, Jinan, 250002, China
| | - Li Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Fengming Liang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
2
|
Moseley-Alldredge M, Aragón C, Vargus M, Alley D, Somia N, Chen L. The L1CAM SAX-7 is an antagonistic modulator of Erk Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613091. [PMID: 39345534 PMCID: PMC11429911 DOI: 10.1101/2024.09.14.613091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
L1CAMs are immunoglobulin superfamily cell adhesion molecules that ensure proper nervous system development and function. In addition to being associated with the autism and schizophrenia spectrum disorders, mutations in the L1CAM family of genes also underlie distinct developmental syndromes with neurological conditions, such as intellectual disability, spastic paraplegia, hypotonia and congenital hydrocephalus. Studies in both vertebrate and invertebrate model organisms have established conserved neurodevelopmental roles for L1CAMs; these include axon guidance, dendrite morphogenesis, synaptogenesis, and maintenance of neural architecture, among others. In Caenorhabditis elegans , L1CAMs, encoded by the sax-7 gene, are required for coordinated locomotion. We previously uncovered a genetic interaction between sax-7 and components of synaptic vesicle cycle, revealing a non-developmental role for sax-7 in regulating synaptic activity. More recently, we determined that sax-7 also genetically interacts with extracellular signal-related kinase (ERK) signaling in controlling coordinated locomotion. C. elegans ERK, encoded by the mpk-1 gene, is a serine/threonine protein kinase belonging to the mitogen-activated protein kinase (MAPK) family that governs multiple aspects of animal development and cellular homeostasis. Here, we show this genetic interaction between sax-7 and mpk-1 occurs not only in cholinergic neurons for coordinated locomotion, but also extends outside the nervous system, revealing novel roles for SAX-7/L1CAM in non-neuronal processes, including vulval development. Our genetic findings in both the nervous system and developing vulva are consistent with SAX-7/L1CAM acting as an antagonistic modulator of ERK signaling.
Collapse
|
3
|
An MJ, Kim JY, Kim J, Kim DH, Shin GS, Lee HM, Jo AR, Park Y, Hwangbo Y, Kim CH, Kim MJ, Jung YS, Kim J, Rhee S, Seo SB, Kim JW. Reorganization of H3K9me heterochromatin leads to neuronal impairment via the cascading destruction of the KDM3B-centered epigenomic network. iScience 2024; 27:110380. [PMID: 39165843 PMCID: PMC11334829 DOI: 10.1016/j.isci.2024.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
Histone H3K9 methylated heterochromatin silences repetitive non-coding sequences and lineage-specific genes during development, but how tissue-specific genes escape from heterochromatin in differentiated cells is unclear. Here, we examine age-dependent transcriptomic profiling of terminally differentiated mouse retina to identify epigenetic regulators involved in heterochromatin reorganization. The single-cell RNA sequencing analysis reveals a gradual downregulation of Kdm3b in cone photoreceptors during aging. Disruption of Kdm3b (Kdm3b +/- ) of 12-month-old mouse retina leads to the decreasing number of cones via apoptosis, and it changes the morphology of cone ribbon synapses. Integration of the transcriptome with epigenomic analysis in Kdm3b +/- retinas demonstrates gains of heterochromatin features in synapse assembly and vesicle transport genes that are downregulated via the accumulation of H3K9me1/2. Contrarily, losses of heterochromatin in apoptotic genes exacerbated retinal neurodegeneration. We propose that the KDM3B-centered epigenomic network is crucial for balancing of cone photoreceptor homeostasis via the modulation of gene set-specific heterochromatin features during aging.
Collapse
Affiliation(s)
- Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Ji-Young Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jinho Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Dae-Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun-Min Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Ah-Ra Jo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Yuna Park
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Yujeong Hwangbo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Mi Jin Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Sang-Beom Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
4
|
Duan S, Yang Q, Wu F, Li Z, Hong W, Cao M, Chen X, Zhong X, Zhou Q, Zhao H. Maternal methylosome protein 50 is essential for embryonic development in medaka Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:798-810. [PMID: 38654580 DOI: 10.1002/jez.2824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Methylosome protein 50 (Mep50) is a protein that is rich in WD40 domains, which mediate and regulate a variety of physiological processes in organisms. Previous studies indicated the necessity of Mep50 in embryogenesis in mice Mus musculus and fish. This study aimed to further understand the roles of maternal Mep50 in early embryogenesis using medaka Oryzias latipes as a model. Without maternal Mep50, medaka zygotes developed to the pre-early gastrula stage but died later. The transcriptome of the embryos at the pre-early gastrula stage was analyzed by RNA sequencing. The results indicated that 1572 genes were significantly upregulated and 741 genes were significantly downregulated in the embryos without maternal Mep50. In the differentially expressed genes (DEGs), the DNA-binding proteins, such as histones and members of the small chromosome maintenance complex, were enriched. The major interfered regulatory networks in the embryos losing maternal Mep50 included DNA replication and cell cycle regulation, AP-1 transcription factors such as Jun and Fos, the Wnt pathway, RNA processing, and the extracellular matrix. Quantitative RT-PCR verified 16 DEGs, including prmt5, H2A, cpsf, jun, mcm4, myc, p21, ccne2, cdk6, and col1, among others. It was speculated that the absence of maternal Mep50 could potentially lead to errors in DNA replication and cell cycle arrest, ultimately resulting in cell apoptosis. This eventually resulted in the failure of gastrulation and embryonic death. The results indicate the importance of maternal Mep50 in early embryonic development, particularly in medaka fish.
Collapse
Affiliation(s)
- Shi Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qing Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Fan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhenyu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wentao Hong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
5
|
Wang X, Wang T, Kaneko S, Kriukov E, Lam E, Szczepan M, Chen J, Gregg A, Wang X, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S, Baranov P, Sun Y. Photoreceptors inhibit pathological retinal angiogenesis through transcriptional regulation of Adam17 via c-Fos. Angiogenesis 2024; 27:379-395. [PMID: 38483712 PMCID: PMC11303108 DOI: 10.1007/s10456-024-09912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/11/2024]
Abstract
Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Kaneko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emil Kriukov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manon Szczepan
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmine Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin Gregg
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xingyan Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Petr Baranov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Noguchi JL, Seu MY, Qiao JB, Tan IR, Swaminathan SR, McDonnell JF, Tan Z, Bu P. Kaempferol Protects Against Retinal Photoreceptor Degeneration in a Mouse Model of Light-Induced Retinal Injury. J Ocul Pharmacol Ther 2023; 39:80-85. [PMID: 36520599 DOI: 10.1089/jop.2022.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: Age-related macular degeneration (AMD) is a leading cause of blindness in developed countries with little in the way of treatment that prevents progression to end-stage disease. Kaempferol (KF) is a plant-derived dietary flavonoid that has demonstrated as a strong antioxidant showing neuroprotection in stroke models. We hypothesize that KF has protective effects against retinal degeneration and may serve as a therapeutic agent against AMD. Methods: BALB/c albino mice were assigned to 1 of 2 groups: control-treated or KF-treated retinal light injury mice. Mice were exposed to 8,000 lux cool white fluorescent light for 2 h to induce light injury. Control or KF was injected intraperitoneally after light injury for 5 days. Scotopic electroretinography (ERG) was recorded before light injury and 7 days after light injury. The retinal morphology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed after light injury. Results: ERG a- and b-wave amplitudes were significantly reduced in the retinal light injury group compared with the nonretinal light injury group. Retinal light injury produced markedly thinning of the outer nuclear layer along with significant TUNEL-positive signals. In contrast KF treatments significantly attenuated reduction of ERG a- and b- wave amplitudes and the loss of the outer nuclear layer. Conclusions: KF protects retinal photoreceptors and preserves retinal function against retinal degeneration caused by light injury. These initial findings suggest that KF may represent a novel therapy for retinal degenerative conditions such as AMD.
Collapse
Affiliation(s)
- Jonathan L Noguchi
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Michelle Y Seu
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - James B Qiao
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Ivy R Tan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Selina R Swaminathan
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - James F McDonnell
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Zhiqun Tan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Ping Bu
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| |
Collapse
|
7
|
Buettner JM, Sowoidnich L, Gerstner F, Blanco-Redondo B, Hallermann S, Simon CM. p53-dependent c-Fos expression is a marker but not executor for motor neuron death in spinal muscular atrophy mouse models. Front Cell Neurosci 2022; 16:1038276. [DOI: 10.3389/fncel.2022.1038276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
The activation of the p53 pathway has been associated with neuronal degeneration in different neurological disorders, including spinal muscular atrophy (SMA) where aberrant expression of p53 drives selective death of motor neurons destined to degenerate. Since direct p53 inhibition is an unsound therapeutic approach due carcinogenic effects, we investigated the expression of the cell death-associated p53 downstream targets c-fos, perp and fas in vulnerable motor neurons of SMA mice. Fluorescence in situ hybridization (FISH) of SMA motor neurons revealed c-fos RNA as a promising candidate. Accordingly, we identified p53-dependent nuclear upregulation of c-Fos protein in degenerating motor neurons from the severe SMNΔ7 and intermediate Smn2B/– SMA mouse models. Although motor neuron-specific c-fos genetic deletion in SMA mice did not improve motor neuron survival or motor behavior, p53-dependent c-Fos upregulation marks vulnerable motor neurons in different mouse models. Thus, nuclear c-Fos accumulation may serve as a readout for therapeutic approaches targeting neuronal death in SMA and possibly other p53-dependent neurodegenerative diseases.
Collapse
|
8
|
Ziółkowska N, Lewczuk B. Profiles of Rho, Opn4, c-Fos, and Birc5 mRNA expression in Wistar rat retinas exposed to white or monochromatic light. Front Neuroanat 2022; 16:956000. [PMID: 36059433 PMCID: PMC9434339 DOI: 10.3389/fnana.2022.956000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Despite concern over potential retinal damage linked to exposure to light-emitting-diode (LED) light (particularly blue light), it remains unknown how exposure to low-intensity monochromatic LED light affects the expression of rhodopsin (Rho, a photopigment that mediates light-induced retinal degeneration), melanopsin (Opn4, a blue-light sensitive photopigment), c-Fos (associated with retinal damage/degeneration), and Birc5 (anti-apoptotic). This study investigated the mRNA expression profiles of these genes under exposure to white and monochromatic light (blue, red, green) in the retinas of albino rats under a cycle of 12 h of light and 12 h of darkness. In each group, 32 Wistar rats were exposed to one type of monochromatic-LED or white-fluorescent light for 7 day (150 lx). Retinal samples were taken for qPCR analysis and light and electron microscopy. Blue and green light exposure markedly decreased expression of Rho and Opn4 mRNA and increased expression of Birc5 and c-Fos mRNA (P < 0.05). In retinas from the blue-light group, loss and vesiculation of photoreceptor outer segments were visible, but not in retinas from the red-light and control group. Measurements of the photoreceptor inner and outer segments length revealed, that this length was significantly decreased in the blue- and green-light exposure groups (P < 0.02), but not in the red-light exposure group. Increased expression of Birc5 and decreased expression of Rho and Opn4 after exposure to blue and green light may be early responses that help to reduce light-induced retinal damage.
Collapse
Affiliation(s)
- Natalia Ziółkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | |
Collapse
|
9
|
ERG and Behavioral CFF in Light-Damaged Albino Rats. Int J Mol Sci 2022; 23:ijms23084127. [PMID: 35456959 PMCID: PMC9027716 DOI: 10.3390/ijms23084127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/01/2023] Open
Abstract
The full-field ERG is useful for index rod- or cone-mediated retinal function in rodent models of retinal degeneration. However, the relationship between the ERG response amplitudes and visually guided behavior, such as flicker detection, is not well understood. A comparison of ERG to behavioral responses in a light-damage model of retinal degeneration allows us to better understand the functional implications of electrophysiological changes. Flicker-ERG and behavioral responses to flicker were used to determine critical flicker frequency (CFF) under scotopic and photopic conditions before and up to 90 d after a 10-day period of low-intensity light damage. Dark- and light-adapted ERG flash responses were significantly reduced after light damage. The a-wave was permanently reduced, while the b-wave amplitude recovered over three weeks after light damage. There was a small, but significant dip in scotopic ERG CFF. Photopic behavioral CFF was slightly lower following light damage. The recovery of the b-wave amplitude and flicker sensitivity demonstrates the plasticity of retinal circuits following photopic injury.
Collapse
|
10
|
Badiei A, Beltran WA, Aguirre GD. Altered transsulfuration pathway enzymes and redox homeostasis in inherited retinal degenerative diseases. Exp Eye Res 2022; 215:108902. [PMID: 34954206 PMCID: PMC8923955 DOI: 10.1016/j.exer.2021.108902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Retinal degenerative diseases result from apoptotic photoreceptor cell death. As endogenously produced gaseous molecules such as hydrogen sulfide (H2S) and nitric oxide (NO) play a key role in apoptosis, we compared the expression levels of genes and proteins involved in the production of these molecules in the retina of normal dogs and three canine models (rcd1, crd2, and xlpra2) of human inherited retinal degeneration (IRD). Using qRT-PCR, Western blot, and immunohistochemistry (IHC), we showed that mRNA and protein levels of cystathionine β-synthase (CBS), an enzyme that produces H2S in neurons, are increased in retinal degeneration, but those of cystathionine γ-lyase (CSE), an enzyme involved in the production of glutathione (GSH), an antioxidant, are not. Such findings suggest that increased levels of H2S that are not counterbalanced by increased antioxidant potential may contribute to disease in affected retinas. We also studied the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzymes responsible for NO production. Western blot and IHC results revealed increased levels of nNOS and iNOS, resulting in increased NO levels in mutant retinas. Finally, photoreceptors are rich in polyunsaturated fatty acids (PUFAs) that can make these cells vulnerable to oxidative damage through reactive oxygen species (ROS). Our results showed increased levels of acrolein and hydroxynonenal (4HNE), two main toxic products of PUFAs, surrounding the membranes of photoreceptors in affected canines. Increased levels of these toxic products, together with increased NO and ROS, likely render these cells susceptible to an intrinsic apoptotic pathway involving mitochondrial membranes. To assess this possibility, we measured the levels of BCL2, an anti-apoptotic protein in the mitochondrial membrane. Western blot results showed decreased levels of BCL2 protein in affected retinas. Overall, the results of this study identify alterations in the expression of enzymes directly involved in maintaining the normal redox status of the retina during retinal degeneration, thereby supporting future studies to investigate the role of H2S and NO in retinal degeneration and apoptosis.
Collapse
Affiliation(s)
- Alireza Badiei
- Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, AK, USA; Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Kaidzu S, Okuno T, Tanito M, Ohira A. Structural and Functional Change in Albino Rat Retina Induced by Various Visible Light Wavelengths. Int J Mol Sci 2021; 23:309. [PMID: 35008736 PMCID: PMC8745104 DOI: 10.3390/ijms23010309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of visible light, from short to long wavelengths, on the retina were investigated functionally and histologically. The left eyes of Sprague-Dawley albino rats (6-weeks old, n = 6 for each wavelength) were exposed to seven narrow-band wavelengths (central wavelengths, 421, 441, 459, 501, 541, 581, and 615 nm) with bandwidths of 16 to 29 nm (half bandwidth, ±8-14.5 nm) using a xenon lamp source with bandpass filters at the retinal radiant exposures of 340 and 680 J/cm2. The right unexposed eyes served as controls. Seven days after exposure, flash electroretinograms (ERGs) were recorded, and the outer nuclear layer (ONL) thickness was measured. Compared to the unexposed eyes, significant reductions in the a- and b-wave ERG amplitudes were seen in eyes exposed to 460-nm or shorter wavelengths of light. The ONL thickness near the optic nerve head also tended to decrease with exposure to shorter wavelengths. The decreased ERG amplitudes and ONL thicknesses were most prominent in eyes exposed to 420-nm light at both radiant exposures. When the wavelengths were the same, the higher the amount of radiant exposure and the stronger the damage. Compared to the unexposed eyes, the a- and b-waves did not decrease significantly in eyes exposed to 500-nm or longer wavelength light. The results indicate that the retinal damage induced by visible light observed in albino rats depends on the wavelength and energy level of the exposed light.
Collapse
Affiliation(s)
- Sachiko Kaidzu
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| | - Tsutomu Okuno
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
- Occupational Ergonomics Research Group, National Institute of Occupational Safety and Health, Tama-ku, Kawasaki 214-8585, Kanagawa, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| | - Akihiro Ohira
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| |
Collapse
|
12
|
Lutein protected the retina from light induced retinal damage by inhibiting increasing oxidative stress and inflammation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
13
|
Gupta CL, Nag TC, Jha KA, Kathpalia P, Maurya M, Kumar P, Gupta S, Roy TS. Changes in the Inner Retinal Cells after Intense and Constant Light Exposure in Sprague-Dawley Rats. Photochem Photobiol 2020; 96:1061-1073. [PMID: 32112401 DOI: 10.1111/php.13244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Light insult causes photoreceptor death. Few studies reported that continuous exposure to light affects horizontal, Müller and ganglion cells. We aimed to see the effect of constant light exposure on bipolar and amacrine cells. Adult Sprague-Dawley rats were exposed to 300 or 3000 lux for 7 days in 12-h light: 12-h dark cycles (12L:12D). The latter group was then exposed to 24L:0D for 48 h to induce significant damage. The same animals were reverted to 300 lux and reared for 15 days in 12L:12D cycles. They were sacrificed on different days to find the degree of retinal recovery, if any, from light injury. Besides photoreceptor death, continuous light for 48 h resulted in downregulation of parvalbumin in amacrine cells and recoverin in cone bipolar cells (CBC). Rod bipolar cells (RBC) maintained an unaltered pattern of PKC-α expression. Upon reversal, there were increased expressions of parvalbumin in amacrine cells and recoverin in CBC, while RBC showed an increasing trend of PKC-α expression. The data show that damage in bipolar and amacrine cells after exposure to intense, continuous light can be ameliorated upon reversal to normal LD cycles to which the animals were initially acclimated to.
Collapse
Affiliation(s)
- Chandan L Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Sneha Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tara S Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Wang T, Tsirukis DI, Sun Y. Targeting Neuroinflammation in Neovascular Retinal Diseases. Front Pharmacol 2020; 11:234. [PMID: 32210818 PMCID: PMC7076162 DOI: 10.3389/fphar.2020.00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Retinal blood vessels provide the necessary energy, nutrients and oxygen in order to support visual function and remove harmful particles from blood, thus acting to protect neuronal cells. The homeostasis of the retinal vessels is important for the maintenance of retinal visual function. Neovascularization is the most common cause of blindness in patients with retinopathy. Previous studies have shown that inflammatory mediators are known key regulators in retinopathy, but their causal link has been elusive. Although inflammation is often thought to arise from inflammatory cells like macrophages, neutrophils, and resident microglia, retinal neurons have also been reported to contribute to inflammation, through inflammatory signals, which mediate blood vessel growth. Therefore, it is important to explore the detailed mechanisms of neuroinflammation’s effects on retinal neovascularization. This review looks to summarize current research on the relationship between retinal angiogenesis and neuroinflammation in retinopathy, as well as the potential effects of neuroinflammation on retinal neovascularization in different animal models.
Collapse
Affiliation(s)
- Tianxi Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Demetrios I Tsirukis
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Fu Z, Sun Y, Cakir B, Tomita Y, Huang S, Wang Z, Liu CH, S. Cho S, Britton W, S. Kern T, Antonetti DA, Hellström A, E.H. Smith L. Targeting Neurovascular Interaction in Retinal Disorders. Int J Mol Sci 2020; 21:E1503. [PMID: 32098361 PMCID: PMC7073081 DOI: 10.3390/ijms21041503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
The tightly structured neural retina has a unique vascular network comprised of three interconnected plexuses in the inner retina (and choroid for outer retina), which provide oxygen and nutrients to neurons to maintain normal function. Clinical and experimental evidence suggests that neuronal metabolic needs control both normal retinal vascular development and pathological aberrant vascular growth. Particularly, photoreceptors, with the highest density of mitochondria in the body, regulate retinal vascular development by modulating angiogenic and inflammatory factors. Photoreceptor metabolic dysfunction, oxidative stress, and inflammation may cause adaptive but ultimately pathological retinal vascular responses, leading to blindness. Here we focus on the factors involved in neurovascular interactions, which are potential therapeutic targets to decrease energy demand and/or to increase energy production for neovascular retinal disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Steve S. Cho
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - William Britton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Timothy S. Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA 92697, USA;
| | - David A. Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden;
| | - Lois E.H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| |
Collapse
|
16
|
Okamoto T, Kawashima H, Osada H, Toda E, Homma K, Nagai N, Imai Y, Tsubota K, Ozawa Y. Dietary Spirulina Supplementation Protects Visual Function From Photostress by Suppressing Retinal Neurodegeneration in Mice. Transl Vis Sci Technol 2019; 8:20. [PMID: 31788349 PMCID: PMC6871545 DOI: 10.1167/tvst.8.6.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE We investigated whether daily consumption of Spirulina, an antioxidant generating cyanobacterial nutritional supplement, would suppress photostress-induced retinal damage and prevent vision loss in mice. METHODS Six-week-old male BALB/cAJcl mice were allowed constant access to either a standard or Spirulina-supplemented diet (20% Spirulina) that included the antioxidants, β-carotene and zeaxanthin, and proteins for 4 weeks. Following dark adaptation, mice were exposed to 3000-lux white light for 1 hour and returned to their cages. Visual function was analyzed by electroretinogram, and retinal histology by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated, deoxyuridine triphosphate nick-end labeling (TUNEL) assay, and immunohistochemistry. Retinal expression of proteins, reactive oxygen species (ROS), and mRNAs were measured using immunoblot analysis, enzyme-linked immunosorbent assay (ELISA), 2',7'-dichlorofluorescein-diacetate, or ROS Brite 700 Dyes, and real-time reverse-transcription polymerase chain reaction, respectively. RESULTS Light-induced visual function impairment was suppressed by constant Spirulina intake. Thinning of the photoreceptor layer and outer segments, photoreceptor cell death, decreased rhodopsin protein, and induction of glial fibrillary acidic protein were ameliorated in the Spirulina-intake group. Increased retinal ROS levels after light exposure were reduced by Spirulina supplementation. Light-induced superoxide dismutase 2 and heme oxygenase-1 mRNAs in the retina, and Nrf2 activation in the photoreceptor cells, were preserved with Spirulina supplementation, despite reduced ROS levels, suggesting two pathways for suppressing ROS, scavenging and induction of endogenous antioxidative enzymes. Light-induced MCP-1 retinal mRNA and proteins were also suppressed by Spirulina. CONCLUSIONS Spirulina ingestion protected retinal photoreceptors from photostress in the retina. TRANSLATIONAL RELEVANCE Spirulina has potential as a nutrient supplement to prevent vision loss related to oxidative damage in the future.
Collapse
Affiliation(s)
- Tomohiro Okamoto
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Suppression of Light-Induced Retinal Degeneration by Quercetin via the AP-1 Pathway in Rats. Antioxidants (Basel) 2019; 8:antiox8040079. [PMID: 30934771 PMCID: PMC6523921 DOI: 10.3390/antiox8040079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
We examined the cytoprotective effect of quercetin via activator protein (AP-1) and the heat shock protein 70 (Hsp70) pathway against light-induced retinal degeneration in rats. Quercetin was administered intraperitoneally to Sprague-Dawley rats for seven days before light exposure to intense white fluorescent light (3000 lux) for 24 h. Light-induced retinal damage was determined by the number of rows of photoreceptor cell nuclei, the microstructures of the rod outer segments and retinal pigment epithelium, and terminal deoxynucleotidyl transferase (TdT)-mediated 2′-Deoxyuridine-5′-triphosphate (dUTP) nick end labeling. To elucidate the cytoprotective mechanism of quercetin, expression levels were measured in the rat retinas of 8-hydroxy-deoxyguanosine (8-OHdG), a marker of oxidative stress; Hsp70; and transcription factor AP-1 transcription activity. Pretreatment with quercetin inhibited light-induced photoreceptor cellular apoptosis and subsequent retinal degeneration in rats. 8-OHdG and Hsp70 protein expressions were up-regulated markedly by light exposure and suppressed by quercetin pretreatment. The results of an electrophoretic mobility shift assay showed that AP-1-binding activity was activated by light exposure, and binding of c-Fos and c-Jun, but not JunB, mediated the binding activity. Intraperitoneal administration of quercetin decreases photooxidative damage in the retina and mediates cytoprotection against light-induced photoreceptor cell degeneration in rats. Suppression of the heterodimeric combination of c-Jun and c-Fos proteins at the AP-1 binding site is highly involved in quercetin-mediated cytoprotection.
Collapse
|
18
|
Lactobacillus paracasei KW3110 Prevents Blue Light-Induced Inflammation and Degeneration in the Retina. Nutrients 2018; 10:nu10121991. [PMID: 30558320 PMCID: PMC6316514 DOI: 10.3390/nu10121991] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration and retinitis pigmentosa are leading causes of blindness and share a pathological feature, which is photoreceptor degeneration. To date, the lack of a potential treatment to prevent such diseases has raised great concern. Photoreceptor degeneration can be accelerated by excessive light exposure via an inflammatory response; therefore, anti-inflammatory agents would be candidates to prevent the progress of photoreceptor degeneration. We previously reported that a lactic acid bacterium, Lactobacillus paracasei KW3110 (L. paracasei KW3110), activated macrophages suppressing inflammation in mice and humans. Recently, we also showed that intake of L. paracasei KW3110 could mitigate visual display terminal (VDT) load-induced ocular disorders in humans. However, the biological mechanism of L. paracasei KW3110 to retain visual function remains unclear. In this study, we found that L. paracasei KW3110 activated M2 macrophages inducing anti-inflammatory cytokine interleukin-10 (IL-10) production in vitro using bone marrow-derived M2 macrophages. We also show that IL-10 gene expression was significantly increased in the intestinal immune tissues 6 h after oral administration of L. paracasei KW3110 in vivo. Furthermore, we demonstrated that intake of L. paracasei KW3110 suppressed inflammation and photoreceptor degeneration in a murine model of light-induced retinopathy. These results suggest that L. paracasei KW3110 may have a preventive effect against degrative retinal diseases.
Collapse
|
19
|
Porter H, Qi H, Prabhu N, Grambergs R, McRae J, Hopiavuori B, Mandal N. Characterizing Sphingosine Kinases and Sphingosine 1-Phosphate Receptors in the Mammalian Eye and Retina. Int J Mol Sci 2018; 19:ijms19123885. [PMID: 30563056 PMCID: PMC6321283 DOI: 10.3390/ijms19123885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) signaling regulates numerous biological processes including neurogenesis, inflammation and neovascularization. However, little is known about the role of S1P signaling in the eye. In this study, we characterize two sphingosine kinases (SPHK1 and SPHK2), which phosphorylate sphingosine to S1P, and three S1P receptors (S1PR1, S1PR2 and S1PR3) in mouse and rat eyes. We evaluated sphingosine kinase and S1P receptor gene expression at the mRNA level in various rat tissues and rat retinas exposed to light-damage, whole mouse eyes, specific eye structures, and in developing retinas. Furthermore, we determined the localization of sphingosine kinases and S1P receptors in whole rat eyes by immunohistochemistry. Our results unveiled unique expression profiles for both sphingosine kinases and each receptor in ocular tissues. Furthermore, these kinases and S1P receptors are expressed in mammalian retinal cells and the expression of SPHK1, S1PR2 and S1PR3 increased immediately after light damage, which suggests a function in apoptosis and/or light stress responses in the eye. These findings have numerous implications for understanding the role of S1P signaling in the mechanisms of ocular diseases such as retinal inflammatory and degenerative diseases, neovascular eye diseases, glaucoma and corneal diseases.
Collapse
Affiliation(s)
- Hunter Porter
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Hui Qi
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Nicole Prabhu
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Richard Grambergs
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - Joel McRae
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Blake Hopiavuori
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Nawajes Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Liu SY, Song JY, Fan B, Wang Y, Pan YR, Che L, Sun YJ, Li GY. Resveratrol protects photoreceptors by blocking caspase- and PARP-dependent cell death pathways. Free Radic Biol Med 2018; 129:569-581. [PMID: 30342188 DOI: 10.1016/j.freeradbiomed.2018.10.431] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
Abstract
Retinal degeneration is a major cause of severe vision loss and irreversible blindness and is characterized by progressive damage to retinal photoreceptor cells. Resveratrol (RSV) serves as an activator of the histone deacetylase, Sirt1, and has been shown to exert anti-oxidative properties. In this study, we mimicked retinal degeneration by subjecting photoreceptors (661 W cells) to glucose deprivation (GD) or light exposure. Under these conditions, we investigated the mechanisms underlying GD- or light exposure-induced cell death and the protective effect of RSV. We found that GD and light exposure resulted in mitochondrial dysfunction, oxidative stress, and cell death. Treatment of injured cells with RSV decreased the production of reactive oxygen species (ROS), improved the ratio of reduced/oxidized glutathione (GSH/GSSG), mitochondrial membrane potential and morphology, and reduced apoptosis. We used the caspase inhibitor, z-VAD-fmk, and a lentiviral-mediated shRNA knockdown of PARP-1 to reveal that GD and light exposure-induced cell death have different underlying mechanisms; GD triggered a caspase-dependent cell death pathway, whereas light exposure triggered a PARP-dependent cell death pathway. The level of caspase-9 and caspase-3, upregulated following GD, were reduced by treatment with RSV. Similarly, the level of PARP-1 and AIF, upregulated following light exposure, were decreased by treatment with RSV. Additionally, treatment with RSV elevated the protein expression and enzymatic activity of Sirt1 and a Sirt1 inhibitor reduced the protective effect of RSV against insult-induced cellular injuries, indicating that RSV's protective effect may involve Sirt1 activation. Finally, we investigated the neuroprotection of RSV in vivo. Administration of RSV to mice under extreme light exposure led to a suppression of the light-induced thinning of the outer nuclear layer (ONL) detected by hematoxylin and eosin (H&E) staining and restored retinal function evaluated by electroretinography (ERG). Taken together, our findings provide evidence that treatment with RSV has neuroprotective effects on both GD and light exposure-induced cell death pathways in photoreceptor cells.
Collapse
Affiliation(s)
- Shu-Yan Liu
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Jing-Yao Song
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Ying Wang
- Department of Hemooncolog, Second Hospital of JiLin University, ChangChun 130041, China
| | - Yi-Ran Pan
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Ying-Jian Sun
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China.
| |
Collapse
|
21
|
Li S, Sato K, Gordon WC, Sendtner M, Bazan NG, Jin M. Ciliary neurotrophic factor (CNTF) protects retinal cone and rod photoreceptors by suppressing excessive formation of the visual pigments. J Biol Chem 2018; 293:15256-15268. [PMID: 30115683 DOI: 10.1074/jbc.ra118.004008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
The retinal pigment epithelium (RPE)-dependent visual cycle provides 11-cis-retinal to opsins in the photoreceptor outer segments to generate functional visual pigments that initiate phototransduction in response to light stimuli. Both RPE65 isomerase of the visual cycle and the rhodopsin visual pigment have recently been identified as critical players in mediating light-induced retinal degeneration. These findings suggest that the expression and function of RPE65 and rhodopsin need to be coordinately controlled to sustain normal vision and to protect the retina from photodamage. However, the mechanism controlling the development of the retinal visual system remains poorly understood. Here, we show that deficiency in ciliary neurotrophic factor (CNTF) up-regulates the levels of rod and cone opsins accompanied by an increase in the thickness of the outer nuclear layers and the lengths of cone and rod outer segments in the mouse retina. Moreover, retinoid isomerase activity, expression levels of RPE65 and lecithin:retinol acyltransferase (LRAT), which synthesizes the RPE65 substrate, were also significantly increased in the Cntf -/- RPE. Rod a-wave and cone b-wave amplitudes of electroretinograms were increased in Cntf -/- mice, but rod b-wave amplitudes were unchanged compared with those in WT mice. Up-regulated RPE65 and LRAT levels accelerated both the visual cycle rate and recovery rate of rod light sensitivity in Cntf -/- mice. Of note, rods and cones in Cntf -/- mice exhibited hypersusceptibility to light-induced degeneration. These results indicate that CNTF is a common extracellular factor that prevents excessive production of opsins, the photoreceptor outer segments, and 11-cis-retinal to protect rods and cones from photodamage.
Collapse
Affiliation(s)
- Songhua Li
- From the Neuroscience Center of Excellence and
| | - Kota Sato
- From the Neuroscience Center of Excellence and
| | - William C Gordon
- From the Neuroscience Center of Excellence and.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, Louisiana 70112 and
| | - Michael Sendtner
- the Institute of Clinical Neurobiology, University Hospital Würzburg, D-97078 Würzburg, Germany
| | - Nicolas G Bazan
- From the Neuroscience Center of Excellence and.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, Louisiana 70112 and
| | - Minghao Jin
- From the Neuroscience Center of Excellence and .,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, Louisiana 70112 and
| |
Collapse
|
22
|
Deng Q, Wang Y, Wang C, Ji B, Cong R, Zhao L, Chen P, Zang X, Lu F, Han F, Huang F. Dietary supplementation with omega-3 polyunsaturated fatty acid-rich oils protects against visible-light-induced retinal damage in vivo. Food Funct 2018; 9:2469-2479. [DOI: 10.1039/c7fo01168g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dietary ω-3 PUFA-rich oils protect against visible-light-induced retinal damage.
Collapse
|
23
|
Sun Y, Lin Z, Liu CH, Gong Y, Liegl R, Fredrick TW, Meng SS, Burnim SB, Wang Z, Akula JD, Pu WT, Chen J, Smith LEH. Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. J Exp Med 2017; 214:1753-1767. [PMID: 28465464 PMCID: PMC5461000 DOI: 10.1084/jem.20161645] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 11/04/2022] Open
Abstract
Pathological neovessels growing into the normally avascular photoreceptors cause vision loss in many eye diseases, such as age-related macular degeneration and macular telangiectasia. Ocular neovascularization is strongly associated with inflammation, but the source of inflammatory signals and the mechanisms by which these signals regulate the disruption of avascular privilege in photoreceptors are unknown. In this study, we found that c-Fos, a master inflammatory regulator, was increased in photoreceptors in a model of pathological blood vessels invading photoreceptors: the very low-density lipoprotein receptor-deficient (Vldlr-/- ) mouse. Increased c-Fos induced inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor (TNF), leading to activation of signal transducer and activator of transcription 3 (STAT3) and increased TNFα-induced protein 3 (TNFAIP3) in Vldlr-/- photoreceptors. IL-6 activated the STAT3/vascular endothelial growth factor A (VEGFA) pathway directly, and elevated TNFAIP3 suppressed SOCS3 (suppressor of cytokine signaling 3)-activated STAT3/VEGFA indirectly. Inhibition of c-Fos using photoreceptor-specific AAV (adeno-associated virus)-hRK (human rhodopsin kinase)-sh_c-fos or a chemical inhibitor substantially reduced the pathological neovascularization and rescued visual function in Vldlr-/- mice. These findings suggested that the photoreceptor c-Fos controls blood vessel growth into the normally avascular photoreceptor layer through the inflammatory signal-induced STAT3/VEGFA pathway.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Zhiqiang Lin
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Raffael Liegl
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Thomas W Fredrick
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Steven S Meng
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Samuel B Burnim
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Zhongxiao Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - James D Akula
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - William T Pu
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
24
|
MEF2D haploinsufficiency downregulates the NRF2 pathway and renders photoreceptors susceptible to light-induced oxidative stress. Proc Natl Acad Sci U S A 2017; 114:E4048-E4056. [PMID: 28461502 DOI: 10.1073/pnas.1613067114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gaining mechanistic insight into interaction between causative factors of complex multifactorial diseases involving photoreceptor damage might aid in devising effective therapies. Oxidative stress is one of the potential unifying mechanisms for interplay between genetic and environmental factors that contribute to photoreceptor pathology. Interestingly, the transcription factor myocyte enhancer factor 2d (MEF2D) is known to be important in photoreceptor survival, as knockout of this transcription factor results in loss of photoreceptors in mice. Here, using a mild light-induced retinal degeneration model, we show that the diminished MEF2D transcriptional activity in Mef2d+/- retina is further reduced under photostimulation-induced oxidative stress. Reactive oxygen species cause an aberrant redox modification on MEF2D, consequently inhibiting transcription of its downstream target, nuclear factor (erythroid-derived 2)-like 2 (NRF2). NRF2 is a master regulator of phase II antiinflammatory and antioxidant gene expression. In the Mef2d heterozygous mouse retina, NRF2 is not up-regulated to a normal degree in the face of light-induced oxidative stress, contributing to accelerated photoreceptor cell death. Furthermore, to combat this injury, we found that activation of the endogenous NRF2 pathway using proelectrophilic drugs rescues photoreceptors from photo-induced oxidative stress and may therefore represent a viable treatment for oxidative stress-induced photoreceptor degeneration, which is thought to contribute to some forms of retinitis pigmentosa and age-related macular degeneration.
Collapse
|
25
|
Wang C, Guo L, Wang S, Wang J, Li Y, Dou Y, Wang R, Shi H, Ke Y, Liu H. Anti-proliferative effect of Jesridonin on paclitaxel-resistant EC109 human esophageal carcinoma cells. Int J Mol Med 2017; 39:645-653. [PMID: 28204832 PMCID: PMC5360389 DOI: 10.3892/ijmm.2017.2867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Chemoresistance to anticancer drugs is a major obstacle in the efforts to develop a successful treatment strategy for esophageal squamous carcinoma (ESCC). Thus, the exploration of new drugs and treatment strategies for combating resistance are of utmost importance. In this study, we investigated the antitumor drug resistance activity of Jesridonin, a new ent-kaurene diterpenoid, and its possible mechanisms of action using the resistant cancer cell line, EC109/Taxol. MTT assay revealed that Jesridonin had similar IC50 values against EC109 paclitaxel-sensitive cells and drug-resistant EC109/Taxol cells in vitro. In mice, Jesridonin effectively prevented the growth of EC109/Taxol tumor xenografts without exerting any significant toxicity. In addition, Jesridonin significantly inhibited the proliferation of EC109/Taxol cells, induced apoptosis and arrested the cell cycle at the G2/M phase. Furthermore, western blot analysis revealed that Jesridonin upregulated the expression of p53, p53 upregulated modulator of apoptosis (PUMA), cleaved-caspase-9 and cleaved-caspase-3 in EC109/Taxol cells, and downregulated the expression of procaspase-3, procaspase-9 and Bcl-2 in the EC109/Taxol cells in a concentration-dependent manner. Overall, our results demonstrate that Jesridonin may have potential for use in the treatment of paclitaxel-resistant ESCC. The data of the present study may lead to the development of novel treatment strategies for paclitaxel-resistant tumors.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| | - Liubin Guo
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Saiqi Wang
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| | - Junwei Wang
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| | - Yongmei Li
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| | - Yinhui Dou
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| | - Ran Wang
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| | - Hongge Shi
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| | - Yu Ke
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| | - Hongmin Liu
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
26
|
Kong L, Liu B, Zhang C, Wang B, Wang H, Song X, Yang Y, Ren X, Yin L, Kong H, Ma H. The therapeutic potential of sulforaphane on light-induced photoreceptor degeneration through antiapoptosis and antioxidant protection. Neurochem Int 2016; 100:52-61. [PMID: 27567738 DOI: 10.1016/j.neuint.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 01/26/2023]
Abstract
Oxidative stress due to excessive light exposure can exacerbate a variety of human retinal diseases by accelerating photoreceptor cell death. The thioredoxin (Trx) system is considered to play a crucial role in reduction/oxidation (redox) regulation of signal transduction and in cell defense against oxidative stresses. Sulforaphane (SF) protects cells from oxidative damage through nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is responsible for multiple detoxification processes, including elevating the expression of Trx. This study sought to demonstrate whether SF increased Trx expression in retinal tissues in vivo and whether it could preserve the photoreceptors from degeneration induced by oxidative stress. Our data clearly showed that pretreatment with SF abated photoreceptor cell loss, in association with increased expression of Nrf2 and Trx, subsequently activating the Ras/Raf1/Erk signaling pathway and decreasing the expression of Bak1, Cyt-c release and the activity of caspase-3 in light-induced mouse retinas. These data suggested that the therapeutic potential of SF in retinal degeneration due to oxidative stress might partially involve anti-caspase and antioxidant protection mediated by Trx.
Collapse
Affiliation(s)
- Li Kong
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Bo Liu
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Chenghong Zhang
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Bing Wang
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Hongfei Wang
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Xiaoxia Song
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Yang Yang
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Xiang Ren
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Liangwei Yin
- Department of Oncology, Dalian Central Hospital, 116033, Dalian, Liaoning, China
| | - Hui Kong
- Department of Otorhinolaryngology, The Second Hospital of Dalian Medical University, 116023, Dalian, Liaoning, China.
| | - Haiying Ma
- Department of Histoembryology of Dalian Medical University, 116044, Dalian, Liaoning, China.
| |
Collapse
|
27
|
Guo X, Wang SB, Xu H, Ribic A, Mohns EJ, Zhou Y, Zhu X, Biederer T, Crair MC, Chen B. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nat Commun 2015; 6:8005. [PMID: 26272629 PMCID: PMC4538705 DOI: 10.1038/ncomms9005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022] Open
Abstract
Retinitis pigmentosa is a leading cause of inherited blindness, with no effective treatment currently available. Mutations primarily in genes expressed in rod photoreceptors lead to early rod death, followed by a slower phase of cone photoreceptor death. Rd1 mice provide an invaluable animal model to evaluate therapies for the disease. We previously reported that overexpression of histone deacetylase 4 (HDAC4) prolongs rod survival in rd1 mice. Here we report a key role of a short N-terminal domain of HDAC4 in photoreceptor protection. Expression of this domain suppresses multiple cell death pathways in photoreceptor degeneration, and preserves even more rd1 rods than the full-length HDAC4 protein. Expression of a short N-terminal domain of HDAC4 as a transgene in mice carrying the rd1 mutation also prolongs the survival of cone photoreceptors, and partially restores visual function. Our results may facilitate the design of a small protein therapy for some forms of retinitis pigmentosa.
Collapse
Affiliation(s)
- Xinzheng Guo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA
| | - Shao-Bin Wang
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA
| | - Hongping Xu
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ethan J Mohns
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Yu Zhou
- 1] Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China [2] Hospital of University of Electronic Science and Technology of China (UESTC) &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- 1] Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China [2] Hospital of University of Electronic Science and Technology of China (UESTC) &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Michael C Crair
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Bo Chen
- 1] Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA [2] Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| |
Collapse
|
28
|
Network-based survival-associated module biomarker and its crosstalk with cell death genes in ovarian cancer. Sci Rep 2015; 5:11566. [PMID: 26099452 PMCID: PMC4477367 DOI: 10.1038/srep11566] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/28/2015] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer remains a dismal disease with diagnosing in the late, metastatic stages, therefore, there is a growing realization of the critical need to develop effective biomarkers for understanding underlying mechanisms. Although existing evidences demonstrate the important role of the single genetic abnormality in pathogenesis, the perturbations of interactors in the complex network are often ignored. Moreover, ovarian cancer diagnosis and treatment still exist a large gap that need to be bridged. In this work, we adopted a network-based survival-associated approach to capture a 12-gene network module based on differential co-expression PPI network in the advanced-stage, high-grade ovarian serous cystadenocarcinoma. Then, regulatory genes (protein-coding genes and non-coding genes) direct interacting with the module were found to be significantly overlapped with cell death genes. More importantly, these overlapping genes tightly clustered together pointing to the module, deciphering the crosstalk between network-based survival-associated module and cell death in ovarian cancer.
Collapse
|
29
|
Zhang T, Wei Y, Jiang X, Li J, Qiu S, Zhang S. Protection of photoreceptors by intravitreal injection of the Y-27632 Rho-associated protein kinase inhibitor in Royal College of Surgeons rats. Mol Med Rep 2015; 12:3655-3661. [PMID: 26043901 DOI: 10.3892/mmr.2015.3889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 04/10/2015] [Indexed: 11/06/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disease, which is characteristic by degeneration of the rod and cone photoreceptors. The present study aimed to assess the protective effects on photoreceptors of intravitreal injection of Y‑27632, a specific inhibitor of Rho‑associated protein kinase (ROCK), in a Royal College of Surgeons (RCS) rat model. Different concentrations of Y‑27632 (1‑50 mM) were administered by intravitreal injection into the RCS rats. The effects of Y‑27632 were recorded using electroretinography (ERG), measuring the thicknesses of the retinal outer nuclear layer (ONL) and examination of apoptotic markers using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and western blot analysis. Treatment of the eyes with Y27632 at 10 or 50 mM, led to a 30% increase in a‑ and b‑wave amplitudes in ERG, and an increase in ONL thickness by 10%, compared with the 1 mM Y‑27632‑treated and vehicle (phosphate‑buffered saline; PBS)‑treated groups. In addition, eyes treated with 10 mM Y27632 exhibited a 90% decrease in TUNEL‑positive cells, accompanied by decreased protein expression levels of active caspase 3 and Bax by 50%, and a 90% increase in the ratio of Bcl‑2/Bax, compared with the PBS‑treated groups. These data suggested that Y‑27632 protected retinal function by inhibiting the apoptosis of photoreceptor cells in the RCS rat model. The present study demonstrated for the first time, to the best of our knowledge, to report the use of Y‑27632 for protection against RP in an RCS rat model. Y‑27632 may be a potential candidate for the treatment of human RP.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xintong Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jingming Li
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Shaochong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
30
|
Abstract
Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710
| |
Collapse
|
31
|
ZHANG YONG, SU YANLIN, LI LESAI, YANG ZHI, CHEN SI, XIONG JIE, FU XIAOHUA, PENG XIAONING. Mouse dead end 1-β interacts with c-Jun and stimulates activator protein 1 transactivation. Mol Med Rep 2015; 11:1701-7. [PMID: 25405725 PMCID: PMC4270339 DOI: 10.3892/mmr.2014.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 05/16/2014] [Indexed: 01/16/2023] Open
Abstract
Dead end 1 (DND1), important for maintaining the viability of primordial germ cells, is the first protein containing an RNA recognition motif that has been directly implicated as a heritable cause of spontaneous tumorigenesis. In the present study, c-Jun was identified through yeast two-hybrid screening of a 10.5-day old mouse embryo cDNA library as one of the proteins which interact with DND1-β. The interaction between DND1-β and c-Jun was demonstrated to occur by glutathione S‑transferase pull‑down and co-immunoprecipitation. Using confocal microscopy, DND1-β was found to be specifically expressed in GC-1 spermatogonia cells, mainly in the nuclei. When transfected into GC-1 cells, DND1-β and c-Jun were demonstrated to be co-localized principally in the nuclei. Furthermore, in a dual luciferase reporter assay, the transcriptional activity of activator protein 1 was demonstrated to be significantly increased by co-transfection with DND1-β and c-Jun plasmids in GC-1 cells. The identification and confirmation of an additional protein interacting with DND1-β facilitates the investigation of the functions and molecular mechanisms of DND1.
Collapse
Affiliation(s)
- YONG ZHANG
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - YAN-LIN SU
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - LE-SAI LI
- Department of Gynecologic Oncology, Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan 410013, P.R. China
| | - ZHI YANG
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - SI CHEN
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - JIE XIONG
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - XIAO-HUA FU
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - XIAO-NING PENG
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
32
|
Abstract
Age-related macular degeneration (AMD) is the primary cause of irreversible blindness among the elderly in the western world. To date, no cure is available and the current anti-VEGF therapy has only shown limited efficacy in improving visual acuity in neovascular AMD. The etiology of AMD remains elusive but research over the past decade has uncovered characteristic features of the disease. These features include: oxidative stress and retinal pigment epithelial cell cytotoxicity; loss of macromolecular permeability and hydraulic conductivity in Bruch's membrane; inflammation; choroidal neovascularization and vascular leakage; and loss of neuroprotection. Recent breakthroughs in understanding the pathogenesis of AMD have spawned an array of novel therapeutic agents designed to address these hallmarks. Here we review the features of AMD and highlight the most promising therapeutic and diagnostic approaches based on the patents published from 2008 to 2011.
Collapse
|
33
|
Hiragaki S, Baba K, Coulson E, Kunst S, Spessert R, Tosini G. Melatonin signaling modulates clock genes expression in the mouse retina. PLoS One 2014; 9:e106819. [PMID: 25203735 PMCID: PMC4159264 DOI: 10.1371/journal.pone.0106819] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022] Open
Abstract
Previous studies have shown that retinal melatonin plays an important role in the regulation of retinal daily and circadian rhythms. Melatonin exerts its influence by binding to G-protein coupled receptors named melatonin receptor type 1 and type 2 and both receptors are present in the mouse retina. Earlier studies have shown that clock genes are rhythmically expressed in the mouse retina and melatonin signaling may be implicated in the modulation of clock gene expression in this tissue. In this study we determined the daily and circadian expression patterns of Per1, Per2, Bmal1, Dbp, Nampt and c-fos in the retina and in the photoreceptor layer (using laser capture microdissection) in C3H-f+/+ and in melatonin receptors of knockout (MT1 and MT2) of the same genetic background using real-time quantitative RT-PCR. Our data indicated that clock and clock-controlled genes are rhythmically expressed in the retina and in the photoreceptor layer. Removal of melatonin signaling significantly affected the pattern of expression in the retina whereas in the photoreceptor layer only the Bmal1 circadian pattern of expression was affected by melatonin signaling removal. In conclusion, our data further support the notion that melatonin signaling may be important for the regulation of clock gene expression in the inner or ganglion cells layer, but not in photoreceptors.
Collapse
Affiliation(s)
- Susumu Hiragaki
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kenkichi Baba
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Elise Coulson
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Stefanie Kunst
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wang T, Chen J. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells. J Biol Chem 2014; 289:29310-21. [PMID: 25183010 DOI: 10.1074/jbc.m114.595207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Tian Wang
- From the Program in Genetic, Molecular and Cellular Biology and the Zilkha Neurogenetic Institute, Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Jeannie Chen
- the Zilkha Neurogenetic Institute, Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
35
|
Narimatsu T, Ozawa Y, Miyake S, Nagai N, Tsubota K. Angiotensin II type 1 receptor blockade suppresses light-induced neural damage in the mouse retina. Free Radic Biol Med 2014; 71:176-185. [PMID: 24662196 DOI: 10.1016/j.freeradbiomed.2014.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/16/2014] [Indexed: 12/26/2022]
Abstract
Exposure to light contributes to the development and progression of retinal degenerative diseases. However, the mechanisms underlying light-induced tissue damage are not fully understood. Here, we examined the role of angiotensin II type 1 receptor (AT1R) signaling, which is part of the renin-angiotensin system, in light-induced retinal damage. Light-exposed Balb/c mice that were treated with the AT1R blockers (angiotensin II receptor blockers; ARBs) valsartan, losartan, and candesartan before and after the light exposure exhibited attenuated visual function impairment, compared to vehicle-treated mice. This effect was dose-dependent and observed across the ARB class of inhibitors. Further evaluation of valsartan showed that it suppressed a number of light-induced retinal effects, including thinning of the photoreceptor cell layer caused by apoptosis, shortening of the photoreceptor cell outer segment, and increased levels of reactive oxygen species (ROS). The role of ROS in retinal pathogenesis was investigated further using the antioxidant N-acetyl-l-cysteine (NAC). Treatment of light-exposed mice with NAC before the light exposure suppressed the visual function impairment and photoreceptor cell histological changes due to apoptosis. Moreover, treatment with valsartan or NAC suppressed the induction of c-fos (a component of the AP-1 transcription factor) and the upregulation of fasl (a proapoptotic molecule whose transcript is regulated downstream of AP-1). Our results suggest that AT1R signaling mediates light-induced apoptosis, by increasing the levels of ROS and proapoptotic molecules in the retina. Thus, AT1R blockade may represent a new therapeutic approach for preventing light-induced retinal neural tissue damage.
Collapse
Affiliation(s)
- Toshio Narimatsu
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Seiji Miyake
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
36
|
Zhou YY, Chen CZ, Su Y, Li L, Yi ZHZ, Qi H, Weng M, Xing YQ. Effect of EGb761 on light-damaged retinal pigment epithelial cells. Int J Ophthalmol 2014; 7:8-13. [PMID: 24644534 DOI: 10.3980/j.issn.2222-3959.2014.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/26/2013] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the protective mechanism of Gingko Biloba extract (EGb761) on the ability of retinal pigment epithelial (RPE) cells to resist light-induced damage in a comparative proteomics study. METHODS Human RPE cells (ARPE-19) were randomly distributed to one of three groups: normal control (NC group) and light-damaged model without or with EGb761 group (M and ME groups, respectively). The light-damaged model was formed by exposing to white light (2 200±300)lx for 6h. The RPE cells in ME group were conducted with EGb 761 (100µg/mL) before light exposure. The soluble cellular proteins extracting from each groups were separated by two-dimensional electrophoresis and stained by silver staining. Different proteins in the profiles of the gels were analyzed by Image Master Software. Two-fold expressing protein spots were identified by Matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. RESULTS NC, M and ME groups displayed 1 892±71, 2 145±23 and 2 216±85 protein spots, respectively. We identified 33 proteins with different expression levels between the NC and M groups, 25 proteins between the M and ME groups, and 11 proteins between the NC and ME groups. MALDI-TOF/TOF mass spectrometry successfully identified 16 proteins, including metabolic enzymes, cytoskeletal proteins, anti-oxidation proteins, and others. CONCLUSION Differences in some important proteins, such as cathepsin B, heat shock protein, and cytochrome c reductase, indicated that multiple pathways may be induced in light-damaged RPE cells and the protective effect of EGb761.
Collapse
Affiliation(s)
- Yun-Yun Zhou
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chang-Zheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yu Su
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Lu Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zuo-Hui-Zi Yi
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hang Qi
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ming Weng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yi-Qiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
37
|
Forkwa TK, Neumann ID, Tamm ER, Ohlmann A, Reber SO. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway. Exp Neurol 2014; 252:28-36. [DOI: 10.1016/j.expneurol.2013.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/09/2013] [Accepted: 11/14/2013] [Indexed: 01/22/2023]
|
38
|
Abstract
Arrestin-1 is the second most abundant protein in rod photoreceptors and is nearly equimolar to rhodopsin. Its well-recognized role is to "arrest" signaling from light-activated, phosphorylated rhodopsin, a prototypical G protein-coupled receptor. In doing so, arrestin-1 plays a key role in the rapid recovery of the light response. Arrestin-1 exists in a basal conformation that is stabilized by two independent sets of intramolecular interactions. The intramolecular constraints are disrupted by encountering (1) active conformation of the receptor (R*) and (2) receptor-attached phosphates. Requirement for these two events ensures its highly specific high-affinity binding to phosphorylated, light-activated rhodopsin (P-R*). In the dark-adapted state, the basal form is further organized into dimers and tetramers. Emerging data suggest pleiotropic roles of arrestin-1 beyond the functional range of rod cells. These include light-induced arrestin-1 translocation from the inner segment to the outer segment, a process that may be protective against cellular damage incurred by constitutive signaling. Its expanding list of binding partners also hints at additional, yet to be characterized functions. Uncovering these novel roles of arrestin-1 is a subject of future studies.
Collapse
|
39
|
Narimatsu T, Ozawa Y, Miyake S, Kubota S, Yuki K, Nagai N, Tsubota K. Biological effects of blocking blue and other visible light on the mouse retina. Clin Exp Ophthalmol 2013; 42:555-63. [DOI: 10.1111/ceo.12253] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/02/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Toshio Narimatsu
- Laboratory of Retinal Cell Biology; Keio University School of Medicine; Tokyo Japan
- Department of Ophthalmology; Keio University School of Medicine; Tokyo Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology; Keio University School of Medicine; Tokyo Japan
- Department of Ophthalmology; Keio University School of Medicine; Tokyo Japan
| | - Seiji Miyake
- Laboratory of Retinal Cell Biology; Keio University School of Medicine; Tokyo Japan
| | - Shunsuke Kubota
- Laboratory of Retinal Cell Biology; Keio University School of Medicine; Tokyo Japan
- Department of Ophthalmology; Keio University School of Medicine; Tokyo Japan
| | - Kenya Yuki
- Laboratory of Retinal Cell Biology; Keio University School of Medicine; Tokyo Japan
- Department of Ophthalmology; Keio University School of Medicine; Tokyo Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology; Keio University School of Medicine; Tokyo Japan
- Department of Ophthalmology; Keio University School of Medicine; Tokyo Japan
| | - Kazuo Tsubota
- Department of Ophthalmology; Keio University School of Medicine; Tokyo Japan
| |
Collapse
|
40
|
Jia H, Chen W, Yu X, Wu X, Li S, Liu H, Liao J, Liu W, Mi M, Liu L, Cheng D. Black rice anthocyanidins prevent retinal photochemical damage via involvement of the AP-1/NF-κB/Caspase-1 pathway in Sprague-Dawley rats. J Vet Sci 2013; 14:345-53. [PMID: 23820171 PMCID: PMC3788161 DOI: 10.4142/jvs.2013.14.3.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/10/2012] [Indexed: 01/28/2023] Open
Abstract
The effects of black rice anthocyanidins (BRACs) on retinal damage induced by photochemical stress are not well known. In the present study, Sprague-Dawley rats were fed AIN-93M for 1 week, after which 80 rats were randomly divided into two groups and treated with (n = 40) or without BRACs (n = 40) for 15 days, respectively. After treatment, both groups were exposed to fluorescent light (3,000 ± 200 lux; 25℃), and the protective effect of dietary BRACs were evaluated afterwards. Our results showed that dietary BRACs effectively prevented retinal photochemical damage and inhibited the retinal cells apoptosis induced by fluorescent light (p < 0.05). Moreover, dietary BRACs inhibited expression of AP-1 (c-fos/c-jun subunits), up-regulated NF-κB (p65) expression and phosphorylation of IκB-α, and decreased Caspase-1 expression (p < 0.05). These results suggest that BRACs improve retinal damage produced by photochemical stress in rats via AP-1/NF-κB/Caspase-1 apoptotic mechanisms.
Collapse
Affiliation(s)
- Hao Jia
- Department of Public Health, Chengdu Medical College, Chengdu City, 610050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rezaie T, McKercher SR, Kosaka K, Seki M, Wheeler L, Viswanath V, Chun T, Joshi R, Valencia M, Sasaki S, Tozawa T, Satoh T, Lipton SA. Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2012; 53:7847-54. [PMID: 23081978 DOI: 10.1167/iovs.12-10793] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The herb rosemary has been reported to have antioxidant and anti-inflammatory activity. We have previously shown that carnosic acid (CA), present in rosemary extract, crosses the blood-brain barrier to exert neuroprotective effects by upregulating endogenous antioxidant enzymes via the Nrf2 transcriptional pathway. Here we investigated the antioxidant and neuroprotective activity of CA in retinal cell lines exposed to oxidative stress and in a rat model of light-induced retinal degeneration (LIRD). METHODS Retina-derived cell lines ARPE-19 and 661W treated with hydrogen peroxide were used as in vitro models for testing the protective activity of CA. For in vivo testing, dark-adapted rats were given intraperitoneal injections of CA prior to exposure to white light to assess protection of the photoreceptor cells. Retinal damage was assessed by measuring outer nuclear layer thickness and by electroretinogram (ERG). RESULTS In vitro, CA significantly protected retina-derived cell lines (ARPE-19 and 661W) against H(2)O(2)-induced toxicity. CA induced antioxidant phase 2 enzymes and reduced formation of hyperoxidized peroxiredoxin (Prx)2. Similarly, we found that CA protected retinas in vivo from LIRD, producing significant improvement in outer nuclear layer thickness and ERG activity. CONCLUSIONS These findings suggest that CA may potentially have clinical application to diseases affecting the outer retina, including age-related macular degeneration and retinitis pigmentosa, in which oxidative stress is thought to contribute to disease progression.
Collapse
Affiliation(s)
- Tayebeh Rezaie
- Del E Web Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kroeger H, Messah C, Ahern K, Gee J, Joseph V, Matthes MT, Yasumura D, Gorbatyuk MS, Chiang WC, LaVail MM, Lin JH. Induction of endoplasmic reticulum stress genes, BiP and chop, in genetic and environmental models of retinal degeneration. Invest Ophthalmol Vis Sci 2012; 53:7590-9. [PMID: 23074209 DOI: 10.1167/iovs.12-10221] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Endoplasmic reticulum (ER) stress has been observed in animal models of retinitis pigmentosa expressing P23H rhodopsin. We compared levels of tightly induced ER stress genes, Binding of immunoglobulin protein (BiP) and CCAAT/enhancer-binding protein homologous protein (Chop), in seven additional models of retinal degeneration arising from genetic or environmental causes. METHODS Retinas from transgenic S334ter rhodopsin (lines 3, 4, and 5) and Royal College of Surgeons (RCS and RCS-p+) rats from postnatal (P) days 10 to 120 were analyzed. In a constant light (CL) model of retinal degeneration, BALB/c mice were exposed to 15,000 lux of CL for 0 to 8 hours. Retinal tissues from three to eight animals per experimental condition were collected for histologic and molecular analyses. RESULTS S334ter animals revealed significant increases in BiP, S334ter-3 (3.3× at P15), S334ter-4 (4× at P60), and S334ter-5 (2.2× at P90), and Chop, S334ter-3 (1.3× at P15), S334ter-4 (1.5× at P30), and S334ter-5 (no change), compared with controls. P23H-3 rats showed significant increase of BiP at P60 (2.3×) and Chop (1.6×). RCS and RCS-p+ rats showed significant increases in BiP at P60 (2.4×) and P20 (1.8×), respectively, but no statistically significant changes in Chop. BALB/c mice showed increases in BiP (1.5×) and Chop (1.3×) after 4 hours of CL. Increased levels of these ER stress markers correlated with photoreceptor cell loss. CONCLUSIONS Our study reveals surprising increases in BiP and to a lesser degree Chop in retinal degenerations arising from diverse causes. We propose that manipulation of ER stress responses may be helpful in treating many environmental and heritable forms of retinal degeneration.
Collapse
Affiliation(s)
- Heike Kroeger
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
44
|
Tremblay F, Waterhouse J, Nason J, Kalt W. Prophylactic neuroprotection by blueberry-enriched diet in a rat model of light-induced retinopathy. J Nutr Biochem 2012; 24:647-55. [PMID: 22832077 DOI: 10.1016/j.jnutbio.2012.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/15/2022]
Abstract
The role of anthocyanins is controversial in vision health. This study investigates the impact of a blueberry-enriched diet as neuroprotectant in a rat model of light-induced retinopathy. Thirty-eight albino Wistar rats and 25 pigmented Brown-Norway rats were fed by gavage with long (7 weeks) and short (2 weeks) intervention with fortified blueberry juice (1 ml; 2.8 mg cyanidin 3-glucoside equivalents) or with a placebo solution (7 weeks) that contained the abundant nonanthocyanin blueberry phenolic, namely, chlorogenic acid, before being submitted to 2 hours of intense light regimen (1.8×10(4) lux). Retinal health was measured by fitting electroretinogram responses with the Naka-Rushton equation. The light-induced retinal damage was severe in the placebo groups, with the maximum amplitude of the electroretinogram being significantly reduced in both Wistar and Brown-Norway rats. The maximum amplitude of the electroretinogram was significantly protected from the light insult in the Wistar rats supplemented with blueberry juice for 7 or 2 weeks, and there was no significant difference between these two groups. The same dietary intervention in the Brown-Norway groups failed to protect the retina. Histological examination of retinal section confirmed the electroretinography results, showing protection of the outer nuclear layer of the retina in the Wistar rats fed with blueberries, while all placebo-fed rats and blueberry-fed Brown-Norway rats showed evidence of retinal damage concentrated in the superior hemiretina. The neuroprotective potential of anthocyanins in this particular model is discussed in terms of interaction with rhodopsin/phototransduction and in terms of antioxidative capacity.
Collapse
Affiliation(s)
- François Tremblay
- Dalhousie University, Department Physiology & Biophysics, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
45
|
Samardzija M, Wariwoda H, Imsand C, Huber P, Heynen SR, Gubler A, Grimm C. Activation of survival pathways in the degenerating retina of rd10 mice. Exp Eye Res 2012; 99:17-26. [DOI: 10.1016/j.exer.2012.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 02/02/2023]
|
46
|
Nechipurenko IV, Broihier HT. FoxO limits microtubule stability and is itself negatively regulated by microtubule disruption. ACTA ACUST UNITED AC 2012; 196:345-62. [PMID: 22312004 PMCID: PMC3275378 DOI: 10.1083/jcb.201105154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
FoxO inhibits microtubule stability in the central nervous system, making its degradation an essential component of a cell’s protective response to cytoskeletal insult. Transcription factors are essential for regulating neuronal microtubules (MTs) during development and after axon damage. In this paper, we identify a novel neuronal function for Drosophila melanogaster FoxO in limiting MT stability at the neuromuscular junction (NMJ). foxO loss-of-function NMJs displayed augmented MT stability. In contrast, motor neuronal overexpression of wild-type FoxO moderately destabilized MTs, whereas overexpression of constitutively nuclear FoxO severely destabilized MTs. Thus, FoxO negatively regulates synaptic MT stability. FoxO family members are well-established components of stress-activated feedback loops. We hypothesized that FoxO might also be regulated by cytoskeletal stress because it was well situated to shape neuronal MT organization after cytoskeletal damage. Indeed, levels of neuronal FoxO were strongly reduced after acute pharmacological MT disruption as well as sustained genetic disruption of the neuronal cytoskeleton. This decrease was independent of the dual leucine zipper kinase–Wallenda pathway and required function of Akt kinase. We present a model wherein FoxO degradation is a component of a stabilizing, protective response to cytoskeletal insult.
Collapse
Affiliation(s)
- Inna V Nechipurenko
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
47
|
Oxidant-induced cell death and Nrf2-dependent antioxidative response are controlled by Fra-1/AP-1. Mol Cell Biol 2012; 32:1694-709. [PMID: 22393254 DOI: 10.1128/mcb.06390-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AP-1 (Jun/Fos) transcription factors play key roles in various biological processes, including cell death. Here we report a novel role for Fra-1 in oxidant-induced cell death controlled by modulating antioxidant gene expression. Fra-1-deficient (Fra-1(Δ/Δ)) mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts (PLFs) were remarkably resistant to H(2)O(2)- and diquat-induced cell death, compared to their wild-type (Fra-1(+/+)) counterparts. Fra-1 deficiency ablated oxidant-induced mitochondrion-dependent apoptosis. Fra-1(Δ/Δ) cells had elevated basal levels of antioxidant enzymes and intracellular glutathione (GSH), which were further stimulated by oxidants. Loss of Fra-1 led to an increased half-life of transcription factor Nrf2 and increased recruitment of this protein to the promoters of antioxidant genes and increased their expression. Depletion of intracellular GSH or RNA interference (RNAi)-mediated knockdown of Nqo1, Hmox1, and Nrf2 restored oxidant-induced cell death in Fra-1(Δ/Δ) cells. Thus, Fra-1 appears to increase susceptibility to oxidants and promotes cell death by attenuating Nrf2-driven antioxidant responses.
Collapse
|
48
|
Miyake S, Sasaki M, Takahashi N, Tsubota K, Ozawa Y. Photo-damage mechanisms and anti-apoptotic effect of lutein in the mouse retina. Inflamm Regen 2012. [DOI: 10.2492/inflammregen.32.208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Liu A, Lin Y, Terry R, Nelson K, Bernstein PS. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies. ACTA ACUST UNITED AC 2011; 6:593-613. [PMID: 25324899 DOI: 10.2217/clp.11.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macular degeneration is a progressive, bilateral eye disorder that damages the macula of the human eye. The most common form of macular degeneration is age-related macular degeneration (AMD), which is the leading cause of irreversible blindness in people older than 50 years in developed countries. Autosomal dominant Stargardt disease-3 (STGD3) is an inherited macular dystrophy that has clinical features similar to dry AMD, but occurs at a much earlier age. It is caused by a mutation in the elongation of very-long-chain fatty acids-like 4 (ELOVL4) gene, which is responsible for encoding the elongase enzyme that converts shorter chain fatty acids into C28-C38 very long-chain polyunsaturated fatty acids (VLCPUFAs, total number of carbons ≥24). Diets rich in long-chain polyunsaturated fatty acids (LCPUFAs) have inverse associations with the progression of AMD and STGD3, and a deficiency in retinal LCPUFAs and VLCPUFAs has been detected in AMD retinas and STGD3 animal models. This article systematically summarizes the roles of LCPUFAs and VLCPUFAs in AMD and STGD3, and discusses future research directions.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Yanhua Lin
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ryan Terry
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kelly Nelson
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
50
|
Mandal MNA, Moiseyev GP, Elliott MH, Kasus-Jacobi A, Li X, Chen H, Zheng L, Nikolaeva O, Floyd RA, Ma JX, Anderson RE. Alpha-phenyl-N-tert-butylnitrone (PBN) prevents light-induced degeneration of the retina by inhibiting RPE65 protein isomerohydrolase activity. J Biol Chem 2011; 286:32491-501. [PMID: 21785167 PMCID: PMC3173208 DOI: 10.1074/jbc.m111.255877] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/14/2011] [Indexed: 12/28/2022] Open
Abstract
α-Phenyl-N-tert-butylnitrone (PBN), a free radical spin trap, has been shown previously to protect retinas against light-induced neurodegeneration, but the mechanism of protection is not known. Here we report that PBN-mediated retinal protection probably occurs by slowing down the rate of rhodopsin regeneration by inhibiting RPE65 activity. PBN (50 mg/kg) protected albino Sprague-Dawley rat retinas when injected 0.5-12 h before exposure to damaging light at 2,700 lux intensity for 6 h but had no effect when administered after the exposure. PBN injection significantly inhibited in vivo recovery of rod photoresponses and the rate of recovery of functional rhodopsin photopigment. Assays for visual cycle enzyme activities indicated that PBN inhibited one of the key enzymes of the visual cycle, RPE65, with an IC(50) = 0.1 mm. The inhibition type for RPE65 was found to be uncompetitive with K(i) = 53 μm. PBN had no effect on the activity of other visual cycle enzymes, lecithin retinol acyltransferase and retinol dehydrogenases. Interestingly, a more soluble form of PBN, N-tert-butyl-α-(2-sulfophenyl) nitrone, which has similar free radical trapping activity, did not protect the retina or inhibit RPE65 activity, providing some insight into the mechanism of PBN specificity and action. Slowing down the visual cycle is considered a treatment strategy for retinal diseases, such as Stargardt disease and dry age-related macular degeneration, in which toxic byproducts of the visual cycle accumulate in retinal cells. Thus, PBN inhibition of RPE65 catalytic action may provide therapeutic benefit for such retinal diseases.
Collapse
Affiliation(s)
- Md Nawajes A Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|